
End-to-End
Congestion Control

Previously on CS5229,
TCP Congestion Control

Not everyone uses TCP

UDP:

Media streaming
Gaming

VoIP

Why not congestion controlled?

1. UDP has low delay, no
need full reliability

Sally Floyd, http://www.icir.org/floyd/tcp_unfriendly.html

Why not congestion controlled?

2. No incentive. OTOH,
there are incentives NOT
to use congestion control.

“Unresponsive Flows”

Bad: lead to unfairness
and congestion collapse.

Unfairness:
unresponsive flows consume

more bandwidth than
congestion controlled flows.

NS-2 Demo

Unfairness also exists between:

1. TCP flows with different RTT

2. Different TCP versions

Bad: lead to unfairness
and congestion collapse.

Congestion Collapse:
wasting bandwidth by sending
packets that will be dropped

Why not congestion controlled?

UDP has low delay, no
need full reliability

Provide Congestion
Controlled, Unreliable

Transport Protocol

Why not congestion controlled?

No incentive.

Provide Incentives for
End-to-End Congestion

Control

Sally Floyd and Kevin Fall
“Promoting End-to-End
Congestion Control in

the Internet”
TON, 1999

What mechanisms can we
add to the router to provide

incentives for congestion
control?

Idea: Identify unresponsive flows,
then drop their packets or

regulate their rate.

Note: Not scalable to large
number of flows

(eg in core routers).

How to identify
unresponsive flows in a

router?

Approach 1:
TCP Un-Friendly Flows

Definition. A flow is TCP
Friendly if its arrival rate does
not exceed the arrival of a
conformant TCP connection in
the same circumstances.

“Same circumstances”: same
loss rate, RTT, packet size

The paper uses a rough approximation

MSS: Maximum packet size in bytes
 over all outgoing links
p: Packet drop rates over all
 outgoing links
R: Twice the 1-way propagation
 delay of outgoing links

The expression will overestimate
the fair throughput for TCP.

Thus, not all unfriendly flows will
be identified.

Approach 2:
Unresponsive Flows

Does the packet arrival rate of a
flow reduce appropriately when

packet drop rate increase?

If packet drop rate increases by
x%, then packet arrival rate
should decrease by sqrt(x)%

Does Not Work:
when packet drop rate is constant

Does Not Work:
packet might be dropped by

earlier router

Does Not Work:
A flow has an incentive to start

with high throughput

Approach 3:
Flows with

Disproportionate
Bandwidth

A flow should share 1/n of
total bandwidth

When congestion is low
(packet drop rate is low),

skewness is OK.

Condition 1: If a flow’s
bandwidth is more than ln(3n)/n
of the aggregate, then it is using

disproportionate share.

(ln(3n)/n : magic)

Condition 2: If a flow’s
bandwidth is more than

For MSS=512 and RTT=0.05s

If a flow’s bandwidth is more
than ln(3n)/n of the aggregate

flow bandwidth, then it is using
disproportionate share.

(ln(3n)/n : magic)

Does Not Work:
flows with short RTT will be

considered as disproportionate

Does Not Work:
the only flow with sustained
demand (long live) will be

considered as disproportionate.

Why not congestion controlled?

No incentive.

Why not congestion controlled?

UDP has low delay, no
need full reliability

E. Kohler, M. Handley, S. Floyd

“Designing DCCP:
Congestion Control
without Reliability”
SIGCOMM, 2006

DCCP:
Datagram Congestion Control

Protocol

A unreliable transport protocol
with “plug-in” congestion

control mechanism

Why not application layer?

Different applications would
have to implement it.
Hard to implement.

Why not application layer?

Make use of ECN info from IP.

ECN bits in IP header is marked
by router if the router is

congested, and can be used as
congestion signal at the sender.

Why not TCP?

Application can’t choose
congestion control algorithm

Why multiple congestion
control plug-ins?

Different applications need
different congestion control

behavior.

Pick one of
CCID2: TCP-like

CCID3: TFRC

CCID2:
TCP-Like Congestion Control

DCCP uses acknowledgements
with “ACK Vector” (similar to
SACK block). CCID2 is similar
to TCP SACK’s congestion
control algorithm.

CCID3: TFRC
TCP-Friendly Rate Control

In CCID3, receiver sends ACK
once every RTT to report lost
events.

One loss event: one or more
lost or marked packets from a
window of data.

AIMD: throughput fluctuates
TFRC: smooth throughput

Other DCCP features:

Reliable connection setup,
teardown, negotiation.

Other DCCP features:

A packet stream protocol
(not a byte stream protocol)

End-to-End
Congestion Control

