
QUETRA: AQueuing Theory Approach to DASH Rate Adaptation
Praveen Kumar Yadav

School of Computing
National University of Singapore

praveen@comp.nus.edu.sg

Arash Shafiei∗
Grenoble Rhône-Alpes

INRIA
arash.shafiei@inria.fr

Wei Tsang Ooi
School of Computing

National University of Singapore
ooiwt@comp.nus.edu.sg

ABSTRACT
DASH, or Dynamic Adaptive Streaming over HTTP, relies on a
rate adaptation component to decide on which representation to
download for each video segment. A plethora of rate adaptation al-
gorithms has been proposed in recent years. The decisions of which
bitrate to download made by these algorithms largely depend on
several factors: estimated network throughput, buffer occupancy,
and buffer capacity. Yet, these algorithms are not informed by a fun-
damental relationship between these factors and the chosen bitrate,
and as a result, we found that they do not perform consistently
in all scenarios, and require parameter tuning to work well under
different buffer capacity. In this paper, we model a DASH client
as anM/D/1/K queue, which allows us to calculate the expected
buffer occupancy given a bitrate choice, network throughput, and
buffer capacity. Using this model, we propose QUETRA, a simple
rate adaptation algorithm. We evaluated QUETRA under a diverse
set of scenarios and found that, despite its simplicity, it leads to
better quality of experience (7% - 140%) than existing algorithms.

CCS CONCEPTS
• Information systems→Multimedia streaming.

KEYWORDS
DASH; rate adaptation; queuing model; HTTP streaming

1 INTRODUCTION
DASH, or Dynamic Adaptive Streaming over HTTP, has emerged
as a standard for delivering IP video due to its flexibility, usability,
and ease of content management. DASH encodes a video content
into different representations, each having a different quality and
encoded into a different bitrate. Each representation is further seg-
mented into segments of equal duration, usually in the order of
seconds. The available segments and representations are provided
to the client through a manifest file, using which the client can con-
trol which representation to download (andwhen) for each segment,
using a rate adaptation algorithm. Rate adaptation is non-trivial: On
one hand, the client should download a higher bitrate and better
quality representation to improve the viewing quality. On the other
∗This work was done when the author is at National University of Singapore.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM’17, , October 23–27, 2017, Mountain View, CA, USA.
© 2017 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-4906-2/17/10. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/XXXXXX.XXXXXX

Internet

 Segment GET

 Segment Throughput Segment Arrival

 Schedule of Download
 and Level for Next
 Representation
 Predicted Buffer
 Throughput Occupancy Segments
 for Player

HTTP Requester

Controller

Throughput Prediction Buffer

Video
Player

End User

Figure 1: Generic DASH rate adaptation process.

hand, downloading a segment with bitrate higher than the current
network throughput would drain the buffer and eventually lead to
stall. Moreover, frequent switching between different representa-
tions leads to fluctuating video quality and impacts the viewing
quality. In network settings where the throughput varies signifi-
cantly over time (such as wireless network), predicting the network
throughput and reducing the frequency of changing representation
can be particularly challenging.

Figure 1 shows a generic DASH rate adaptation process. The
controller decides the download schedule and the representation
of the next segment, depending either on the predicted throughput
(estimated using segment download history), buffer occupancy, the
current representation’s bitrate, or their combinations. Many rate
adaptation algorithms have been proposed in the literature, consid-
ering different factors in their rate adaptation decision. Section 2
surveys the related work in more details.

The decision factors for rate adaptation above, however, are not
independent. The buffer occupancy in a DASH player depends on
the network throughput, the bitrate of the representations chosen,
and the buffer capacity. The inter-dependent relationship, however,
is not explored and exploited in the existing works on rate adapta-
tion. Furthermore, buffer capacity has a non-negligible influence on
the performance of the rate adaptation algorithm that has not been
studied in any existing work. To explore this relationship, we model
the player buffer as an M/D/1/K queue and derive the expected
buffer occupancy under ideal condition (when video bitrate equals
throughput). Based on this new understanding, we then designed
and implemented QUETRA, a DASH rate adaptation algorithm that
attempts to converge the buffer occupancy towards the ideal one.
The strengths of QUETRA is that it is extremely simple and does
not require the user to configure any weight or threshold, beyond
a low reservoir threshold and decision period. We compared QUE-
TRA with some of the state-of-the-art rate adaptation approaches,

https://doi.org/http://dx.doi.org/10.1145/XXXXXX.XXXXXX

MM’17, , October 23–27, 2017, Mountain View, CA, USA. Praveen Kumar Yadav, Arash Shafiei, and Wei Tsang Ooi

Method Th BO BR
Dash.js ABR [?] ×

BBA [?] ×

ELASTIC [?] × ×

FESTIVE [?], PANDA [?], LOLLYPOP [?] × ×

BOLA [?], SARA [?] × ×

Tian and Liu [?], QDASH [?],
Yin et al. [?], Zhang et al.[?] × × ×

Table 1: Rate adaptation factors (Th: estimated throughput,
BO: buffer occupancy, BR: bitrate) for different methods.

including BOLA [?], ELASTIC [?] and Buffer-based Approach
(BBA) [?], as well as the default rate adaptation algorithm, ABR,
implemented in Dash.js [?]. QUETRA is able to attain 7%-140%
higher QoE (using the model proposed by [?]) than the compared
methods for different buffer capacities. More importantly, QUETRA
performs consistently well across different buffer capacities and
different scenarios without parameter tuning.

