Congestion Avoidance and Control

Van Jacobson, "Congestion Avoidance and Control", SIGCOMM 1988

Fixes to TCP in BSD
Handwaving arguments
Less rigorous math
Lots of "magical" hacks

We assume

- the sender always has data to send
- each packet is of the same size
- TCP is message-oriented

1986

TCP throughput from LBL to UC Berkeley (two hops) dropped from **32K** bps to **40** bps.

RFC793

Sending window = receiving window

No congestion control

Retransmit only when timeout

Congestion Collapse: sender sends too fast routers delay/drop packets sender retransmit no useful data getting through

Observation: a TCP connection should obey

Conservation of Packets

In equilibrium state, a new packet is not inserted until an old packet leaves.

How could this principle be violated?

Never reaches equilibrium

2. Inject a packet before the next packet leaves

1. Getting to the equilibrium state

Equilibrium state: self-clocking

Figure 1: Window Flow Control 'Self-clocking'

How to start the 'clock'?

Slow Start

Add a new variable cwnd.

Start/Restart: *cwnd* = 1.

Upon receiving ACK, cwnd++.

Send at most min(cwnd,rwin)

21 August 2009

Never send more than 2x the max possible rate.

(previously 200x is possible!)

Figure 4: Startup behavior of TCP with Slow-start

2. Inject a packet before the next packet leaves

2. Conservation at Equilibrium

Something's wrong with TCP timer

Figure 5: Performance of an RFC793 retransmit timer

TCP (RFC793)

$$R_i \leftarrow (1 - \alpha)R_{i-1} + (\alpha)M_i$$

$$RTO_i \leftarrow \beta R_i$$

R_i: smoothed RTT

M_i: measured RTT

RTO: timeout value

Variation in RTT when network is loaded

β = 2 (recommended) tolerates only **30**% load

Idea: estimate the variation and use in calculating RTO

Measuring Variation

variance: costly (need to square) mean error: simpler

$$R_i \leftarrow (1-\alpha)R_{i-1} + (\alpha)M_i$$

$$R_i \leftarrow R_{i-1} + \alpha(M_i - R_{i-1})$$

$$V_i \leftarrow V_{i-1} + \alpha(|M_i - R_{i-1}| - V_{i-1})$$

$$RTO_i \leftarrow R_i + kV_i$$

To prevent spurious timeout,

$$RTO_i > R_{i+1}$$

To pick a value of k, consider bandwidth-dominated link.

21 August 2009

R doubles each round during slow-start.

$$RTO_{i} > R_{i+1}$$

$$R_{i} + kV_{i} > 2R_{i}$$

$$R_{i} + k(R_{i} - R_{i-1}) > 2R_{i}$$

$$R_{i} + k(R_{i} - \frac{1}{2}R_{i}) > 2R_{i}$$

$$k(\frac{1}{2}) > 1$$

$$k > 2$$

$$RTO_i = R_i + 4V_i$$

Figure 6: Performance of a Mean+Variance retransmit timer

21 August 2009

Figure 5: Performance of an RFC793 retransmit timer

3. Moving towards new equilibrium when path changes

Idea: adjust cwnd when congestion happens

Assume: congestion leads to packet loss, leads to timeout.

On timeout, cwnd /= 2 On ACK, cwnd += 1/cwnd

Why drop by half?

1. Slow-start:

we know R/2 works

2. Steady state:

a new flow probably?

Combining slow-start and congestion avoidance

TCP Tahoe

cwnd:

"pipe size" probed

ssthresh:

"pipe size" during equilibrium

new ack: if (cwnd < ssthresh) cwnd += 1else cwnd += 1/cwnd

timeout/3rd dup ack: retransmit all unacked ssthresh = cwnd/2 cwnd = 1

Improving TCP Tahoe:

Packets still getting through in dup ack -- no need to reset the clock!

TCP Reno

timeout: retransmit all unacked ssthresh = cwnd/2 cwnd = 1

3rd duplicate ACK: fast retransmission

(ie, retransmit 1st unack)

fast recovery

(details in Week 4)

ssthresh = cwnd = cwnd/2

AIMD

additive increase multiplicative decrease

Chiu and Jain, "Analysis of Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks", Comp. Net. & ISDN Sys. 1989