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to build and run a program:

foo.c memory

l foo.0 a.out
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Design 1:
No address space abstraction.

processes access physical
memory directly
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X = X+1; MOV R1l, Ox001A

ADD R1
MOV Ox001A, R1

foo.c memory

l foo.0 a.out
pre-process ﬁ@ o >




problem: only one
pProcess In memory at
a time



Design 2:
same as Design 1, but

statically relocate
process as it Is loaded
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X = X+1;

foo.c

pre-process

foo.0

MOV R1l, Ox001A
ADD R1
MOV Ox001A, R1

memory

a.out

MOV R1, ©x301A
ADD R1
MOV 0x301A, R1
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problem: no
protection among
processes



Design 3:
memory protection
through key-based

access
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problem:
loading and re-loading
IS slow



Design 4.
use logical addresses
computed with base and
limit
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X = X+1; MOV R1l, Ox001A

ADD R1
MOV Ox001A, R1

foo.c memory

l foo.0 a.out
pre-process ﬁ@ o >

MOV base, 0x3000
MOV limit, ©x1000
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problem:
add and compare for
every memory reference



what If there Is not
enough memory to hold
all processes”



swapping




memory allocation to a
process must be contiguous

the whole process core
Image must be in memory
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keep track of free/
occupied memory
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which hole to assign
to a process”?



first fit

next fit
best fit
worst fit
quick fit
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Internal
and
external
fragmentation




memory compaction
removes holes,
but IS slow



Design 5:
virtual memory




organize:
address space into pages
phy. memory into frames
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MOV R1, Ox001A

fetch Ox001A

fetch Ox11A




page table

page | frame |present?| dirty? W‘iﬁg?
1 2 1 1 1
2 7 1 0 0
3 - 0 0 0




address translation

1001

page table lookup

1131001 1010 O1




address translation

0000 1100 Ot

page table lookup

page fault
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64 bit addresses

4 MB page size

4 GB RAM

8 byte page table entry




1. address translation
IS slow

2. page table can be
huge




Translation Lookaside
Buffer (TLB)

cache for page table entries



Page Table
TLB (ln memOrY)

(hardware)




Hierarchical
Page Table
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Inverted
Page Table



Inverted page table

frame | page

1 2
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Inverted page table
(using hash table)
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Sharing Pages



Sharing Code

(e.g, when running the same
program)
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Sharing Data

(e.g., shared memory,
Copy-on-write)
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