

Lecture 12

13 November 2018

Admin Matters
Recap and Look Ahead

Final Assessment

27 November 2018
Morning

Final
30% “

Assignments
30%

/
Midterm

15% \

Scope

Everything from
Unit 1 to Unit 28

Format

Some MCQs
Some Short Questions

Open Book

Nothing to Memorize

Focus on Understanding
and Applying Principles

Q~amzxTwvraar~r=
ONAd®mMIPHw N
S =M=V NN
X~ MmaLAa e
O=9 N TV s N\ o
Q- mPFVS
Q~amyrP e =6
QAN OG0 ¢
Q- A O>Pw0 NN
ONANmTnI »a
SN YMIT VL ~n
N0 gTwvwdI [~
SenN>HS ~ R
S=AMALINIO N\
Q="M YLS W
O~NXMIT 9IS X

Assignment 9

q

4 4 9

Q

$499993%94n0 4

university policy: no
deadlines during
reading week

no change Iin deadline

but no late penalty until after
18 November Sunday 23:59

Deadline to
Finalize Marks

5 December 2018
6:00pm

Looking Forward

Teaser to CS2040C

Data Structures

e A collection of data values and the
operations that can be applied

e How to organise and manage data for
efficient access and modification?

Example: List

e An ordered list of numbers
e Can

e create a list

e append to the list

* remove a number from the list
e find the position of a number
e destroy a list

e print a list

array 3 6

last

size =4

append 4

array 3 6 4

last

size =4

append 2

array 3 6 4 2

last

size =4

append 2

array 3 6 4 2

last

size =8

delete 6

array 3 6 4 2

5

last
size = 8

delete 6

array 3 4 2

last

size =8

What will you learn?

How to write C

How a C program
behaves

Tools and techniques to
help write good and
correct C programs

How to use C to solve
computational problems

Learning to write a program that does
what you want it to do is actually not
difficult.

Knowing what you want your program
to do is the more challenging part!

Tools and techniques to
help write good and
correct C programs

Tools / Good Practice

clang

°* Vvim

bash

assertion

good programming
style

(some) secure
programming

writing documentation

How to write C

C Language / Syntax

Types
Functions
+-"/%
If else

&& || !

for / while / do-while

arrays

pointers & *

calloc / free

include /

struct

define

printf / scanf

Things We Didn’t Cover

e FILEI/O e string functions
e argc/argv e bit operations
* enum e separate

compilation

How a C program
behaves

Behavourial / Mental Model

e machine code e memory address

e datain memory e call by value/
reference

* types

e stack and heap

e call stack

How to use C to solve
computational problems

Problem Solving

Decomposition

Recursion &
Backtracking

Flowcharts
Conditionals

Loop

Assertion and
Invariants

Arrays and Lists
Sorting
Searching

Efficiency

Computational Thinking

The mental process associated with
computational problem solving

1. Decomposition

2. Pattern Recognition
3. Abstraction

4. Algorithms

Decomposition

input k and input k and input k and
lo...lk-1 lo..lk-1 lo..lk-1

max min sum

[output max] [output min] [output sum]

max(L, k) min(L, k) sum(L, k)

Find the Std Dev

e Give an algorithm to find the standard
deviation of a given list L of k
Integers.

Break it down to
subproblems

sqrt
mean
square
subtract

taxi

double surcharge(long day, long hour, long minute)
{
1f (1s_weekday(day) && is_morning_peakChour, minute)) {
return MORNING_SURCHARGE;
ks
1t (1s_evening_peak(Chour)) {
return EVENING_SURCHARGE;
ks
1t (1s_midnight_peakChour)) {
return MIDNIGHT_SURCHARGE;
ks

return 1.0;

bool 1s_weekday(long day)

1
return (day >= 1 && day <= 5);
¥
bool 1s_morning_peak(long hour, long minute)
{
return Chour >= 6 && hour < 9) || Chour == 9 & & minute <= 29)
¥
bool 1s_evening_peak(long hour)
1
return Chour >= 18 && hour <= 23);
¥

bool 1s_midnight_peak(long hour)
1

¥

return Chour >= 0 && hour < 6);

social

bool 1is_friend(char **network, int 1, int j) {
1t (1 >= 73) {
return network[1][j] == FRIEND;

¥
return network[j][1] == FRIEND;

¥

/**

* Checks 1f 1 and j has a common friend

* @param[in] n The number of users

* @param[in] degree_1 The 1-hop friendship information
* @param[in] degree_h The h-hop friendship information
* @param[in] 1 A user

* @param[in] J Another user

* @return FRIEND 1f 1 and j has a (h+l1)-hop connection,
* STRANGER otherwise.

