Zoomable Video

新加坡國立大學

Wei Tsang **Ooi** National University of Singapore

1

2009 - now Guntur Ravindra, NUS Ngo Quang Minh Khiem, NUS Liu Feipeng, NUS Axel Carlier, NUS / U of Toulouse Arash Shafiei, NUS / U of Toulouse Vincent Charvillat, U of Toulouse Geraldine Morin, U of Toulouse Romulus Grigoras, U of Toulouse

Why Zoomable Video?

NTSC DVD (720 x 480)

HDTV 720p (1280 x 720)

HDTV 1080p (1920 x 1080)

Digital Cinema - 2K (2048 x 1080)

Digital Cinema - 4K (4096 x 2160)

RED Digital Cinema - 2540p (4520x 2540p)

Super Hi-Vision / Ultra High Definition Video (7680 x 4320)

http://en.wikipedia.org/wiki/File:UHDV.svg

960 x 640

Super Hi-Vision / Ultra High Definition Video (7680 x 4320)

http://en.wikipedia.org/wiki/File:UHDV.svg

Bandwidth Required (Mbps)

What is zoomable video?

How would users use zoomable video?

HTML5-based web player

0:00 / 3:00

00:00

4 video clips 37 viewing sessions

log all interactions (after a tutorial)

lots of interaction spend time zooming in next action hard to predict similar ROIs

How to reduce the number of interactions?

zoom and pan are tedious (clicking and dragging)

especially if the interested object is moving

can we help the user?

idea: one-click zoom, pan, and track.

recommended viewport: highlight what could be interesting to users

what is interesting?

1. content analysis

Saliency

Motion

Face

Linear Combination

cluster important pixels using mean-shift

find viewports with min cut

Cut (with preference to keep the top)

207

1:1

show video, ask question

not all recommendations are clicked

many click on nonrecommended regions

what is interesting?

content analysis
crowdsourcing

Results

70 users better understanding of video fewer interactions
Average number of pans per user

what is interesting?

content analysis
 crowdsourcing

application to: video retargeting

Sample Video

Using Saliency Map

Using Saliency Map

Voting

Voting + Cinematography Rules

Voting + Cinematography Rules

How to implement zoomable video?

Dynamic ROI Cropping (which is not supported by standard video codec)

Local playback: need not decode the whole frame

Remote playback: need not send the whole frame

Method 1: Dynamic Encoding

Not scalable

encode once multiple ROIs

Method II: Tiled Streams

Motion vectors are constrained within a tile. Each tile stream is independently decodable.

Big tile or small tile?

sent but not displayed (wasted bits)

bigger tile -> more waste -> more bits

smaller tile less compression more bits

Gain in compression is less significant than lost in wasted bits

Can we reduce wasted bits?

Method III: Monolithic Stream

send the ROI, plus any extra bits needed to decode the pixels within ROI

some macroblocks within ROI depends on these

VLC dependency in a slice

Within a slice, preceeding macroblocks need to be parsed to access macroblocks in the middle (no random access to macroblocks)

motion dependency across frames

motion dependency propagates

motion dependency propagates

careful optimization can reduce the dependency

data structure: given a macroblock *m*, is there another macroblock *m'* inside the ROI that depends to *m*?

average 0.44 ms per frame

Average Data Rate When Transmitted ROI of 30x30 Macroblocks

Monolithic	Tile
less bandwidth if encoding parameters carefully chosen	higher bandwidth
standard <mark>encoder</mark> can be used	need to modify <mark>encoder</mark>
much metadata needed	little metadata needed
no prefetching	prefetches surrounding areas

Can we adapt the encoding parameters based on user access patterns?

Observation 1

Areas with small access probability can have more dependencies and larger tiles

Observation 2

Areas that are accessed together can be put in the same tile

Given access pattern, find the best way to tile the video to reduce the expected bandwidth.

Access Probability

cost = size (in bytes) x total probability

cost = size of tile x total probability

A greedy heuristic:

from left to right, top to bottom

merge with neighbors if the expected size is reduced

20 - 27% Savings in Bandwidth (even better than Monolithic Streaming)

Papers

MMSYS'10: Encoding MM'10: Video retargeting SAPMIA'10: User behavior MMSYS'11: Adaptive Coding MM'11: Better UI MM'11: Tolerance to delay

Current Work

1. Live zoomable video

2. Streaming to many users

謝謝

歡迎發問及指教