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ABSTRACT
3D triangular mesh is becoming an increasingly important data type
for networked applications such as digital museums, online games,
and virtual worlds. In these applications, a multi-resolution rep-
resentation is typically desired for streaming large 3D meshes, al-
lowing for incremental rendering at the viewers while data is still
being transmitted. Such progressive coding, however, introduces
dependencies between data. This paper quantitatively analyzes the
effects of such dependency on the intermediate decoded mesh qual-
ity when the progressive mesh is transmitted over a lossy network,
by modeling the distribution of decoding time as a function of mesh
properties and network parameters. To illustrate the usefulness of
our analytical model, we describe three of its applications. First, we
show how it can be used to analytically compute the expected de-
coded mesh quality. Second, we study two extreme cases of depen-
dency in progressive mesh and show that the effect of dependencies
on decoded mesh quality diminishes with time. Finally, based on
the model, we propose a packetization strategy that improves the
decoded mesh quality during the initial stage of streaming.

Categories and Subject Descriptors
I.3.2a [Graphics Systems]: Distributed/Network Graphics; C.2.4b
[Distributed Systems]: Distributed Applications

General Terms
Performance, Design

Keywords
3D data, streaming, progressive meshes, packetization

1. INTRODUCTION
Advances in 3D scanning technology and mesh reconstruction

algorithms have lowered the barrier in creating complex mesh ob-
jects and sharing them over the network. For instance, the Stan-
ford’s Digital Michelangelo Project [11] digitized statues made by
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Michelangelo and provided a software, ScanView [10], to allow
users to remotely view the 3D version of the statues. Second Life,
an online virtual world, allows sharing of user-created 3D objects.
In terms of ratio, more users are generating content in Second Life
than on the Web [13]. While Second Life only supports construc-
tive solid geometry objects at the moment, there is a user push to
import complex, mesh-based objects into Second Life. These signs
suggest that an increasing amount of 3D mesh data will be available
for remote viewing over the Internet.

The amount of data constituting a high quality 3D mesh can be
huge. For example, the statue of David, from the Digital Michelan-
gelo Project, consists of 2 billion polygons. After lossless com-
pression, the total data size is 32 GB. To reduce waiting time when
downloading such a huge amount of data, a common technique for
remote viewing is to encode a 3D mesh progressively [12], allow-
ing a low resolution version of the mesh to be transmitted and ren-
dered with lower latency. The refinement information is continu-
ously being transmitted, and the quality of the rendered model is
incrementally improved over time. Such progressive rendering is
also useful in the case of virtual worlds such as Second Life. In
such applications, the models are typically smaller and simpler, but
due to the existence of multiple models and the interactivity re-
quirements, it is desirable for users to quickly visualize a coarse
version of the scene first, instead of waiting for full objects to be
downloaded before they can be displayed.

Progressive coding of meshes, much like progressive coding of
video, introduces dependencies between data. Dependencies be-
tween data units can cause delay in decoding when sent over a lossy
network – a data unit cannot be decoded and displayed if one of the
other data units it depends on is not received correctly. For exam-
ple, in the context of video streaming, MPEG-encoded frames are
inter-dependent: an I-frame has to be received and decoded prop-
erly before being able to decode the subsequent P-frames and B-
frames referencing this I-frame (either directly or indirectly). An-
other example is in layered coded video, where the base layer has
to be received before the enhancement layers can be decoded. The
effects of dependencies in the context of video streaming have been
well studied in the literature. 3D multi-resolution objects also have
dependencies between different level of details. For progressive
meshes, the mesh is refined by successive vertex splits (see Fig-
ure 1). Thus, dependencies exist between the original vertex and
its one ring (the direct neighbors of the vertex) and the vertices and
triangles created by the vertex split. The effects of these dependen-
cies on decoded mesh quality, however, are not well understood.
Due to the fundamentally different nature of progressive mesh and
video data, what we learn from video streaming research does not
apply. This paper aims to study the effect of dependencies in pro-
gressive mesh streaming by proposing an analytical model, relating



the decoded mesh quality of progressive mesh to packet loss rate,
given the dependencies among vertex splits.

The decoded mesh quality is determined by the decoding time of
the vertex splits and their contribution to the overall mesh quality.
To estimate the decoded mesh quality, our analytical model predicts
the decoding time of a vertex split. We first express the expected
time for receiving each packet in terms of loss rate, round trip time,
and sending rate. A received vertex split has to wait for the vertex
splits it depends on to arrive before it can be decoded. Therefore the
received time of a vertex split is not always equal to its decoding
time. Our model gives an expression for the expected decoding
time given the dependencies among the vertex splits. To measure
the decoded quality at a given time, we propose a metric based
on the contribution of decoded vertex splits to the decoded mesh
quality. This decoded mesh quality can be computed once we know
the expected decoding time of a vertex split and its contribution.

Our analytical model is useful in several ways. First, we can an-
alytically evaluate different strategies for streaming a progressive
mesh. For instance, packetization of vertex splits affects the inter-
mediate decoded mesh quality at the receiver. Evaluating different
packetization scheme using simulation is an option, but it may take
many experiments to obtain accurate expected values. Our model
computes the expected value easily. Second, our model can also
help in developing a better sending strategy. The quality of the
decoded mesh depends on various factors, which include not only
network conditions such as loss rate and round trip time, but also
the order, the dependency, and the importance of the data. The last
three factors are in turn affected by the packetization strategy. Our
model can estimate the effect of each factor on the decoded mesh
quality. As such, we can make the right trade-off in packetiza-
tion during transmission to improve the quality. Finally, we derive
closed-form expressions in two extreme cases, giving us insights to
the importance of dependencies on the decoded mesh quality.

