
Continuous Content-Based Copy Detection over
Streaming Videos

Ying Yan †1, Beng Chin Ooi ‡2, Aoying Zhou †§3

†Department of Computer Science and Engineering, Fudan University
{yingyan, ayzhou}@fudan.edu.cn

‡Department of Computer Science, National University of Singapore
ooibc@comp.nus.edu.sg

§Institute of Massive Computing, East China Normal University
ayzhou@sei.ecnu.edu.cn

Abstract— Digital videos are increasingly adopted in various
multimedia applications where they are usually broadcasted or
transmitted as video streams. Continuously monitoring copies on
the fast and long streaming videos is gaining attention due to its
importance in content and rights management. The problem of
video copies detection on video streams is complicated by two
issues. First, original videos may be edited, with their frames
being reordered, to avoid detection. Second, there are many
concurrent video streams and for each stream, there could be
many continuous video copy monitoring queries. Efficient data
stream algorithms are therefore essential for processing a large
number of continuous queries on video streams. In this paper, we
first define video sequence similarity that is robust with respect
to changes of videos, and a hash-based video sketch for efficient
computation of sequence similarity. We then present a novel
bit vector signature of the sketch to achieve two optimization
objectives: CPU cost and memory requirement. Finally, in order
to handle multiple continuous queries simultaneously, we design
an index structure for the query sequences. We implemented
the system and use real videos for the experimental study.
Experimental results confirm the efficiency and effectiveness of
our proposed techniques.123

I. INTRODUCTION

With the advent of inexpensive video capturing, authoring
and storage devices and with the increasing bandwidth, digital
video sharing and broadcasting over the internet has become
a reality. Videos are being used increasingly in many appli-
cations such as long distance learning, product and service
information dissemination and of course, the entertainment.
Unfortunately, ease of editing, transmitting and duplicating
have also made copyright protection a problem. In typical
scenarios, authors of the videos would like to know how their
work have been edited and used by others; film producers are
eager to know whether their products have been copied and
broadcasted in legal manners; and the advertising agencies
would like to ensure that their advertisements have been
broadcasted on the prime time slot they pay for and without
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tamper. In this connection, efficient and effective online video
copies detection are therefore important. We call these infinite,
broadcasting live videos streaming videos in this paper. To
solve this kind of problem, both digital techniques and data
streaming algorithms are needed.

Two obvious techniques that are relevant to copy detection
are watermarking and content based image retrieval (CBIR)[1],
[2]. Watermarking is by means of hiding some signals into
the video, and it relies on the ability to detect from a copy
a distinct pattern earlier introduced into the original copy.
However, watermark based detection has its problems: (a)
Watermark based detection can only be used if the videos
are watermarked. In some countries, it is common that the
videos are manually captured in the cinema and illegally put
into circulations. In such cases, the video content may be the
same, but many features have been altered due to recapturing,
and the video is not watermarked. (b) The watermark could
be attacked and destroyed or distorted during transmission. (c)
The third party who has been engaged for video monitoring
services may not have the original watermark information. An
effective alternative approach to copy detection is to exploit
the fact that “video itself is the watermark” [1] and make use
of the contents. Indeed, content based video copy detection
is more appropriate for a broader range of applications such
as advertisement monitoring by the third party. While videos
consist of frames and could be segmented based on scenes,
direct application of CBIR techniques on video streams for
copy detection is however inefficient. First, thousands of hours
of videos are broadcasted everyday. It is not practical to store
all the videos from different sources. It would be more efficient
to process the incoming streams in real time without archiving,
and only store the video sequences which are relevant to the
queries for further analysis. The techniques in traditional Video
Database Management System (VDBMS) cannot be applied
directly. Indexing techniques such as [3], [4], [5] are based
on the entire sequence comparison in well segmented video
databases. Therefore, they are not suitable for copy detection
over streaming videos. Second, video editing is common, and
many videos may have been temporally reedited before they
are republished. For example, some individuals may reorganize



the videos along another story line or theme to serve their own
purposes. As a result, the temporal features of the shots or even
frames of video sequences are changed. Existing subsequence
matching techniques such as [1], [6], [7], [8], [9] have not been
designed to efficiently detect these temporally reordered video
copies. Third, like any other continuous querying systems,
there could be many query videos for which the system has
to monitor continuously and concurrently over each video
stream. Unfortunately, existing work does not consider how
to organize the continuous query sequences effectively.

To address the above problem, an efficient Video Data
Stream Management System (VDSMS) has to be designed. In
this paper, we propose a scheme for fast and robust continuous
copy detection over streaming videos. In particular, we have
the following contributions.

1) In Section III, we propose a robust compressed domain
feature extraction and feature signature encoding scheme
for video sequences.

2) In Section IV, we propose an approximate min-hash
based method to construct sketches for the streaming
videos. The proposed sketch is not only efficient in
terms of video sequence comparison, but also robust for
temporally varied video copies.

3) We propose a novel bit signature representation of video
sketch, a pruning algorithm and an efficient query index
structure in Section V to reduce similarity comparison
computation and to provide fast response.

4) In Section VI, we show the experimental results on
real videos obtained from Google web site[10]. The
results demonstrate the effectiveness and efficiency of
our proposed method.

Apart from the main sections mentioned above, we also
reviews necessary related work in Section II and conclude the
paper in Section VII.

