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What is
“Distributed Media 

Streaming”?

(aka multi-source streaming)



Receiver

Sender 1

Sender 2

Sender 3

Multiple senders collaboratively 
stream media content to a receiver.



Sender 1, please send 
me data packets x, y, z.  

Sender 2, ...

Receiver coordinates between the senders using 
a pull-based protocol to request different 
segments from different senders.



• Exploits path diversity and server 
diversity to increase resilient to 
congestion and sender failure

• Using media coding scheme such 
as MDC, the receiver can still 
playback continuously (at a lower 
quality) if a sender fails.



Congestion Control in 
Distributed Media 

Streaming



Per-flow Congestion Control ?



Using multiple flows is unfair to 
other single flow applications.



• Similar problem observed in parallel 
TCP flows:

1. TCP-P (Soonghyun Cho et al)

2. TCP-ROME (Roger Karrer et al)

3. Multi-priority TCP (Ronald Tse et al)



• The total bandwidth of flows, belonging to 
the same task, on a link should be no larger 
than other TCP flows on the same link 
(experiencing similar network conditions).

Task-level TCP Friendliness

∑

fi∈L

Bi ≤ BTCP



Task-Level TCP Friendliness

Bottleneck



The Challenges

• Different media flows may 
experience different congested links

• How to determine the “fair” 
throughput of a media flow?



DMSCC :
Congestion Control 

Algorithm



Receiver

Suppose (i) we know the topology, and 
(ii) the topology is a tree.



Receiver

1. Find out where the congested link(s) are.

congestion



Receiver

2. Control the rate of the flows on congested links.

Each flow should 
consume half

the bandwidth of a 
TCP flow



Identifying Congested Links
Given end-to-end measurements on a set of 
flows, determine which flows share bottleneck 
link(s).

Controlling Throughput
Given a set of flows on a bottleneck link, how to 
control the throughput of the flows so that they 
satisfy ∑

fi∈L

Bi ≤ BTCP
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Identifying Congested Links

• Non-trivial problem for one shared 
bottleneck

• Rubenstein (TON’02),  Kim (SIGCOMM ‘04)

• Even harder for multiple bottlenecks.

• We use Rubenstein’s method as a building 
block.



Rubenstein’s Method

• SHARE( f, g ): Does two flows f and g 
share the same bottleneck?

• Observe the packet delay of flow f and g.

• Yes, if cross-correlation of f and g is larger 
than auto-correlation of f.



Congestion Location 
(one bottleneck)

• Suppose a packet from flow f is lost

• Find all other flows g such that 
               SHARE( f, g ) = true

• Find all common links of these flows

• Return the link furthest away from receiver



Congestion Location

A packet from this 
flow is lost.



Congestion Location

These two flows 
share a bottleneck



Congestion Location

Common links for 
both flows



Congestion Location

Shared bottleneck



Congestion Location 
(multiple bottlenecks)

• Keep a history of h previous bottleneck 
detections.

• All links in this set are presumed to be 
congested. 



Identifying Congested Links
Given end-to-end measurements on a set of 
flows, determine which flows share bottleneck 
link(s).

Controlling Throughput
Given a set of flows on a bottleneck link, how to 
control the throughput of the flows so that they 
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Bi ≤ BTCP



Sender 1, please send 
me data packets x, y, z.  

Sender 2, ...

Recall that we are running a pull-based protocol



To control the throughput, the receiver maintains 
a “congestion window” for each sender and never 
pulls more than the window allows.

window of sender 1 is 5
window of sender 2 is 6 ..



The window is adjusted according to AIMD when 
packet transmission is successful or lost.

window of sender 1 is 5
window of sender 2 is 6 ..



How to adjust window?

• If we follows TCP’s algorithm, then we will 
achieve similar throughput to a single TCP 
flow.

• To achieve k (k < 1) times the throughput 
of a TCP flows, we need to be less 
aggressive in increasing our window.



Congestion 
Window 

(pkt)

Time

W

W/2

The window increases by α for every RTT;
Packet loss occur every 1/p packet .



Congestion 
Window 
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Time

W

W/2

The window increases by α for every RTT;
Packet loss occur every 1/p packet .

W/(2α)
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Considering the area under the curve, we get

To get k times the throughput of a TCP flow,
the increasing factor α should be k2



Identifying Congested Links
Given end-to-end measurements on a set of 
flows, determine which flows share bottleneck 
link(s).
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DMSCC :
Congestion Control 

Algorithm



DMSCC Algorithm
On packet loss

• Find the set of bottleneck links

• For each bottleneck links l
     let n be number of flows on l 
     set α of each flow on l to min(α, 1/n2)

If no packet loss for some time t

• Reset all α to 1



Simulation and Results



Network Topology

L0L1L2L3



Background Traffic

L0L1L2L3

Time 0 to 50

L0L1L2L3

L0L1L2L3

Time 50 to 100

Time 100 to 150



Background Traffic

L0L1L2L3
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L0L1L2L3
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Summary

• Distributed media streaming needs task-
level congestion control.

• Two sub-problems:  identify congested links 
and control sending rates.



If link A and B are congested at the same time, 
shared congestion at B might not be detected.

B

A



Time

W

W/2

The window increases by α for every RTT;
Packet loss occur every 1/p packet .

Throughput control not as accurate 
when packet losses are bursty.



Sender 1, please send 
me data packets x, y, z.  

Sender 2, ...

Pull-based protocol might not be the right thing 
to do.



The End


