
Centralized Server
Architecture

Synchronization
Protocols

Permissible Client/
Server Architecture

Player A

Client sends command to the server. Server
computes new states and updates clients with
new states.

Player B

Server

Player A

Server also serves the role of checking for
consistency -- some operations might not be
possible.

Player B

Server
“oops, can’t
execute this
anymore”

Player A

Problem: decrease responsiveness

Player B

Server

lag

lag

Player A

Problem: unfair to player with higher latency

Player B

Server

lag

lag

Improving Fairness

Player A

Problem: unfair to player with higher latency

Player B

Server

lag

lag

Player A

Try: improve fairness by artificial delay at the
server. (longer delay for “closer” player)

Player B

Server

lag

lag

Player A

Problem: responsiveness is bounded by the
slowest player

Player B

Server

lag

lag

Improving
Responsiveness

Player A

Try: Short circuiting -- execute action
immediately locally. But inconsistency arises.

Player B

Server

Player A

Try: Short circuiting -- execute action
immediately locally. But inconsistency arises.

Player B

Server

Inconsistent

Player A

Recall: server is the authority and maintains
the correct states.

Player B

Server

Player A

We can fixed the inconsistency later using the
states from the server.

Player B

Server

Player A

We can fixed the inconsistency later using the
states from the server.

Player B

Server

Inconsistent

Player A

Slight delay in response might be OK. Idea:
introduce local lag -- wait for some time t
before update states.

Player B

Server

Player A

Effectively we are trading off responsiveness
with consistency.

Player B

Server

Inconsistent

lag

Trade-off responsiveness
with consistency

Do first, fix later
(optimistic)

How responsive should the game be?

How consistent should the game be?

How to “fix later” ?

User Studies: Effects of
Network on Games

Goal: How much
network latency is

tolerable?

Method: Analyze
game servers log for

Quake III Arena

Median Ping (ms)

References

Frags/minutes

3

1

50 400

not the actual graph

Yes, latency does affect
playability..

Question: what’s the
annoyance threshold?

Method: User studies
using Unreal

Tournament 2003

Router Server

Clients
Add delay here

Game Activity:
move and shoot

Movement Test:
Construct obstacle

course

Figure 16: Middle of Obstacle Course

3) Spin around and then jump down, pick up the chain gun and ammo, and walk out

towards the door

4) Go straight and jump on the barrel, then translocate up to the platform with the

double damage, pick up the double damage

5) Translocate to the link gun (Figure 17), walk down the ramp, quad jump up to

steaming structure, jump off towards alcove, run up and over the alcove

 29

Over 200 users

Induced latency (ms)

References

Time to complete course (s)

50

0 400

not the actual graph

Player A

Perhaps UT 2003 is using short circuiting for
movement?

Player B

Server

Shooting Test:
2 players shooting at

each other using
precision weapon

 Complementing these extremes are nine more commonly used weapons. These

include the Minigun, capable of firing high volumes of bullets in a very short time, the

Flak Cannon, used to scatter shards of metal in the general vicinity of your opponents,

and the Rocket Launcher, able to load and launch up to three rockets at a time. Along

with the Lightning Gun, UT2003’s version of a sniper rifle, there are many ways for

players to deal with their opponents.

Figure 4: Fully Zoomed Lightning Gun

 In addition to the numerous maps, weapons and gameplay modes, UT2003 also

comes standard with two more features: bots and mutators. Bots are computer controlled

players, each with their own personality and play style. Bots are used when playing

UT2003 single player games or they can be used for multiplayer games when not enough

human players are present. When used this way, bots are run on the game server.

Mutators are custom modifications to the game environment that allow unique scenarios

 13

Induced latency (ms)

References

Hit Fraction

0.5

0 300

0.2

not the actual graph

 latency as low as 100 ms were
noticeable and latencies around

200 ms were annoying ”
“

Read the paper for
complete results.

Other conclusion: loss rate
up to 5% has no
measurable effects.

How responsive should the game be?

How consistent should the game be?

How to “fix later” ?

Are we done?

Method: User Studies
using Warcraft III

Game Activity:
build, explore, fight!

Finding: Players with
larger delays see exactly

the same events as players
with smaller delays, only at

a later time.

Player A

Player B

Server

Possible communication architecture?

Finding: Latency of up to
800 ms has negligible effect

on the outcome of
Warcraft III.

Finding: Latency of up to
500 ms can be compensate

by the players

Finding: Latencies
between 500 and 800 ms

degrades game experience.

Finding: Players that
micro-manage units in
combat feel the latency
more than players who

don’t.

Strategy is more
important in RTS games,

not reaction time.

Q: How responsive and consistent
should the game be?

A: Depends on the
characteristics of game.

Important:
understand user

requirements

How responsive should the game be?

How consistent should the game be?

How to “fix later” ?

Player A

We can fixed the inconsistency later using the
states from the server.

Player B

Server

Inconsistent

State: positions
Event: movements

Unreal Tournament’s
lock-step predictor/

corrector algorithm for
player’s movement

Server

Player

Server

Player

Player moves

Server

Player

Player updates server

“I am moving east at 5m/s”

Server

Player

RTT/2 later, server is notified

“Player A is moving east at 5m/s”

Server

Player

Player might moves again

Server simulates player and update player
“You are here at time t”

Player

RTT/2 later, player learns its actual position
sometime in the past.

Player

Player re-executes its moves to find
its proper position now.

Convergence

If no convergence is used, player updates its
position immediately -- in effect teleporting

to the correct position, causing visual disruption.