The rest of the paper is organized as follows. In Section 2, we
first describe progressive mesh and how it introduces dependencies.
Section 3 presents related work in the area of 3D objects stream-
ing. Section 4 introduces our evaluation metric for intermediate
decoded mesh quality. Section 5 introduces our analytical model.
We then describe three applications of our model. In Section 6,
we show how our model can be used to analytically compute the
expected decoded mesh quality. In Section 7, we study two hypo-
thetical extreme cases, and showed how the effect of dependencies
on decoded mesh quality. Section 8 describes how we can use our
model to devise a packetization strategy for transmitting progres-
sive mesh. Section 9 concludes by reflecting on the insights we
gain from our model and its implications.

2. PROGRESSIVE MESH
Progressive transmission and rendering of 3D objects requires

multi-resolution representations of data. Progressive mesh is a multi-
resolution technique proposed by Hoppe [9] in 1996 to enable pro-
gressive rendering of 3D meshes. The technique is based on an op-
eration called edge collapse, and its reverse operation, vertex split.
Given a (non-progressive) 3D mesh, the technique applies a series
of edge collapses, simplifying the model by reducing the number
of vertices and faces. The final, simplified model obtained after
this process is called the base model. Given a base model, we can
reconstruct the original model by reversing the edge collapse oper-
ations through vertex splits, incrementally adding new vertices and
faces. So, a progressive mesh can be represented by the base model
and a series of vertex splits. There are dependencies between ver-
tex splits and the base model, as well as among the vertex splits.
A vertex split operation might need a vertex or a face created by
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Figure 1: Edge collapse and its reverse vertex split

another vertex split as input. Figure 1 illustrates edge collapse and
vertex split operations.

Progressive meshes are well adapted for streaming since they of-
fer a fine level of progressivity. Arbitrary multi-resolution models
provide different levels of detail for the same object. Whereas most
multi-resolution models are organized level by level, progressive
meshes have the advantage of allowing the refinement steps to be
done vertex split by vertex split. This progressivity is crucial for
our application since a streamed vertex split will only have to wait
for the vertex splits it depends on, and not for other refinement
operations of the same level (like e.g. for subdivision surfaces).
Therefore, the only dependencies we need to study are the depen-
dencies between vertex splits.

Many extensions to Hoppe’s progressive mesh have been pro-
posed (e.g., [16, 14, 6, 4, 3]). The main idea behind these exten-
sions is to combine multiple operations into one, thereby further
reducing the redundancy and improving the efficiency. While this
paper only considers the original progressive mesh, our model is
general enough to model many of these extensions.

Significant differences exist between progressive mesh stream-
ing and video streaming. First, in video steaming, every packet
should be received in time, or it will not be played back. Hence,
generally sending new data is more important than re-sending old
data. On the contrary, in streaming of a progressive mesh, old data
is usually more important than new one, since the reconstruction
begins with the most significant refinement. Given this observa-
tion, retransmission of a lost packet is not only useful, but it should
also take priority over transmission of new packets.

Second, in progressive mesh, there is no strict order of vertex
splits rendering order, unlike in video where frames must be dis-
played in sequence. A received vertex split can be rendered imme-
diately as long as all the vertex splits it depends on have been re-
ceived. When a packet is lost, the subsequent received packets may
still be decodable. Those vertex splits received afterwards that de-
pend on the lost packet, however, have to wait until the lost packet
is retransmitted successfully before they can be displayed. This ob-
servation hinted that we should reduce the dependencies between
packets as much as possible, since dependencies cause delay in ren-
dering details generated by vertex splits.

Third, a video frame is usually larger than a packet, causing the
streaming application to split the video frame into several packets.
On the other hand, in progressive mesh, a vertex split is small (in
the order of 10 - 15 bytes). Thus, before the application transmits
the mesh, it needs to group vertex splits into packets. This packeti-
zation process affects the dependencies among the packets, which
in turn affects the delay in rendering if some packets are lost.

3. RELATED WORK
Given the background in progressive mesh, we now describe re-

lated research in transmissions of progressive mesh over the net-
work. There are three main classes of work in existing literature –
error resilient compression, error control, and packetization.



Existing work in robust mesh compression aims to reduce de-
pendencies among the mesh [15, 17]. Similar to introducing key
frames or restart marker in video/image coding, mesh segmenta-
tion is used to reduce the affected range of one packet loss. In
robust mesh compression, a mesh is typically divided into several
independent parts and then coded separately. Therefore the effect
of one packet loss is confined to the part to which it belongs. The
finer the partition is, the fewer the affected vertices are. The coding
efficiency, however, will decrease due to increase in redundancy
and decrease in correlations.

Al-Regib and Altunbasak [1] proposed an unequal error pro-
tection method to improve the resilience of progressive 3D mesh
based on CPM algorithm. Forward error correction (FEC) codes
are added to different levels of mesh data (base mesh and differ-
ent levels of detail) such that the decoded mesh quality is maxi-
mized. The method is similar to FEC protection of video data. As
argued in the previous section, we believe that for streaming of 3D
meshes, retransmission is always a better choice (except in cases
such as multicast where retransmission is not scalable). Chen et
al. [5] also applied FEC to streaming progressive meshes. They
analyzed several transmission schemes TCP only, UDP only, TCP
with UDP, and UDP with FEC and studied their effects experimen-
tally on transmission time and decoded mesh quality. Al-Regib et
al. proposed an application layer protocol, 3TP, for streaming of
3D models [2], combining both TCP and UDP. In 3TP, packets that
are of importance are sent using TCP, while the rest are sent with
UDP to minimize delay.