II. RELATED WORK

To facilitate meaningful content based video retrieval, it is
important to address the problem of video similarity. There are
two main approaches. One approach is mainly based on the
frame feature of videos. It considers video sequence as a col-
lection of individual frames, and computes the similarity based
on the image features. Chang et al.[11] devise a system which
retrieves videos by key frame comparison. Cheung et al.[3]
develop a randomly seeded frames comparison algorithm.
These methods are not efficient because of the large number of
image comparisons and high segmentation cost in extracting
key frames. Various techniques have also been proposed to
improve the efficiency of image feature based comparisons. In
[4], the authors propose a novel signature on video sequence
based on the percentage of color dominated pixels. Shen et
al.[5] propose to compute the similarity based on the volume
intersection between two hyper-spheres determined by two
video clips to reduce computational cost. The authors of
[12], [13], [14] extract fingerprints which are discriminant
enough among different images. Indexes can be built over
these fingerprints for image or video copy detection. However,

the whole video has to be analyzed to obtain feature clusters
for indexing purposes. Lu et al.[15] propose ordered VA-file
indexing technique and efficient KNN search algorithm to
speed up video retrieval and achieve high accuracy.

The other approach is to take the temporal order into
consideration, by viewing a video as an ordered sequence of
frames, and compare video clips sequence by sequence. Hoi et
al.[16] propose a two-step filter-and-refine approach based on
nearest feature trajectories. Park et al.[17] propose suffix tree
indexing techniques for video or image sequence matching
using time warping distance. Diakopoulos et al. [18] propose
a method based on sub-shot level segmentation and out of
order matches of these segmentation. However, all the methods
mentioned above have been designed for full video clip
matching and cannot be applied directly to streaming video
copy detection problem. Subsequence video matches have
higher demands on efficiency because most such applications
need real time response. Kim et al.[9] combine ordinal and
temporal signatures together for sequence matches to improve
the speed. Hampapur et al.[1] propose sequence comparison
methods based on motion direction, ordinal intensity and color
histogram signatures. In their proposal, query sequence slides
frame by frame on data sequence with a fix-sized window.
Chiu et al.[6] use warping distance computation on selected
critical frames which not only solves the sequence length
variations problem identified in [1], but is also more effective
than the approach proposed in [9]. Adjeroh et al.[7] turn the
video sequence matching into substring matching problem and
use edit distance as the similarity measure. Hoad et al.[8]
describe novel techniques for extracting features from light
centroid and color shifts of video sequence. However, when the
temporal pattern is broken by reordering the shots or frames
of video sequences, all these subsequence matching techniques
have not been shown to be able to make temporal variations
effectively. Either, all have not been designed for video stream.

A key step towards efficient video comparison is semantic
feature extraction. Videos are encoded into bit streams to
ease storage and transmission. There are methods based on
pixel domain [4], [5], [11], [16] as well as the compressed
domain[19], [20]. Feature extraction on the uncompressed
pixel domain can only be applied to applications which do
not need real time response. On the contrary, operations
on compressed domain avoid costly computation of inverse
Discrete Cosine Transform (DCT) and thus achieve higher
efficiency.

Processing time and storage are both critical for data stream
problems. In this paper, we propose to build sketches over
the incoming video streams to achieve high performance.
Our sketch is based on a family of hash functions, min-
wise independent, which were introduced in [21] and recently
investigated in [22]. The basic idea of min-wise hashing
scheme is that the similarity of two sets of objects is estimated
by their independent permutations. Hence, it can be used
to measure set similarity in different applicatioins[23], [24].
However, the number of of hash functions could be too large
to make it practical, and consequently, approximate min-wise



family with error bound was introduced in [24], [25], [26].

III. STREAMING VIDEO COPY DETECTION

A video stream S is a sequence of frames S =
{s1, s2...sN}. A video subsequence of S from frame si to
sj is denoted as P (i:j) = {si...sj}. The length of P (i:j) is
the number of frames it contains.

Definition 1: Streaming Video Copy Detection. Given a set
of query sequences ψ = {Q1, Q2...Qm} and a video stream
S, if any subsequence P (i:j) (i, j ∈ [1, N ] and i<j) over S
satisfies

sim(Qk, P ) ≥ δ k ∈ [1,m]

P (i:j) is returned as a copy of query Qk. δ is the similarity
threshold.

A. Frame Fingerprint

In order to facilitate fast video frame comparison, we use
signatures to represent the features extracted from the video
frames. We propose a two-phase method in deriving the signa-
ture: multi-dimensional feature extraction and dimensionality
reduction.

Feature Extraction. Image fingerprint extraction tech-
niques such as [12], [13], [14] are robust to geometric trans-
formations and invariant to illumination variations. Naturally,
these methods can be imbedded into our system. However,
they are more focused on effect rather than on speed. In order
to ensure fast online response, we use the following simple and
effective feature extraction method on compressed domain. We
partially decode incoming video bit streams to Discrete Cosine
(DC) sequence and extract the DC coefficients of key (or I)
frames. Each key frame is spatially partitioned into D equal
sized blocks. The average DC coefficient value of each block
is computed. All these D average values in each frame are
then normalized to the [0,1] range as below:

Ci =
C̃i − C̃min

C̃max − C̃min

(i ∈ [0,D − 1]) (1)

where C̃i, C̃max and C̃min are respectively the ith, max-
imum and minimum values of the D average coefficients.
Then, we select d coefficients from D blocks. The advan-
tages of this feature extraction are as follow: (1) Working
on the DC domain is significantly faster than on the pixel
domain[20], therefore it is ideal for streaming applications
for fast responses. (2) Multiple video copies streaming from
different sources usually have variations in brightness, color
or frame size. However, ordinal relationship of coefficients
among blocks in a frame remains stable. After normalization,
the coefficient of each block is also relatively stable among
different copies.

