

Lecture 7

O October 2018

Admin Matters
Unit 17: Call by Reference
Unit 18: Heap
Unit 19: nD-Array

Midterm
PE 1

(grading on-going)

PE1 stats

based on sample
iInputs/outputs

square

square

22 passes

digits

100 passes

goldbach

goldbach

172 passes

newton

newton

145 passes

vote

vote

225 passes

Tutonal 7

Problem Sets from
Units Today

Assignment 4

Released last Friday
(to be graded on
correctness, style,
documentation)

So Far

Problem Solving C language / syntax
decomposition loops types in C for/while
recursion array/list functions in C do-while
flowchart +-"/ % arrays
conditionals If else & ™
assertion && || !
Behavioural / Mental model Tools / Good Practice
machine code
. clang
data in memory .
VDES vim
yP bash
call stack
style

memory addr

Today

Problem Solving

decomposition loops
recursion array/list
flowchart
conditionals
assertion

Behavioural / Mental model

machine code
data in memory
types
call stack
memory addr
call by value/reference
heap

C language / syntax

types in C for/while
functions in C do-while
+-"/% arrays
If else & ™
&& || ! malloc/free

Tools / Good Practice

clang
vim
bash
style
documentation

Documentation

bool 1s_weekday(long day);

what is day?
what does it do?

/**
* Check 1f a given day 1s a weekday.

@param[in] day The day of the week
(1 for Monday, 7 for Sunday).

¥ o % % % %

@return true 1f the day 1s a weekday, false
otherwise.

*/

@param|[in]

@return

@pre
@post

/**
Check 1f a given day 1s a weekday.

@param[in] day The day of the week
(1 for Monday, 7 for Sunday).
@pre day >= 1 && day <= 7
@return true 1f the day 1s a weekday, false
otherwise.

¥ ¥ ¥ ¥ ¥ ¥ %

*/

Previously, in CS1010..

& address of a variable

If X IS a variable, then &x
gives us the address of x.
(Where does x live?)

* variable at an address

If X IS an address, then *x

IS the variable stored in that
address.

(who lives in x?)

1nt main(Q)

1
long x;
long *ptr;
ptr = &x;
*ntr = 1;

Arrays

array decay

long al[10];

a

IS equivalent to
&al Q|

long size = ¢s1010_read_long();

1069 a[size];

variable-size array

long size = ¢s1010_read_long();

1069 *a = ¢s1010@_read_long_array(size);

variable-size array

Strings

A string Is just
an array of char
terminated by ‘\@’

char str[7] = “hello!”;

char str[7] = { ‘h’>, ‘e’, ‘17,
‘1,, ‘O,, ‘!,, a\®3}

Rule:
You MUST only read
and write into memory
allocated for you.

Sometimes you write
Into memory you do
not own, and your
code runs. It does not
mean It Is ok.

long arrayl4];

array[4] = 10;

long arrayl4];

array[1] = 0;

long array[10000];

My program crashed. So | make my array big
enough. It does not crash any more. Yay!

long array[10000];

If you code is buggy, there will still be an
input that is big enough that will crash your
code. Your code is still wrong.

char *str = “hello!”;
str[5] = ¢.7;

long add(long a, long b)
{

Llong sum;

sum = a + b;

return sum;

¥

1nt main()
{
long x = 1;
long vy;
y = add(x, 10);
3

A function iIs a black
box. Whatever happens
In the function stays In
the function.

long x = 1;
foo(x);
// {1 x =11%

Effect-free programming

Pure functions

vold set_to_0s(long len, long al[len]) {
for (long 1 =0; 1 < len; 1 += 1) {
al[i1] = 0;

long a[10];

al0] = 1;

foo(a);

// { al@] == 77 }

long a[10];

al0] = 1;

foo(a);

// { al@] == 77 }

Call by reference

Function with side effects
IS no longer a black box.

@param|[in]
@param[out]
@param[in,out]]

Heap

Global Variables

long x;

int main() {
X = 1;
foo();

long (*matrix_row)[20];

long *(matrix_row[20]);