Gu and Ooi [7] were the first to look at the packetization prob-
lem for progressive meshes. They model the packetization prob-
lem as a graph problem where the objective is to equally partition
the graph into k partitions with minimum cut size. The problem
is shown to be NP-complete and a heuristic is proposed. They,
however, assume that every vertex split is equally important. In
practice, the importance of vertex splits can vary considerably. A
similar work in packetization is done by Harris III and Karvets [8].
They proposed a protocol named On-Demand Graphic Transport
Protocol (OGP) for transmitting 3D models represented as a tree of
bounding volumes. A key component of the protocol is to decide
which bounding volumes to send. OGP begins with packing the
largest possible subtree at the root and continues to pack the nodes
in the subtree of acknowledged nodes in breadth-first order. This
approach again aims to reduce the dependencies, and is similar to
the b-sub approach. Both these approaches are compared to our
method in Section 8.1.

These existing studies are mainly concerned with dependencies
(packetization and mesh segmentation) and importance of mesh
data (unequal error protection and use of reliable protocol), two
factors that affect the quality of decoded meshes. None, however,
have looked at both factors and characterize their effect on quality.
We aim at achieving this by proposing an analytical model.

4. EVALUATION METRIC
Before we present our model, we first explain how we measure

the quality of a progressive mesh at a given time t.
The quality of a simplified mesh represents how close it is com-

pared to the original mesh. Some objective metrics have been pro-
posed. Many of them are based on the Hausdorff distance between
a set of sample points on the original mesh and the corresponding
ones on the simplified one.

In the case of a progressive mesh, the base mesh has the low-
est quality, and each vertex split increases the quality by a certain
amount. We define the importance of a vertex split as the amount of
increase in decoded mesh quality caused by this vertex split. This

value can be determined by comparing the quality of the model
before and after the vertex split operation. Strictly speaking, the
importance value may depend on the order, but, for simplicity, we
assume that a refinement always improves the quality of the model
by a value, independent of other refinements. Then, the quality of
a received model at time t (or, intermediate quality) can be repre-
sented as the summation of importance of all vertex splits decod-
able at t. Since the simplification process typically prefer collaps-
ing an edge with low quality loss, edges with lower importance are
collapsed earlier during the simplification and split later during the
reconstruction. Therefore, in a progressive mesh, vertex splits op-
erations are typically performed in decreasing order of importance.

This model of decoded mesh quality is general – one can define
different importance metric for a vertex split depending on the ob-
jective metric. For instance, a view-dependent metric can set the
importance of a vertex split to zero if the vertex split is outside of
the user’s viewpoint.

We evaluate and compare different streaming strategies of the
same progressive mesh by examining the intermediate quality. Note
that as long as the sending rate is the same, the complete mesh will
be received at the same time. We are more interested in intermedi-
ate quality, since in progressive transmission, we want the users to
view a mesh with the best possible quality before the whole mesh
is transmitted. This intermediate quality is important especially in
interactive applications, where what a user sees initially matters.
One simple metric is to compare the intermediate quality at a given
time t; the other is to compare the time it takes for two streaming
strategies to reach an intermediate quality. These simple metrics are
nonetheless too restrictive. For instance, in Figure 2(a), although
the quality at time t is the same for both strategies, we think that
Strategy 2 is better since it can achieve a higher quality earlier.

Based on this observation, we propose an evaluation metric that
measures the intermediate quality over a period of time (rather than
instantaneous). The metric sums up the intermediate quality of the
mesh between a given time period. Imagine plotting the quality of
the received mesh versus time, as in Figure 2. This metric is equiv-
alent to the area between the curve and the time axis. There are
two ways we can interpret the meaning of this metric. We view the
metric as the sum of decoded quality from time 0 to t. Discretizing
the time, we let qt be the decoded quality of the progressive mesh
at time t, and let at be the area under the curve at time t. Then,
at =

Pt
i=0 qi. Here, the area under the curve is computed as the

area sum of vertical slices. We can also compute the area as the
area sum of horizontal slices (see Figure 2). Thus, to compute the
area, we can sum up the product of a vertex split’s importance and
the amount of time since it was decoded. Let the importance of a
vertex split i be wi and the time when it was decoded be Di. Then

at =
X
i∈Kt

wi(t − Di), (1)

where Kt is the set of vertex splits that have been decoded at time
t. To compute the expected rendering quality using Equation 1, it
is crucial to compute the expected decoding time of a given vertex
split. We show how we model this value next.

5. ANALYTICAL MODEL
We now develop an analytical model for transmission of pro-

gressive mesh over lossy networks. We first need to model the pro-
gressive mesh and the network. Since typically the base model is
small (less than 1% of the total size) and is transmitted using reli-
able transport protocol [2], we assume that the base model has been
received by the client. We will focus on modeling the vertex splits,
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Figure 2: Intermediate quality of decoded mesh. From left to right: (a) Strategy 2 is better than Strategy 1 since the area under the
curve is larger. (b) Area sum of vertical slices. (c) Area sum of horizontal slices.
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Figure 3: Dependency between vertex splits represented as a
DAG.

which can be modeled as a directed acyclic graph (DAG) (see Fig-
ure 3). In the DAG, nodes represent the vertex split operations, and
edges represent the dependency between these operations. We as-
sign each node a weight, which corresponds to the importance of
the vertex split. We will use the terms node and vertex split inter-
changeably in this paper.