We further evaluated QUETRA with different throughput pre-
diction algorithms. We found that simpler prediction methods that
follow the throughput more closely (less smoothing) work better
than methods that are more conservative in our experiments.

Contributions. First, we propose QUETRA, a simple rate adap-
tation algorithm based on anM/D/1/K queuing model of DASH.
The queuing model allows us to understand and better exploit the
relationship between buffer capacity, buffer occupancy, network
throughput, and the chosen bitrate. In particular, we are the first
to analyze the effect of buffer capacity on the performance of the
rate adaptation algorithms. These factors are used in the existing
methods but often treated independently. Second, we evaluated
QUETRA, BBA, ELASTIC, BOLA, and ABR extensively, using seven
video samples, four network profiles, and three buffer settings.
Existing works generally compare a smaller set of methods with
limited video samples and network profiles, on one buffer setting.
Our results reveal specific cases where the existing methods behave
poorly and we provide an analysis of some of these cases.

Paper Organization. Section 2 provides a brief overview of
important related work on DASH rate adaptation. Section 3 presents
theM/D/1/K queuing model for DASH streaming.We then present
QUETRA rate adaptation algorithm in Section 4 and the evaluation
of the algorithm in Section 5. We conclude the paper in Section 6.

2 RELATEDWORK
We discuss the related work in DASH rate adaptation based on
their approach. The rate adaptation methods primarily depend
on throughput, buffer occupancy, and the representation bitrate.
Table 1 summarizes the methods we discuss in this section, and the
factors that they use.

2.1 Throughput-Based Method
A throughput-based method depends only on the throughput for
deciding the bitrate of the next segment. The naive approach uses
the throughput of the last segment as the future estimated value to
select a bitrate less than or equal to it. Estimating future throughput

is challenging as it may fluctuate due to network dynamics and
causes a high number of changes in the chosen bitrate. Various
algorithms use heuristics to avoid this situation.

DASH Industrial Forum’s Dash.js player [?] uses the average
of last three segment throughput values as the estimate of the
future throughput to mitigate the fluctuation in estimation in the
estimated value. The player stops downloading the next segment
when the buffer is full and resumes it immediately when the buffer
occupancy is lower than the capacity.

Because of the OFF period caused by buffer overflow, the other
players cannot sense each other’s presence in the network and
predict the wrong throughput share. FESTIVE randomizes the time
to start the download after the occurrence of overflow to overlap
the on-period and sense the presence of other players [?]. The
estimation of throughput is done by applying the harmonic mean
on the last 20 segment arrivals. The player chooses to increase the
bitrate more aggressively to reduce the chances of overflow. Fluc-
tuation caused by frequent changes in the throughput is controlled
by delaying the decision to change the bitrate. The delayed change
may cause the underutilization of the bandwidth that is avoided by
using a balancing factor between stability in the quality level and
the bandwidth utilization efficiency.

PANDA [?] uses a probing method similar to TCP to estimate
the bandwidth. It uses multiplicative increase and additive decrease
using a fixed convergence and additive increase rate. It further
applies filters to remove outliers. Reducing the number of changes
in bitrate, however, is not explicit in PANDA.

2.2 Buffer-Based Approach
Buffer occupancy is much easier to observe and predict than net-
work throughput. Huang et al. utilized this property to propose
a simple approach that linearly maps buffer occupancy to bitrate
for switching [?]. The method uses lower and upper reservoir of
the buffer to avoid underflow and overflow respectively. Setting
up an appropriate lower and upper reservoir is critical as small
threshold leads to stalling whereas bigger threshold hampers the
average playback bitrate.

SARA is another buffer-based method that considers both the
actual segment size and the buffer occupancy for bitrate switching [?
]. Although the method considers the harmonic mean of throughput
to calculate the download time of the segment, the current buffer
occupancy is the main factor for changing the bitrate. SARA also
uses a lower reservoir, as well as other buffer thresholds to decide
whether to increase the bitrate level conservatively or aggressively,
or to delay the download of the next segment.

2.3 Buffer- and Throughput-Based Approach
Some methods apply control theory for rate adaptation, using both
buffer occupancy and throughput as inputs. ELASTIC improves
fairness by eliminating the ON-OFF period using a PID controller
to converge the buffer occupancy to a given level [?]. The control
depends on the ratio of throughput to bitrate and the difference
between the target and current buffer occupancy.

Tian et al. [?] have proposed another PID controller based ap-
proach. One of the control variables is dependent on the ratio of

QUETRA: AQueuing Theory Approach to DASH Rate Adaptation MM’17, , October 23–27, 2017, Mountain View, CA, USA.

throughput and bitrate as well but the other one dependent expo-
nentially on the gap between the target and current buffer occu-
pancy. The controller tries to minimize the changes in quality using
gradual increment and maximize the average bitrate.

Yin et al. use a model predictive controller to maximize QoE. The
proposed QoE is primarily dependent on total bitrate played, the
difference in bitrate during quality switch, stalling of buffer, and
startup delay [?]. The method predicts some future throughput and
tries to maximize the QoE-based on the factors. Maximization of
QoE is treated as an optimization problem that is solved at each step
using CPLEX solver. The QoE achieved is more than the Dash.js
ABR [?], BBA [?], and FESTIVE [?].

2.4 QoE-Centric Approach
A sudden decrease of more than one quality level may hamper QoE
of the user. Mok et al. [?] proposed QDASH, a rate adaptation
method that gradually reduces the bitrate. QDASH avoids a sudden
change in bitrate by downloading the segment at an intermediate
level when the measured throughput changes significantly, even if
the bitrate of the intermediate level representation is higher than
the measured throughput. The method predicts throughput using
RTT and calculates the number of intermediate-level segments that
can be downloaded at one level higher than the supportable bitrate
level without stalling.

