Congestion Avoidance
and Control

Van Jacobson,
*Congestion Avoidance

and Control”,
SIGCOMM 1988

Fixes to TCP in BSD
Handwaving arguments
Less rigorous math
Lots of “magical” hacks

We assume

- the sender always has data to send

- each packet is of the same size
- TCP is message-oriented

TCP throughput from LBL to UC
Berkeley (two hops) dropped from
32K bps to 40 bps.

RFC793

Sending window = receiving
window

No congestion control

Retransmit only when timeout

Congestion Collapse:
sender sends too fast
routers delay/drop packets
sender retransmit

no useful data getting through

haad T T TR T,

o&ro'ol!!’o

"he

|
|
N\
\ N
\
/.
_ _ _ _ L r e rnns
0L 09 0S o 0 02 oL 0

(gy) Jaqunp @ouanbag jaxoed

10

Send Time &soe&g” 5

CS5229 Semester 1

21 August 2009

Observation: a TCP connection should obey

Conservation
of
Packets

In equilibrium state, a new
packet is not inserted until an
old packet leaves.

14 y

CS5229 Semester 1 2009/10

21 August 2009

Q

How could this principle
be violated?

1. Never reaches
equilibrium

2. Inject a packet before
the next packet leaves

1. Getting to the
equilibrium state

Equilibrium state:
self-clocking

Figure 1: Window Flow Control ‘Self-clocking’

~

N\

— P

I_Pb_| /

| | I

Sender

-

-

Receiver

L | L

21 August 2009

- A,

— Ab—| \

J

CS5229 Semester 1 2009/10

20

How to start the ‘clock’?

Slow Start

Add a new variable cwnd.
Start/Restart: cwnd = 1.

Upon receiving ACK, cwnd++.
Send at most min(cwnd,rwin)

OR

1R

2R

3R

21 August 2009

One Round Trip Time -

Z _— One Packet Time

(2 (3)
a6
5 7
@r (6) (7]
. Icwzgimm-r)oogm 0

Never send more than 2x
the max possible rate.

(previously 200x is possible!)

Packet Sequence Number (KB)
60 80 100 120 140 160
\ l |

40

20

Figure 4: Startup behavior of TCP with Slow-start

/ ’
Iy /
’ "/
.._.l"’.'
o
¢
.,.-"'
'
B o
/l’
s /
N A 'f
o Hh—' | [
0 2 4 6 8
Cs5220 Senddime(seglo/10

21 August 2009

10

2. Inject a packet before
the next packet leaves

2. Conservation at
Equilibrium

Something’s wrong with
TCP timer

- - N
Figure 5: Performance of an RFC793 retransmit timer

12
I

10
l

RTT (sec.)

o 1 1 | J
0 10 20 30 40 50 60 70 80 90 100 110
21 August 2009 CS5229 Semesigy009/10

TCP (RFC793)

Rf,; N (1 — Oz)Rz‘_l -+ (OZ)MZ
R,: smoothed RTT

M. : measured RTT
RTO : timeout value

Variation in RT T when
network Is loaded

B =2 (recommended)
tolerates only 30% load

Idea: estimate the variation
and use In calculating RTO

Measuring Variation

variance:

costly (need to square)
mean error:

simpler

21 August 2009

CS5229 Semester 1 2009/10

36

R,,; < (1 — (X)Rf,;_l (CE)MZ
R, «— R, 1+aM;—R;,_1)
Vi «— Via+a(|M; —Ri—1| —V;—1)

21 August 2009

CS5229 Semester 1 2009/10

39

To prevent spurious timeout,

RTO; > R’H— 1

To pick a value of k,
consider bandwidth-
dominated link.

OR

1R

2R

3R

21 August 2009

One Round Trip Time -

Z _— One Packet Time

(2 (3)
a6
5 7
@r (6) (7]
. Icwzgimm-r)oogm 0

R doubles each round
during slow-start.

V. V V V

V

V

21 August 2009

RTO;

= R; +4V;

CS5229 Semester 1 2009/10

45

Y

-
Figure 6: Performance of a Mean+Variance retransmit timer

o
o
'. | " '. -
| \/ }
| '/' '
@ 1 . .
.’I JI
| i
- | |
| |
~ © g : f
E i \ |
(2 . ‘ \ |
ﬁ. \
o
o | | | |
0 10 20 30 40 50 60 70 80 90 100 110
Packet

21 August 2009

CS5229 Semester 1 2009/10

46

- - N
Figure 5: Performance of an RFC793 retransmit timer

12
I

10
l

RTT (sec.)

o 1 1 | J
0 10 20 30 40 50 60 70 80 90 100 110
21 August 2009 CS5229 Semesigy009/10

3. Moving towards new
equilibrium when path
changes

Idea: adjust cwnd when
congestion happens

Assume: congestion leads
to packet loss, leads to
timeout.

On timeout, cwnd /=2
On ACK, cwnd += 1/cwnd

-

Why drop by half ?
1. Slow-start:

we know R/2 works
2. Steady state:

a new flow probably?

Combining
slow-start
and
congestion avoidance

TCP Tahoe

14 - -¢-cwnd

12 - — ssthresh
10 -

8 - \

6 - N —
4 -

2 _|

O [I |

21 August 2009 CS5229 Semester 1 2009/10 55

56 y

CS5229 Semester 1 2009/10

21 August 2009

Q

cwnd:
“nipe size” probed

ssthresh:
“pipe size” during equilibrium

-

hew ack:

if (cwnd < ssthresh)
cwnd += 1

else
cwnd += 1/cwnd

-

timeout/3rd dup ack:
retransmit all unacked
ssthresh = cwnd/2
cwnd = 1

Improving TCP Tahoe:

Packets still getting through In
dup ack -- no need to reset the
clock!

TCP Reno

-

timeout:

retransmit all unacked
ssthresh = cwnd/2
cwnd = 1

- Y

3rd duplicate ACK:
fast retransmission
(ie, retransmit 15t unack)
fast recovery
(details in Week 4)
ssthresh = cwnd = cwnd/2

14 - Reno cwnd
-¢-Tahoe cwnd

12 7 — ssthresh
10 -

8 -

6 -

4 -

o

0 | | I

21 August 2009 CS5229 Semester 1 2009/10

73

AIMD

additive increase
Mmultiplicative decrease

Chiu and Jain, “Analysis of
Increase and Decrease
Algorithms for Congestion
Avoidance in Computer
Networks”, Comp. Net. &
ISDN Sys. 1989

2222222222222222222222

