
Final Assessment CS1010 AY18/19 Sem 1

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING
FINAL ASSESSMENT FOR
Semester 1 AY2018/2019

CS1010 Programming Methodology

November 2018 Time Allowed 2 Hours

INSTRUCTIONS TO CANDIDATES
1. This assessment paper contains 15 questions and comprises 14 printed pages, including this

page.

2. Write all your answers in the answer sheet provided.

3. The total marks for this assessment is 70. Answer ALL questions.

4. This is an OPEN BOOK assessment.

5. You can assume that in all the code given, no overflow nor underflow will occur during exe-
cution. In addition, you can assume that all given inputs are valid and fits within the specified
variable type.

6. You can assume all the necessary headers (math.h, stdbool.h, cs1010.h, etc.) are included.
For brevity, the include directives are not shown. Further, not all variable declarations are
shown. You can assume that all variables are properly declared with the right type.

7. State any additional assumption that you make.

8. Please write your student number only. Do not write your name.

Final Assessment CS1010 AY18/19 Sem 1

Part I
Multiple Choice Questions (36 points)
For each of the questions below,write your answer in the corresponding answer box on the answer
sheet. Each question is worth 3 points.

If multiple answers are equally appropriate, pick one and write the chosen answer in the answer
box. Do NOT write more than one answer in the answer box.

1. (3 points) Consider the following three functions that take in a long value as input. Which of
these three functions are equivalent? Two functions are equivalent if both return the same value
when given the same input.

bool f(long x) {
if (x % 10 == 0) {

if (x < 0) {
return true;

}
} else {
if (x < 10) {
return true;

}
}
return false;

}

bool g(long x) {
if (x > 10 && x % 10 > 0) {

return false;
}
return true;

}

bool h(long x) {
return (x < 0 && x % 10 == 0) || (x < 10);

}

A. f and g only
B. g and h only
C. g and h only
D. f, g, and h

Write X in the answer box if no two functions are equivalent.

Solution: This question assesses if you understand if-else statements and logical expres-
sions.
X. None of the functions are equivalent. f(0) is false, but g(0) and h(0) are true. g(10) is true,
but f(10) and h(10) are true.
Some students incorrectly thinks that f and h are equivalent. The function h is actually equiv-
alent to:

Page 2

Final Assessment CS1010 AY18/19 Sem 1

bool f(long x) {
if (x % 10 == 0) {
if (x < 0) {
return true;

}
}
if (x < 10) {
return true;

}
return false;

}

One of B or C should be f and h only. I am sorry for the typo but luckily this does not affect the
answer. In fact, I think this typo saves some students who think that f and h are equivalent
from choosing the wrong answer :) For this reason as well, I decided not to issue a correction
during the exam despite many questions from you.

Page 3

Final Assessment CS1010 AY18/19 Sem 1

2. (3 points) Consider the following three functions that takes in an array with at least one element
as input. Which of these three functions are equivalent? Two functions are equivalent if they
always return the same value when given the same input.

long foo(long len, long a[len]) {
for (long i = 0; i < len; i += 1) {
if (a[i] % 2 == 0) {

return i;
}

}
return len;

}

long bar(long len, long a[len]) {
long i = 0;
bool done = false;
while (!done) {
if (a[i] % 2 == 0 || i >= len) {
done = true;

}
i += 1;

}
return i;

}

long qux(long len, long a[len]) {
long i = -1;
do {

i += 1;
} while (a[i] % 2 != 0 && i < len);
return i;

}

A. foo and bar only
B. foo and qux only
C. bar and qux only
D. foo, bar, and qux

Write X in the answer box if no two functions are equivalent.

