
Hybrid Architecture
for Networked Games
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Mirrored Servers
Architecture
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Multiple servers, each replicating the complete game 
states, serve clients from different geographical regions.
Each client connects to one server.
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Servers may be connected with high speed, provisioned 
networked, reducing synchronization latency among the 
servers.
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Updates from a client are sent to its server, which then 
forwards it to other servers.  The servers then forward 
the updates to all relevant clients.
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P2P-style state synchronization 
among servers is easier, since
 
1. servers can be trusted
2. clocks can be synchronized
3. IP multicast may be used
4. higher availability
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Pros and Cons of 
Mirrored Servers?
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Advantage:  No more single point of 
failures -- client can use another replicated 
servers if their nearest server fails.
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Advantage:  Each server can handle 
more clients (if networking bandwidth is 
the bottleneck)
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Advantage:  Lower latency from client 
to its server
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Cons:  Latency to update other players 
increases due to one additional 
forwarding.
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Cons:  Scalability is still limited since 
every server maintains states of the 
whole game world (if computation is the 
bottleneck). 
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Zoned Servers
Architecture
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Divide the game world into independent regions.  
One server is in-charged of one region.
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A client connects to the server serving its current 
region, and is handed-off to another server when it 
moves to another region.
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Servers seldom communicate with each other.
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Updates from a client are sent to its server, which then 
forwards it to all relevant clients in the same region.  
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Pros and Cons of 
Zoned Servers?
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Advantage:  Each server can handle 
more clients (if computation is a 
bottleneck)
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Cons:  Single point of failure for each 
region.   

(But we can have replicated servers for 
each region)
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Cons:  Severely constraints the design of 
games.
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Supporting Seamless 
Game Worlds
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Divide the game world into regions.  
One server is in-charged of one region.
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Player may move around the world seamlessly
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A client may see events and objects 
from neighboring regions.
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Events occurring in one region may affect
objects in another region.
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Advantage:  Partitioning is transparent 
to the players.  No artificial constraints in 
game design.
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Advantage:  We can now resize the 
regions to load-balance among the servers, 
improving server utilization.
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A client connects to the server serving its current 
region, and is handed-off to another server when it 
moves to another region.
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Server communicates with each other to transfer 
states, update states etc.
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Updates from a client are sent to its server, which then 
forwards it to all relevant clients in the same region or 
neighboring regions.
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or
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A client connects to the servers serving its current 
region and regions it subscribes to.  Updates from 
neighboring server are sent directly.
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Q: How to partition 
the game world?
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 Ideally: each server 
should handle the same 

number of players
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 Ideally: minimize 
communications 
between servers
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 Idea: divide the game 
world into small cells 
and assign group of 

cells to servers.
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I will simplify the representation to a grid of cells with 
number indicating the number of players (or load
incurred on server) in this cell.
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Centralized approach 
to partitioning
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Balanced Deployment 
Algorithm

                            
                      by Bart De Vleeschauwer et al
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 Idea: sort the cells and assign 
them one-by-one, highest load 
first, to the servers to minimize 

the maximum server load
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Suppose we have only two servers (blue and red).
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Blue’s load = 4    Red’s load = 0
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Blue’s load = 4    Red’s load = 3
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Blue’s load = 4    Red’s load = 6
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Blue’s load = 6    Red’s load = 6
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Blue’s load = 8    Red’s load = 7
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Problem: neighboring cells are not adjacent.  There 
are 8 “borders” in this solution.  Communication

overhead is not considered.
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Let’s define a cost function for 
assigning a cell c to a server S:

cost(c,S) = 
computation load increase in S + 
communication load increase in S
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For simplicity, 
CPU load = players, 

newtork load = borders
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Clustered Deployment 
Algorithm

                            
                      by Bart De Vleeschauwer et al
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Start with each cell as one 
cluster
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Repeatedly merge two adjacent 
clusters with least overhead until 

number of clusters equals to 
number of servers.
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Least cost =  1 + 3 = 4
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Least cost =  2 + 3 = 5
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Least cost =  1 + 5 = 6
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Least cost =  3 + 5 = 8
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Problem: Just a heuristic -- not 
optimal (the optimization 
problem is NP-complete)
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Problem: Last few steps 
involve heavily loaded cells and 
can create uneven deployment.
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We can tweak this heuristic in 
many ways to improve it, but it’s 

still a heuristic.
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Simulated Annealing
                            
                      by Bart De Vleeschauwer et al
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A general method for finding 
good solution in an optimization 

problem (meta-heuristic)
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At every step, move towards a nearby, 
better configuration probabilistically 
(allowing a move towards worse 
solution, prevent stuck at local 
minimum)
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Start with a solution from a 
heuristic.
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Move to a nearby config:
swap cells with an adjacent 

server, or move cell from one 
server to another

71



Is it a better solution?
If so, keep it as current solution

with some probability.
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Experimental results show that 
Simulated Annealing works best 

among the methods.
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Disadvantages of 
centralized approach
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Expensive to compute a 
good solution
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How frequent should 
the world be 
repartitioned?
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Localized World 
Partitioning
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Idea: Only repartition locally if a 
server is overloaded.  Look for a 

lightly loaded server to shed 
some load to.
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overload

safe

light

Overloaded server sheds load until it’s load is below a 
safe level.  The new load of a previously lightly loaded 
should remain below safe level.
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l + o - s < s
l < 2s - o
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Who to shed to?
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Minimize overhead: try to shed 
to as few neighboring server as 

possible
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Migrate cells to neighboring 
servers that are not overloaded
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If still not enough, look at the list of 
lightly loaded servers maintained.  
Pick the least load and shed to it.
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Shed remaining load to 
remote servers
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Overload = 10, Safe = 7, Light = 4
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Shed load to neighbor first
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Shed load to non-neighboring server
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But this could lead to high communication overhead
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When communication overhead is too high, 
isolated cells can be migrated to a nearby 
server,  “merging” with neighboring regions to 
form contiguous regions, as long as the load 
remains below the safe threshold.
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Evaluation
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Compare 5 schemes 
using a simulated games
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1. spread - “balanced deployment”
2. always shed to lightest server
3. static 
4. locality with merging
5. locality without merging
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locality with merge

locality without merge
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