Graph

Ooi Wei Tsang
School of Computing, NUS

O—0 O

o,

A graph consists of edges and vertices.

Q

O—W

A vertex u is a neighbor of v, if there is an edge
from v to u. We say u is adjacent to v. The number
of neighbors of a vertex is called degree.

A weighted graph has a value associated with its edges.

-

Direction of edges does not matter in a undirected graph.

9

In a complete graph, every vertex is
connected to every other vertices.

O an®

A path consists of a sequence of
vertices adjacent to each other.

Q

A cycle is a path that starts
and ends with the same vertex.

Q

O—QO

A graph is acyclic if it contains no cycle.
It is cyclic otherwise.

-

A undirected graph is connected
if there is a path between any two vertices.

10

-

A undirected graph is bipartite if we can partition
the vertices into two sets and there are no edges
between two vertices of the same set.

11

:

A unconnected graph consists of two connected components.

O—C0 O

12

i

A connected, undirected, acyclic graph is called a tree.

13

A weighted graph G = (V, E, w),
where

® Vis the set of vertices
® [is the set of edges

® w is the weight function

14

V={ab,c}
E={(ab),(c,b) (ac) }
w={((ab),4),((c,b), 1), ((a,c),-3) }

15

adj(v) :set of vertices adjacent to vertex v

ad
ad
ad

j@@) = {b, c}
j(b) =1}
j(c) = {b}

16

Review Questions

® How many edges are there in a undirected
complete graph with N vertices!?

17

Review Questions

" ladj(u)| = 2

ueV

18

Example Applications

Q

O—QO

Representing a social network.
(u,v) in E if u knows v.

20

Jeffrey Heer’s Social Network from Friendster
(47471 people, 432430 edges)

W Flight AA #11 - Crashed into WTC Nerth
B Flight AA #77 - Crashed into Pentagon
W Flight UA #93 - Crashed in Pennsylvania = -
B Flight UA #175 - Crashed into WTC South Abui alid Djamal Beghal
B Other Associates of Hijackers

Copyright @ 2002, Valdis Krebs

]
Nizar Trabelsi

|
Jean-Mare Grandvisir

Abu Qatada
| B Kamel Daoudi- Jerome Courtaillier
Haydar Abu Daha Ahmed Reszam
| |
Abu Zubaydah

. -
Mehdi Khammoun n n
Zacarias Moussaoui David Courtaillier

[} n
Mohamed Bens ak hria Tarek hWtaaroufi

u n u

| Seifallah ben Hassine Imad Eddin Barakat vark as Mohamed Boualem Khnouni

Lased Ben Heni
| u

Eszoussilaaroussi Khalid haikh Mohammed

u
Mohammed Zouaydi

[|
Samir Kishk Eszid SamiBen Khemais ™
Abdelghani Mzoudi u
. RamziBin al-Shibh
| Mohammed Belfas
Fahid al Shakri L
Ahmed Khalil lbrahim Samir Al-Ani
|]
Agus Budim an L] .
o . Mounir El'Maotazs adeq
M adjid Sahoune m
tdohamed H eidar Zammar

Mustafa Ahmed al-Hiz awi n
Zakariva Es=zabar

]
Mobamed Atta tdahm oun D ark azanli

n S aid Bahaji m

Fawez Ahmed M adih el-Hage
]

- X Mamdouh Mahmud Salim

Ziad Jarrah “razid Sufaat

. . -
W ail Alzhehri u
|| Manmarn A+Shehhi
aleed Alzhehri
AbdulAziE Alomari®

. N
Satam Sugami . =
Ahmed Al Haznawi FRayed Mohammed Abdullah

]
Mohand Alzhehn® = ™
HaniH anjour u Faizal Al Salmi

Bandar Alhazmi
]
Tawfiq Attash Khallad

m Salem AlhazmP | o

Social network of 9/1 | terrorists

Saeed Alghamdi®

u
Fahad al Quso

||
Nabil &lmarath u u
Mohamed Abdi AhmedAl-Hada

u
Ahmed Alnami

22

—Q

3
|
: %
O
Representing places and routes. (u,v) exists if there is a direct
route from u to v. Weight w(u,v) is the distance or cost. We are

often interested in finding the cheapest path between between
two places.

23

The Internet

hak 56

Juipisfrg Eadl
o X

EmEm

[ty Ghaul

el

Biaresa Hay

Puirigipel =

i Pair RinEl

MRT ROUTE MAP

MNORTH

N2 iYishun

w1 Khatib

w10 Yo Chu Kang

waiang Mo Kio

E3 il Choa Chal Kang ran iy Bighan

)
w7 i Braddel

i Bukil Gombak

B4 Bukit Batok v @Toa Fayoh

WIZ W Wi W
Boon Lay Lokeside Chiness
Ganden

f
L
Jurong East @ Novens
Iré BT

%‘Ghﬂ‘ﬂll
" I\“'..,"''.‘B'l:rl.-l"l-ﬂ Visth
o ""'1"‘ Cammafrwealh
" Nig uesnsonn

" I\--F‘:n!\':"lll
w .’;:} Tiong

WEST
14 i Prwtion

£
w1l Srehard

S

—
Ditram
Fark

anjang
Fagar

Ed E5 Fi ET =
P E K A
- %/ Kaliang Afjunied :.:f: R harey

A Lavender

MARINA BAY

EAST

E12 {ffy Pasir Ris

E11 i Tampines

Possible moves in Rush Hour. Blue represents solutions.
Green represents the shortest paths to solving the puzzle.