In another QoE-based approach, LOLYPOP focuses on live DASH
video streaming, where keeping small buffering delay is important
[?]. As such, LOLYPOP uses playback deadline as an important pa-
rameter for rate adaptation. The algorithm computes the probability
of exceeding the playback deadline for different representations
and selects the one with the highest bitrate that falls within the
deadline. The selected bitrate is only allowed to play if it is not
much different in quality from the previously played segment.

BOLA is the other recent QoE-based approach [?]. It models
DASH rate adaptation as an optimization problem for an objective
function whose prime objective is to increase playback utility and
avoid stalling. BOLA also tries to reduce the number of changes
in quality by delaying it while playing at a lower bitrate. BOLA
reported a higher utility and fewer stalls than PANDA and ELASTIC.

2.5 Non-Normative Approaches
Georgopoulos et al. proposed an SDN-based method for maintain-
ing fairness among the clients in the same network. The framework
uses an OpenFlow-enabled switch [?] to check the bitrate available
for each client using their MPD file. The switch divides the total
throughput among the clients to have a comparable level of QoE
[?]. Although using an SDN to monitor all clients in the network
deviates the framework from the DASH standard [?].

In another approach, Akhshabi et al. also deviated from the stan-
dard by using server-based approach to reduce quality fluctuation
[?]. The server observes the number of changes in a short interval
of time and chooses a lower bitrate to control fluctuation.

De Cicco et al. [?] modeled an architecture where both the video
player and the streaming server maintain a buffer and the system
controls both buffer levels using the estimated throughput, thus
requiring changes to the DASH streaming server.

Method Configuration Paramters Used
Dash.js ABR [?] Rich Buffer = 20 Sec

FESTIVE [?] Buffer Tolerance = 0.8 × Bandwidth
Stability and Efficiency Trade-off = 20

PANDA [?] Buffer Convergence Rate β = 0.2
BBA [?] Lower Reservoir = 90 sec

Upper Reservoir = 24 sec
SARA [?] Lower Reservoir = 2 segments

Additive Increase = 5 segments
Aggressive Switch = 10 segments
Delayed Download = 12 segments

ELASTIC [?] Proportional Coefficient = 0.01
Integral Coefficient = 0.001

Zhang et al. [?] Reservoir = 4 Segments
Tian and Liu [?] Trade-off Factor ∈ { 1, 5, 15, 20 }

Yin et al. [?] Weighting Parameters λ =1
LOLLYPOP [?] Transport Latency Threshold = 3 sec

BOLA [?] Trade-off Factor (between utility and
buffer occupancy) = 0.93

Table 2: Configuration parameters in different methods.

Zou et al. proposed a method for cellular networks where the
client gets an accurate prediction of throughput through APIs. The
method claims to improve the QoE significantly but accepts the
fact that accurate prediction is an open challenge [?].

Zhang et al. propose a bitrate adaptation algorithm considering
the variations in segment size at the same representation level to
reduce the number of stalls and startup delay, assuming the size of
each segment (in bytes) is known to the player [?]. This method
requires transmission of additional segment size information in the
MPD file and introduces additional overheads.

2.6 Configuration Parameters
Most of the methods in the literature require proper settings of con-
figuration parameters, in the form of weights and thresholds. Table
2 lists the configuration parameters in the existing methods that
required tuning. In many cases, the chosen values of the parameters
are not well explained and seem arbitrary.

3 QUEUING MODEL
Wenowpresent howwemodel the DASH client as a queuing system.
Using our model, we can estimate the buffer occupancy that the
DASH video buffer would converge to given a segment bitrate
and the network throughput. Our rate adaptation then selects the
representation of the next segment to download so that the buffer
occupancy converges to the ideal value.

A DASH client can be seen as an M/D/1/K queuing system
where video segments are arriving in a finite capacity queue, and
the queue length (i.e., buffer occupancy) is measured as the video
duration in seconds. The segment arrival is assumed to follow a
Poisson distribution and segments are serviced with a deterministic
service rate, one segment at a time, during video playback. Our
proposed work does not schedule the download of segments. The
client requests the next segment as soon as a previously requested

MM’17, , October 23–27, 2017, Mountain View, CA, USA. Praveen Kumar Yadav, Arash Shafiei, and Wei Tsang Ooi

segment arrives in the buffer. In case the buffer is full, the DASH
client stops downloading; if the buffer is empty, the playback stalls.

The M/D/1/K model of DASH client contains only three pa-
rameters: (i) the segment arrival rate λ, which can be derived from
the network throughput and segment size, (ii) the service rate µ,
which depends on the playback speed and segment duration, and
(iii) the capacity of the queue K , which depends on the buffer size
configured in the player.

We now present the model in detail. Note that we use average
value modeling [?] in this model where each variable models the
average value of a random variable.

Let d be the duration (in seconds) of a video segment, r be the
bitrate of the segment representation being downloaded, and b be
the network throughput. The size (in bytes) of a video segment is rd ,
and the arrival rate of the segment λ is b/(rd). Cao et al. [?] have
shown that packet arrivals in a congested network follows Poisson
distribution. Based on the split property and the addition property
of Poisson distribution, the segment arrivals can be modeled with
a Poisson distribution as well.