Solution: This question assesses if you understand how arrays and the three looping struc-
tures in C behaves.
In the given functions, bar always returns i that is larger than the other two (due to i +=
1; even after we found the even element in array a.
To work as intended (return the index of the first even array element, the code should look
like:

long bar(long len, long a[len]) {
long i = 0;

Page 4

Final Assessment CS1010 AY18/19 Sem 1

bool done = false;
while (!done) {
if (a[i] % 2 == 0 || i >= len) {
done = true;

} else {
i += 1;

}
}
return i;

}

or,

long bar(long len, long a[len]) {
long i = 0;
while (true) {
if (a[i] % 2 == 0 || i >= len) {
break;

}
}
return i;

}

In qux, since the loop condition checks a[i] % 2 != 0 first before i < len, the code will
access a[len], which could be illegal if the input array is of length len. We cannot predict
what would happen if such illegal read occurs (the C standard calls this undefined behavior).
In foo, no illegal access would occur as only array elements a[0] to a[len-1] are read.
The answer is X.
However, your experience with clang on Ubuntu is that, just reading the illegal elements
would not crash the program, only leads to garbage values being read, and since we exit the
loop anyway, it does not change the behavior of the program. As such, we also accept B (foo
and qux are equivalent) as the answer.

Page 5

Final Assessment CS1010 AY18/19 Sem 1

3. (3 points) Suppose we allocate a dynamic array as follows:

char *str = calloc(len, sizeof(char));

Which of the following snippet would lead to illegal access of memory?

void moo(char *str, long len) {
for (long i = 0; i <= len; i++) {
str[i] = 'a';

}
cs1010_println_string(str);

}

void baa(char *str, long len) {
for (long i = 0; i < len; i++) {
str[i] = 'a';

}
cs1010_println_string(str);

}

void quack(char *str, long len) {
for (long i = 1; i < len-1; i++) {
str[i] = 'a';

}
cs1010_println_string(str);

}

A. moo and baa only
B. moo and quack only
C. moo, baa, and quack
D. moo only
E. quack only

Write X in the answer box if none of the combinations above is correct.

Solution: A.
moowould lead to an illegal write to a[len]. baawould lead to illegal read (in print) since the
string is no longer null-terminated (a[len-1] is set to ’a’). quack would read an uninitialized
char but it is not illegal memory access.
This question assesses if you are familiar with the convention of strings as well as the bounds
of an array.

Page 6

Final Assessment CS1010 AY18/19 Sem 1

4. (3 points) Consider the code below:

double d;
while (d > 0) {
d -= 1;

}

Which of the following statements about the code above is TRUE?
A. The code causes a compilation error because -= can only be used with integer types
B. The code causes a compilation error because d is not initialized
C. The code causes a compilation error because we should cast 0 and 1 to double
D. The code may lead to an infinite loop because d is not initialized
E. The code may lead to an infinite loop because 0 cannot be precisely represented by the

type double
Write X in the answer box if none of the statements above is true.

Solution: X.
This question checks if you are familiar with the type double in C.

5. (3 points) Suppose we define a macro AVERAGE as follows:

#define AVERAGE(x,y) (0.5 * x) + (0.5 * y)

What is the value of double_average, round to the nearest integer, after executing the three
lines of code below?

long x = 10;
long y = 20;
double double_average = 2*AVERAGE(x, y);

A. 20
B. 25
C. 30
D. 35
E. 40

Write X in the answer box if none of the answers above is correct.

Solution: A. The expression gets expended into 2*0.5*x + 0.5*y = x + 0.5*y = 20.
This question checks if you are aware of how macro works in C.

Page 7

Final Assessment CS1010 AY18/19 Sem 1

6. (3 points) Consider the code below:

void tata(double *ptr, double x) {
ptr = &x;

}

void titi(double *ptr, double *x) {
*ptr = *x;

}

void tete(double **ptr, double x) {
*ptr = &x;

}

void tutu(double **ptr, double *x) {
*ptr = x;

}

int main()
{
double *ptr;
double x;
double y;
ptr = &y;
// Line B

}

Which of the following function invocation at Line B would cause the assertion ptr == &x to be
true?

A. tata(ptr, x);

B. titi(ptr, &x);

C. tete(&ptr, x);

D. tutu(&ptr, &x);

E. tutu(*ptr, *x);

Write X in the answer box if none of the answers above is correct.