Dimensionality Reduction. In order to reduce com-
putational cost, and construct sketches for video sequences,
we reduce the dimensionality of the normalized feature vector
by transforming it to a single dimensional signature. To this
end, we partition the feature space into equal sized cells.
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Fig. 1. Feature Space Partition

The signature of each frame is represented by the cell id its
feature belongs to. By grid partitioning, the space along each
dimension is divided into u equal width segments, we get ud

cells for the d dimensional space. The granularity of the cells
affects the number of false positives and false negatives. If the
number of cells is too small, many features will be mapped to
the same representative cell and this will result in many false
positives. If this number is too huge, there are many false
negatives because of the small variances of the coefficients
among different copies.

Based on the ordinal pattern preserving characteristic of
video data, we propose a grid-pyramid based partitioning
method. Each dimension is first divided into u slices by
grid partition. Then, each grid cell is further divided into
2d subcells by pyramid partitioning, as shown in Figure 1.
Therefore, the space is partitioned to 2dud cells. Given a
frame’s feature vector f , the cell is computed from id =
2dOg(f)+Op(f), where Og is grid order or space filling order
and Op is pyramid order. Suppose the center of one cell is
<V0, V1...Vd−1>, the pyramid order is as follows[27]:

Op =
{
jmax : jmax < Vjmax

jmax + d : jmax ≥ Vjmax

jmax = (j|∀i, 0 ≤ (j, i) < d−1, j �= i; |Vj −Cj | ≥ |Vi −Ci|)
In pyramid partition, the cell of a feature point is determined

by a single value jmax= arg{max{|Vj−Cj |}} (j ∈ [0, d−1]).
The rationale behind the use of both grid-based and

pyramid-based partitioning is as follows. Pyramid partitioning
divides the space only into 2d cells. With only 2d cell ids,
the number of false positives is just too big. Another reason is
due to the characteristics of extracted video features. Given the
block coefficients of two copies of frames with different com-
pressed settings C=<C0, ..., Cd−1> and C ′=<C ′

0, ..., C
′
d−1>.

The orders of vector C and C ′ may be similar, and yet
are not exactly the same, as in each vector, the ranks of
some coefficients are changed because of the slight differences
between each pair of these coefficients. Moreover, the fraction
of these changed values is usually small[1]. Unless the value
jmax is changed, variances of other values will not affect the
pyramid cell id. Suppose there are k values whose ranks are

changed, the probability of changing jmax is 1 − (k
D−1)

(k
D)

=
k
D which is low due to the robustness of ordinal features.
On the contrary, if the grid partitioning alone is used, the
slight changes of each dimension’s feature value may cause
feature points of two copies being mapped to different cells.
Therefore, having a pyramid partition in each grid cell will
result in less false negatives than just the pure grid-based
partitions.



B. Similarity Measure

After assigning a signature to the feature of each frame,
a video sequence is mapped to a data sequence P (i:j) =
{si...sj}, where si is a 1-dimensional value indicating the
cell id of the ith frame. To obtain robustness against temporal
variations, we use set similarity as the measure of video
sequences’ similarity which is,

Definition 2: Video Sequence Similarity. Given two video
sequences Q and P , the similarity is defined as:

sim(Q,P ) =
|Q ∩ P |
|Q ∪ P |

The computation of this similarity between P and Q lies
in finding the distinct number of common cell ids |Q ∩ P |.
It is not a difficult task when P and Q are two finite video
sequences. However, in video streaming setting, membership
test for Q ∩ P on each arrived frame is not practical. The
cost for the brute force search scales linearly to the number of
queries as well as the length of each query and cannot meet the
requirement of efficiency on high speed streams. Therefore, a
sketch technique over streaming video is required.

IV. SKETCHING VIDEO SEQUENCES

Sketches constructed over streaming videos should facilitate
a much more efficient definition 2 computation while not los-
ing much of the information for deriving the actual similarity.
In this section, we introduce an effective min-hash based
sketch technique.

Theorem 1: min-wise independent.[22] A family of hash
functions ψ ⊆ Sn is min-wise independent if ∀x ∈ X and
set X ⊆ {1, 2..., n}, π is chosen at random in ψ according
to some specified probability distribution, then we get the
following:

Pr{min {π(X)} = π(x)} =
1
|X| (2)

The requirement is that there is equal probability that any
element in X will become the minimum element of the image
of X under π. The distribution on ψ can either be uniform or
skewed.

When we randomly select a hash function π from ψ to get
a sample τ(X) ∈ X , τ(X) = π−1(min {π(X)}), then, for
any two non-empty subsets Q and P ,

Pr{τ(Q) = τ(P )} =
|Q ∩ P |
|Q ∪ P | (3)

However, in order to satisfy equation 2 the exact num-
ber of min-hash function could be very large, resulting
in high computational overhead. Consequently, approximate
min-wise hash is introduced [25], [26]. sim(Q,P ) is es-
timated by pre-computing set Q and P ’s K-min-hash
sketches Q′ = {minπ1(Q), ...,min πK(Q)} and P ′ =
{minπ1(P ), ...,min πK(P )}. The value of similarity is the
percentage of equal min-hash values between Q’ and P ’.

A. Streaming Video Subsequences Comparison

Due to different encoding settings such as frame rate, video
copies of the same content may not be of the same length. In
order to get accurate results, we should compute the similarity
of subsequences with query sequences at any possible start
position and of any possible length. The subsequences from
the video stream, which are potentially to be matched, are
called candidate sequences. A basic assumption is that, if
the length of a query is L, then, the length of candidate
sequence is upper bounded by λL. As discussed in[28], the
optimal tempo scaling parameter λ is no bigger than 2.
Maintaining and testing an overly long subsequence is neither
practical nor meaningful, therefore the candidate sequences
which are longer than λL in the candidate list CL, termed
expired sequences, which will be removed from the list.

