
Centralized Server
Architecture

Player A

Short circuiting: players perform “local
prediction” to predict their own state without
waiting for replies from the server.

Player B

Server

Opponent Prediction

Dead Reckoning

Extrapolation

Also used in marine
navigation, ariel
navigation, GPS etc.

A general technique that
works between any two
parties (players/server).
But we will see example
for a server and a player.

Server keeps track of the position of entities
through updates from the players.

Server

Player A

Naive method: update position only

Two issues:

Message overhead
Delay jitter

Delay jitter causes player’s movement to appear
erratic.

Server

Player A

Naive method: update position only

time

Improvement: update the position and velocity
-- if an update arrives late, server can predict B’s
position.

Server

Player A

time

predicted position

Improvement: if the velocity remain constant,
server can predict every position at all time.

Server

Player A

time

predicted position

Server, however, needs to update position and
velocity when velocity has changed.

Server

Player A

time

predicted position

x[ti] = x[ti−1] + v × (ti − ti−1)

x[t]
v

position of entity at time t

velocity of the entity

But velocity may change all the time (e.g. a car
accelerating). To counter this, we send position,
velocity, and acceleration as update.

Server

Player A

time

x[t]
v

position of entity at time t

velocity of the entity

x[ti] = x[ti−1] + v(ti − ti−1) +
1
2
a(ti − ti−1)2

a acceleration of the entity

caution: any delay in updating
the acceleration would result

in large error in position.

History-based Prediction

x[ti] = x[ti−1] + v × (ti − ti−1)

x[t]
v

position of entity at time t

velocity of the entity

v =
x[ti−1]− x[ti−2]

ti−1 − ti−2

x[t] position of entity at time t

x[ti] = x[ti−1] +
ti − ti−1

ti−1 − ti−2
(x[ti−1]− x[ti−2])

Server

Player A

B

time

We will still need substantial number of updates
if the direction changes frequently (e.g. in a FPS
game).

idea: trade-off message
overhead and accuracy.
No need to update if error
is small.

Server

Player A

time

time

Server

Player A

time

Server

Player A

time

where the entity is according to server

where the entity is according to A
at the server

Server

Player A

time

A’s version of the entity’s position is now
too far away from the correct position.
Server updates A with the new velocity

and position.

Server

Player A

time

A converges the entity to the correct
position smoothly.

Server

Player A

How to set threshold?

Depends on games. One
can adapt the threshold
according to requirement
(e.g. distance to other
players)

drawback: higher CPU
cost -- since a player needs
to simulate the opponent.

drawback: player with
higher latency experience
more error (but we can
introduce server lag to
equalize the error).

Generalized Dead Reckoning :
Prediction Contract

e.g.: “return to base” : the path
of the unit can be predicted if
the same path finding
algorithm is executed.

e.g.: “drive along this road”

Responsive

Consistent

Cheat-Free

Fair

Scalable

Efficient

Robust

Simple

• Predictions, both local and opponent prediction, is discussed in
[Armi06] Section 6.2. Dead reckoning is discussed in Section 9.3 of
[Smed06].

• [Smed06] J. Smed and H Hakonen, “Algorithms and Networking for Computer
Games”, Wiley, July 2006.

[Armi06] G. Armitage, M. Claypool and P. Branch, “Networking and Online
Games: Understanding and Engineering Multiplayer Internet Games,” Wiley, June
2006.

Putting it all together..

convergence period = 1
latency between A and S = 1
latency between B and S = 2
DR threshold = 1
latency is known

A

B

S

0 1 2 3

x

x

A

B

S
x

4 5 6 7