*/

char 1s_connected(long n, char **degree_1, char **degree_h,
long 1, long j) {
for (intm=0; m<n; m+=1) {
1f (1s_friend(degree_1, 1, m) &&
1s_friend(degree_h, m, j)) {
return FRIEND;

¥

¥
return STRANGER;

/**

* Computers the h-hop frlendshlp for the whole network.

* @param[in] n 'he number of users.

* @param[in] degree_1 The 1-hop friendship network

* @param[in] degree_h The h-hop friendship network

* @param[out] degree_hl The (Ch+l)-hop friendship network

*/
volid compute_degree_h(long n, char **degree_1, char **degree_h,
char **degree_hl) {
for (int 1 =0; 1 <n; 1 +=1) {
for (int] =0; J <=1;] += 1) {
1f (is_friend(degree_h, 1, 3)) {
degree_hl1[1][J] = FRIEND;
} else {
degree_hl[1][]J] = i1s_connected(n, degree_1, degree_h,

1, J);

Decomposition

break complex problems down
Into “bite-size” subproblems
that you can solve

George Polya said

“If you can’t solve a problem,
then there is an easier problem
you can solve: find it”

Solve easier problem,
then generalised

e.d.,
find two hct>hpesn
neighbors,

hops
generalise to k

wat

O

Rt

#HHH

#ron i

#HOHH

e

OH#HH#HH#

AR R

#HEHE HHEH

#iron o # o
HHAHAHRHEHRH

R R

O OHH#H HHH#
AR R R R

#H O HHHBEH HH

L2 A 2 T T
HHAHAHE HHEAAA
SRR e e
O OHH#H HH HHH#
WA SRR iR e #iin

HHAHBHEAHE HHEHHAHEH
L2 A N (A A T
HHHA HHEHAHAHE #HHH

St e s e e

o

Rt

oo

#ir ot

#H#HOHH

Tt

H#HH#HH#

AR R

#HHE HHEH

o o #on
HHAHAHBHRHBH
SR R

O OHH#H HHH

e T R R T

#H O HHHBEH HH

L2/ A /S (T 74
HHAHRHE HAHAHRH
HHHHHHH AR R AR
O OHH#H O HH HHH#
AR AR R #tn B

HHAHBHEAHE HHEHRHAHEH
i g #H AR wH o # oan
HHA HHEHAAHE H#HHH

s

e.d.,
draw left

most cells,
then draw

the rest.

Pattern Recognition

pattern

See the figures below:

The figure above shows the shape of the triangle with height 4. The shaded locations belong to the

triangle. Each square represents a cell.

double percentage_of_nixon(long nixon, long total) {
return nixon*100.0/total;

¥

double percentage_of_mcneal(long mcneal, long total) {
return mcneal*100.0/total;

¥

double percentage(long nvotes, long total) {
return nvotes*100.0/total;

¥

taxi

Question 4: Taxi Fare (15 marks)

The taxi fare structure in Singapore must be one of the most complex in the world! Check out:

http://www.taxisingapore.com/taxi-fare/.