Let p be the playback speed of the DASH player, denoting how
many seconds of video is consumed and played in one second. The
service rate of the segments µ is therefore p/d . The queuing server
utilization ρ = λ/µ is therefore b/rp. For the rest of this paper,
for simplicity, we let p = 1 and ρ = b/r , which models the most
common case where the user plays back the video at normal speed.

Using results from Brun et al. [?], we model the average queue
lengthXK ,r ,b for anM/D/1/K queue asXK ,r ,b = K−PK ,r ,b where

PK ,r ,b =

∑K−1
i=0 xi

1 + b
r xK−1

(1)

xi =
i∑
j=0

(−1)j

j!
(i − j)j

(
b

r

) j
e(i−j)

b
r (2)

We call PK ,r ,b , which denotes the difference between the buffer
capacity K and the average buffer occupancyXK ,r ,b , as buffer slack.
We use the estimated buffer slack, given K , r , b, in our proposed
rate adaptation algorithm, which we outline in the next section.

4 QUETRA RATE ADAPTATION ALGORITHM
Wenowpresent our proposed algorithm, QUETRA (QUEuing Theory-
based Rate Adaptation).

Let a given video be segmented intom segments and encoded into
n representations, with bitrate values R = {r1, r2, ..., rn }, with ri <
r j if i < j . QUETRA periodically estimates the network throughput
and decides which bitrate (i.e., which representation encoded with
that bitrate) to download for the next segment. We denote ri+1 as
the next bitrate selected and bi+1 as the next estimated throughput.
Further, let Bt be the buffer occupancy level at time t . The QUETRA
algorithm to select ri+1 at time t is simple: it chooses the bitrate such
that the expected buffer slack PK ,r ,bi+1 is closest to Bt , i.e.,

ri+1 = arg min
r ∈R

|PK ,r ,bi+1 − Bt |,

breaking ties by favoring the higher bitrate.
The intuition behind the QUETRA is as follows. Consider the

ideal case where segment bitrate r equals to the throughput b,
which gives 100% utilization (ρ = 1). When r = b, one can show

Time (Sec)

B
uf

fe
r

O
cc

up
an

cy
 (

S
ec

)

0
30

60
90

12
0

0 150 300 450 600

Buffer Capacity

30 Sec 120 Sec 240 Sec

Figure 2: Example of a case where buffer occupancy in QUE-
TRA converges to K/2.

that xi can be approximated with 2i + 2/3 for large i [?], and so
PK ,r ,bi+1 can be approximated with K/2. By choosing the bitrate
such that the buffer occupancy is as close to the buffer slack as
possible, QUETRA, in the hypothetical case where the bitrate value
is continuous, would converge to the buffer occupancy to K/2,
which is the ideal scenario.

In practice, the set of available bitrate values R is discrete, and the
estimated throughput b fluctuates. By trying to equalize the buffer
slack to buffer occupancy, QUETRA moves the buffer occupancy
away from two undesirable cases: (i) an empty buffer that stalls the
playback, and (ii) a full buffer that pauses the download, resulting
in an OFF period in the traffic.

To illustrate, Figure 2 plots the buffer occupancy for QUETRA
for different values of K when we run QUETRA on video V 1 and
network profile P2 (see Section 5 for details on V 1 and P2).

An alternative algorithm is to pick a bitrate such that the XK ,r ,b
is closest to K/2, without considering Bt . This naive algorithm,
however, would not work as well. By minimizing |PK ,r ,bi+1 − Bt |,
we implicitly make QUETRA more aggressive when the buffer
occupancy is further away from K/2. In the case of an empty buffer,
such aggressiveness will choose a low bitrate to move the buffer
occupancy level away from emptiness aggressively.

We will show, in Section 5, that despite being simple, the algo-
rithm works well, across different scenarios, compared to other
more rate adaptation algorithms in the literature.

4.1 Throughput Prediction and Smoothing
QUETRA uses both the current buffer occupancy and estimated
throughput to decide which representation to download next. This
decision does not explicitly try to reduce the changes in the rep-
resentation chosen, the fluctuation of which can negatively affect
the QoE. For QUETRA, the key to maintaining smooth changes in
the representation is to maintain a smooth change in the estimated
throughput. To achieve this, QUETRA estimates the throughput
and runs the rate adaptation for every s segment (we use s = 5 in
the evaluation) instead of every segment.

Some existing throughput-based rate adaptation methods (e.g.,
Dash.js [?], FESTIVE [?], PANDA [?]) use different throughput
prediction and smoothing methods. In addition to comparing QUE-
TRA to other methods without any prediction or smoothing (simply

QUETRA: AQueuing Theory Approach to DASH Rate Adaptation MM’17, , October 23–27, 2017, Mountain View, CA, USA.

using the last measured throughput), we also evaluated the QUE-
TRA using different throughput smoothing and prediction methods
to understand the effect these methods on QUETRA. We evaluated
the following six throughput estimation methods in combination
with QUETRA.

Last Throughput. The simplest approach is to assume that
the throughput does not change, and set bi+1 to the measured
throughput of the most recently downloaded segment. This is the
default throughput estimation method in QUETRA.

Average Throughput. This approach, adapted by the Dash.js
player [?], uses the mean of last three throughput samples as bi+1.

Exponential Moving Average (EMA). Here, the estimated
throughput is computed using a weighted sum of most recent
throughput measured b̂i and the last predicted value, using a con-
stant smoothing gradient α :

bi+1 = (1 − α)bi + αb̂i .

Lowry et al. [?] reported that α = 0.1 is efficient for detecting
a small shift in the average vector and has a longer average run
length. We use α = 0.1 in our evaluation.

