
13/14 S1

Lecture 4
Local Perception Filter

Bucket Synchronization

13/14 S1

Server and clients must have a
common notion of “time”

13/14 S1

Two choices:

Wall Clock
Game Clock

13/14 S1

Wall Clock: clients and
server have to synchronize
their physical clocks using
NTP or SNTP.

13/14 S1

now is
10:18:32

now is
10:18:30

now is
10:18:29.5

now is
10:18:33.5

13/14 S1

now is
10:18:32

now is
10:18:30

now is
10:18:29.5

now is
10:18:33.5

Time now should be
10:18:30.5

RTT = 1s
OWD = 0.5s

13/14 S1

Player A

Players try to sync the game states with the
server at the same wallclock time, and predict
ahead with an amount of time equal to one-way
delay.

Player B

Server

13/14 S1

Player A

or: synchronize states to game clock, which runs
behind the server by an amount of time equals
to the one-way delay.

Player B

Server

13/14 S1

A S B

what A sees
what B sees

3 4 2 game clock

13/14 S1

Example: using game clock

13/14 S1

A S B

1 2 0

A decides to move. Send event to S.

13/14 S1

A S B

1 2 0

S receives event, moves A, and
tells A and B that A is moving at t = 3

A S B

2 3 1

13/14 S1

A S B

1 2 0

A moves itself at t = 3.

A S B

2 3 1

A S B

3 4 2

13/14 S1

A S B

1 2 0

B moves A at t = 3.

A S B

2 3 1

A S B

3 4 2

A S B

4 5 3

13/14 S1

Example: using wallclock

13/14 S1

A S B

0 0 0

A decides to move. Send event to S.

13/14 S1

A S B

0 0 0

S receives event, moves A, and
tells A and B that A is moving at t = 1

A S B

1 1 1

13/14 S1

A S B

0 0 0

A moves itself to where it should be at t = 2.

A S B

1 1 1

A S B

2 2 2

13/14 S1

A S B

0 0 0

B finds out A moves at t = 1 and
moves A to where A should be at t = 3

A S B

1 1 1

A S B

2 2 2

A S B

3 3 3

13/14 S1

Tight synchronization allows
interaction but can lead to
visual disruptions.

13/14 S1

Asynchronization allows
smooth movement but hinder
interaction.

13/14 S1

Local Perception Filter

13/14 S1

Hybrid Model:
Render objects within real-
time interaction range in
real time, other objects in

delayed time.

13/14 S1

Two Kinds of Entities

Active:
 players (unpredictable)
Passive:
 ball, bullet (predictable)

13/14 S1

happening
now

happened  
time t ago

A

B

13/14 S1

Question:
What if a player A throws a

ball at player B?

13/14 S1

happening
now

happened  
time t ago

A

B

13/14 S1

Question:
What if a player B throws a

ball at player A?

13/14 S1

happening
now

happened  
time t ago

A

B

13/14 S1

Distance of ball (thrown by A) from A versus time.

time

now
time t ago

now time t ago
distance (from A)

13/14 S1

distance (from A)

What A sees..

time

now
time t ago

13/14 S1

Distance of ball (thrown by B) from A versus time.

distance (from A)

time

now
time t ago

now

time t ago

13/14 S1

What A sees..

time

now
time t ago

distance (from A)

13/14 S1

happened t ago
happened t - 1 ago
happened t - 2 ago

A

B

13/14 S1

Question:
What if a player A throws a

ball at player B?

13/14 S1

What A sees..

distance

time

13/14 S1

What A sees..

distance

time

13/14 S1

Question:
What if a player B throws a

ball at player A?

13/14 S1

Distance of ball (thrown by B) from A versus time.

distance

time

13/14 S1

13/14 S1

time

13/14 S1

time

3 slots ago

now

2 slots ago

1 slots ago

13/14 S1

Event Ordering for P2P
Architecture

13/14 S1

Point-to-Point Architecture

Role of clients
Notify clients
Resolve conflicts
Maintain states
Simulate games

13/14 S1

13/14 S1

Age of Empire Series

http://compactiongames.about.com/library/games/screenshots/blscreens-ageofkings.htm

http://www.msxsecurity.com/bbf21421.jpg

13/14 S1

Received-Order
Delivery

Server executes the events as
they are received.

13/14 S1

Bucket Synchronization

13/14 S1

Player A

The game is divided into rounds (e.g. 25
rounds per second).

Player C

Player B

13/14 S1

Player A

Players are expected to send an event in each
round (e.g. 25 updates per second).

Player C

Player B

13/14 S1

Player A

Players are expected to send an event in each
round (e.g. 25 updates per second).

Player C

Player B

13/14 S1

Player A

Every round has a “bucket” that collects the
events.

Player C

Player B

13/14 S1

Events generated in the same round go into the same
bucket of a future round. We know which round an
event is generated in, based on time-stamp.

Player A

Player C

Player B

13/14 S1

Player A

In each round, the events in the bucket are
processed (in order of time-stamp).

Player C

Player B

13/14 S1

Player A

Two parameters needed : round length and lag. Lag
depends on maximum network latency among the
players; round length depends on rendering speed.

Player C

Player B
round length

lag

13/14 S1

Player A

Players periodically ping among themselves and
exchange latency information. They also measure the
average time taken to render a frame and exchange
that information to estimate lag and round length.

Player C

Player B
round length

lag

13/14 S1

Player A

If events from another player is lost (or late), we can
predict its update (e.g. using dead reckoning) when
possible.

Player C

Player B

13/14 S1

Player A

Alternative is to ensure every event is
received before executing the bucket. What
are the drawbacks?

Player C

Player B

13/14 S1

Stop-and-Wait Protocol

13/14 S1

aka Synchronized
Simulations

13/14 S1

Every player sees
exactly the same states
(but maybe at different time)

13/14 S1

Collect

Simulate

Render

Wait

Game
States

Collect

Simulate

Render

Wait

Game
States

Getting all clients to simulate the exact same
thing is tricky: must use same number of
random calls with same seeds, same precision
of floating point calculation etc.

13/14 S1

Collect

Simulate

Render

Wait

Game
States

Collect

Simulate

Render

Wait

Game
States

Clients may periodically exchange hash of
game states to detect if a player has gone
out-of-sync.

CompareCompare