On the server, the vertex splits are grouped into packets. We as-
sume that each packet contains the same number of vertex splits.
We say packet P is a parent packet of packet Q if Q contains a
vertex split that depends on a vertex split in P . Therefore, a ver-
tex split can be decoded after the packet that contains it and all its
parent packets are received.

We denote B and p as the average sending rate1 and packet loss
rate respectively. We assume a retransmission-based protocol –
when packet loss is detected at the receiver, a retransmission re-
quest (NACK) is sent back to the sender, triggering a retransmis-
sion. Let Td be the average period between the time a packet P is
sent and the time P ’s NACK is received (P ’s loss is detected) at
the sender – Td is the round trip time plus some constant.

We discretize the time into slots. Each slot is the time to send one
packet. Thus, one time unit is L/B seconds, where L is the packet
size. The time Td is normalized to this time unit. Thus, Td can
also be interpreted as the number of packets transmitted between
sending a packet P and detecting loss of P . Moreover, at the server,
we define the time the first packet is sent as time 0, whereas, at the
client, we define the time the first packet is received (if it is not lost)
as 0. Therefore, a packet sent at time t will be received at time t if
it is not lost. We use a different timeline at the receiver to avoid an
additional term, RTT/2, in equations related to the received time
and decoded time. We summarize these notations as well as other
major notations we use in this paper in Table 1.

With that background, we will now explain how we obtain the
expected value of sending time, received time, and decoding time
of a vertex split. Due to space constraints, we will only sketch the
proofs in this paper.

1decided either by the available bandwidth or by TCP friendly re-
quirement

L packet size
B sending rate
p packet loss rate

Td time between sending a packet and
receiving its NACK

Si sending time of packet i (wrt. sender time)
Ri received time of packet i (wrt. receiver time)
Dj the time vertex split j is decoded at the receiver
wj the importance of vertex split j

Nd,t number of packets decoded at time t
Nr,t number of packets received at time t
∆t increase in expected number of decodable packet at time t

Table 1: Notations used in our model.

5.1 Sending Time and Receiving Time
Let Si be the time when the i-th packet is sent. Lemma 1 com-

putes the distribution of Si and the expected value E[Si].

Lemma 1 If i ≥ Td, then for any k ≥ 0,

Pr(Si = i + k) =

 
i − Td + k

k

!
pk(1 − p)i−Td+1

E[Si] = (i − Td + 1)
1

1 − p
+ Td − 1.

Otherwise, if i < Td, then Si = i.

Proof Sketch Whether a packet is sent successfully or not can be
known only after Td. At time i + k (k ≥ 0), the result of first
i + k − Td + 1 transmissions are known (we call them known
transmissions), but the result of the following Td − 1 transmis-
sion remains unknown (we call them unknown transmissions). For
t ≥ Td, a new packet is sent at t only when the transmissions at
t−Td is known to be successful. Hence, if packet i is sent at i+k,
then among the i + k − Td + 1 known transmissions, i − Td + 1
transmissions are successful and k transmissions fail. The vari-
able k has a negative binomial distribution, and the expression for
Pr(Si = i + k) follows.

The total number of transmissions until a packet is successfully
sent is a random variable following geometric distribution with ex-
pected value of 1/(1 − p). Therefore, the expected value of total
transmission number until i− Td + 1 packets are successfully sent
is (i−Td +1)/(1−p). Including the subsequent Td −1 unknown
transmissions, we have the expression for E[Si]. �

Let Ri denote the time a packet i is received. The probability
that a packet i is received at time t is given as follows.

Lemma 2

Pr(Ri = t) =


(1 − p)pni,t if (t − Si) mod Td = 0
0 otherwise



where ni,t = �(t − Si)/Td� is the number of times packet i was
lost when Ri = t.

Proof Sketch The lemma follows from the fact that a packet can
only be received at a time that is a multiple of Td after the first time
it was sent. �

Note that here Si is a random variable but we approximate the
decoding time by using the expected value of Si computed from
Lemma 1. This approximation is accurate enough (as shown in the
next subsection) as long as the variance of Si is small2.

Lemma 3

Pr(Ri ≤ t) = 1 − pni,t+1.

Proof Sketch Given t, the probability that a packet is received
strictly after time t is the same as the probability that the packet has
been lost ni,t + 1 times, or pni,t+1. Lemma 3 follows. �

5.2 Decoding Time of a Vertex Split
Once we expressed both sending time and received time, we can

approximate the decoding time of a vertex split v, denoted as Dv .
Let P(i) be the set of all parent packets of packet i and itself,

then the probability that vertex split v can be decoded at time t is
given by the probability that one of the packet in P(i) is received
at time t and all other packets in P(i) is received before time t.

Pr(Dv = t) =
X

j∈P(i)

Pr(Rj = t)

Pr(Rj < t)

Y
k∈P(i)

Pr(Rk < t) (2)

Lemma 2 and 3 give the expression for Pr(Ri = t) and Pr(Ri <
t) respectively. Once we have the probability distribution of Dv ,
we can estimate the expected decoding time of a vertex split v with

E[Dv] =

∞X
j=t

jPr(Dv = j), (3)

Since the probability Pr(Dv = t) decreases exponentially as t
increase, in practice we can numerically estimate the expected de-
coding time by considering only the first few terms of the sum. In
this paper, we consider j from Si to Si+3Td, which we found to be
accurate enough for practical purposes. That is, a packet is consid-
ered to be lost at most 3 times in a row. For larger loss rate, one can
consider more terms to trade-off computation time and accuracy.