We first partition the video stream into small windows
with equal size w, which are called basic windows. Then, we
combine consecutive basic windows into different lengthes of
candidate sequences. The candidate sequence which satisfies
definition 1 with query sequence Q, is returned as a copy of
Q.

The size of each candidate sequence P is the number of
basic windows, |P | ∈ [1, 	λL

w 
]. We denote each basic window
as wi, P [i, j] = {wi ◦ wi+1... ◦ wj}, (i ≤ j). The sketch of
P [i, j] is a vector containing K-min-hash values denoted as
skij = {sk1

ij , sk
2
ij , ..., sk

K
ij }. As we shall see, our approximate

min-hash sketch not only makes the similarity comparison
easier but also has good properties for bottom up multi-length
candidate sequence computation.

Property 1: For any candidate sequence P [i, j], (i ≤ j), its
approximate min-hash sketch can be computed by choosing
the smallest hash value from the sketches of its subsequences
P [i, x] and P [x, j], where x ∈ [i, j].

The proof is omitted here due to space limitation.

Based on this property, the sketch of any candidate sequence
P can be computed from the combination of basic windows’
sketches. We consider two combination orders: Sequential and
Geometric Order. In Sequential Order, the ith basic window
sketch combines with all the sketches of its previous candi-
date sequences’ in candidate list CL. Function Comb(A,B)
combines sketch B with A and stores the result in A. While in
Geometric Order, as shown in Figure 2 where ski is the sketch
of basic window i and CL is the candidate sequence list. There
are only 	log i
 combinations when the ith sketch arrives. As
illustrated in Figure 3(b), when the 4th basic window arrives,
it first combines with candidate sequence 3. The result will
combine with candidate sequence 1.

In Sequential order, candidate sequences are maintained
with size ranging from 1 to 	λL

w 
. It is adopted when the
accuracy is of primary importance. Geometric Order only
stores candidate sequences with size of log(i), i∈[1, 	λL

w 
].
Although it is more efficient than Sequential order, it may
have more false negatives due to skipping of frames.



Algorithm GeometricOrder
Input: ski : Sketch of basic window i

CL: Candidate sequence list
1. if CL is not empty then
2. for j=1 to log(�λL

w
�) + 1 do

3. if j=1 then
4. Merge(CL[�λL

w
� − 1 ], ski );

5. else Merge(CL[�λL
w
� − 2 j + 1 ],

CL[�λL
w
� − 2 j−1 + 1 ]);

Fig. 2. Geometric Order

1t = 2t = 3t = 8t =

2~11 2 3~1 3~2 3

...

8~1 8~2 8~3 8...

...

(a) Sequential

1t = 2t = 3t = 4t =

2~11 2 2~1 3~2 3 4~1 3~2 4~3 4

...

8t =

8~1 5~2 6~3 8

...

7~4 8~5 7~6 8~7

(b) Geometric
Fig. 3. Different Combination Orders

B. Cost Analysis

For each basic window, we need to perform three oper-
ations: (1) Comparing the basic window sketch with query
sketches for similarity of definition 2; (2) Combining the
sketch with other candidate sequences in the candidate list
and (3) Comparing the combined candidate sequences with
query sketches again for similarity. The total processing cost
per basic window is:{
αCcomp + (αCcomp + Ccomb)	λL

w 
 : Sequential
αCcomp + (αCcomp + Ccomb) log(	λL

w 
) : Geometric
(4)

Ccomp is the cost for comparing of two sketches. Ccomb is
the cost of combining a pair of sketches. Independent of the
combination order being used, the cost is entirely determined
by three factors: (1) Sketch operation cost Ccomp and Ccomb.
(2) The number of basic windows 	λL

w 
 maintained, where
L is the maximum length of queries. (3) The number of
queries α we need to compare with. In order to improve the
overall efficiency, we must improve the sketch computation
and comparison, reduce the amount of candidate sequences
maintained, and reduce the number of comparison between
candidate sequences and the queries.

V. OPTIMIZING THE OPERATION OF SKETCH COMPARISON

A. Bit Vector Signature

When comparing the candidate sequence sketches with the
query sketches, we actually just need to count the number
of equal hash values instead of identifying what the hash
values are. The following example illustrates the case in point.
Suppose we choose the rth hash values skr

ix, skr
xj and skr

q

from two candidate sequence sketches skix, skxj and a query
sketch skq. If skr

ix is bigger than skr
q , we mark a symbol “>”

over skr
ix. If skr

ix is equal to skr
q , we use the symbol “=”.

We use “<” when skr
ix is smaller than skr

q . Correspondingly,
we get the symbols from the comparison between skr

xj and

skr
q . Suppose skij is the sketch of merging skix and skxj .

The symbol between skr
ij and skr

q can be obtained directly
from the symbols of skr

ix and skr
xj . For example, if skr

ix “>”
skr

q , and skr
xj “>” skr

q , then skr
ij “>” skr

q ; if skr
ix “<” skr

q ,
and skr

xj “=” skr
q , then skr

ij “<” skr
q . Therefore, we devise

a bit vector signature encoded according to the relationship
between the hash values.