Solution: D.
Here, we need to write a function that changes the ptr so that it points to the address of x. We
must have access to the address of xwithin the function. This observation eliminates choices
A and C, which pass the value of x into the function.
We also need to updateptr to point to a new location –henceweneed to passptr by reference
to the function. This eliminates A and B.
Only D, E, and X remain. A quick check should eliminate E since the type does not evenmatch.
Let’s check if tutu does what it supposed to do: *ptr = x. The x in tutu points to the x in
main. The ptr in tutu points to the ptr in main. *ptr = x in tutu thus makes the ptr in
main points to x in main.o

Page 8

Final Assessment CS1010 AY18/19 Sem 1

It is useful to draw the call stack to understand the intricacy of this. The following shows the
different versions of the functions just before tata/titi/tete/tutu exits.

ptr

x

y

tata titi tete tutu(*ptr, *x)tutu(&ptr, &x)

ptr

x

ptr

x

ptr

x

ptr

x

ptr

x

ptr

x

y

ptr

x

y

ptr

x

y

compilation error

Page 9

Final Assessment CS1010 AY18/19 Sem 1

7. (3 points) Which of the following functions run inO(n2) time?

void egg(long n, long a[n]) {
for (long i = 0; i < n/2; i += 2) {

for (long j = i/2; j < n; j += 1) {
cs1010_println_long(i);
cs1010_println_long(j);

}
}

}

void ham(long n, long a[n]) {
for (long i = 1; i < pow(2, n); i *= 2) {

for (long j = 1; j < n; j += 1) {
cs1010_println_long(i);
cs1010_println_long(j);

}
}

}

void cheese(long n, long a[n]) {
for (long i = 1; i < n*sqrt(n); i += 1) {
for (long j = 1; j < sqrt(n); j += 1) {
cs1010_println_long(i);
cs1010_println_long(j);

}
}

}

A. egg only
B. cheese only
C. ham and cheese only
D. egg and ham only
E. egg, ham, and cheese

Write X in the answer box if none of the combinations above is correct.

Solution: The outer loop of egg loops O(n/4) time, while the inner loop loops O(n) time.
Therefore, egg runs inO(n2) time.
The outer loop of ham loops O(n) time, while the inner loop also loops O(n) time. Therefore,
ham also runs inO(n2) time.
The outer loop of cheese loopsO(n

√
n) time, while the inner loop loopsO(

√
n) time. There-

fore, ham also runs inO(n
√
n×

√
n) = O(n2) time.

The answer is E.

Page 10

Final Assessment CS1010 AY18/19 Sem 1

8. (3 points) Consider the code below:

bool mystery(long a[], long start, long end) {
if (end > start) {

return false;
}
long mid = (start + end)/2;
long sum = 0;
for (long i = start; i <= mid; i += 1) {

sum += a[i];
}
if (sum == 0) {

return true;
}
if (sum > 0) {

return mystery(a, start, mid);
}
return mystery(a, mid+1, end);

}

What is the worst-case running time of mystery, expressed using Big-O notation, when the input
is an array of size n?

A. O(n2)

B. O(n logn)
C. O(n)

D. O(log2 n)
E. O(logn)

Write X in the answer box if none of the answers above is correct.

Solution: This question checks if you know how to analyze the running time of a recursive
function. I botched this question badly due to the typo :(
This intended behavior of the function is half the array at every recursive call, and have a
linear scan in each call. So the running time can be expressed as T (n) = n+ T (n/2), which,
after expansion, becomes T (n) = n+ n/2 + n/4 + n/8 + ...1 which isO(n).
Our first error is the typo in the question (end > start), which would cause the function to
beO(1). Our second error is to correct it into (end < start), which could cause the function
to recurse forever.
It should be end <= start.
We accept both CO(n) and X (infinite loop) as the answer.

Page 11

Final Assessment CS1010 AY18/19 Sem 1

Questions 9 to 10 are based on the following function.

void do_something(long len, long a[len]) {
long curr = 0;
while (curr < len) {
if (curr == 0 || a[curr] >= a[curr-1]) {
curr += 1;

} else {
long temp = a[curr];
a[curr] = a[curr - 1];
a[curr - 1] = temp;
curr -= 1;
// Line A

}
}

}

9. (3 points) Suppose we have an array long a[3] = {3, 1, 2};. What is the content of the
array a after calling do_something(3, a); ?

