
Scalable View-Dependent
Progressive Mesh Streaming

WEI TSANG OOI
National University of Singapore

黃瑋璨
新加坡國立大學

1

1

joint work with
Cheng Wei

National University of Singapore

2

2

3

3

4

4

5

5

10 MB

6

6

2 GB

7

7

8

8

Hoppe’s Progressive Mesh

Edge Collapse

Vertex Split

9

9

+v1v2v3v4...

=

base
model

At the sender

vk

10

10

base
model

v1 v2 v3 v4 ...

Transmission

TCP

UDP

vk

11

11

... ...

base
model

v1 v2 v3 v4 ...

At the receiver

vk

12

12

Vertex Split

v2

v

13

v1

13

base mesh

14

15

16

17

complete mesh

18

view-dependent streaming:
only send what the receiver can see

19

19

20

21

what to send?

in what order?

22

22

what to send?
determined by view point

in what order?
determined by visual contributions

23

23

Existing Approach

view point

what to split

how to split

24

Existing Approach

view point

view point

what to split

how to split

25

For each receiver, server needs to:

• compute visibility
• compute visual contribution of each

vertex split
• sort vertex splits
• remember what has been sent

26

26

“dumb client, smart server”

does not scale

27

27

Receiver-driven Approach

what to split

how to split

28

how to identify a vertex split?

29

29

7

2

6

3

8

4 5

0 1
Attempt 1

30

7

2

6

want to split vertex 2

here is how to split, and
2 splits into 6 and 7

31

001

00

000 011

01

010 101

10

100 111

11

110

0 1
Attempt 2

Kim, Lee, “Truly selective refinement of progressive meshes,”

In Proceedings of Graphics Interface, pages 101–110, June 2001

32

001

00

000

want to split vertex 00

here is how to split 00

33

Receiver-driven Approach

what to split

how to split

34

001

00

000 011

01

010 101

10

100 111

11

110

0 1

Encoding of vertex split IDs

001000 10 110

35

proc encode(T)

if no vertices to be split in T
 return 0

else
 return 1 + encode(T.left) + encode(T.right)

36

0 1

Encoding of vertex split IDs

110010000 1 10011000

37

how to compute visibility + visual contributions?

(without possessing the complete mesh?)

38

38

V1

V2

Estimate with screen space area of vertices

39

Sender-driven Receiver-driven
send base mesh 1.4 1.13
decode IDs - 1.55
search vertex split 1.85 1.85
determine visibility 0.41 -
update state 1.41 -
encode IDs 0.94 -
others 0.16 0.16
total 6.17 4.69

40

41

receiver-driven protocol alleviates the
computational bottleneck at the
sender.

42

42

the other bottleneck is bandwidth.

43

43

goal: reduce server overhead by
retrieving vertex splits from other

clients if possible

44

44

difficulty: need to quickly and
efficiently determine who to

retrieve the vertex splits from

45

45

low server overhead

low response time

low message overhead

46

46

common P2P techniques:

1. build an overlay and push

2. use DHT to search for chunks

3. pull based on chunk availability

47

47

common P2P techniques:

1. build an overlay and push

2. use DHT to search for chunks

3. pull based on chunk availability

48

48

peer-to-peer file transfer:

a needed chunk is likely to be available in
any peer

49

49

peer-to-peer video streaming:

a needed chunk is likely available from a
peer that has watched the same segment
earlier

(temporal locality)

50

50

peer-to-peer mesh streaming

a needed chunk is likely available from a
peer that is viewing the same region

(spatial locality)

51

51

idea: exploit spatial locality to reduce
message overhead.

52

52

chunks

53

chunks

(1 chunk = 240 vertex splits)

54

55

groups

(1 group = 16 chunks)

56

57

Only exchange messages between peers
that need chunks from the same group.

57

58

how the protocol works

58

59

server maintains a list of group members
for each group, and who possesses which chunk.

(128.3.13.44, 100100) (123.44.121.99, 111111) ..

(90.1.1.00, 0001001) (32.11.99.233, 101111) ..

:
:

59

60

client: “I want to view mesh M”

server sends :
(i) base mesh
(ii) group members of the highest group.
(iii) what each member possess

60

61

client decides which vertex splits (chunk) to
refine

if some peer has that chunk, request from peer
else request chunk from server

61

62

peers inform server when they received a chunk

if a chunk in the next group can be decoded,
server sends group members of the next group

62

groups

63

64

if too many group members, server sends only
most recent subsets + some seeds

64

65

on-going work:

1. evaluation using user traces and simulator

2. other design parameters

3. further reduce the role of server

65

66

summary

receiver-driven design to reduce CPU cost

peer-to-peer design to reduce bandwidth cost

66

謝謝

67

67