Definition 3: Bit Vector Signature. Given the sketch of a
candidate sequence skij and a query sequence skq, the values
of the rth hash function (r ∈ [1,K]) are respectively skr

ij and
skr

q . Bij.q is a bit vector signature with length 2K encoded
by the relationship between skij and skq with the following
rules:

Bij.q[r − 1, r] =




00 : skr
ij > skr

q

01 : skr
ij = skr

q

11 : skr
ij < skr

q

The encoding procedure does not lose any information from
sketches because of the followings,

min{>,>} =“>”⇐⇒ 00|00 = 00,
min{>,=} =“=”⇐⇒ 00|01 = 01,
min{>,<} =“<”⇐⇒ 00|11 = 11,
min{=,=} =“=”⇐⇒ 01|01 = 01,
min{=, <} =“<”⇐⇒ 01|11 = 11,
min{<,<} =“<”⇐⇒ 11|11 = 11.
When comparing with query q, for any two candidate

sequences P [i, x] and P [x, j], the bit signature of their com-
bination Bij.q is the “OR” between their bit signature Bix.q

and Bxj.q. The similarity between the combination P [i, j] and
query q is computed according to the following lemma.

Lemma 1: The similarity between a candidate sequence and
a query can be computed from their bit vectors. Assume n0

is the number of 0 on even positions and n1 is the number of
1 on the odd positions in the bit vector. Then,

sim = 1 − n0 + n1

K

Proof: As in definition 3, n0 is exactly the number of
“>” values, while n1 is the number of “<” values. Thus, K−
n0 − n1 is the number of equal values. We get the similarity
sim = K−n0−n1

K = 1 − n0+n1
K .

Each sketch skij = {sk1
ij , sk

2
ij , ..., sk

K
ij } is represented by

a bit vector signature of length 2K bits according to a query q.
We only need to compare each basic window sketch with query
sketches to get the bit signature. Signatures of other candidate
sequences can be obtained by bit “OR” of basic windows’
signature without accessing the query. The similarity can be
computed by counting the number of 0 and 1 according to
Lemma 1. The array comparison in equation 4 is transformed
to bit operation to reduce the cost of Ccomp and Ccomb.

B. Pruning Strategies

Lemma 2: Given a query sequence q with sketch skq, and
a candidate sequence P [i, j] with sketch skij , the bit signature
of skij corresponding to skq is Bij.q. If P [i, j] is a copy of



q, the number of 1 on the odd positions of Bij.q must be no
bigger than K(1 − δ) with similarity threshold δ.

Proof: From property 1, we know that, skij is computed
from its candidate sequences sketches, ∀r ∈ [1,K], skr

ij =
min{skr

ix, sk
r
xj}. For a given query sketch skq, if skr

ix < skr
q ,

then skr
ij < skr

q for any j > i. The reason is that if skr
xj ≥

skr
ix, then skr

ij = skr
ix < skr

q , otherwise skr
ij = skr

xj <
skr

ix < skr
q . The similarity between the candidate sequence

and query q is determined by the number of equal min-hash
values Ne. As the size of candidate sequences grows bigger,
Ne is varied. However, there are less hash values bigger than
query (Nb) and more hash values smaller than query (Ns),
which is Nb becomes smaller and Ns is bigger. Ne equals to
K −Ns −Nb which is no bigger than K −Ns. Thus, we get
Ns ≤ K − Ne. As defined in definition 1, the subsequences
which is a video copy must satisfy Ne ≥ Kδ. Therefore, we
conclude Ns must be no bigger than K(1− δ). According to
definition 3, Ns is also the number of 1 in the odd positions
of Bij.q.

A candidate sequence P which does not satisfy Lemma 2
should be removed. As argued in the proof, all the candidate
sequences which are in the combination order list of P should
also be removed. Because, if Ns in sketch P is big, Ns in
its combination sequences will be no less than that in P .
Therefore, all the related candidate sequences can be pruned.

The success of bit signature lies in that, it considers the rela-
tionship between candidate sequence sketch and query sketch.
When there are multiple queries, each candidate sequence
does not only maintain the signatures of its related queries
but also those related to its consecutive candidate sequences
in CL. Despite the fact that more related query signatures
have to be maintained, the cost of using bit signature is still
low because: (1) For the matched candidate sequences, their
related queries tend to be similar with its consecutive candidate
sequences. For those queries that do not match, their signatures
will not remain in the list long before being pruned. As
such, the signature list is not big. (2) Instead of choosing the
maximum query length, L can be selected according to each
query. Unqualified signatures related to short length queries
will be pruned early to reduce memory consumption. (3) Each
signature is 2K bits, the total signature size in the candidate
list is 2αK bits, for α related queries. With our query index
structure described in the following section, α is kept very
small, and therefore, the memory consumption is small.

C. Indexing Query Sequences

In real applications, there are a large number of video
sequences subscribed as continuous queries over streaming
videos. Maintaining and comparing candidate sequences with
each query is not cost effective. Typically, each candidate
sequence is only relevant to one or a small number of queries,
efficient indexing of query sequences is therefore essential.
In this section, we introduce a simple and yet effective data
structure for organizing the sketches of query sequences.

1) The Data Structure: The sketches of the query sequences
can be min-hashed offline. Suppose the number of queries is

1Q
3Q 2Q 4Q 8Q 7Q 5Q 6Q

6Q 1Q 8Q 4Q 5Q 3Q 7Q 2Q

1h

2h

6Q 5Q 2Q 7Q 4Q 3Q 8Q1Q

ordering

... ... ... ... ...
1Q 7Q...

3h

ih

... ...
1Q7Qkh ............

down up

Fig. 4. Index Structure

m and the number of hash functions is K, the number of hash
values in all the queries are m×K. For the index construction
algorithm where QS[m][K] is Query sketches, we organize
them in a two dimensional Hash-Query array HQ[K][m].
Each data element HQ[i][j] is a triple <value, up, down>.
value is the min-hash value of the ith hash function of query
q. up denotes the position of query q’s (i-1)th hash value on
(i-1)th row. down represents the position of q’s (i+1)th hash
value on (i+1)th row. At the entry of each column, there is
information about the query id and query length. Data triples
on each row are ordered according to value.