5.3 Validation
To validate the accuracy of our estimation of E[Dv ], we com-

pared our analytical results with simulation results. The simulation
considers the transmission of a progressive mesh model (we use the
horse model with 48258 vertex splits) over a lossy network with
random, independent loss rate (p = 0.1). Each simulation run reg-
isters the exact decoding time of a vertex split. The average decod-
ing time of a vertex split over a number of runs is compared with
the analytical results. Table 2 shows the average absolute differ-
ence and the maximum absolute difference in time unit (recall that
one time unit is the time to send one packet). When we increase
the number of simulation runs, the difference reduces further. The
accuracy remains in the same range when we run the simulation
using a real packet loss trace collected over 16 minutes between
Toulouse, France and Singapore. Figure 4 shows the actual decod-
ing time for one specific run. Our model fits the actual decoding

2This approximation leads to the possibility of two packets arriving
at exactly the same time. In this case, we break ties by randomly
reordering the arrival of the packets

Number of runs Average difference Maximum difference
1000 0.474434 3.192292
10000 0.160840 1.566875

100000 0.122337 1.308333
trace 0.176589 2.183958

Table 2: Average and maximum absolute differences in decod-
ing time between analytical model and simulation.

Td = 20 Td = 40 Td = 60
p = 0.01 0.064106 0.128288 0.227679
p = 0.05 0.155994 0.287506 0.454681
p = 0.1 0.304333 0.474434 0.709541
p = 0.2 0.480877 0.775148 1.033872
p = 0.3 0.676666 1.097639 1.504085

Table 3: Average absolute differences in decoding time between
analytical model and simulation, for different p and Td, after
1000 runs.

time reasonably well. Table 3 explores the accuracy of our ana-
lytical model when Td and p changes. We see that the difference
remains low even when p increases beyond practical values.
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Figure 4: Comparison between decoding time obtained by one
simulation run and decoding time computed from our analyti-
cal model. For clarity, we only plot 1 out of every 100 points in
this figure.

The analytical model is useful in several ways. Besides allowing
us to compute the expected decoded quality analytically, which is a
faster alternative to simulation (see Section 6), our model can lead
to some simple close form equations in some special cases. These
equations can aid us in understanding the effect of dependency (see
Section 7). Moreover, a better packetization algorithm can be de-
signed based on this analytical model (Section 8). We introduce
these applications of our model next.

6. EXPECTED DECODED MESH QUALITY
Using our analytical model, we can now analytically compute

the expected decoded mesh quality given the dependencies among
the vertex splits and the order the packets are sent.

In Section 4, we explain how we can view the area under the
curve at time t, at, as either the area sum of vertical slices or
horizontal slices. If we use the area sum of vertical slices, then
at =

Pt
i=0 qi, where qi is the quality of the mesh at time i. Define



an indicator variable xi,t such that

xi,t =


1 if Di ≤ t
0 otherwise

.

Then we have E[xi,t] = Pr(Di ≤ t). Since qt =
Pt

i=0 xi,twi,
we have E[qt] =

Pt
i=0 wiPr(Di ≤ t). Therefore,

E[at] =

tX
i=0

iX
j=0

wjPr(Di ≤ j) (4)

Using the area sum of horizontal slices, Equation 1 can be rewrit-
ten as at =

Pt
i=0 xi,twi(t−Di), and the expected value becomes

E[at] =
tX

i=0

wiE[xi,tt − xi,tDi]

=
tX

i=0

wi[tP r(Di ≤ t) − E[xi,tDi]]

We define E[Di|Di≤t] as
Pt

k=0 Pr(Di = k)k. Then, E[xi,tDi] =
E[Di|Di≤t], and the expected decoded mesh quality at time t is

E[at] =
tX

i=0

wi[tP r(Di ≤ t) − E[Di|Di≤t]] (5)

Equations 4 and 5 can be shown to be equivalent. Using Equa-
tion 2, which gives the distribution of Di, we can analytically com-
pute the expected decoded mesh quality at any time t using either
equations. Equation 5, however, is more convenient in some cases.
In Section 8, we will introduce an algorithm based on Equation 5.

We compare the decoded quality obtained analytically with the
actual values obtained through simulation, where the Horse model
is sent using FIFO packetization (see Section 8) with p = 0 and
Td = 40. Table 4 shows the results for eight time instances,
averaged over 1000 runs. Our computed decoded quality closely
matches the simulation results.

7. EFFECTS OF DEPENDENCIES
In this section, we investigate the effects of dependencies on the

number of decodable packets, as a function of p and Td. As men-
tioned in Section 2, packetization at the sender might affect the
decoded mesh quality. We quantify this effect by estimating the
number of decodable packets at a given time for two extreme cases
of dependencies. The effects of any other dependencies will be
bounded by what we obtained for these two extreme cases.

In the first case (ideal case), there is no dependency among pack-
ets. In the second case (worst case), a packet depends on all other
packets sent before it. Note that these two dependency models are
independent of any packetization scheme. Moreover, we are com-
puting the number of decodable packets rather than vertex splits.
But this simplification does not matter since in the ideal case, we
can assume that the all vertex splits in a packet is decodable as long
as it is received (no dependencies among packets). In the worst
case, if a packet’s dependency is not satisfied, then all the vertex
splits contained in that packet are not decodable. Thus, the number
of decodable packets is proportional to number of decodable vertex
splits in this two extreme cases.

Let Nr,t be the number of received packets at time t and Nd,t be
the number of decoded packets at time t. We show how to compute
the expected value of Nd,t for the two extreme cases in the next
two subsections.