(from www.aisee.com)

27

http://www.aisee.com
http://www.aisee.com

Implementation

28

Adjacency Matrix: Use a 2D array. Store w(u,v) in a[u]
[v] if edge (u,v) exists. Store an invalid value otherwise.

29

—> |,

Adjacency List: Use an array of link list. aJu]
stores adj(u) and the associated weight.

30

® How long does it take to delete an edge for
(a) adjacency matrix ?

(b) adjacency list ?

31

® How long does it take to go through all
neighbors of a vertex v for

(a) adjacency matrix ?

(b) adjacency list ?

32

® How much space is needed to store a graph
of size N if we are using

(a) adjacency matrix ?

(b) adjacency list ?

33

1,4

2,-3

1

Adjacency List in Matrix: Use a 2D array. Each row is

an array-representation of the adjacency list.

34

Avoid using pointers in competitive
programming.

Most of the time, graph are static (no insert/
delete after initialization).

Maximum size is often given.

35

typedef struct neighbor {
int 1d;
1nt weight;

} neighbor;

// N 1s max num of vertices;
neighbor graph[N][N];
int num_of_vertices;

36

|,4

2,-3

l, |

Edge List: Use a linked list of edges.

37

Edges

1,4 12,-3| I,

Degree

Edge List: Use a array of edges.

typedef struct edge {
int from;
int to;
1nt weight;

} edge;

edge graph[MAX_NUM_OF_EDGES];
1nt num_of_edges;

39

Pick the simplest implementation that meets
the requirements.

40

Graph Traversal

How to systematically visit the whole graph?

41

Breadth-First Search

or BFS

® Basic idea: pick a source and visit the
vertices in increasing distance from the
source

® visit all vertices one hop away
® visit all vertices two hops away etc.
® Note: A vertex u is k-hop away from the v if

the shortest path from u to v consists of k
edges.

43

Example:
F is 3-hop away from A.
E is 2-hop away from A.

44

Let A be the source. We first visit the source.
| colored visited vertices yellow.

45

Next, visit the vertices that are one-hop away.

46

Next, visit the vertices that are two hops away.
(i.e, all unvisited vertices that are neighbors of one-hop
neighbor of A.

47

Edges that lead to undiscovered node during traversal
are colored brown.

48

These edges form the breadth-first tree. Level of
vertices in the tree is the hop distance from source.

49

® An implementation needs to keep track of
vertices we have discovered.

® To visit the vertices in increasing order of hop
distance, we need to visit the nodes the order
we discover them (FIFO).

50

Q = new Queue
enqueue source into Q

while Q is not empty
v = dequeue from Q
mark v as visited
for each neighbor u of v
If u is not visited and not already in Q
enqueue u into Q

51

Review Questions

® Suppose we want to keep track of breadth-
first tree by marking the edges in the tree as
brown. How should we change the
algorithm!?

52

Q = new Queue
enqueue source into Q

while Q is not empty
v = dequeue from Q
mark v as visited
for each neighbor u of v
If u is not visited and not already in Q
mark (v,u) as brown
enqueue u into Q

53

Review Questions

® Suppose we want to keep track of hop
distance from the source. How should we
change the algorithm?

54

Q = new Queue
enqueue source into Q
level[source] = 0
while Q is not empty
v = dequeue from Q
mark v as visited
for each neighbor u of v
If u is not visited and not already in Q
level[u] = level|[v] + |
enqueue u into Q

55

Review Questions

® Can we always visit every vertex using the
previous algorithm?

56

57

O E O

If we pick F as the source, then we can’t visit A, B,and C,
and need to visit them through another source.

58

Mark all vertices as unvisited

for each vertex v
if v is not visited
use v as source and run BFS

59

Applications of BFS

On an unweighted graph, the breadth-first tree tells us
the shortest path from source to all the other vertices.

61

The algorithm works for undirected graph too.

62

()~ 1t ~)

We can check if two vertices are connected using BFS.

63

Depth-First Search

r, DFS

® Basic idea: Starting from a source,
repeatedly visit a neighbor of the current
vertex until we hit a dead-end (no unvisited

neighbors), then backtrack.

® After we visit a vertex v, we visit all vertices
reachable from v.

65

Let A be the source.

66

Visit a neighbor of A (say, C).

67

Visit a neighbor of C (say, E).

68

Visit a neighbor of E (say, D).