A. {3, 2, 1}

B. {1, 2, 3}

C. {3, 3, 3}

D. {3, 1, 2}

E. {2, 1, 3}

Write X in the answer box if none of the answers above is correct.

Solution: B.
This is a bit tedious but quite straightforward as you only need to trace through the code
carefully step-by-step.

10. (3 points) Which of the following is a correct assertion at Line A of the do_something?
A. { curr != 0 && a[curr-1] > a[curr-2] }

B. { curr != 0 && a[curr] > a[curr-1] }

C. { curr != 0 && a[curr + 1] > a[curr] }

D. { curr >= 0 && a[curr] > a[curr-1] }

E. { curr >= 0 && a[curr + 1] > a[curr] }

Write X in the answer box if none of the answers above is correct.

Solution: E.
Line A is in the else block. At the beginning of this block, we know that curr == 0 ||
a[curr] >= a[curr-1] is false. Applying De Morgan’s law, we know what curr != 0 &&
a[curr] < a[curr-1] is true.

Page 12

Final Assessment CS1010 AY18/19 Sem 1

Thenext three lines swapa[curr]witha[curr-1]. After swapping, curr != 0 && a[curr]
> a[curr - 1]must be true.
The final line of code before Line A is curr -= 1. Let’s analyze the easy part first, we previ-
ously have a[curr] > a[curr - 1], now that curr is one less than before, the following
must be true: a[curr + 1] > a[curr].
This eliminates A, B, and D.
What about curr != 0? After we decrement curr by 1, curr can now be 0 and so can be
anything. Choice C is eliminated. We only need to verify that E is correct.
We need a stronger constraint on curr. Since we are accessing a[curr], it is a hint that curr
is no less than 0. (You should observe this pattern when you solve Question 9). A quick check
on the code can confirm this: whenever curr reaches 0, the true block of the if statement
increments curr so that curr is 1. So curr >= 0 and E is correct.
Side note: this algorithm is a single loop O(n2) sorting algorithm called stupid sort or gnome
sort.

Page 13

Final Assessment CS1010 AY18/19 Sem 1

11. (3 points) Trace through the code below:

#include "cs1010.h"

struct obj {
long *ptr;
long id;

};

void blah(struct obj *optr) {
optr->id = 20;
optr->ptr = &optr->id;

}

int main()
{
struct obj o;
long x = 10;

o.ptr = &x;
o.id = 0;

blah(&o);

cs1010_println_long(o.id);
cs1010_println_long(*(o.ptr));

}

Which two numbers will be printed by the program above?
A. 20 and 10
B. 0 and 10
C. 0 and 0
D. 10 and 10
E. 20 and 20

Write X in the answer box if none of the answers above is correct.

Solution: E.
Another pointer and call stack question – this time with struct.
As usual, it is useful to draw the call stack and trace through:

Page 14

Final Assessment CS1010 AY18/19 Sem 1

optr

0

10

ptr

id

X

main

blah

before blah is called beginning of blah

0

10

ptr

id

X

main

optr
blah

end of blah

20

10

ptr

id

X

main

After calling blah, the pointer o.ptr points to o.id, so the print statements print out 20 and
20.

Page 15

Final Assessment CS1010 AY18/19 Sem 1

12. (3 points) Consider the following implementation of insertion sort:

void insert(long a[], long curr)
{
long i = curr - 1;
long temp = a[curr];
while (temp <= a[i] && i >= 0) {
a[i+1] = a[i];
i -= 1;

}
a[i+1] = temp;

}

void insertion_sort(long n, long a[n]) {
for (long curr = 1; curr < n; curr += 1) {
insert(a, curr);

}
}

Which of the following statement(s) is/are true about the code above:

(i) If the input array a contains n elements, all has the same value, insertion_sort takes
O(n2) time.

(ii) If the input arraya containsndistinct elements that are sorted indescendingorder, insertion_sort
takesO(n) time.

(iii) If the input arraya containsndistinct elements that are sorted in ascendingorder, insertion_sort
takesO(1) time.
A. Only (i)
B. Only (i) and (ii)
C. Only (i) and (iii)
D. Only (ii) and (iii)
E. (i), (ii), and (iii)

Write X in the answer box if none of the combinations is correct.

