Lecture 8 Memory Management I

14 October, 2011

to build and run a program:

Memory

stack	
data	
code	

Design 1:

no address space abstraction.

processes access physical memory directly

$$X = X+1;$$
 MOV R1, 0x001A
ADD R1
MOV 0x001A, R1

problem: only one process in memory at a time

Design 2: same as Design 1, but

statically relocate process as it is loaded

CPU

problem: no protection among processes

Design 3: memory protection through **key**-based access

CPU

key Physical Memory

problem: loading and re-loading is slow

Design 4: use logical addresses computed with base and limit

Address Space

Address Space

MOV base, 0x3000 MOV limit, 0x1000

problem: add and compare for every memory reference

what if there is not enough memory to hold all processes?

swapping

memory allocation to a process must be contiguous

the whole process core image must be in memory

keep track of free/ occupied memory

allocation unit bitmap 01101011 ...

which hole to assign to a process?

first fit next fit best fit worst fit quick fit VS.
small
allocation units

internal and external fragmentation

memory compaction removes holes, but is slow

Design 5: virtual memory

organize: address space into **pages**phy. memory into **frames**

Physical Memory

MOV R1, 0x001A

page table

page	frame	present?	dirty?	can write?	• • •
1	2	1	1	1	
2	7	1	0	0	
3	-	0	0	0	
•	•	•			

address translation

address translation

Physical Memory

64 bit addresses4 MB page size4 GB RAM8 byte page table entry

- 1. address translation is **slow**
- 2. page table can be huge

Translation Lookaside Buffer (TLB)

cache for page table entries

TLB (hardware)

Page Table (in memory)

Hierarchical Page Table

Inverted Page Table

inverted page table

frame	page	
1	2	
2	7	
3		
= =	- -	

inverted page table

(using hash table)

Sharing Pages

Sharing Code (e.g, when running the same program)

Sharing Data (e.g., shared memory, copy-on-write)