GradientAdaptive EMA. This approach extends the EMAwith
a dynamic smoothing gradient (αi) [?] that varies according to:

αi = α
Mnorm (i)/Minst (i)
i−1 ,

where Minst (i) is the slope of change in the last two throughput
measured andMnorm (i) is the mean gradient of throughput over
time. These two variables are calculated as

Minst (i) =
|b̂i − b̂i−1 |

Ti −Ti−1
, Mnorm (i) =

b̄

Tt −T0
, (3)

Ti and b̂i are the playback time and measured throughput for the i-
th segment, and b̄ is the mean measured throughput of all segments.
As in the EMA approach, we initialized α0 = 0.1 in our evaluation.

Low Pass EMA. This approach is a variation of the Gradient
Adaptive EMA [?] where the gradient changes according to:

αi =
1

1 +Minst (i)/Mnorm (i)

As above, we set α0 = 0.1 in our evaluation.
Kaufman’s Adaptive Moving Average (KAMA). KAMA [?]

uses a smoothing constant in a moving window of last 10 values.
To estimate the throughput of the segment i + 1, it first calculates
the efficiency ratio ei as the ratio of change over volatility:

ei =
|bi − bi−9 |∑i

x=i−9 |bx+1 − bx |

Volatility captures the total noise in the path to attain that change
in throughput. The smoothing constant (sc) is then calculated

sci = (ei (f sc − ssc) + ssc)2

with fastest smoothing constant (fsc), set to 2/3, and slowest smooth-
ing constant (ssc), set to 2/31. The window size is reduced to i , if
i < 10. The final bi+1 is calculated with:

bi+1 = bi + sci (b̂i − bi). (4)

There are many other algorithms for smoothing throughput
estimation, including Moving Average Convergence Divergence
(MACD) [?], which considers the subtraction of two parametrized

EMAs, and Sliding Percentile (SP) [? ?], which is similar to EMA
but better handles outliers.

5 EVALUATION
To evaluate QUETRA, we compare it against several representative
methods for rate adaptation. For buffer-based approach, we compare
against the method proposed by Huang et al. [?], which we denote
as BBA in the rest of this paper. For throughput-based approach, we
compare QUETRA against the default algorithm in Dash.js, which
we denote as ABR [?]. We also compare against ELASTIC [?],
which, like QUETRA, combines buffer-based and throughput-based
approaches and tries to converge the buffer occupancy to K/2, and
BOLA [?], which is a QoE-based approach.

We evaluated the schemes above using three buffer occupancy
settings. The first, 30/60, is the default in Dash.js where K is 30s
if the video is shorter than 10 minutes and K is 60s otherwise. The
second setting has a buffer occupancy of 240s, as used by Huang et
al. [?] to evaluate BBA. Finally, we useK = 120s as the intermediate
buffer capacity between 60s and 240s.

5.1 Implementation
We implemented QUETRA, BBA, and ELASTIC as alternative rate
adaptation algorithms in Dash.js [?] v2.1.1. ABR and BOLA are
already implemented in Dash.js.

QUETRA. In QUETRA implementation, for efficiency reason,
we precomputed the buffer slack (Equation 1) for a given ρ, which
we quantized at the interval of 0.01. We further approximate the
buffer slack to be 0 for ρ < 0.5 and to be K for ρ > 1.2.

BBA. The original BBA algorithm uses a buffer capacity of 240s,
with a lower reservoir of 90s and upper reservoir of 24s.We keep the
same ratio of the reservoirs, i.e., 0.375K and 0.1K when evaluating
BBA using different values of K . For fair comparison, we introduce
a lower reservoir of 0.375K to QUETRA as well.

ELASTIC.We implemented PID using the proportional coeffi-
cient of 0.01 (same as [?]) but adjusted the integral coefficient to
0.0001 to avoid obtaining negative bitrate value from the controller.

5.2 Video Samples
We use seven video samples, denoted V 1 to V 7, of different char-
acteristics for evaluation. Table 3 summarizes the video samples.
V 1 to V 4 are taken from [?]; V 5 to V 7 are taken from [?] [?] [?
] respectively. The video samples have been encoded into either
3, 5, or 10 bitrate levels and different segment durations. The seg-
ment duration affects the frequency of throughput measurement
and rate adaptation decision. Keeping different values for segment
duration tests the robustness of QUETRA. V 1 and V 2 both have
approximately equal gap between bitrates. V 3 and V 4 both have
two bitrates that are closer than the other.V 5 has a shorter duration.
V 6 having 10 levels along with V 7 have a relatively closer level of
bitrates, which may cause more changes in bitrate level.

5.3 Network Profiles
We use four network profiles in the evaluation, denoted P1 to P4.
P1 and P2 are taken from DASH Industry Forum Guidelines [?].
P3 and P4 are taken from HSDPA dataset [?]. There are five levels
of throughput in P1 and P2 (5000 kbps, 4000kbps, 3000 kbps, 2000

MM’17, , October 23–27, 2017, Mountain View, CA, USA. Praveen Kumar Yadav, Arash Shafiei, and Wei Tsang Ooi

Video Representation bitrates Duration Segment
Sample (kbps) (Sec) Size (Sec)
V 1 1200, 2200, 4100 594 2
V 2 1622, 2313, 4077 654 5
V 3 1198, 1974, 4103 654 2
V 4 1143, 1795, 4140 594 5
V 5 350, 600, 1000,2000, 3000 244 4
V 6 230, 331, 477, 688, 991, 634 3

1427,2056, 2962, 5027, 6000
V 7 300, 700, 1500, 2500, 3500 653 2

Table 3: Characteristics of Video Samples.

