Lecture 4

Local Perception Filter
Bucket Synchronization



Server and clients must have a
common notion of “time”



Two choices:

Wall Clock
Game Clock



Wall Clock: clients and
server have to synchronize

their physical clocks using
NTP or SNTP.
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Players try to sync the game states with the
server at the same wallclock time, and predict
ahead with an amount of time equal to one-way

delay.
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or: synchronize states to game clock, which runs
behind the server by an amount of time equals
to the one-way delay.
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Example: using game clock



A decides to move. Send event to S.
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S receives event, moves A, and
tells Aand B that A is moving att =3
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A moves itself at t = 3.
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B moves A att=3.
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Example: using wallclock



A decides to move. Send event to S.
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S receives event, moves A, and
tells Aand B that Ais moving att=1
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A moves itself to where it should be at t = 2.
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B finds out A moves att=1 and
moves A to where A should beatt=3
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Tight synchronization allows
interaction but can lead to
visual disruptions.



Asynchronization allows
smooth movement but hinder
Interaction.



Local Perception Filter



Hybrid Model:
Render objects within real-
time interaction range in
real time, other objects in
delayed time.



Two Kinds of Entities

Active:

players (unpredictable)
Passive:

ball, bullet (predictable)
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Question:

What if a player A throws a
ball at player B?
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Question:

What if a player B throws a
ball at player A?
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Distance of ball (thrown by A) from A versus time.
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What A sees..
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Distance of ball (thrown by B) from A versus time.
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What A sees..
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Question:

What if a player A throws a
ball at player B?
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What A sees..
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Question:

What if a player B throws a
ball at player A?



Distance of ball (thrown by B) from A versus time.
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Event Ordering for P2P
Architecture



Point-to-Point Architecture

{0

Role of clients
Notify clients
Resolve conflicts
Maintain states
Simulate games



AD-HOC MODE
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Compete against players on nearby PSP® systems. Make sure your Wi-Fi
switch is on and you can communicate with local PSP® systems without an
internet connection. You can play together in a house, a backyard, an airport,
a lobby - anywherel Depending on the game, up to 16 PSP® systems within
range of each other can be connected using Ad Hoc mode.

For local offline multiplayer gaming
(Ad Hoc mode) you need:

\ h‘.’v .
o Gl
R

e multiple players on PSP*® systems
within range of each other

each with a PSP*® set up with Ad
Hoc on "automatic” or the same

channel

each with a PSP® game that
supports multiplayer Ad Hoc

mode

INFRASTRUCTURE MODE

Play online with people across the globe, all from the comfort of a Wi-Fi
hotspot. Just check the back of the game packaging to see if it supports
infrastructure mode, connect to a hotspot, insert the game UMD™, follow the
on-screen instructions and start playing onlinel

For online multiplayer gaming -~ ——
(Infrastructure Mode) you need: F"Ja :

a Wi-Fi internet hotspot or
wireless home network

a PSP connected to that hotspot
or network

a PSP*® game that supports
multiplayer Infrastructure mode

Infrastructure Multiplayer Games
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http://www.msxsecurity.com/bbf21421.jpg

Received-Order
Delivery

Server executes the events as
they are received.



Bucket Synchronization



The game is divided into rounds (e.g. 25
rounds per second).
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Players are expected to send an event in each
round (e.g. 25 updates per second).
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Players are expected to send an event in each
round (e.g. 25 updates per second).

Player A _ ; : : 1

N

PlayerB — ; : S,

Player C — —



Every round has a “bucket” that collects the
events.
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Events generated in the same round go into the same
bucket of a future round. We know which round an
event is generated in, based on time-stamp.
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In each round, the events in the bucket are
processed (in order of time-stamp).
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Two parameters needed : round length and lag. Lag
depends on maximum network latency among the
players; round length depends on rendering speed.
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Players periodically ping among themselves and
exchange latency information. They also measure the
average time taken to render a frame and exchange

that information to estimate lag and round length.
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If events from another player is lost (or late), we can
predict its update (e.g. using dead reckoning) when
possible.
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Alternative is to ensure every event is
received before executing the bucket. What
are the drawbacks?
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Stop-and-Wait Protocol



aka Synchronized
Simulations



Every player sees

exactly the same states
(but maybe at different time)



Getting all clients to simulate the exact same
thing is tricky: must use same number of
random calls with same seeds, same precision
of floating point calculation etc.
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Clients may periodically exchange hash of
game states to detect if a player has gone
out-of-sync.
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