
Peer-to-Peer
Architecture

1

Peer-to-Peer Architecture

Role of clients
Notify clients
Resolve conflicts
Maintain states
Simulate games

2

Latency

Robustness

Conflict/Cheating

Consistency

Accounting

Scalability

Complexity

3

Lower Latency
No Single Point of Failure

4

MiMaze from INRIA, France

5

Age of Empire Series

http://compactiongames.about.com/library/games/screenshots/blscreens-ageofkings.htm

6

http://www.msxsecurity.com/bbf21421.jpg
http://www.msxsecurity.com/bbf21421.jpg

Player A

Without a server with authority, we can easily
get into inconsistent states.

Player C

Player B

7

Player A

Problem: order of messages received are
wrong.

Player C

Player B

8

Player A

Idea: If we synchronize the clocks of all
players and timestamp each message, we can
know the right order of execution.

Player C

Player B

9

Player A

Problem: When to execute? (Is there
another message generated earlier than this
that is still on its way here?)

Player C

Player B

10

(old) Idea: Delay
processing of messages

11

Bucket Synchronization

12

Make the game into a
turn-based game ..

13

.. with very fast turns.

14

Player A

The game is divided into rounds (e.g. 25
rounds per second).

Player C

Player B

15

Player A

Players are expected to send an update in each
round (e.g. 25 updates per second).

Player C

Player B

16

(and therefore is only
suitable if we have a small

number of players..)

17

Player A

Players are expected to send an update in each
round (e.g. 25 updates per second).

Player C

Player B

18

Player A

Every round has a “bucket” that collects the
update messages.

Player C

Player B

19

Messages generated in the same rounds goes
into the same bucket of a future round.

Player A

Player C

Player B

20

We know which rounds a message is
generated based on time-stamp.

Player A

Player C

Player B

21

Player A

When it is time to execute a round, the
messages in the bucket is processed (in order
of time-stamp).

Player C

Player B

22

Player A

Which future bucket to go into depends on the
latency among the players. (Hopefully not too far in
the future else responsiveness will suffers).

Player C

Player B

23

Player A

If messages from another player is lost (or
late), we can predict its update (e.g. using dead
reckoning) when possible.

Player C

Player B

24

Inconsistency still arises
due to prediction.

25

Player A

Alternative is to ensure every update is
received before executing the bucket.

Player C

Player B

26

Stop-and-Wait Protocol

27

Synchronized
Simulations

28

Every player sees
exactly the same states
(but maybe at different time)

29

Players can tell each other their
processing time and latency
among players, so that turn
length and lag can be adjusted.

30

Cheating

31

Look-Ahead Cheat

32

Player C (or a bot) can peek at A’s and B’s
actions first, before deciding his/her moves.

Player A

Player C

Player B

33

Dealing with cheaters:

1. Prevent cheats (hard)
2. Detect cheats (easier)

34

Detecting Look-
Ahead Cheats

35

“Mmm... player C
always the last one
that make its move”

36

Time-stamp Cheat

37

Player C (or a bot) can put in an earlier time-
stamp in its messages.

Player A

Player C

Player B

38

Suppress-Update Cheat

39

If dead reckoning is used, Player C can stop sending update
and let others predict its position. C then sends an update at

appropriate time to “surprise” other players.

Player A

Player C

Player B

40

A C

41

A

C stops sending update.
A predicts C’s position.

42

A

C stops sending update.
A predicts C’s position.

43

A

C stops sending update.
A predicts C’s position.

44

A

C sends an update and shoots A.

45

Cheater!
Not me! My packets

were dropped..

46

Cheat-Proof Protocol

47

Lock Step Protocol

48

One-Way Function f:
Given x, we can compute f(x)
easily. Given f(x) it’s hard to
find out x if x is random.

49

Lock Step Protocol

50

Player A

Two stages needed for each round of stop-
and-wait updates.
Stage 1. Everyone decides on its move x, and
send f(x) to each other.

Player C

Player B

51

Player A

Stage 2. After f(x) from every other player is
received, sends x to each other.

Player C

Player B

52

How does lock-step prevent:

look ahead cheat?
timestamp cheat?
suppress-update cheat?

53

f(x) is known as commitment
to x.

A player, once committed to
its move, can’t change it.

54

Problem: Lock-step
protocol is slow.

55

Idea: Use Interest Management

Players only engaged in lock-step
protocol when they influence
each other. Otherwise their

games proceed independently.

56

This is known as
Asynchronous Synchronization

or Asynchronous Lock-step

57

Player A

Player C

Player B

Commit Reveal

Let’s call the two stages in lock-step protocol
as commit and reveal stages.

58

Player A

Player C

Player B

We may also stagger these two stages to improve
responsiveness. Multiple commitments can be sent

out before we reveal the actions.

59

Player A

Player C

1. A player can reveal its action in round i once it
receives all commitment of round i from other players.

C1,A

C1,C M1,C

M1,A

60

Player A

Player C

2. A player can make p moves (send p
commitments) without engaging in lockstep.

C1,A

C1,C M1,C

M1,AC2,A

C2,C

C4,A

C4,C

61

This is known as
Pipelined Lock-step

62

lmax = maximum latency
rmax = maximum frame (round) rate

Lockstep Protocol

 1/r = max{2lmax, 1/rmax}

63

lmax = maximum latency
rmax = maximum frame (round) rate

Pipeline Lockstep Protocol

 1/r = max{2lmax/p, 1/rmax}

64

lmax = maximum latency
rmax = maximum frame (round) rate

We can pick optimal p as

p = 2 lmax rmax

65

Cheating in Pipelined Lock-step

66

Player A

Player C

C makes its 4-th move after seeing the first p moves
from A. A’s first six moves is not based on C’s move.

C1,A

C1,C M1,C

M1,AC2,A

C2,C

C4,A

C4,C

67

Player A

Player C

C makes its 4-th move after seeing the first p moves
from A. A’s first six moves is not based on C’s move.

C1,A

C1,C M1,C

M1,AC2,A

C2,C

C4,A

C4,C

68

But it’s fair if all players do the same.

C1,A

C1,C M1,C

M1,AC2,A

C2,C

C4,A

C4,C

69

Player C can’t peek at extra moves if C4,C is received
within 2lAC of sending M1,A

C1,A

C1,C M1,C

M1,AC2,A

C2,C C4,C

2lAC

70

We can detect late commit if we know the latency
between players.

C1,A

C1,C M1,C

M1,AC2,A

C2,C C4,C

2lAC

71

lmax = maximum latency
rmax = maximum frame (round) rate

Pipeline Lockstep Protocol
(without late commit)

 1/r = max{lmax/p, 1/rmax}

p = lmax rmax

72

Player can lie about latency!

73

C can pretend to be on a slow network when
measurement of lAC is done (e.g. using ping).

C1,A

C1,C M1,C

M1,AC2,A

C2,C C4,C

Actual 2lAC

Fake 2lAC

74

If fake lAC is larger than lmax , then we
increase p, limiting the cheat to one round.

C1,A

C1,C M1,C

M1,AC2,A

C2,C C4,C

Actual 2lAC

Fake 2lAC

75

You Are Here
• CS4344

• Client/Server Architecture

• Synchronization Protocols

• Interest Management

• Peer-to-Peer Architecture

• Cheat-proof Synchronization Protocol

76