In this data structure, given the value of the ith hash
function, binary search is performed on the ith row. If the
matched position is HQ[i][j], up and down search would be
performed to find all the other hash values of the same query.
When the search reaches the first row, we get the query id and
length. Alternatively, given a query id q, from the first row, we
can get the position of entry HQ[0][j], then down search is
performed to find all the hash values of q. An example index
structure is shown in Figure 4, and as can be observed, the
hash values of query Q1 are located at different positions on
different rows, but they are connected with the same query id
through the value of up and down.

Addition of new queries and removal of old queries can
be performed online. When a query sequence q is subscribed
or unsubscribed, through binary search on each row, proper
positions to insert or delete the hash values of q can be
determined quickly. up and down should also be updated for
those whose positions are changed.

2) Index Probing: Given a basic window sketch sk and
query index HQ, the algorithm returns a related query list
RL. Each element in RL is a triple <qid, bitsig, lp>, where
qid denotes related query id, and bitsig denotes bit signature
according to relationship between query qid and sk as in the
definition 3. The search is performed on each hash function
i ∈ [1,K], and lp records the position of its (i-1)th hash value
on (i-1)th row.

The query index probing algorithm is outlined in Figure 5
where HQ is the query index structure. For each hash function
i, the search procedure consists of the following three major
operations. (1) Bit signature setting (steps 3-6). For each
element ele in RL, the bit values of ele.bitsig are set accord-
ing to HQ[i][HQ[i − 1][ele.lp].down].value and sk[i]. (2)
Relevant queries searching (steps 12-16). Binary search
or equal search should be used to find the positions whose



values are equal to sk[i]. These positions correspond to hash
values of queries which are not in the current RL. Suppose a
position HQ[i][j] is found, a new element elenew is inserted
into RL. Using up search, the values of elenew.bitsig and
elenew.qid are all set. (3) Pruning (steps 9-10). Pruning
condition of Lemma 2 is enforced in the above two operations
in order to remove false positives and negative queries from
RL as early as possible.

For the example shown in Figure 4, when a basic window
sketch sk arrives, we find that it has the same hash value
with only Q1 on the first hash function. Then, a bit signature
related to Q1 is inserted into RL. When the search reaches
the third hash function, the hash value of sk is different to
Q1, but it is the same to query Q7’s hash value. Then, a
new bit signature related to Q7 is inserted into RL. After
setting the bit values on the first and second hash functions
of query Q7, two signatures related to both query Q1 and Q7

are continued to be tested. Once done, RL is inserted into
CL. Obviously, the advantage of this data structure lies in that
only the relevant queries need to be compared and only their
bit vector signatures are maintained, which reduces both the
CPU cost and memory consumption.

Algorithm ProbeIndex
Input: sk : Sketch of basic window

HQ : Query index structure
1. for each hash function j ∈ K do
2. Searchflag = 0
3. for each ele in RL do
4. t = HQ [i ][HQ [i − 1 ][ele.lp].down].value;
5. ele.lp = HQ [i − 1 ][ele.lp].down;
6. Set relation(t , sk [i ]) on ele.bitsig [2i , 2i + 1 ];
7. if t = sk [i ] then
8. Searchflag = 1 ;
9. if ele.bitsig does not satisfy Lemma 2 then
10. prune;
11. if Searchflag = 0 then
12. plist ← BinarySearch(HQ [i ], sk [i ]);
13. else plist ← EqualSearch(HQ [i ], sk [i ]);
14. for each position HQ [i ][j ] in plist do
15. RL.push(elenew );
16. set values on elenew .bitsig [0 ...2i ] and elenew .qid ;
17. Return RL;

Fig. 5. Index Probing

Due to the space constraint, we shall not outline the algo-
rithm for handling multiple continuous video copy detection
queries. Instead, we summarize it below:

1) Construct K-min-hash sketches QS for continuous
queries and index structure HQ by BuildIndex(QS)
offline.

2) Construct K-min-hash sketch sk for every w incom-
ing frames. Through probing query index structure by
ProbeIndex(sk,HQ), and comparing with its consec-
utive sequences’ related query lists, a related query list
RL is obtained and is included into candidate sequence
list CL.

3) Compute the bit signature of the candidate sequence
based on Sequential Order or Geometric Order. Return

it as a detected copy if the the similarity condition is
satisfied (cf. Lemma 1). Remove it from CL if it violates
Lemma 2.

4) The process continues till the end of the video stream.

VI. PERFORMANCE STUDY

To simulate video streams that contain interesting video
subsequences the continuous queries are monitoring, we use
5 films as our base video, and we obtain 200 short videos
(NTSC: 352×240, 29.97 fps) from[10], which consist of
MTV, advertisements, movie samples and sports short videos
and insert them into the base video. The lengths of the
inserted videos vary from 30s to 300s. The total length of the
“doctored” video is 12 hours long. To study the effectiveness
of the proposed video copy detection method, we edit the
200 short videos to simulate two different video streams. The
first stream, VS1, is the background film videos with the
original 200 short videos randomly inserted. For the second
video stream, VS2, we alter 20-50% of the color as well
as the brightness, add noises and change the resolutions of
the short videos, re-compress them using different frame rate
(PAL: 352×288, 25 fps). We partition the edited short videos
into segments, reorder these segments without affecting the
contents, and randomly insert the short videos into the base
video. We also use the 200 short videos as the continuous
query videos which are running continuously and concurrently
against the two video streams.