Network Inter-variation Min Max Type
profile duration (sec) (kbps) (kbps)
P1 30 1500 5000 High-Low-High
P2 30 1500 5000 Low-High-Low
P3 1 241 5876 Trace
P4 1 3 3344 Trace

Table 4: Characteristics of Network Profiles.

0 200 400 600 800 1000
Time (Sec)

T
hr

ou
gh

pu
t (

kb
ps

)
0

20
00

40
00

60
00 P1 P2 P3 P4

Figure 3: Different network profiles used in the experiment.

kbps, and 1500 kbps), varying at the interval of the 30s. P1 follows a
high-low-high pattern; P2 follows a low-high-low pattern. P1 favors
those algorithms that need buffer occupancy build up to raise the
bitrate as throughput is high in the beginning. P2 favors those
algorithms that are independent of buffer occupancy. Throughput
in P3 and P4 are collected from moving train and car, sampled
every second. An algorithm that increases download bitrate too
aggressively would have playback stalls in P3 and P4. In addition,
P4 has a period of significantly low throughput (minimum of 3
kbps) and thus, even a conservative algorithm cannot avoid stalls.
We repeated the network profile if its duration is shorter than the
video playback duration. Table 4 shows the details of the profiles
and Figure 3 shows their variations over time.

5.4 Experimental Setup
We use a Web server running Apache to serve the video segments
to a Web client, running Dash.js with one of the above rate adap-
tation algorithm. The server and client run on two different hosts,
connected by a router. We run the network emulator netem [?] to
control the network throughput according to one of the profiles.

+

+

+

+

+

+

+

+

+

+

+

++ +

+

30/60 s 120 s 240 s

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
1500

1800

2100

2400

Changes in Representation

A
ve

ra
ge

 B
itr

at
e

(k
bp

s)

+
+

+

+

+

+

+
+
+

+ +++

+

+

30/60 s 120 s 240 s

5 10 15 20 5 10 15 20 5 10 15 20
2.5

3.0

3.5

4.0

4.5

5.0

Stall Duration (s)

N
um

be
r

of
 S

ta
lls

+ + + + +BBA BOLA Dash.js ABR ELASTIC QUETRA

Figure 4: XY plot of bitrate versus changes in representation,
and number of stalls versus stall duration for different algo-
rithms.

5.5 Performance Metrics
We evaluated the rate adaptation methods using the following met-
rics. To measure the overall video quality, we compute the average
bitrate of representations downloaded over all segments. We also
count the number of changes in quality (i.e., changes in represen-
tation), and the magnitude of changes in quality (as difference in
bitrate values). Frequent changes in video quality is shown to re-
duce the quality of experience. In addition, we measure the number
of stalls (buffer empty), and the duration of each stall.

We also apply the QoE model proposed by Yin et al. [?], which
combines the various performance metrics into one QoE value:

QoE =
N∑
n=1

q(Rn) − λ
N−1∑
n=1

|q(Rn+1) − q(Rn)| − µTstall − µsTs . (5)

Here, N is the total number of segments; q maps a bitrate to a
quality value; Tstall is the total stall duration during the playback
and Ts is the startup delay. As in [?], q(·) is the identity function,
λ = 1, µ and µs are set to the maximum bitrate of the video sample.

5.6 Results: QUETRA vs. Rest
We now present the experimental results comparing QUETRA to
ABR, BBA, ELASTIC, and BOLA. We first show the results for each
method and buffer capacity, averaging the performance metrics
over all 28 combinations of video samples and network profiles.

Average bitrate and changes in representation. Figure 4
(top) shows the XY plot for the average bitrate vs.number of changes
in representation for different buffer capacities. Points closer to the
upper left yield better performance in both dimensions.

ABR has 190, 77, and 17 changes in representation for 30/60s,
120s, and 240s buffer capacity respectively, which are higher than
others. Since ABR is throughput-based and it estimates the through-
put after downloading every segment, it suffers from fluctuating

QUETRA: AQueuing Theory Approach to DASH Rate Adaptation MM’17, , October 23–27, 2017, Mountain View, CA, USA.

quality levels, especially in network profiles P3 and P4. BOLA has
the least number of changes in representation (between 7 to 15) in
all buffer capacity settings. BOLA is conservative and tends to keep
downloading low bitrate representation, BOLA leads to lower video
quality, especially for buffer capacity of 30/60s (1554 kbps, vs. 2356
kbps for QUETRA). QUETRA has better average bitrate compared
to other methods, achieving up to 11% improvement over BBA on
average at BBA’s default buffer capacity of 240s, and comparable
changes in representation to BBA and ELASTIC.

To see why, recall that BBA maps buffer occupancy linearly
to the bitrate of the available representations. As buffer capacity
increases, it takes longer for BBA to fill up the buffer to reach the
level to download a higher bitrate. As such, the average bitrate
declines with the increase in the buffer capacity. As a result, BBA
has a lower average bitrate than QUETRA (2016 kbps compared to
2241 kbps with 240s buffer) and fewer changes in representation
than QUETRA (14 compared to 18). In other words, BBA sacrifices
video quality for fewer changes in representation.

Number and duration of stalls. Figure 4 (bottom) shows the
XY plot of number of stalls vs. the total stall duration for each
method for each buffer capacity, averaged across all 28 combinations
of network profiles and video samples. Data points closer to the
lower left corner perform better on both dimensions.

