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Vertex Split
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view-dependent streaming:
only send what the receiver can see
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what to send?

in what order?
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what to send?
determined by view point

in what order?
determined by visual contributions
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Existing Approach
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Existing Approach
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For each receiver, server needs to:

• compute visibility
• compute visual contribution of each 

vertex split
• sort vertex splits
• remember what has been sent 
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“dumb client, smart server”

does not scale
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Receiver-driven Approach

what to split

how to split
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how to identify a vertex split?
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want to split vertex 2

here is how to split, and
2 splits into 6 and 7
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Kim, Lee, “Truly selective refinement of progressive meshes,” 

In Proceedings of Graphics Interface, pages 101–110, June 2001
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Receiver-driven Approach

what to split

how to split
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proc encode(T)

if no vertices to be split in T
   return 0

else
   return 1 + encode(T.left) + encode(T.right)
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Encoding of vertex split IDs

110010000 1 10011000
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how to compute visibility + visual contributions?

(without possessing the complete mesh?)
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V1

V2

Estimate with screen space area of vertices
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Sender-driven Receiver-driven
send base mesh 1.4 1.13
decode IDs - 1.55
search vertex split 1.85 1.85
determine visibility 0.41 -
update state 1.41 -
encode IDs 0.94 -
others 0.16 0.16
total 6.17 4.69
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receiver-driven protocol alleviates the 
computational bottleneck at the 
sender.
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the other bottleneck is bandwidth.
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goal: reduce server overhead by 
retrieving vertex splits from other

clients if possible
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difficulty: need to quickly and 
efficiently determine who to 

retrieve the vertex splits from
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low server overhead

low response time

low message overhead
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common P2P techniques:

1.  build an overlay and push

2.  use DHT to search for chunks

3.  pull based on chunk availability
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common P2P techniques:

1.  build an overlay and push

2.  use DHT to search for chunks

3.  pull based on chunk availability
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peer-to-peer file transfer:
 

a needed chunk is likely to be available in 
any peer
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peer-to-peer video streaming:
 

a needed chunk is likely available from a 
peer that has watched the same segment 
earlier

(temporal locality)
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peer-to-peer mesh streaming

a needed chunk is likely available from a 
peer that is viewing the same region 

(spatial locality)
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idea: exploit spatial locality to reduce 
message overhead.
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chunks
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chunks

(1 chunk = 240 vertex splits)
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groups

(1 group = 16 chunks)
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Only exchange messages between peers
that need chunks from the same group.
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how the protocol works
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server maintains a list of group members
for each group, and who possesses which chunk.

(128.3.13.44,  100100)  (123.44.121.99, 111111) ..

(90.1.1.00,  0001001)  (32.11.99.233, 101111) ..

:
:
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client:  “I want to view mesh M”

server sends :
(i)   base mesh
(ii)  group members of the highest group.
(iii) what each member possess   
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client decides which vertex splits (chunk) to 
refine

if some peer has that chunk, request from peer
else request chunk from server
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peers inform server when they received a chunk

if a chunk in the next group can be decoded, 
server sends group members of the next group
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groups
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if too many group members,  server sends only 
most recent subsets + some seeds
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on-going work:

1.  evaluation using user traces and simulator

2.  other design parameters

3.  further reduce the role of server
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summary

receiver-driven design to reduce CPU cost

peer-to-peer design to reduce bandwidth cost
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