For efficiency, the processing time including partial de-
coding and query processing time which is tested from the
arrival of the first frame until the last frame of our base video.
Maintenance of query index structure and candidate sequence
list CL consumes memory. Since the size of query index is
fixed to m×K triples when using K hash functions for m
queries. We only test the size of CL in the experiments. Since
the size of each bit signature is fixed to 2K bits, the memory
cost is mainly determined by the number of signatures. We use
the average number of bit signatures maintained to evaluate
memory consumptions.

To evaluate the effectiveness of the copy detection methods,
we measure their precision and recall. The precision is the
proportion of video sequences detected by the method which
are the copies of queries, while the recall is the proportion
of the video sequences that are returned by the method. We
record the begin Qi.begin and end Qi.end positions of query
Qi on the stream. The position where a sequence matches is
denoted as Qi.p. If Qi.begin+w ≤ Qi.p ≤ Qi.end+w holds,
this result is correct.

The system is implemented in C++, and all the experiments
are conducted on a PC with 2.39GHz CPU and 1GB memory
(This is done as a part of PIPA system [29], which has been
designed to manage interactive digital media data.) In the
experiments, the setting of the parameters are shown in Table
I. Without additionally mentioned, the parameters are set as
the default values which are chosen based on the experimental
results of each subsection.



TABLE I

PARAMETER SETTINGS

Parameter Range Default vlaue

Number of hash function K 100-3000 800
Dimensionality d 3-7 5

Partition u 2-7 4
Number of Query m 10-200 200
Simiarity threshold δ 0.5-0.9 0.7

Size of basic window w 5s-20s 5s

A. Effects of Space Partitions

In this group of experiments, we want to evaluate the
effectiveness of different number of space partition u on
different dimension d. We partition each frame into 3×3
blocks and extract d∈[3, 7]. The original 200 short videos(A)
in VS1 and 200 edited videos(B) in VS2 are used as data
sets. We use A[i] and B[i] to represent the ith short video
sequence in A and B. As introduced above, videos A[i] and
B[i] have the same contents but different encoding settings.
We use each short video A[i] as query to search the videos
in B using membership test method instead of min-hash.
Given dimension d, we examine the precision and recall with
varied u from 2 to 7. As shown in Table II, when u and p are
small, the volume of each grid cell is big, frame features from
different video sequences may fall in the same cell. Therefore,
precision is low but recall is high. When u and p are both big,
the volume of each grid cell becomes smaller. Thus, recall
becomes low while precision increases. For each d, we should
choose u to make both recall and precision high. Without loss
of generality, in the following experiments, we choose u = 4
and d = 5 which has relatively better result but is not the
optimal value pair.

TABLE II

PRECISION (p) AND RECALL(r) WITH DIFFERENT u AND d

u 2 3 4 5 6 7
d p r p r p r p r p r p r

3 0.5 0.995 0.705 0.975 0.815 0.935 0.9 0.915 0.93 0.91 0.935 0.89
4 0.675 0.975 0.895 0.935 0.96 0.905 0.975 0.88 0.98 0.87 0.99 0.86
5 0.81 0.935 0.965 0.905 0.975 0.9 0.985 0.865 0.99 0.835 0.995 0.82
6 0.875 0.895 0.98 0.89 0.995 0.885 0.995 0.85 0.99 0.825 0.995 0.785
7 0.94 0.825 0.99 0.8 0.995 0.765 0.995 0.735 0.995 0.7 0.995 0.66

B. Effects of Number of Hash Functions
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In this experiment, we want to study the effects of the num-
ber of hash functions on the performance of bit signature (Bit)
and sketch representations (Sketch). For both representations,
we maintain the query structure, and use VS1 as the video
stream.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  400  600  800  1000 1200 1400 1600 1800 2000

Pr
ec

is
io

n 
de

lta
=

0.
6

Number of hash funcitons K

Sequential
Geometric

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  400  600  800  1000 1200 1400 1600 1800 2000

Pr
ec

is
io

n 
de

lta
=

0.
7

Number of hash funcitons K

Sequential
Geometric

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  400  600  800  1000 1200 1400 1600 1800 2000

Pr
ec

is
io

n 
de

lta
=

0.
8

Number of hash funcitons K

Sequential
Geometric

 0.6

 0.7

 0.8

 0.9

 1

 200  400  600  800  1000 1200 1400 1600 1800 2000

Pr
ec

is
io

n 
de

lta
=

0.
9

Number of hash funcitons K

Sequential
Geometric

Fig. 7. Effects of K on Precision

 0.6

 0.8

 1

 1.2

 200  400  600  800  1000 1200 1400 1600 1800 2000

R
ec

al
l d

el
ta

=
0.

6

Number of hash funcitons K

Sequential
Geometric

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  400  600  800  1000 1200 1400 1600 1800 2000

R
ec

al
l d

el
ta

=
0.

7

Number of hash funcitons K

Sequential
Geometric

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  400  600  800  1000 1200 1400 1600 1800 2000

R
ec

al
l d

el
ta

=
0.

8

Number of hash funcitons K

Sequential
Geometric

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  400  600  800  1000 1200 1400 1600 1800 2000

R
ec

al
l d

el
ta

=
0.