7.1 Ideal Case

Theorem 1 In the case with no dependencies among the packets,

Pr(Nr,t = k) =

 
t + 1

k

!
pk(1 − p)t+1−k,

E[Nr,t] = E[Nd,t] = (t + 1)(1 − p).

Proof Sketch In the ideal case, each packet can be decoded inde-
pendently regardless of other packets. Thus, at any time t, Nd,t =
Nr,t. The number of successful transmission at time t is equivalent
to the number of successful Bernoulli trials out of t + 1 transmis-
sion3. Theorem 1 follows. �

7.2 Worst Case
In the worst case, a packet depends on all previous packets (pack-

ets with smaller index). The expected number of packets decodable
at time t, is given by the following equation:

E[Nd,t] =

tX
i=0

iY
j=0

Pr(Rj ≤ t) (6)

Obtaining a close form formula for E[Nd,t] is more tricky. We
will express the expected value as a recursive function.

The base case for the expression is when t = 0. In this case, the
expected number of decodable packets Nd,0 is 1−p. Now, assume
that we know E[Nd,t]. We now compute E[Nd,t+1].

Suppose packet 0 is successfully received. We remove packet
0 from the dependency graph, reducing the dependency graph to
another graph with the same dependency structure but with one less
packet. The expected number of decodable packets from time 1 to
time t+1 is the same as the expected number of decodable packets
from time 0 to time t. Therefore, we have

E[Nd,t+1|Packet 0 received] = E[Nd,t] + 1. (7)

Now consider what happens if packet 0 is lost. We will consider
the cases where t + 1 < Td and t + 1 ≥ Td separately.

Let ∆t be the increase of expected decodable number at time t,
that is, ∆t = E[Nd,t] − E[Nd,t−1]. We let ∆0 be (1 − p) since
the expected decodable number at time 0 is (1 − p).

Lemma 4 Suppose t + 1 < Td.

∆t+1 = (1 − p)t+2.

Proof Sketch If packet 0 is lost, packet 0 would not have been
retransmitted by time t + 1. In the worst case, all other packets
depend on packet 0 and cannot be decoded. That is,

E[Nd,t+1|Packet 0 is lost] = 0 (8)

Combining Equation 7 and Equation 8, we have

E[Nd,t+1] = (1 − p)E[Nd,t] + (1 − p)

Therefore, when t > 0, we have ∆t+1 = ∆t(1 − p). Since ∆0 =
1 − p, Lemma 4 follows. �

Case 2: t+1 ≥ Td. We first consider the subcase when t+1 =
Td and packet 0 is lost in its first transmission and is retransmitted
at time Td. The expected number of decodable packets in this case
is given by the following lemma.

Lemma 5 E[Nd,Td
|Packet 0 lost] = E[Nd,Td−1]

3Recall that the first transmission is at time 0



t=20 t=40 t=60 t=80 t=100 t=150 t=200 t=400
Analytical result 89.84 236.40 491.20 832.37 1246.73 2516.83 4077.19 12399.4
Simulation result 90.29 237.67 487.33 828.28 1240.34 2520.09 4076.73 12394.8

Table 4: Comparison of evaluation with analytical model and simulation. Model: horse, Td = 40, p = 0.1, averaged over 1000 runs.

Proof Sketch This lemma follows from Equation 6 and the fact that
Pr(R0 < Td) = Pr(R0 = Td|Packet 0 is lost). �

Now we consider the subcase when t + 1 > Td and packet 0 is
lost. We introduce a new notation, Md,t(i, j), which is the number
of packets with index from i to j inclusive, that are decodable at
time t. We have the following two lemmas.

Lemma 6 If t + 1 > Td, then

E[Md,t+1(Td, t + 1)|Packet 0 is lost] = E[Md,t(Td, t)]

Lemma 7 Let t = nTd + b, where n, b ∈ Z
+ and 0 ≤ b < Td,

then

E[Md,t+1(0, Td − 1)|Packet 0 is lost] − E[Md,t(0, Td − 1)]

=

8<
:

0 if b = 0

−1 − p

p
[1 − (1 − pn+1)b+1] otherwise

Proof Sketch This lemma follows from Equation 2, Lemma 2,
and Lemma 3. �

The intuition behind Lemma 6 and Lemma 7 is as follows. Take
two possible scenarios where the sequence of packet loss events are
exactly the same, except that in one scenario, the first transmission
of packet 0 is lost, and in the other, the results of this transmission
is unknown. Now compare the sequence of packet transmitted in
timeslots 1 to t + 1 when transmission 0 is lost with timeslots 0 to
t when the result of transmission 0 is unknown, the only difference
is the sending order of the first Td packets.

Lemma 6 implies that to express E[Nd,t+1|Packet 0 is lost] in terms
of E[Nd,t], it suffices to consider packet 0 to Td − 1, whose ex-
pected number of decodable packets is given by Lemma 7.

Combining the results in this section, we have the following.

Theorem 2

∆t =

8<
:

(1 − p)t+1 if t < Td

1 − p if t ≥ Td and t = nTd

(1 − pn+1)∆t−1 if t ≥ Td and t = nTd + b
,

where n, b ∈ Z
+; 0 < b < Td.

7.3 Insights
We have derived the expected decodable numbers of packets for

two cases of dependencies, the ideal case where there are no depen-
dencies between the packets, and the worst case, where a packet
always depends on previously sent packets. Any packetization al-
gorithms will lead to a dependency structure between the packets
that lies between these two extreme cases. The difference between
the number of decodable packets for these two cases therefore gives
us an indication of how much improvements we can get if we intel-
ligently group the vertex splits into packets. From our model, we
make the following observations.

