
Hybrid Architecture
for Networked Games

1

single
centralized

server

completely
decentralized

2

Mirrored Servers
Architecture

3

Multiple servers, each replicating the complete game
states, serve clients from different geographical regions.
Each client connects to one server.

4

Servers may be connected with high speed, provisioned
networked, reducing synchronization latency among the
servers.

5

Updates from a client are sent to its server, which then
forwards it to other servers. The servers then forward
the updates to all relevant clients.

6

P2P-style state synchronization
among servers is easier, since

1. servers can be trusted
2. clocks can be synchronized
3. IP multicast may be used
4. higher availability

7

Pros and Cons of
Mirrored Servers?

8

Advantage: No more single point of
failures -- client can use another replicated
servers if their nearest server fails.

9

Advantage: Each server can handle
more clients (if networking bandwidth is
the bottleneck)

10

Advantage: Lower latency from client
to its server

11

Cons: Latency to update other players
increases due to one additional
forwarding.

12

Cons: Scalability is still limited since
every server maintains states of the
whole game world (if computation is the
bottleneck).

13

Zoned Servers
Architecture

14

Divide the game world into independent regions.
One server is in-charged of one region.

15

A client connects to the server serving its current
region, and is handed-off to another server when it
moves to another region.

16

Servers seldom communicate with each other.

17

Updates from a client are sent to its server, which then
forwards it to all relevant clients in the same region.

18

19

Pros and Cons of
Zoned Servers?

20

Advantage: Each server can handle
more clients (if computation is a
bottleneck)

21

Cons: Single point of failure for each
region.

(But we can have replicated servers for
each region)

22

Cons: Severely constraints the design of
games.

23

Supporting Seamless
Game Worlds

24

Divide the game world into regions.
One server is in-charged of one region.

25

Player may move around the world seamlessly

26

A client may see events and objects
from neighboring regions.

27

Events occurring in one region may affect
objects in another region.

28

Advantage: Partitioning is transparent
to the players. No artificial constraints in
game design.

29

Advantage: We can now resize the
regions to load-balance among the servers,
improving server utilization.

30

A client connects to the server serving its current
region, and is handed-off to another server when it
moves to another region.

31

Server communicates with each other to transfer
states, update states etc.

32

Updates from a client are sent to its server, which then
forwards it to all relevant clients in the same region or
neighboring regions.

33

or

34

A client connects to the servers serving its current
region and regions it subscribes to. Updates from
neighboring server are sent directly.

35

Q: How to partition
the game world?

36

 Ideally: each server
should handle the same

number of players

37

 Ideally: minimize
communications
between servers

38

 Idea: divide the game
world into small cells
and assign group of

cells to servers.

39

40

2 0 3

3 1 4

011

I will simplify the representation to a grid of cells with
number indicating the number of players (or load
incurred on server) in this cell.

41

Centralized approach
to partitioning

42

Balanced Deployment
Algorithm

 by Bart De Vleeschauwer et al

43

 Idea: sort the cells and assign
them one-by-one, highest load
first, to the servers to minimize

the maximum server load

44

2 0 3

3 1 4

011

Suppose we have only two servers (blue and red).

45

2 0 3

3 1 4

011

Blue’s load = 4 Red’s load = 0

46

2 0 3

3 1 4

011

Blue’s load = 4 Red’s load = 3

47

2 0 3

3 1 4

011

Blue’s load = 4 Red’s load = 6

48

2 0 3

3 1 4

011

Blue’s load = 6 Red’s load = 6

49

2 0 3

3 1 4

011

Blue’s load = 8 Red’s load = 7

50

2 0 3

3 1 4

011

Problem: neighboring cells are not adjacent. There
are 8 “borders” in this solution. Communication

overhead is not considered.

51

Let’s define a cost function for
assigning a cell c to a server S:

cost(c,S) =
computation load increase in S +
communication load increase in S

52

For simplicity,
CPU load = players,

newtork load = borders

53

Clustered Deployment
Algorithm

 by Bart De Vleeschauwer et al

54

Start with each cell as one
cluster

55

Repeatedly merge two adjacent
clusters with least overhead until

number of clusters equals to
number of servers.

56

2 0 3

3 1 4

011

57

2 0 3

3 1 4

011

Least cost = 1 + 3 = 4

58

2 0 3

3 1 4

011

Least cost = 2 + 3 = 5

59

2 0 3

3 1 4

011

Least cost = 1 + 5 = 6

60

2 0 3

3 1 4

011

Least cost = 3 + 5 = 8

61

2 0 3

3 1 4

011

62

Problem: Just a heuristic -- not
optimal (the optimization
problem is NP-complete)

63

Problem: Last few steps
involve heavily loaded cells and
can create uneven deployment.

64

We can tweak this heuristic in
many ways to improve it, but it’s

still a heuristic.

65

Simulated Annealing

 by Bart De Vleeschauwer et al

66

A general method for finding
good solution in an optimization

problem (meta-heuristic)

67

At every step, move towards a nearby,
better configuration probabilistically
(allowing a move towards worse
solution, prevent stuck at local
minimum)

68

cost

config

69

Start with a solution from a
heuristic.

70

Move to a nearby config:
swap cells with an adjacent

server, or move cell from one
server to another

71

Is it a better solution?
If so, keep it as current solution

with some probability.

72

2 0 3

3 1 4

011

73

Experimental results show that
Simulated Annealing works best

among the methods.

74

Disadvantages of
centralized approach

75

Expensive to compute a
good solution

76

How frequent should
the world be
repartitioned?

77

Localized World
Partitioning

78

Idea: Only repartition locally if a
server is overloaded. Look for a

lightly loaded server to shed
some load to.

79

overload

safe

light

80

overload

safe

light

Overloaded server sheds load until it’s load is below a
safe level. The new load of a previously lightly loaded
should remain below safe level.

81

l + o - s < s
l < 2s - o

82

Who to shed to?

83

Minimize overhead: try to shed
to as few neighboring server as

possible

84

Migrate cells to neighboring
servers that are not overloaded

85

If still not enough, look at the list of
lightly loaded servers maintained.
Pick the least load and shed to it.

86

Shed remaining load to
remote servers

87

2 0 3

1 1 4

035

0 1 1

Overload = 10, Safe = 7, Light = 4

88

2 0 3

1 1 4

035

0 1 1

Shed load to neighbor first

89

2 0 3

1 1 4

035

0 1 1

Shed load to non-neighboring server

90

2 0 3

1 1 4

035

0 1 1

But this could lead to high communication overhead

91

2 0 3

1 1 0

031

0 1 1

When communication overhead is too high,
isolated cells can be migrated to a nearby
server, “merging” with neighboring regions to
form contiguous regions, as long as the load
remains below the safe threshold.

92

Evaluation

93

Compare 5 schemes
using a simulated games

94

1. spread - “balanced deployment”
2. always shed to lightest server
3. static
4. locality with merging
5. locality without merging

95

locality with merge

locality without merge

96

You Are Here

• CS4344

• Client/Server Architecture

• Peer-to-Peer Architecture

• Hybrid

• Mirrored servers

• Zoned servers

97