Solution: A.
This is similar to the insertion sort algorithm given in the lecture notes, except that on Line 5,
the continuing condition of the while loop is temp <= a[i] && i >= 0 instead of temp <
a[i] && i >= 0. Because of this, this implementation will continue to scan the array even
if it finds a value that is strictly smaller than the value to-be-inserted.
Thus, (i) is true. Given an array with n elements of the same value, the algorithm still scans
and re-insert every one of the elements
(ii) is false. An array that is inversely sorted is like the worst enemy of insertion sort. It will
takeO(n2).
(iii) is false. An array that is sorted is the best friend of insertion sort, but unfortunately, we
still have to scan through the list to make sure that it is sorted. It will takeO(n) time.

Page 16

Final Assessment CS1010 AY18/19 Sem 1

Part II

Short Questions (34 points)
Answer all questions in the space provided on the answer sheet. Be succinct and write neatly.

13. (6 points) Binary. The following program binary generates all binary strings (i.e., strings con-
sisting of '0' and '1' only) of a given length n recursively. For instance

ooiwt@pe101:~$./binary
2
00
01
10
11
ooiwt@pe101:~$./binary
3
000
001
010
011
100
101
110
111

The function generate below recursively generates all binary substrings of length n - k and
prints out the binary string. The recursive calls, however, are missing.
Complete the function generate. Write only the missing lines on the answer sheet.

void generate(long n, char str[], long k) {
if (k == n-1) {

str[k] = '0';
cs1010_println_string(str);
str[k] = '1';
cs1010_println_string(str);
return;

}

// Missing Lines

}

Solution: The right answer is:

str[k] = '0';
generate(n, str, k+1);
str[k] = '1';
generate(n, str, k+1);

Page 17

Final Assessment CS1010 AY18/19 Sem 1

We do not deduct marks for syntax errors. If you get the four lines above in the right order,
you should receive full marks.
A common bug is to do

generate(n, str, k+1);
str[k] = '0';
generate(n, str, k+1);
str[k] = '1';

The solution above gets 5 marks.
If you get only half of the lines, you get 3 marks at most. For instance:

str[k] = '0';
generate(n, str, k+1);
str[k] = '1';

Many students wrong something similar to this. We give 2 marks:

generate(n, str, k+1);
for (long i = k+1; i < n; i += 1) {
str[i] = '0';
generate(n, str, i+1);
str[i] = '1';

}

Many students incorrectly print out the string in the answers, you will get 1 mark deducted.
Besides the above, there aremany other variations of the solution, we try to give partialmarks
if possible. But the following solutions are among the popular ones that we did not give any
marks:

generate(n, str, k+1);

or

// swap something
swap(..);
generate(n, str, k+1);
// swap back
swap(..);

Or some combinations of the above with for loops or if conditions.

Page 18

Final Assessment CS1010 AY18/19 Sem 1

14. (15 points) Search. Suppose we have the following function
long binsearch(const long list[], long i, long j, long q)

that looks for the item q in an array list, among items list[i] .. list[j] using binary search.
The code for this function is omitted.
In an attempt to try to speed up binary search on a large array, Mario wrote the following function
to find the starting point and end point in the array that contains q.

long narrowing_then_search(const long list[], long len, long q) {
long start = 0;
long end = 1;
do {

if (q == list[end]) {
return end;

}
if (q < list[end]) {

// Line F
return binsearch(list, start, end, q);

}
start = end;
end += 10; // Line G
// Line H

} while (end < len);
// Line I
return binsearch(list, start, len-1, q);

}

You can assume that the input array is already sorted, in non-decreasing order.
(a) (3 points) Write an assertion that relates q to list[start] in Line H.
(b) (3 points) Write an assertion that relates q to list[start] and list[end] in Line F.
(c) (3 points) Write an assertion that relates q to list[start] and list[len-1] in Line I.
(d) (3 points) What is the worst case running time, in Big-O notation, of this algorithm?
(e) (3 points) Suppose we change Line G to

end *= 2;

What is the worst-case running time, in Big-O notation, now?