Observation 1 In Theorem 2, if t is large, and p is small enough,
then the factor 1 − pn+1 tends to 1. Hence, as time progresses,
the increase in number of decodable packets for the worst case be-
comes close to 1 − p for each time slot. If we plot two curves,
showing expected number of decodable packets versus time, for

the ideal and worst case, then the two curves becomes almost par-
allel for large t. In fact, if we consider the difference between the
curve at time xTd, then the difference tends to a constant that de-
pends only on Td and p as x tends to infinity. Figure 5 shows an
example of such two curves, with p = 0.1 and Td = 40.

This observation leads us to believe that optimization of packet
dependencies only matters during the first few Tds, after that, the
dependencies among the packets will not affect the number of de-
codable packets. Further, in progressive mesh, the importance of
the vertex splits decreases as the model becomes incrementally re-
fined. Thus, the contributions of the later vertex splits to the de-
coded quality of the mesh are less important than those initial ones.

This observation is good news – regardless of how large the pro-
gressive mesh is, only dependencies among vertex splits sent dur-
ing the first few Tds matter. Thus, any packetization algorithm only
needs to focus on the vertex splits sent during this initial period, re-
ducing the computational costs significantly.
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Figure 5: The number of decodable packets for ideal case and
worst case. Td = 40, Loss rate p = 0.1.

Observation 2 The next question is how big is the gap between
the two extreme cases. Consider time t = Td − 1. For the ideal
case, the expected number of decodable packets is Td(1−p), while
for the worst case, the expected number is

E[Nd,Td−1] =

Td−1X
t=0

(1 − p)t+1

= (1 − p)
1− (1 − p)Td

p

We see that the gap between the two cases is (Td− 1−(1−p)Td

p
)(1−

p). Recall that Td is the time between sending a packet and its lost
is detected at the sender, expressed in units of a packet transmission
time. Suppose with a typical RTT of 250 ms, a packet size of 1500
bytes, and a sending rate of 1.5Mbps, The value of Td is 30. With a
5% loss rate, the gap between the two cases are about 15 packets, If
we have about 100 vertex splits in each packet, then there is a 1500
vertex splits difference between the two cases, not a small number.
The gap, however, decreases if the sending rate is smaller or RTT
is smaller (reduces Td). The gap also decreases when p decreases.

This observation surprises us. It says that dependencies in pro-
gressive meshes has smaller effect than dependencies in audio and



video when transmitted over a lossy network. This contradicts what
we observe in practice, where dependencies among packets matter.

The reason for this mismatch is that our model gives us the ex-
pected number of decodable packets. Therefore, the average qual-
ity of the decoded mesh over a large number of streaming sessions
will not differ too much. But, the variance for the number of de-
codable packets is large. Thus, a viewer who receives a progressive
3D mesh stream (a single sample) might still observe a significant
differences initially if different packetization strategies are used.
This realization motivates us to apply our model to packetize ver-
tex splits during streaming of progressive meshes.

8. A PACKETIZATION ALGORITHM
Packetization refers to the process of grouping vertex splits into

packets before transmitting them over the network. Due to depen-
dencies among nodes, packetization may introduce dependencies
among packets (if a vertex split and its parent are packed in differ-
ent packets). The dependencies then affect the decoding time of the
vertex splits and the intermediate quality of the decoded model.

To improve the intermediate quality of the decoded model, we
need to consider two factors in the packetization: the importance
of each vertex split, or node, and the dependencies among nodes.
One strategy is to always send the most important node first; The
other is to packetize the packets to minimize its dependency [7].
If there is no packet loss, these two objectives can be achieved at
the same time. Since the vertex split operations in a progressive
mesh are typically executed in the decreasing order, we can simply
send the vertex splits in the first-in-first-out (FIFO) order, in the
reverse order of the edge collapse operations. Since a node’s parent
packets are always sent before the packet containing the node, a
node can be decoded as soon as it is received. When packet loss
exists, however, there is a conflict between maximizing importance
and minimizing dependencies. FIFO satisfies the first objective,
but may increase dependency among packets; whereas to reduce
dependency, one may send a node with lower importance before a
more important node. To trade-off between these two objectives,
we need to know the exact effect of both factors. In this section,
we show how we use our model developed in Section 5 to help us
select which node to pack.

Consider a node i. We need to decide whether we should pack
i into the current packet. First, note that if there exists a parent of
i that has not been packed, then we should not have packed i (if a
parent of i arrives later than i, i cannot be decoded anyway). Thus,
we only consider nodes whose parents have all been packed. Now,
consider what would happened if we pack i into the current packet,
versus the subsequent packet. From Equation 1, the difference in
quality, δi, between the two cases is given by

δi = wi(E[Dnext
i ] − E[Dcurr

i ]), (9)

where Dcurr
i and Dnext

i are the decoding time of i if i is packed in
the current packet and next packet respectively. We call the metric
δi as the penalty. To compute the penalty, we use Equation 3 from
our model, which give us the expected decoding time for these two
cases. Minimizing the penalty maximizes the difference in decoded
mesh quality (Equation 5).

Equation 9 succinctly gives an expression that captures the trade-
off between the importance of i and the dependencies. The penalty
increases as wi increases. Consider the case where i has a parent
in the current packet. If we pack i in the next packet, then the
(expected) decoding time for i increases – not only because it will
arrive later, but also because this packing introduces a dependency
between the current and the next packet. From Equation 3, we
can see that additional dependencies increase the decoding time

since both packets have to be received before i can be decoded.
Therefore, increasing dependencies increases the penalty.