69

D has no neighbor. Back to E.
E has no unvisited neighbor. Back to C.

70

F has no unvisited neighbor. Back to B.
B has no unvisited neighbor. Back to C.

73

C has no unvisited neighbor. Back to A.
A, the source, has no unvisited neighbor. Done!

74

® An implementation needs to keep track of
vertices we have discovered.

® When backtrack, we need to go back to the
last vertex we visited. (LIFO).

75

S = new Stack
push source onto S

while § is not empty
v =top of §
If v has a unvisited neighbor u
mark u as visited
push u onto $
else
pop v from $

76

Mark all vertices as unvisited

for each vertex v
if v is not visited
use v as source and run DFS

77

* What is the color of a vertex:
(a) before it is inserted into the stack ?
(b) while it is inside the stack ?
(c) after it is pop from the stack ?

78

A vertex can be in three states: unvisited,
visiting, visited.

79

S = new Stack
push source onto S

while § is not empty
v =top of §
If v has a unvisited neighbor u
mark u as “visiting”
push u onto $
else
pop v from $
mark u as “visited”

80

®
o'ikc

proc DFS(u):
/| recursive version of DFS

mark u as “visiting”
for each unvisited neighbor v of u

DFS(v)
mark u as “visited”

81

Review Questions

® True/False? : There is always a path from the
vertices in the stack to the vertex at the top
of the stack.

® (Alternatively: There is always a path from a
vertex marked “visiting” to the current
vertex.)

82

Applications of DFS

()~ 1t ~)

We can check if two vertices are connected using DFS.

84

F_ + ~o0)

We can check if a graph is acyclic/cyclic using DFS.

85

F_ 1 ~20)

There is a cycle iff we found an edge from
current vertex to a visiting vertex
(called backward edge)

86

proc DFS(u):

mark u as “visiting”
for each neighbor v of u
if v is marked as “visiting”
we found a cycle!
else if v is marked as “unvisited”
DFS(v)
mark u as “visited”

87

Topological Sort

Goal: Given a directed acyclic graph, order
the vertices such that if there is a path from u
to v, then u appears before v in the output.

88

Goal: Given a directed acyclic graph, order
the vertices such that if there is a path from u
to v, then u appears before v in the output.

(A BACFED?

BCAFED!

G e BFACED?
Cr—(—(,

89

Idea: The first vertex marked “visited” can
appear last in the topological order.

90

Now, we remove that vertex from consideration,
and repeat -- the next vertex marked as visited can
appear last in the topological sort order.

91

proc DFS(u):

for each unvisited neighbor v of u
DFS(v)
push u onto a stack

To output in topological sort order, pop from stack
and print after completing DFS.

92

Dijkstra’s Algorithm

Single-Source
Shortest Path

Problem: Given a weighted graph G and a
vertex v in G, find the shortest (or least cost)
path from v to all other vertices.

Restrict ourselves to positive weight.

94

Shortest Path from A to D = A-C-E-D (Cost = 8)

95

® Must keep track of smallest distance so far.

® |f we found a new, shorter path, update the
distance.

96

()"

Let d[v] be the current known
shortest distance from u to v.

d[v] = 6,d[w] = 10

97

)

We just found a shorter path from u to w.
Update d[w] = d[v] + cost(v,w).
We call this step relax(v,w).

98

proc relax (v,w):

Let d = d[v] + cost(v,w)
if d[w] >d
dw] =d

99

® O ®

If d[w] is the smallest among the “remaining” vertices,
then d[w] is the smallest possible (can’t be relaxed further)

100

At the beginning, we know d[A]. But the rest
is unknown and is set to infinity.

101

Relax all neighbors of A.

102

Pick a white vertex with smallest d[]. Color it yellow.

103

Relax all neighbors of this vertex.

104

Repeat: pick a white vertex with smallest d[].

105

Relax its neighbors

106

Everyone is yellow. Done!

110

proc Dijkstra(s):
for each vertex vin G
d[w] = infinity

color[w] = white

d[s]=0

111

while there exists a white vertex

let u be a white vertex with smallest d
color[u] = yellow
for each neighbor v of u

relax(u,v)

112

Array Implementation

while there exists a white vertex

min = infinity
for each vertex v
if color[v] is white and d[v] < min
min = d[v]
u=v

color[u] = yellow
for each neighbor v of u

113

Priority Queue
Implementation

while there exists a white vertex

u = gq.getMin()

color[u] = yellow

for each neighbor v of u
relax(u,v)

114

Priority Queue
Implementation

proc relax (v,w):

Let d = d[v] + cost(v,w)
if d[w]>d
diw] =d
g.decreaseCost(w, d)

115

Summary: Graph

Basic terms

Representations

Applications

BFS

® find shortest path in unweighted path

® finding connected component

116

Summary: Graph

e DFS
® finding connected component
® check for cycles
® topological sort

® Dijkstra algorithm

® finding shortest path from a single source in
a weighted graph with positive weights.

117

