
Peer-to-Peer 
Architecture
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Peer-to-Peer Architecture

Role of clients
Notify clients
Resolve conflicts
Maintain states
Simulate games
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Latency

Robustness

Conflict/Cheating

Consistency

Accounting

Scalability

Complexity
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Lower Latency
No Single Point of Failure
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MiMaze from INRIA, France
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Age of Empire Series

http://compactiongames.about.com/library/games/screenshots/blscreens-ageofkings.htm
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http://www.msxsecurity.com/bbf21421.jpg
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Player A

Without a server with authority, we can easily
get into inconsistent states.

Player C

Player B
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Player A

Problem: order of messages received are 
wrong.

Player C

Player B
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Player A

Idea: If we synchronize the clocks of all 
players and timestamp each message, we can 
know the right order of execution.

Player C

Player B
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Player A

Problem: When to execute?  (Is there 
another message generated earlier than this 
that is still on its way here?)

Player C

Player B
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(old) Idea:  Delay 
processing of messages
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Bucket Synchronization
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Make the game into a 
turn-based game ..
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.. with very fast turns.
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Player A

The game is divided into rounds (e.g. 25 
rounds per second).

Player C

Player B
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Player A

Players are expected to send an update in each 
round (e.g. 25 updates per second).

Player C

Player B
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(and therefore is only 
suitable if we have a small 

number of players..)
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Player A

Players are expected to send an update in each 
round (e.g. 25 updates per second).

Player C

Player B
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Player A

Every round has a “bucket” that collects the 
update messages.

Player C

Player B
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Messages generated in the same rounds goes 
into the same bucket of a future round.

Player A

Player C

Player B
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We know which rounds a message is 
generated based on time-stamp.

Player A

Player C

Player B
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Player A

When it is time to execute a round, the 
messages in the bucket is processed (in order 
of time-stamp).

Player C

Player B
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Player A

Which future bucket to go into depends on the 
latency among the players.   (Hopefully not too far in 
the future else responsiveness will suffers).

Player C

Player B
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Player A

If messages from another player is lost (or 
late), we can predict its update (e.g. using dead 
reckoning) when possible.

Player C

Player B
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Inconsistency still arises 
due to prediction.
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Player A

Alternative is to ensure every update is 
received before executing the bucket.

Player C

Player B
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Stop-and-Wait Protocol
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Synchronized 
Simulations
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Every player sees 
exactly the same states 
(but maybe at different time)
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Players can tell each other their 
processing time and latency 
among players, so that turn 
length and lag can be adjusted.

30



Cheating

31



Look-Ahead Cheat
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Player C (or a bot) can peek at A’s and B’s 
actions first, before deciding his/her moves. 

Player A

Player C

Player B
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Dealing with cheaters:

1. Prevent cheats (hard)
2. Detect cheats (easier)
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Detecting Look-
Ahead Cheats
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“Mmm... player C 
always the last one 
that make its move” 
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Time-stamp Cheat
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Player C (or a bot) can put in an earlier time-
stamp in its messages.

Player A

Player C

Player B
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Suppress-Update Cheat
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If dead reckoning is used, Player C can stop sending update 
and let others predict its position.  C then sends an update at 

appropriate time to “surprise” other players.

Player A

Player C

Player B
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A C
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A

C stops sending update.
A predicts C’s position.
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A

C stops sending update.
A predicts C’s position.
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A

C stops sending update.
A predicts C’s position.
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A

C sends an update and shoots A.
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Cheater!
Not me!  My packets 

were dropped..
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Cheat-Proof Protocol
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Lock Step Protocol
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One-Way Function f:  
Given x, we can compute f(x) 
easily.  Given f(x) it’s hard to 
find out x if x is random.
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Lock Step Protocol
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Player A

Two stages needed for each round of stop-
and-wait updates.
Stage 1.  Everyone decides on its move x, and 
send f(x) to each other.

Player C

Player B
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Player A

Stage 2.  After f(x) from every other player is 
received, sends x to each other.

Player C

Player B
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How does lock-step prevent:

look ahead cheat?
timestamp cheat?
suppress-update cheat?
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f(x) is known as commitment 
to x.  

A player, once committed to 
its move, can’t change it.
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Problem: Lock-step 
protocol is slow.
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Idea: Use Interest Management

Players only engaged in lock-step 
protocol when they influence 
each other.  Otherwise their 

games proceed independently.
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This is known as 
Asynchronous Synchronization 

or Asynchronous Lock-step
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Player A

Player C

Player B

Commit Reveal

Let’s call the two stages in lock-step protocol
as commit and reveal stages.
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Player A

Player C

Player B

We may also stagger these two stages to improve
responsiveness.  Multiple commitments can be sent

out before we reveal the actions.
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Player A

Player C

1. A player can reveal its action in round i once it 
receives all commitment of round i from other players.

C1,A

C1,C M1,C

M1,A
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Player A

Player C

2.  A player can make p moves (send p 
commitments) without engaging in lockstep.

C1,A

C1,C M1,C

M1,AC2,A

C2,C

C4,A

C4,C
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This is known as 
Pipelined Lock-step
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lmax = maximum latency 
rmax = maximum frame (round) rate

Lockstep Protocol
 
       1/r = max{2lmax, 1/rmax}
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lmax = maximum latency 
rmax = maximum frame (round) rate

Pipeline Lockstep Protocol
 
       1/r = max{2lmax/p, 1/rmax}
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lmax = maximum latency 
rmax = maximum frame (round) rate

We can pick optimal p as
 

p = 2 lmax rmax

65



Cheating in Pipelined Lock-step
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Player A

Player C

C makes its 4-th move after seeing the first p moves 
from A.  A’s first six moves is not based on C’s move.

C1,A

C1,C M1,C

M1,AC2,A

C2,C

C4,A

C4,C
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Player A

Player C

C makes its 4-th move after seeing the first p moves 
from A.  A’s first six moves is not based on C’s move.

C1,A

C1,C M1,C

M1,AC2,A

C2,C

C4,A

C4,C
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But it’s fair if all players do the same.

C1,A

C1,C M1,C

M1,AC2,A

C2,C

C4,A

C4,C
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Player C can’t peek at extra moves if C4,C is received
within 2lAC of sending M1,A

C1,A

C1,C M1,C

M1,AC2,A

C2,C C4,C

2lAC
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We can detect late commit if we know the latency 
between players.

C1,A

C1,C M1,C

M1,AC2,A

C2,C C4,C

2lAC
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lmax = maximum latency 
rmax = maximum frame (round) rate

Pipeline Lockstep Protocol 
(without late commit)
 
       1/r = max{lmax/p, 1/rmax}

p = lmax rmax
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Player can lie about latency!
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C can pretend to be on a slow network when 
measurement of lAC is done (e.g. using ping).

C1,A

C1,C M1,C

M1,AC2,A

C2,C C4,C

Actual 2lAC

Fake 2lAC
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If fake lAC is larger than lmax , then we
increase p, limiting the cheat to one round.

C1,A

C1,C M1,C

M1,AC2,A

C2,C C4,C

Actual 2lAC

Fake 2lAC
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You Are Here
• CS4344

• Client/Server Architecture

• Synchronization Protocols

• Interest Management

• Peer-to-Peer Architecture

• Cheat-proof Synchronization Protocol
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