ELASTIC has 3.4 to 3.7 stalls on average, which is higher than
other methods in general. ELASTIC does not use a reservoir that
prevents stall. ELASTIC, however, perform consistently over differ-
ent buffer capacity, as it tries to converge the buffer occupancy to
K/2, similar to QUETRA. BOLA has the highest stalls duration of
20s at buffer capacity of 30/60s, as it restrains from changing the
quality even when downloading at the highest bitrate, leading to
buffer starvation. BBA has a longer stall (over 12s) at buffer capacity
of 30/60s compared to 120s and 240s. QUETRA, on the other hand,
has the fewest stalls and shortest stall duration on average, over
the three buffer capacity settings. QUETRA’s strategy to try and
converge the buffer occupancy level towards K/2 works well.

QoE. Figure 5 compares the QoE for all five methods of rate
adaptation over three different buffer capacities, computed using
Equation 5 and averaged over all 28 combinations of video samples
and network profiles. Compare to other methods, QUETRA exhibits
the highest QoE of 13% to 140%, 7% to 97%, and 9% to 51% for the
30/60s, 120s, and 240s buffer respectively.

OFF Period. The Dash.js player stops downloading when the
buffer is full, resulting in an OFF period that could lead to incorrect
estimation of throughput for other clients [?]. QUETRA, however,
tries more aggressively to move the buffer occupancy away from K
as the buffer occupancy increases. As such, we expected QUETRA
to reach the buffer full condition less frequently.

Figure 8 shows the total buffer full duration for all the compared
methods, again averaged from all video samples and network pro-
files. BOLA has the shortest duration for all buffer capacities, as
it turns off downloading before the buffer becomes full, due to its
rate adaptation policy. BBA has the next shortest durations overall.
Since BBA is buffer based, it sometimes selects representation with
a bitrate higher than throughput. This leads to lower buffer occu-
pancy in general.QUETRA encounters fewer buffer full events than
ELASTIC and ABR. Since the duration of buffer full for QUETRA is
low, we are expecting fewer OFF period and thus a higher fairness

Dash.js ABR BOLA ELASTIC BBA QUETRA

0
1

2
3

4
5

Dash.js ABR BOLA ELASTIC BBA QUETRA

0
1

2
3

4
5

Q
oE

 (
 x

10
0,

00
0)

Buffer Capacity (Sec)

30/60 120 240

Buffer Capacity (Sec)

30/60 120 240

Figure 5: QoE for different methods.

 QUETRA, Throughput 1000 kbps

 QUETRA, Throughput 2000 kbps

 QUETRA, Throughput 3000 kbps

 QUETRA, Throughput 4000 kbps

 BBA

0 5 10 15 20 25 30
Buffer Occupancy

Bitrate 300 kbps 600 kbps 1000 kbps 2000 kbps 3000 kbps

Figure 6: Change in bitrate with buffer occupancy for video
V5 for BBA (irrespective of throughput) and QUETRA with
different throughput having 30s buffer capacity.

in the average bitrate played by multiple clients. To verify this, we
ran streamV 1 to 10 clients with 10 times the bandwidth of network
profile P1. The Jain’s fairness index [?] for average bitrate played
across different clients obtained is 0.998.

Specific Cases. The results so far examine the average perfor-
mance of the rate adaptation algorithms, over all video samples
and network profiles. For the rest of this section, we highlight two
specific cases (i) video samples V 5 [?], (ii) stall duration for BBA
and BOLA in profile P4 and video sample V 2.

Figure 7 is similar to Figure 4, but only the results for V 5 (av-
eraged over P1 − P4) are shown. QUETRA has almost consistent
average bitrate as the buffer capacities increase (1971 kbps - 2190
kbps). BBA, however, performs worse as the buffer capacity in-
creases from the 30s to 240s (drops 45% from 2117 kbps to 1200
kbps).V 5 has a duration of 244s, not uncommon for videos available
on social media, which is close to the buffer capacity 240s. Figure 6
visualizes the selected bitrate at different values of buffer occupancy
for QUETRA (under different throughput) and BBA (irrespective
of throughput) for V 5 having 30s buffer capacity. As shown in
the figure, QUETRA chooses a bitrate lower than or equal to the
throughput at lower buffer occupancy but aggressively increases
the bitrate if buffer occupancy is high, except for the lower reservoir
where it chooses the minimum bitrate. BBA, on the other hand,
linearly maps the bitrate of representation to the buffer occupancy.
Comparing the figure when throughput is 3000 kbps, for instance,
one can see that QUETRA downloads segments at much higher
quality than BBA. For BBA, by the time buffer occupancy reaches
the sufficient level to download the highest bitrate representation,
a major portion of V 5 has already been played. This behavior leads
to lower average bitrate and lower utilization of throughput.

MM’17, , October 23–27, 2017, Mountain View, CA, USA. Praveen Kumar Yadav, Arash Shafiei, and Wei Tsang Ooi

+

+

+

+

+

+

+

+

+

+

++

+ +

+

30/60 s 120 s 240 s

5 15 25 35 5 15 25 35 5 15 25 35

1200

1450

1700

1950

2200

Changes in Representation

A
ve

ra
ge

 B
itr

at
e

(k
bp

s)

+ + + + +BBA BOLA Dash.js ABR ELASTIC QUETRA

Figure 7: XY plot of bitrate versus changes in representation
for video V5.

