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Hoppe’s Progressive Mesh
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At the receiver
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Vertex Split
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base mesh
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complete mesh
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view-dependent streaming:
only send what the receiver can see
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PSNR
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what to send?

in what order?
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what to send?
determined by view point

in what order?
determined by visual contributions
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Existing Approach
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For each receiver, server needs to:

compute visibility

compute visual contribution of each
vertex split

sort vertex splits

remember what has been sent
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“dumb client, smart server”

does not scale

27

27



Receiver-driven Approach
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how to identify a vertex split?
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want to split vertex 2

here is how to split, and
2 splits into 6 and 7
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Kim, Lee, “Truly selective refinement of progressive meshes,”

In Proceedings of Graphics Interface, pages 101—1 10, June 2001
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want to split vertex 00

here is how to split 00
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Receiver-driven Approach
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Encoding of vertex split IDs
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proc encode(T)

If no vertices to be splitinT
return 0

else
return | + encode(T.left) + encode(T.right)



Encoding of vertex split IDs
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how to compute visibility + visual contributions!?

(without possessing the complete mesh?)

38

38



Estimate with screen space area of vertices
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Sender-driven Receiver-driven

send base mesh | .4 A3
decode IDs - 55
search vertex split |.85 .85
determine visibility 0.41 -
update state | .41 -
encode [Ds 0.94 -
others 0.16 0.16
total 6.17 4.69
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PSNR

Relation between PSNR and received bytes
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receiver-driven protocol alleviates the
computational bottleneck at the
sender.
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the other bottleneck is bandwidth.

43



goal: reduce server overhead by
retrieving vertex splits from other
clients if possible
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difficulty: need to quickly and
efficiently determine who to
retrieve the vertex splits from
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low server overhead
low response time

low message overhead
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commohn P2P techniques:
|. build an overlay and push
2. use DHT to search for chunks

3. pull based on chunk availability
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commohn P2P techniques:

+—build-an-everlayandpush
2—use DHIT tosearchforchunks

3. pull based on chunk availability
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peer-to-peer file transfer:

a needed chunk is likely to be available in
any peer
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peer-to-peer video streaming:

a needed chunk is likely available from a
beer that has watched the same segment
earlier

(temporal locality)
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peer-to-peer mesh streaming

a needed chunk is likely available from a
beer that is viewing the same region

(spatial locality)
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iIdea: exploit spatial locality to reduce
message overhead.
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chunks

(I chunk = 240 vertex splits)
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_______

(I group = |6 chunks)
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Only exchange messages between peers
that need chunks from the same group.
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how the protocol works
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server maintains a list of group members
for each group, and who possesses which chunk.

(128.3.13.44, 100100) (123.44.121.99, 111111) ..

(90.1.1.00, 0001001) (32.11.99.233, 101111) ..

_______

_______

_______

.......
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client: ‘| want to view mesh M”

server sends :

(i) base mesh

(i) group members of the highest group.
(iii) what each member possess
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client decides which vertex splits (chunk) to
refine

if some peer has that chunk, request from peer
else request chunk from server
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peers inform server when they received a chunk

if a chunk in the next group can be decoded,
server sends group members of the next group
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if too many group members, server sends only
most recent subsets + some seeds
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on-going work:
|. evaluation using user traces and simulator
2. other design parameters

3. further reduce the role of server
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summary
receiver-driven design to reduce CPU cost

peer-to-peer design to reduce bandwidth cost
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