Scalable View-Dependent
Progressive Mesh Streaming

i HEEE

PO R

WEI TSANG OOl

National University of Singapore

joint work with

Cheng Wei

National University of Singapore

:Eul:I:E: B & ﬁ.'@ ﬁ‘ ‘ﬁiv’ 5. Music OFF

MNATIONAL PALACE MUSEUM

806 1D Museum
| - | & | + | A A Ehttp:!;?,cmuseum.genlng\f.ucdams.edu,-'frame.html

3D Museum

Gallery Top
Cnigaria

{7 Brachiopoda
Mollusca
Echinodermata

[Arthropoda
Chaordata
Other

About this site

Who are we?

Meekoceras

Grab the object above with your mouse, using the combinations below.

Rotate Translate Rotate Zoom Translate

Applet 3DICO003 started

/ % 1
i\ |
. \%&h il \a\

i

b Jd

[HHHHH

=

e

|10 MB

o0
O
N

o

+
F b

Hoppe’s Progressive Mesh

Edge Collapse

Vertex Split

Vk

At the sender

V4 V3 V2

10

TCP

base
model

Vi

V2

V3

Transmission

UDP

V4

Vk

11

At the receiver

12

Vertex Split

13

base mesh

14

15

16

17

complete mesh

18

view-dependent streaming:
only send what the receiver can see

19

EpRY,

TERRY,

EEE

20

PSNR

35

30

25

20

15

10

Relation between PSNR and received bytes

View-dependent

View-independent
| | |

0 200

400 600 800 1000
Received Bytes (KB)

1200

21

what to send?

in what order?

22

22

what to send?
determined by view point

in what order?
determined by visual contributions

23

23

Existing Approach

nt
\l'\e\N PO

%\ 2

B \what to split

B how to split

24

Existing Approach

nt
\l'\e\N PO

A

B \what to split

\\' B how to split
\/

25

For each receiver, server needs to:

compute visibility

compute visual contribution of each
vertex split

sort vertex splits

remember what has been sent

26

26

“dumb client, smart server”

does not scale

27

27

Receiver-driven Approach

=z

—

B how to split

how to identify a vertex split?

29

29

LN

want to split vertex 2

here is how to split, and
2 splits into 6 and 7

000

Attempt 2

00 Ol 10 | |

001 010 Ol 100 101 110

Kim, Lee, “Truly selective refinement of progressive meshes,”

In Proceedings of Graphics Interface, pages 101—1 10, June 2001

32

want to split vertex 00

here is how to split 00

33

Receiver-driven Approach

T

—

B how to split

Encoding of vertex split IDs

0 |

00 0l 10 |
G @ o0 o 100 100 @O (1

proc encode(T)

If no vertices to be splitinT
return 0

else
return | + encode(T.left) + encode(T.right)

Encoding of vertex split IDs

O 11001000 10011000

how to compute visibility + visual contributions!?

(without possessing the complete mesh?)

38

38

Estimate with screen space area of vertices

39

Sender-driven Receiver-driven

send base mesh | .4 A3
decode IDs - 55
search vertex split |.85 .85
determine visibility 0.41 -
update state | .41 -
encode [Ds 0.94 -
others 0.16 0.16
total 6.17 4.69

40

PSNR

Relation between PSNR and received bytes

35 | | | | |

-

-
-

-
e
-

-
-
--
-
-
-
- - =
---"
-

Receiver-Driven
Sender-Driven
\I/iew—indelpendent --------

10 | |
0 200 400 600 800 1000

Received Bytes (KB)

41

receiver-driven protocol alleviates the
computational bottleneck at the
sender.

42

42

the other bottleneck is bandwidth.

43

goal: reduce server overhead by
retrieving vertex splits from other
clients if possible

44

44

difficulty: need to quickly and
efficiently determine who to
retrieve the vertex splits from

45

45

low server overhead
low response time

low message overhead

46

46

commohn P2P techniques:
|. build an overlay and push
2. use DHT to search for chunks

3. pull based on chunk availability

47

commohn P2P techniques:

+—build-an-everlayandpush
2—use DHIT tosearchforchunks

3. pull based on chunk availability

48

peer-to-peer file transfer:

a needed chunk is likely to be available in
any peer

49

peer-to-peer video streaming:

a needed chunk is likely available from a
beer that has watched the same segment
earlier

(temporal locality)

50

peer-to-peer mesh streaming

a needed chunk is likely available from a
beer that is viewing the same region

(spatial locality)

51

iIdea: exploit spatial locality to reduce
message overhead.

52

52

chunks

(I chunk = 240 vertex splits)

54

~

-—————

- ——————

L

- ——————

L

[

[—

[

[—

[

[—

o ——————

L

o ——————

L

o ——————

~
-

L

o ——————

L

[—

[

[—

[

[—

[

[—

[

o ——————

L

o ——————

L

o ——————

~
-

L

o ——————

55

(I group = |6 chunks)

56

Only exchange messages between peers
that need chunks from the same group.

57

57

how the protocol works

58

server maintains a list of group members
for each group, and who possesses which chunk.

(128.3.13.44, 100100) (123.44.121.99, 111111) ..

(90.1.1.00, 0001001) (32.11.99.233, 101111) ..

.......

59

59

client: ‘| want to view mesh M”

server sends :

(i) base mesh

(i) group members of the highest group.
(iii) what each member possess

60

60

client decides which vertex splits (chunk) to
refine

if some peer has that chunk, request from peer
else request chunk from server

61

61

peers inform server when they received a chunk

if a chunk in the next group can be decoded,
server sends group members of the next group

62

62

-—————a

e

63

if too many group members, server sends only
most recent subsets + some seeds

64

64

on-going work:
|. evaluation using user traces and simulator
2. other design parameters

3. further reduce the role of server

65

65

summary
receiver-driven design to reduce CPU cost

peer-to-peer design to reduce bandwidth cost

66

66

67

67

