Lecture 8
Memory Management |

14 October, 2011

to build and run a program:

foo.c memory

l foo.0 a.out

Memory

CPU stack

data

code

Design 1:
No address space abstraction.

processes access physical
memory directly

CPU

Physical Memory

-

~N

stack

data

code

X = X+1; MOV R1l, Ox001A

ADD R1
MOV Ox001A, R1

foo.c memory

l foo.0 a.out
pre-process ﬁ@ o >

problem: only one
pProcess In memory at
a time

Design 2:
same as Design 1, but

statically relocate
process as it Is loaded

CPU

0x3000

stack

data

code

stack

data

code

X = X+1;

foo.c

pre-process

foo.0

MOV R1l, Ox001A
ADD R1
MOV Ox001A, R1

memory

a.out

MOV R1, ©x301A
ADD R1
MOV 0x301A, R1

10

problem: no
protection among
processes

Design 3:
memory protection
through key-based

access

CPU

PSW

0010

key

0000

0000
0001
0001
0010
0010

Physical Memory

-

~N

[B)srerm

Direct Drive 9Kg rces

*Steamn Cycle

Cotton

Baby Care //
N,

14

problem:
loading and re-loading
IS slow

Design 4.
use logical addresses
computed with base and
limit

Address Space

stack

data

code

OXFFFF

Physical Memory

-

~N

Address Space Physical Memory

4)

OXFFFF

stack

/I

data

code

o

X = X+1; MOV R1l, Ox001A

ADD R1
MOV Ox001A, R1

foo.c memory

l foo.0 a.out
pre-process ﬁ@ o >

MOV base, 0x3000
MOV limit, ©x1000

19

problem:
add and compare for
every memory reference

what If there Is not
enough memory to hold
all processes”

swapping

memory allocation to a
process must be contiguous

the whole process core
Image must be in memory

-

]
_

Physical Memory

-

]
_

Physical Memory

Physical Memory

Physical Memory

keep track of free/
occupied memory

Physical Memory

allocation unit \

bitmap
01101011 ...

Physical Memory

allocation unit \

linked list

which hole to assign
to a process”?

first fit

next fit
best fit
worst fit
quick fit

large
VS.

small

allocation units

Internal
and
external
fragmentation

memory compaction
removes holes,
but IS slow

Design 5:
virtual memory

organize:
address space into pages
phy. memory into frames

Address Space Physical Memory

)

m—

MOV R1, Ox001A

fetch Ox001A

fetch Ox11A

page table

page | frame |present?| dirty? W‘iﬁg?
1 2 1 1 1
2 7 1 0 0
3 - 0 0 0

address translation

1001

page table lookup

1131001 1010 O1

address translation

0000 1100 Ot

page table lookup

page fault

o

e

_

/

Physical Memory

64 bit addresses

4 MB page size

4 GB RAM

8 byte page table entry

1. address translation
IS slow

2. page table can be
huge

Translation Lookaside
Buffer (TLB)

cache for page table entries

Page Table
TLB (ln memOrY)

(hardware)

Hierarchical
Page Table

stack

data

code

49

10140001 §O000 1100 O

Inverted
Page Table

Inverted page table

frame | page

1 2

2 /

3

Inverted page table
(using hash table)

1011 § 0000 1100 Ot

|

\@J - S

Sharing Pages

Sharing Code

(e.g, when running the same
program)

Address Spaces

Physical Memory

Sharing Data

(e.g., shared memory,
Copy-on-write)

Address Spaces

Physical Memory

7

read-only

Address Spaces

/

7

N/

e

Physical Memory

X

1

Address Spaces

Physical Memory

COopy