9

Number of hash funcitons K

Sequential
Geometric

Fig. 8. Effects of K on Recall

We vary the number of hash functions K from 100 to
3000 and fix other parameters to the default values in Table
I. The CPU time of the two methods are summarized in
Figure 6. When K becomes larger, the cost of sketch opera-
tions increases dramatically compared to fast bit operations. Its
performance therefore degrades at a faster rate as K increases.
For Sketch method, Geometric Order is more efficient than
Sequential Order. But for Bit method, Geometric Order saves
only a little time. The reason is that, for Geometric Order,
though the number of combination is small, pruning condition
is also tested less frequently which makes CL larger. Because
of the high cost of sketch operation, the reduced cost in
combination is substantial, and as a result Geometric Order
is much faster in Sketch method. However, when bit signature
is adopted, the processing time is more related to efficient
pruning rather to bit operations.

Since bit signature does not lose any information we need
over sketch, we test precision and recall with varying K
from 10 to 2000 only on Bit method when different similarity
threshold δ is selected. As shown in Figure 7, as K increases,
the precision improves. After K reaches 1000, the precision
improves much more slowly and stays high. As shown in
Figure 8, recall keeps still or decreases with the increasing
of K. The reason is that, when K is small, a few values
of features will be selected as samples, video sequences
with different contents have more probability to be matched
together. Therefore, precision is low while recall is high. When
K is big, these false matched copies cannot match again,
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which increases precision but lowers recall.
Another interesting result we obtain from Figure 7 and 8

is that, Geometric Order has higher precision than Sequential
Order when δ is lower, and has lower recall when δ becomes
big. As we have discussed in Section IV, Geometric Order
has less matched sequences than Sequential Order, when δ is
small, there are many false matched copies, Geometric Order
returns less these copies which enable higher precision. When
δ is big, the false copies of Sequential Order is smaller, but
the incomplete results of Geometric Order reduce its precision
and recall.

C. Effects of Query Index

In this series of experiments, we study the performance of
query index structure on four methods: Sketch with (SketchIn-
dex) and without (SketchNoIndex) index; Bit with (BitIndex)
and without (BitNoIndex) index on both Sequential and Geo-
metric Orders. We fix other parameters to the default values in
Table I with varying m. The results are reported in Figure 9.
We observe that as m increases, the CPU time for the methods
without indexes increase rapidly. On the contrary, it does
not affect those with indexes greatly. In Geometric Order,
SketchIndex is even faster than BitNoIndex after the number
of queries is bigger than 100, which also shows the effects of
our index structure.

D. Memory Efficiency
In the following experiments, we examine the memory

consumption with varying similarity threshold δ, the number
of query and size of basic window on VS1 and VS2.
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The method we use is BitIndex with Sequential order. We
fix other parameters to default values in Table I with varying
similarity threshold δ from 0.5 to 0.9. Because the results on
VS1 and VS2 are quite similar, we only show the figures
for VS2. The average number of bit signatures n is reported
in Figure 10(a). As δ increases, the number of related query
becomes smaller, n therefore decreases. When δ=0.7, n=150,
the average memory consumption is only 30K bytes for 100
queries. In Figure 10(b), we also change the basic window
size from 5s to 20s. When the size of basic window is large,
each candidate sequence tends to have more distinct frames.
The number of false positive and negative queries decreases,
and memory consumption is therefore reduced. However, as
the size of the basic window becomes bigger, the length
of candidate sequence increases rapidly, thus, the value of
precision and recall also decrease as shown in Figure 11. The
results confirm that the proposed method is indeed memory
efficient.

 200

 220

 240

 260

 280

 300

 320

w=20w=10w=5

C
PU

 T
im

e 
(s

)

Bit
Seq

Warp r=1%
Warp r=2%

Fig. 12. CPU Time Comparison

E. Comparison with Existing Approaches

In this group of experiments, we compare our proposal
against two existing approaches using VS2 query video stream
in order to show the ability of our technique in detecting video
sequences whose temporal order has been tampered with.
We compare with two recent video subsequence matching
approaches. The first one is[1] (Seq), in which the similarity
is defined as the average distance between each pair of
frames in two video sequences. The other is by using time
warping distance[6] (Warp), which is more robust to local
temporal variations. In time warping distance measure, there
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is a parameter r determining the width of warping path. As
r increases, this measure can tolerate more local differences,
while the CPU time also increases rapidly. For both of the
methods, a query length sized window is sliding through the
video stream, the sliding gap (number of jumped frames)is
also known as basic window. To provide a fair comparison,
we also use our compressed domain feature extraction method
and make the best implementation of the matching procedure.

We vary the size of the basic window of all the methods
and vary the warping width parameter r in Warp method.
As shown in Figure 12, our method is the fastest under the
setting of different window sizes. The results in Figure 13
show that our method (Bit) achieves high accuracy. For the Seq
method, the results from Figure 14 show that the precisions
increase with decreased distance threshold. However, before
the precisions reach 50%, the recalls of Seq fall below 30%.
The performance of this method is affected by the fact that
its similarity measure strongly relies on the temporal order of
video sequences. Even for warping distance which is meant
to be able to tolerate local temporal variances, the precisions
and recalls are affected when temporal variations exist and
the results are illustrated in Figure 15. In summary, the
experiments show that while our proposed method is robust
for detecting temporally reedited video copies, the two existing
methods, Seq[1] and Warp[6], do not perform as well.

VII. CONCLUSIONS
Following the advancement in video editing tools, videos

can be copied, edited and reused with ease. Video copy
detection and advertisement monitoring over the video streams
have therefore emerged to be a lucrative industry. One of the
main challenges is to detect video subsequences that have
been edited or reordered and subsequently embedded in the
video streams In this paper, we present a novel video copy
detection method based on the use of min-wise hash functions
for video sketching, a novel bit signature, pruning strategies
and query index structure to optimize CPU cost and memory
requirement. We conducted extensive experimental studies
using real videos, and the results confirm the effectiveness
and efficiency of the proposal.
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