Lecture 4

Local Perception Filter
Bucket Synchronization

Server and clients must have a
common notion of “time”

Two choices:

Wall Clock
Game Clock

Wall Clock: clients and
server have to synchronize

their physical clocks using
NTP or SNTP.

NOW IS

B now is
10:18:32 10:18:29.5
NOW IS
10:18:30
NOW IS
10:18:33.5 |

RTT=1s

NOW IS .
1011832 T~ OWD =0.5s now is
S 10:18:29.5
NOW IS
10:18:30
NOW IS
10:18:33.5 |-

Time noW should be
10:18:30.5

Players try to sync the game states with the
server at the same wallclock time, and predict
ahead with an amount of time equal to one-way

delay.

Player A _—] >

Server _

v

PlayerB —

or: synchronize states to game clock, which runs
behind the server by an amount of time equals
to the one-way delay.

Player A _

Server _—_

PlayerB —

hat A sees
wha \\ what B sees

/\/

R
56

A S B
4 2

3 . game clock

Example: using game clock

A decides to move. Send event to S.

A S B
| 2 0

S receives event, moves A, and
tells Aand B that A is moving att =3

&

00O

@ O
A S B
2 0 2 3 |

A moves itself at t = 3.

B A S B A S B

S

B moves A att=3.

B A S B A S B A S B

S

Example: using wallclock

A decides to move. Send event to S.

A S B
0O 0 O

S receives event, moves A, and
tells Aand B that Ais moving att=1

&

00O

@ O
A S B
0O 0 O I I I

A moves itself to where it should be at t = 2.

28

t

&
0000 o

&
A S B
2

0O 0 O | I I 2 2

B finds out A moves att=1 and
moves A to where A should beatt=3

00O

&

&

exe

&

00

Tight synchronization allows
interaction but can lead to
visual disruptions.

Asynchronization allows
smooth movement but hinder
Interaction.

Local Perception Filter

Hybrid Model:
Render objects within real-
time interaction range in
real time, other objects in
delayed time.

Two Kinds of Entities

Active:

players (unpredictable)
Passive:

ball, bullet (predictable)

NOowW

A @

A

N
N

happened
time tago

Question:

What if a player A throws a
ball at player B?

NOowW

A @

A

N
N

happened
time tago

Question:

What if a player B throws a
ball at player A?

NOowW

A @

A

N
N

happened
time tago

Distance of ball (thrown by A) from A versus time.

distance (from A ,
A () NOw timetago

timetago
now

time

What A sees..

distance (from A)

A

time t ago
now

time

Distance of ball (thrown by B) from A versus time.

distance (from A)

timetago
now

time tago

time

>

What A sees..

distance (from A)

A

timetago
now

time

opened
opened

opened

tago
t-1ago
t-2ago

Question:

What if a player A throws a
ball at player B?

What A sees..

distance

A

time

What A sees..

distance

A

time

Question:

What if a player B throws a
ball at player A?

Distance of ball (thrown by B) from A versus time.

distance

A

time

| slots ago
now

3 slots ago
2 slots ago

48
48
48
%6

O
> time

llllllllllllllllllllll

-~ - wm mm wm
L - - mm wm ==
MO o am am em mm mm mm o Em Em Em Em =

Event Ordering for P2P
Architecture

Point-to-Point Architecture

{0

Role of clients
Notify clients
Resolve conflicts
Maintain states
Simulate games

AD-HOC MODE

’ .
D e P .

Compete against players on nearby PSP® systems. Make sure your Wi-Fi
switch is on and you can communicate with local PSP® systems without an
internet connection. You can play together in a house, a backyard, an airport,
a lobby - anywherel Depending on the game, up to 16 PSP® systems within
range of each other can be connected using Ad Hoc mode.

For local offline multiplayer gaming
(Ad Hoc mode) you need:

\ h‘.’v .
o Gl
R

e multiple players on PSP*® systems
within range of each other

each with a PSP*® set up with Ad
Hoc on "automatic” or the same

channel

each with a PSP® game that
supports multiplayer Ad Hoc

mode

INFRASTRUCTURE MODE

Play online with people across the globe, all from the comfort of a Wi-Fi
hotspot. Just check the back of the game packaging to see if it supports
infrastructure mode, connect to a hotspot, insert the game UMD™, follow the
on-screen instructions and start playing onlinel

For online multiplayer gaming -~ ——
(Infrastructure Mode) you need: F"Ja :

a Wi-Fi internet hotspot or
wireless home network

a PSP connected to that hotspot
or network

a PSP*® game that supports
multiplayer Infrastructure mode

Infrastructure Multiplayer Games

et "] s =T ;.'-... PPl
R s 4 J"J ﬂ_“?‘_#]
T e
i Bt

Ay by 2
Co ‘_‘-.

i

¢

]

http://www.msxsecurity.com/bbf21421.jpg

Received-Order
Delivery

Server executes the events as
they are received.

Bucket Synchronization

The game is divided into rounds (e.g. 25
rounds per second).

Player A

Player B

Player C

Players are expected to send an event in each
round (e.g. 25 updates per second).

Player A _ ; : : 1

N

PlayerB — -,

X

Player C — . . —

Players are expected to send an event in each
round (e.g. 25 updates per second).

Player A _ ; : : 1

N

PlayerB — ; : S,

Player C — —

Every round has a “bucket” that collects the
events.

Player A — : : —»

PlayerB — : +»

Player C — | —

Events generated in the same round go into the same
bucket of a future round. We know which round an
event is generated in, based on time-stamp.

Player A _ ; : : g

PlayerB — | : : 1,

Player C — : : T

In each round, the events in the bucket are
processed (in order of time-stamp).

Player A _ ; : —

PlayerB —

Player C —

Two parameters needed : round length and lag. Lag
depends on maximum network latency among the
players; round length depends on rendering speed.

Player A _ : : N

<)
round length

PlayerB _— | | : 1,

Player C — : : T

Players periodically ping among themselves and
exchange latency information. They also measure the
average time taken to render a frame and exchange

that information to estimate lag and round length.

.

Player A _ : S

:(>
round length

PlayerB — | | : -1,

Player C — : : 1

If events from another player is lost (or late), we can
predict its update (e.g. using dead reckoning) when
possible.

Player A _

PlayerB —

Player C —

Alternative is to ensure every event is
received before executing the bucket. What
are the drawbacks?

Player A _

PlayerB — ; : S

Player C — : —

Stop-and-Wait Protocol

aka Synchronized
Simulations

Every player sees

exactly the same states
(but maybe at different time)

Getting all clients to simulate the exact same
thing is tricky: must use same number of
random calls with same seeds, same precision
of floating point calculation etc.

[Collect Collect

)
gcz:;i “<— Simulate j> Q Simulate
_ lr[Render j [Render }\

)

[Wait J [Wait

Clients may periodically exchange hash of
game states to detect if a player has gone
out-of-sync.

/‘(Compare)(Compare]6\

[Collect Collect]

W »(
Pa
Game Simulate]> Q Simulate Game
States States
_ Render [Render

[Wait j