(zero order convergence)

If no convergence is used, player updates its
position immediately -- in effect teleporting

to the correct position, causing visual disruption.

(zero order convergence)

Convergence allows player to move
to the correct position smoothly. First

pick a convergence period t, and compute the correct
position after time t.

Convergence allows player to move
to the correct position smoothly. First

compute the correct position after time t.

Move to that position in a straight line.

(linear convergence)

Curve fitting techniques can be used
for smoother curves.

Visual disruption can still occur with convergence.

Player A

Recall: With short-circuit, we may need to fix
inconsistency later using the server states.

Player B

Server

Inconsistent

Can we fix all
inconsistency?

Player A

Player B

Server

A shoots B, B killed

B shoots C, C killed

B shoots C

A dead man that shoots

”“

Short-circuiting not
suitable for all cases.

Besides, important events
like “hit” should be
decided by the server.

Player A

Player B

Server

A shoots B

B shoots C

B shot &
killed C

C killed

killed by A

kills B

Games can use audio/visual
tricks to hide the latency
between shooting and
hitting.

New Question: how
can the server knows if A
hits B?

Player A

Suppose player A aims and shoots at B. When
A’s message reaches the server, B already
moved away.

Did A hit B?

Server

Server

Player

A
B

Server

Player

A
B

RTT/2 later, server is notified

Lag Compensation
or

Time Warp

Server estimates the
latency between itself
and Player A.

Let the latency be t.

Server “rewind” to t
seconds ago.

Server
(now)

Server
(now - t)

Check if hit or miss.

Play forward to now.

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

Responsive

Consistent

Cheat-Free

Fair

Scalable

Efficient

Robust

Simple

• Permissible client-server architecture is used in Unreal Tournament, and is described by
[McCo03]. The article also mentioned the responsiveness issue and described how the
client uses short-circuiting for movement command to improve responsiveness in Unreal
Tournament.

• Local lag was introduced by [Diot99] in the form of bucket synchronization and in the
context of peer-to-peer architecture (we will cover this later in class). The term “local lag”
and the idea to adapt the lag was introduced by [Mauv04].

• Short circuiting with immediate feedback was mentioned by [Smed06], Section 9.1.1.

• Time delay is mentioned [Armi06], Section 6.3.1.

• See [Armi06], Section 7.1 for a summary of user studies and results.

• Papers on the Unreal Tournament and Warcraft III studies can be found on the web site
http://web.cs.wpi.edu/~claypool/mqp/ut2003/ and http://web.cs.wpi.edu/~claypool/papers/
war3/. Screenshot of Unreal Tournament taken from the same site.

• Unreal Tournament’s networking component is described in http://unreal.epicgames.com/
Network.htm.

• Convergence is described by [Smed06] in Section 9.3.2 in the context of dead reckoning.

• The “dead man that shoots” example was mentioned by [Mauv00] in the context of fully
distributed games.

• Lag Compensation techniques used in Half Life in [Armi06] Section 6.3.2 and also in great
details online at http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking.

http://web.cs.wpi.edu/~claypool/mqp/ut2003/
http://web.cs.wpi.edu/~claypool/mqp/ut2003/
http://web.cs.wpi.edu/~claypool/papers/war3/
http://web.cs.wpi.edu/~claypool/papers/war3/
http://web.cs.wpi.edu/~claypool/papers/war3/
http://web.cs.wpi.edu/~claypool/papers/war3/
http://unreal.epicgames.com/Network.htm
http://unreal.epicgames.com/Network.htm
http://unreal.epicgames.com/Network.htm
http://unreal.epicgames.com/Network.htm
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

References

[McCo03] A. McCoy, D. Delaney, and T. Ward, “Game-State Fidelity Across
Distributed Interactive Games”, Crossroads vol. 9, no. 4 (Jun. 2003), 4-9

[Diot99] C. Diot and L. Gautier, “A distributed architecture for multiplayer
interactive applications on the internet,” IEEE Networks magazine, vol. 13, no. 4,
July/August 1999

[Mauv04] M. Mauve, J. Vogel, V. Hilt, and W. Eelsberg, “Local-lag and Timewarp:
Providing Consistency for Replicated Continuous Applications," IEEE Transactions on
Multimedia, vol. 6, no. 1, pp. 45-57, 2004.

[Smed06] J. Smed and H Hakonen, “Algorithms and Networking for Computer
Games”, Wiley, July 2006.

[Armi06] G. Armitage, M. Claypool and P. Branch, “Networking and Online
Games: Understanding and Engineering Multiplayer Internet Games,” Wiley, June
2006.

[Mauv00] M. Mauve, “How to Keep a Dead Man from Shooting.” In Proc of the
7th intl Workshop on interactive Distributed Multimedia Systems and
Telecommunication Services, 2000.

http://www.acm.org/crossroads/xrds9-4/gamestatefidelity.html
http://www.acm.org/crossroads/xrds9-4/gamestatefidelity.html
http://www.acm.org/crossroads/xrds9-4/gamestatefidelity.html
http://www.acm.org/crossroads/xrds9-4/gamestatefidelity.html
http://citeseer.ist.psu.edu/diot99distributed.html%20
http://citeseer.ist.psu.edu/diot99distributed.html%20
http://citeseer.ist.psu.edu/diot99distributed.html%20
http://citeseer.ist.psu.edu/diot99distributed.html%20
http://citeseer.ist.psu.edu/mauve02locallag.html
http://citeseer.ist.psu.edu/mauve02locallag.html
http://citeseer.ist.psu.edu/mauve02locallag.html
http://citeseer.ist.psu.edu/mauve02locallag.html