We can now describe a greedy algorithm to packetize progressive
meshes. The algorithm simply packs the node with highest penalty
at each step4. Algorithm 1 shows the pseudocode for packing one
packet using our algorithm.

Algorithm 1 Greedy Packetization
for all node i whose parents are already packed do

calculate its penalty δi if it is moved to the next packet;
insert i into a maximum heap H with δi as key;

end for
while H is not empty and packet is not full do

Pop j from H ;
Pack j into current packet;
for all children k of j whose parents are already packed do

calculate δk if k is moved to the next packet;
insert k into H with δk as key;

end for
end while

To reduce computation cost, we approximated δi by computing
E[Dnext

i ] and E[Dcurr
i ] up to a limited number of terms. We chose

to use up to 3Td terms in our implementation. Further, from our
observation in Section 7, since dependencies do not matter as time
increases, we stop running the algorithm after time 3Td and simply
send the vertex splits in decreasing order of their importance.

8.1 Evaluations
We compare this greedy algorithm with three other algorithms:

FIFO, b-sub, and breadth first. In FIFO, we send nodes in the
original order, which is the reverse of the collapse order. The idea
of this strategy is to send the most important node first. In b-sub, we
send the most important node, then choose its descendent, whose
parents are all packed, in a breadth first manner. It is an effective
way to reduce the dependency between packets. In breadth-first
strategy, we send the nodes in the breadth-first order in the DAG.
The idea is to send the nodes in a way that maximizes the distance
between parents and children.

We try the four algorithms on two meshes, the Horse model
(48258 nodes) and the Happy Buddha model (538944 nodes), taken
from Stanford 3D Scanning Repository. We perform experiments
with various values of Td and loss rate p. In these experiments,
we use the length of collapsed edge as the importance of a vertex
split. The results indicate that this greedy algorithm can improve
the intermediate decoded quality for both models and for different
network conditions. More importantly, it reduces the variance in
decoded quality and ensures that the worst case seldom happens.

Figure 6 compares the intermediate decoded quality of the two
meshes using different algorithms and using Td = 40, averaged
over 1000 runs. The loss rate p is either 0.05 ((b) and (e)) or 0.1
((a),(c),(d), and (f)). Figure 6(a) and (b) show the average quality
of the Happy Buddha model received versus time. The bump at
t = 40 corresponds to the case where packet 0 (which affects the
quality the most) is lost, retransmitted, and received at time t =
Td = 40. Moreover, when packet 0 is received, it triggers the
decoding of other packets depending on it (directly or indirectly),
causing a jump in expected decoded quality. We can see a bump of
expected decodable packets as well in Figure 5.

4Technically this is a heuristic since it does not guarantee an opti-
mal packetization. The packetization problem has been shown to
be NP-complete [7].
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Figure 6: Comparison of decoded quality with Td = 40.

We see that both FIFO and our greedy algorithm outperform
breadth first (bf) and b-sub. The quality of greedy algorithm slightly
outperforms FIFO in the first 40 slots. Figure 6(c) shows the aver-
age quality for the Horse model. We exclude the results of breadth
first and b-sub since both resulted in poorer quality.

We further observe that, even though both greedy and FIFO re-
sulted in similar average quality, in practice we encounter instances
where greedy resulted in significantly better quality than FIFO.
This observation is due to the variance in the mesh quality when
we send using FIFO. Figure 7 shows the cumulative distribution of
quality over 1000 runs at a particular time t = 39. We see that for
FIFO, the quality is almost uniformly distributed and ranges from
0 to 14, whereas for greedy, the range is narrower. We therefore
plot the 90% cumulative quality Q versus t – i.e., 90% of the runs
resulted in quality higher than Q at time t. Figure (d), (e), and (f)
compares the 90% cumulative quality for FIFO and greedy. We

can see that greedy has a much better quality than FIFO – consis-
tent with what we observe on individual runs of our algorithms.

To give our readers a sense of the visual difference in rendered
quality, Figure 8 shows four intermediate versions of the Happy
Buddha model with quality 2.82, 8.26, 9.25, and 11.44. These qual-
ity values correspond to the 90% cumulative quality of FIFO, 90%
cumulative quality of greedy, average quality of FIFO, and average
quality of greedy in Figure 6(a) and (d) at time 39.

9. CONCLUSION
We conclude by reflecting on what we learn from our model.
The most important insight we gain is that the effect of dependen-

cies among vertex splits on decoded mesh quality when transmitted
over a lossy network is limited to the first few Tds. This has several
implications. Since Td is typically small, the effect of dependen-
cies is not going to matter for non-interactive applications. Thus,
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we believe that existing research to reduce dependencies (for in-
stance, mesh segmentation [15, 17] and packetization [7]) is not
relevant in this context if retransmission is used.

For interactive applications, the decoded mesh quality in the first
few Tds is crucial. We showed that FIFO ordering gives good
enough average quality – even though a more intelligent greedy
packetization can give better average quality with smaller variance.

Besides packetization, our insight that only first Tds matters can
lead to other transmission schemes. For example, the sender can
protect the vertex splits sent during the first few Tds using enough
FEC coding, ensuring that there is no lost; or the sender can in-
crease the sending rate temporarily during this brief period to im-
prove the initial quality. Our model is still useful here. For instance,
sending FEC would decrease the loss probability of some packets
but would delay transmission of new data. Temporarily increas-
ing the sending rate may also increase the loss rate due to conges-
tion. Our model can characterize this trade-off and thus can guide
the sender in deciding whether to send a FEC packet or new data.
Our formula for expected decodable quality can similarly guide the
sender in deciding how fast it should send during the first Td period.
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