For the purpose of this exercise, we will just use the following simplified fare structure:

Basic Fare

The first 1 km or less (Flag Down) $3.40

Every 400 m thereafter or less, up to 10.2 km $0.22

Every 350 m thereafter or less, after 10.2 km $0.22

unit distance max_distance

Every 1000 m next 1 km $3.40

Every 400 m next 9.2 km $0.22

Every 350 m next oo km $0.22

double fare = 0

(1 = 1 < 1 4= 1) {
(distance) {
fare
}
long min_dist = min(distance, tiers[i].max_distance);
fare += tiers[i].fare * ceil(min_dist* / tiers[i].unit_distance);
distance -= tiers[i].max_distance;

Inversions

left right

Pattern Recognition

observe trends and patterns,
then generalise

Abstraction

Question 1: Peak (10 marks)

John helped his professor, Professor Reese, to conduct a topographic survey of a piece of land. He
walked in a straight line, noting down the elevation of the land at every centimeter. After he is done,
he passed the data to Professor Reese. The professor then asked him, "what is the peak elevation of the
land?" John did not know the answer! He could write a program to scan through the millions of data
points he collected, but he knew that, since you have taken CS1010, you can do a better job. So, John
asked for your help.

You first clarify the problem with John: "What is a peak?" To which John explained that a peak is a
location that is strictly higher than the surrounding locations. You then asked: "Is it guaranteed that
there is exactly one peak?" John then explained the pattern in the data: the elevation always either
remains the same or increases as he walks. After he passed the peak, the elevation always either
remains the same, or decreases. But he cannot remember if he ever encountered a peak -- it might be
possible that the elevations data is always non-decreasing, or non-increasing, or there is a flat plateau
where there are multiple highest locations with the same elevation. So, a peak might not exist. But if

there is a peak, it is guaranteed that there is exactly one peak.

Question 2: Scripts (10 marks)

Professor Reese is teaching a huge class at the university. He finished grading a test and he asked John
to help him enter the grades into IVLE grade book, in increasing order of the student id. John asked the
professor, "Are the scripts sorted?", to which the professor answered, "Almost! The top portion of the
pile is sorted in increasing order. The rest, in decreasing order." The professor then left after saying
"Hasta la vista, baby," leaving John to wonder how to deal with the test scripts. John needed to sort the
scripts in increasing order of the student id. So he messaged you to help him figure out an efficient
algorithm to do this. "No problemo!", you said, "Can be done in O(n)!" You said. So you went ahead

and wrote out the following program to show John how he can solve his problem in O(n) time.

Question 2: Fill (15 marks)

Scully is attending a drawing class today. She has already completed her work, but the teacher is not
satisfied with her choice of colors and wants her to re-color some parts. She asks you, a programming

genius, to help.

Scully's drawing can be simplified as a 2D array of size m x n, with colors '0' to '9'. The drawing
consists of several objects. Each object can be viewed as connected areas of cells of the same color. Two

cells are connected if they share a common edge, i.e. a cell will have at most 4 connected cells.

Write a program, fill.c, to help Scully re-color her drawing according to her teacher's requirement.
It reads from standard input two positive integers m and n in the first line, followed by m lines of
strings. Each string is of length n, consisting of only characters '0' to '9'. The next line is a positive
integer g, which is the number of color changes the teacher requires. Following this, there are g lines
with three integers on each line: z;, y;, and ¢;. It means to color the object containing pixel (z;, y;) to
the color ¢;. We denote the top left pixel to be (0, 0) and the indices increases towards the right and

down.

5 5

00110
00110
00000
11040
01100

Who draw pictures like this??

abstract
generalize
solve

Game | Display | Controls

5 5 0 5 S S S R S R
0 5 =
I 5 S S S S S P P

I S S S S S R

I S S S

J 5 5 S S S P P P P

0 0

S S S P S S -3 R -4 I S
5 5 S S S S S
5 S S S S

0| o o | |
I S S
| o |
S S S S
| o o o
| o o o

B
-~
—
-
—
.
-~
—
-
—
.
-~
—
-
—
.
-~
—
-
—
.
—
-
-
—
.
—

I o

5 5 S S S S S
5 5 S S S P P P R
5 T 0 S S S S S S P
5 5 S S R P P
S 5 5 S S S P S

Abstraction

Identifying and abstracting
relevant information

generalize to other domains

1. Decomposition

2. Pattern Recognition
3. Abstraction

4. Algorithms

Some words of
advice

Work hard.
Very very hard.

what doesn’t kill you
only makes you
stronger

Goodbye CS1010! | . '
survived! | will never ever:
suffer again.

CS1010

N

