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Fixes to TCP in BSD
Handwaving arguments
Less rigorous math
Lots of “magical” hacks



We assume

- the sender always has data to send

- each packet is of the same size
- TCP is message-oriented






TCP throughput from LBL to UC
Berkeley (two hops) dropped from
32K bps to 40 bps.



RFC793



Sending window = receiving
window

No congestion control

Retransmit only when timeout



Congestion Collapse:
sender sends too fast
routers delay/drop packets
sender retransmit

no useful data getting through
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Observation: a TCP connection should obey

Conservation
of
Packets




In equilibrium state, a new
packet is not inserted until an
old packet leaves.
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How could this principle
be violated?



1. Never reaches
equilibrium



2. Inject a packet before
the next packet leaves



1. Getting to the
equilibrium state



Equilibrium state:
self-clocking



Figure 1: Window Flow Control ‘Self-clocking’
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How to start the ‘clock’?



Slow Start



Add a new variable cwnd.
Start/Restart: cwnd = 1.

Upon receiving ACK, cwnd++.
Send at most min(cwnd,rwin)
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Never send more than 2x
the max possible rate.

(previously 200x is possible!)



Packet Sequence Number (KB)
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Figure 4: Startup behavior of TCP with Slow-start
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2. Inject a packet before
the next packet leaves



2. Conservation at
Equilibrium



Something’s wrong with
TCP timer
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Figure 5: Performance of an RFC793 retransmit timer

12
I

10
l

RTT (sec.)

o 1 1 | J
0 10 20 30 40 50 60 70 80 90 100 110
21 August 2009 CS5229 Semesigy009/10




TCP (RFC793)

Rf,; N (1 — Oz)Rz‘_l -+ (OZ)MZ
R,: smoothed RTT

M. : measured RTT
RTO : timeout value



Variation in RT T when
network Is loaded



B =2 (recommended)
tolerates only 30% load



Idea: estimate the variation
and use In calculating RTO



Measuring Variation

variance:

costly (need to square)
mean error:

simpler
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R,,; < (1 — (X)Rf,;_l (CE)MZ
R, «— R, 1+aM;—R;,_1)
Vi «— Via+a(|M; —Ri—1| —V;—1)
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To prevent spurious timeout,

RTO; > R’H— 1



To pick a value of k,
consider bandwidth-
dominated link.
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R doubles each round
during slow-start.
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Figure 6: Performance of a Mean+Variance retransmit timer
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Figure 5: Performance of an RFC793 retransmit timer
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3. Moving towards new
equilibrium when path
changes



Idea: adjust cwnd when
congestion happens



Assume: congestion leads
to packet loss, leads to
timeout.



On timeout, cwnd /=2
On ACK, cwnd += 1/cwnd



-

Why drop by half ?
1. Slow-start:

we know R/2 works
2. Steady state:

a new flow probably?



Combining
slow-start
and
congestion avoidance



TCP Tahoe
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cwnd:
“nipe size” probed

ssthresh:
“pipe size” during equilibrium



-

hew ack:

if (cwnd < ssthresh)
cwnd += 1

else
cwnd += 1/cwnd



-

timeout/3rd dup ack:
retransmit all unacked
ssthresh = cwnd/2
cwnd = 1



Improving TCP Tahoe:

Packets still getting through In
dup ack -- no need to reset the
clock!



TCP Reno



-

timeout:

retransmit all unacked
ssthresh = cwnd/2
cwnd = 1



- Y

3rd duplicate ACK:
fast retransmission
(ie, retransmit 15t unack)
fast recovery
(details in Week 4)
ssthresh = cwnd = cwnd/2
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AIMD

additive increase
Mmultiplicative decrease




Chiu and Jain, “Analysis of
Increase and Decrease
Algorithms for Congestion
Avoidance in Computer
Networks”, Comp. Net. &
ISDN Sys. 1989
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