Solution: The question does not assume thatqmust be somewhere between the list, although
some students do. Due to the wordings of the questions, we will accept answers that assume
that q is between list[0] and list[len-1].
(a) q > list[start]

(b) q < list[end] or list[start] <= q < list[end]

(c) q > list[start] or list[start] < q < list[len-1]

(d) O(n)

(e) O(logn)

Page 19

Final Assessment CS1010 AY18/19 Sem 1

Let me explain the solution using the more interesting case, where q is bounded by list[0]
and list[len-1]. The idea behind Mario’s algorithm is to chop the list into smaller ones, of
size 10 each, then perform a binary search on the short list. (This turns out to be a bad idea,
but, let’s answer the questions first).
On Line H, we have ”survive” the checks that q == list[end] and q < list[end], so we
know that q > list[end] and so q > list[start] just before Line G. Line G does not
change start nor q, so that property q > list[start] still holds at Line H.
In the second iteration onwards, the property q > list[start] is true at Line F. And if we
assume that q >= list[0], we can ensure that list[start] <= q < list[end] at Line
F. This property ensures that we can find q among list[start..end] with binary search.
Since we know q > list[start] holds at Line H, when we exit the loop, this property still
holds. In addition, since we assume q is bounded by list[len-1], we have list[start] <
q <= list[len-1] This property ensures that we can again perform binary search for q.
Mario’s intention is to speed up the search, but his algorithm actually runs inO(n) time, since
in the worse case, the algorithm needs to check n/10 times to find the right 10-element list
to search for q. Binary search here runs inO(1) time since the sub-array to binary-search in
has at most 10 elements.
But, Mario’s intention is not wrong. His algorithm can be fixed by changing Line G to end
*= 2. The assertions above still remains, but now, the algorithm needs to check only logn
times to find the right sub-array to search for q. In the worst case, the size of the sub-array is
n/2 = O(n). But the binary search on this is still O(logn), giving the total running time of
O(logn).
Side note: After fixing Line G, the algorithm above becomes a search algorithm called exponen-
tial search. In practice, it outperforms binary search, especially when the item to search for is
near the beginning of the array. Suppose the index of q is i. Then exponential search takes
O(log i) time to find. Our traditional binary search always takesO(logn) independent of i.

Page 20

Final Assessment CS1010 AY18/19 Sem 1

15. (13 points) Stack.
Consider the code below:

void f(__ a, __ b) {
*(b + 1) = a;
b = &a;
// Line D

}

int main() {
long x[2] = {-5, 10};
long *p;

p = x;
f(*p, x);

// Line E
}

(a) (4 points) The types for the parameters a and b to function f is missing. Fill in the correct
type of the parameters so that the compiler does not report any error or warning.

(b) (7 points) Draw the content of the call stack when the execution reaches Line D using the
notations similar to what has been used in CS1010. Label all your call frames, variables, and
values on the call stack. You may use arrows to denote pointers, instead of using the actual
memory addresses.

(c) (2 points) What are the values in the array x after calling f, at Line E?

Solution:
(a) void f(long a, long * b)

Two marks for each type. This should be easy since you have read/written many pro-
grams that involves passing in arrays and pointers into a function.

(b)
Getting f, main, b, a, p, x[1], x[0] correct will give you one mark each. If you add extra
stuff that does not belong to the stack, we deduct one mark each for each variable that
does not belong to the stack.

Page 21

Final Assessment CS1010 AY18/19 Sem 1

We do not double penalize, so if you answer in (c) is wrong and is consistent with the
content of x in (c), we do not penalize again in (b).
Some common mistakes include:

• Putting the array x[] in the heap or outside the call stack.
• Drawing f, x (in addition to the x[0] and x[1]), and b+1 on the call stack.
• Treating b as an array (b is just a pointer).
• Storing *p, *b, etc on the stack. (Only the pointers are on the stack!)
• Drawing main and f out of order (main should be at the bottom). But we do not
penalize for this.

• Drawing the call frame for f inside the call frame for main. This is usually done to
languages with nested function but not to C.

(c) x[0] is -5, x[1] is -5.

END OF PAPER

Page 22