The second special case we highlight is for network profile P4
and video sampleV 2. P4 has the lowest average throughput among
all four profile;V 2 has the highest segment duration of 5s and higher
gaps between the levels. As a result, P4 and V 2 are a challenging
combinations for all rate adaptation methods. In particular, this
specific combination contributes to the significantly longer stalls
(on average) that we see in BBA and BOLA (12.3s and 20.2s respec-
tively). Upon closer inspection, we found that P4 has a downtime
after 11 minutes, where the throughput falls to between 20-200 kbps.
While most of the methods finished the download of all V 2 seg-
ments before reaching that region, except for BBA and BOLA in 60s
buffer capacity. When BBA’s buffer occupancy is high, it switches
to a higher bitrate, which delays the download if the throughput
drops, which happens often in P4 due to the fluctuation in through-
put; BOLA frequently stops the segment downloads to limits the
fluctuation in the video quality. As a result, both BBA and BOLA are
still downloading segments of V 2 after 11 minutes in this specific
case, causing long stalls. For a fair comparison, we recomputed the
average stall duration excluding V 2 and P4 for 30/60s buffer. The
result shows that the stall time for BBA and BOLA reduced to 3.7s
and 5.1s respectively, which is comparable to QUETRA (4.3s).

5.7 Results: Effects of Buffer Capacity
Buffer capacity is a critical parameter that would affect the per-
formance of rate adaptation. In a system with finite buffer, buffer
overflow occurs less often with larger buffer. A larger buffer, how-
ever, is unable to utilize the possible future increase in throughput.
Our experiment shows non-negligible effect of buffer capacity on
the performance of some methods. Figure 8 shows that the buffer-
full duration for 30/60s buffer is 3-40 times more than 240s buffer
for all methods. Figure 4 shows that average bitrate for Dash.js
ABR and BBA at 240s buffer is 31% and 15% less than that at 30/60s
buffer. Since BOLA aborts segment download to control the changes
in representation, its bitrate increases with the increase in buffer
capacity, from 1554 kbps to 1994 kbps when buffer increases from
30/60s to 240s. On the other hand, QUETRA and ELASTIC have
only 5% variation in average bitrate as buffer capacity increases,
because they try to maintain the buffer occupancy at K/2.

5.8 Results: Effects of Throughput Estimation
Figure 9 compares QUETRA using the default last throughput ap-
proach with other throughput prediction method. EMA and the

Dash.js ABR BOLA ELASTIC BBA QUETRA

0
20

40
60

80

Dash.js ABR BOLA ELASTIC BBA QUETRA

0
20

40
60

80

B
uf

fe
r

F
ul

l D
ur

at
io

n
(S

ec
)

Buffer Capacity (Sec)

30/60 120 240

Buffer Capacity (Sec)

30/60 120 240

Figure 8: Duration of buffer full for different methods.

+

+

+

+

+
+

+

+

++

++ +

+

+ +

++

30/60 s 120 s 240 s

0 20 40 60 0 20 40 60 0 20 40 60
1500

1750

2000

2250

2500

Changes in Representation

A
ve

ra
ge

 B
itr

at
e

(k
bp

s)

+ + + + + +Avg Th EMA Gradient EMA KAMA Last Th Low Pass EMA

Figure 9: XY plot of bitrate versus changes in representation
for different throughput prediction methods.

average of the last three throughputs increase the average bitrate up
to 4.5% and 4.2% respectively for different buffer settings, compared
to the last throughput method. Gradient-based EMA, low pass EMA,
and KAMA are conservative due to consideration of larger time
frame for smoothing, and therefore predict a lower throughput than
the actual value. A lower predicted value calls for the selection of a
lower bitrate, fills up buffer faster, which in turn calls for the selec-
tion of higher bitrate. The contradictory evaluation of the situation
leads to more changes in representation.

6 CONCLUSION
We presented QUETRA, a DASH rate adaptation algorithm for
DASH that is informed by a fundamental relationship between
selected representation bitrate, estimated throughput, buffer occu-
pancy, and buffer capacity. By exploiting this relationship obtained
through a queuing model, QUETRA avoids the complexity and the
needs for parameter tuning that plagues many existingmethods, yet
performs better than the existing methods under different scenarios.
Furthermore, we show that buffer capacities can have significant
impact on the performance of existing rate adaptation algorithms,
when viewing videos of different durations. QUETRA, on the other
hand, performs consistently across different buffer capacities, and
on average, its QoE is 140% better than the default in Dash.js, the
reference player from DASH Industrial Forum, and is 7% better than
the closest competitor, BBA, which is proposed by Netflix.

ACKNOWLEDGMENTS
The authors would like to thank Y. C. Tay for his valuable feedback
as well as Hancong Kong and Bentaleb Abdelhak for their contribu-
tions during the brainstorming sessions. The research is supported

QUETRA: AQueuing Theory Approach to DASH Rate Adaptation MM’17, , October 23–27, 2017, Mountain View, CA, USA.

by Singapore’s Ministry of Education Academic Research Fund
(Grant T1 251RES1506).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Throughput-Based Method
	2.2 Buffer-Based Approach
	2.3 Buffer- and Throughput-Based Approach
	2.4 QoE-Centric Approach
	2.5 Non-Normative Approaches
	2.6 Configuration Parameters

	3 Queuing Model
	4 QUETRA Rate Adaptation Algorithm
	4.1 Throughput Prediction and Smoothing

	5 Evaluation
	5.1 Implementation
	5.2 Video Samples
	5.3 Network Profiles
	5.4 Experimental Setup
	5.5 Performance Metrics
	5.6 Results: QUETRA vs. Rest
	5.7 Results: Effects of Buffer Capacity
	5.8 Results: Effects of Throughput Estimation

	6 Conclusion

