

10/12/2002 1

Week 7: Sorting

nus.soc.cs1102b.week7

3

Why Sort?
Faster searching

Binary Search O(log n)
Linear Search O(n)

• Recall that searching in a sorted array using
binary search is much faster than searching in
an unsorted array.

• There are many examples in our daily lives,
where things are sorted according to some
order.
o Apartments/Room numbers
o Dictionary
o Phonebook
o Books in the library
o Calendar

nus.soc.cs1102b.week7

4

Sorting Algorithms
Insertion Sort
Mergesort
Quicksort

• We will look at three different sorting
algorithms: insertion sort, Mergesort and
Quicksort.

nus.soc.cs1102b.week7

5

For Each Algorithm
Idea
Example
Pseudo-code
Animation
Running Time

• This lecture will be organized as follows. For
each of the sorting algorithm, I will
o Give you an idea about how the algorithm

works
o Give you an example
o Show you some pseudo-code (part

English, part Java)
o Show you an animation of the sorting

algorithm
o Analyze the running time

10/12/2002 2

Insertion Sort

nus.soc.cs1102b.week7

7

Idea
Sorted Unsorted

• The inputs are partitioned into two parts, one
sorted, and one unsorted.

• We take the first element from the unsorted
partition, and insert it into the sorted partition
(maintaining the sorted order).

• Repeat until there are no more elements in the
unsorted portion.

nus.soc.cs1102b.week7

8

Example

5 35 16 46 2420

5 35 16 46 2420

20 35 16 46 245

• Consider this input. First, we partition it to
two parts of size 1 and size N-1 (where N is
the size of the input).

• A partition of size 1 is already sorted!
• Now pick the first element (5) from the

unsorted portion. Move it into the sorted part
(maintaining the sorted order).

nus.soc.cs1102b.week7

9

How to insert

5 35 16 46 2420

20 35 16 46 2420

5

5

20 35 16 46 245 5

• Inserting into sorted linked list is easy. If the input
is an array, which is the case here, it is more
tedious. We will have to shift the elements to
make way for the inserted element.

• We first store 5 in a variable
• Start from the end of the sorted partition, compare

5 with each element.
• If 5 is smaller than the current element, we shift

the element one slot to the right.
• If 5 is larger than the current element, we insert 5

to the right of the current element. Done.
• When we reach the beginning of the sorted portion.

We insert 5 at the first slot. Done.

10/12/2002 3

nus.soc.cs1102b.week7

10

Continue

20 35 16 46 245

20 35 16 46 245

20 35 16 46 245

• Now the sorted partition grown to two
elements.

• The next element to consider is 35. Since 35
is larger than 20, it is already in its sorted
position. The sorted partition grown to 5, 20
and 35.

• The algorithm continues, until all elements are
sorted.

nus.soc.cs1102b.week7

11

Finally

16 20 35 46 245

16 20 35 46 245

16 20 24 35 465

nus.soc.cs1102b.week7

12

insertionSort(a, N)
for i = 1 to N-1

curr = a[i]
j = i
while j > 0 && a[j-1] > curr

a[j] = a[j-1]
j = j – 1

a[j] = curr

16
curr

20 35 16 46 245
a[i]

• Note that we start from the 2nd element (a[1],
not a[0]).

• Pseudo-code is not Java, but part Java, part
English.

• During exam, if you are asked to implement
or write Java code, you cannot write pseudo-
code. But if you are asked to describe an
algorithm, you may use pseudo-code.

nus.soc.cs1102b.week7

14

Recall: Big Oh
ignore multiplicative constant
ignore lower order terms

)(1005
)(4

22 NNN
NN

Ο∈+

Ο∈

• Now we will analyze the running time of
insertion sort using Big O notation. Recall
that in Big O notation, we are more interested
in the “order of magnitude”, so we can ignore
multiplicative constant and lower order terms.

10/12/2002 4

nus.soc.cs1102b.week7

15

Recall: Big Oh

)()())(()(
)()())(()(
)()())(()(
)()())(()(
)()())(()(

nFnTnFnT
nFnTnFonT
nFnTnFnT
nFnTnFnT
nFnTnFnT

 of Growth of Growth
 of Growth of Growth
 of Growth of Growth
 of Growth of Growth
 of Growth of Growth

>⇔=
<⇔=
=⇔Θ=
≥⇔Ω=
≤⇔Ο=

ω

• Recall the different notation for algorithm
analysis. We are more interested in Big Oh,
which is an upper bound of growth rate, and
Big Omega, which is the lower bound of
growth rate, and Big Theta, which indicates
the same growth rate.

nus.soc.cs1102b.week7

16

Running Time

for i = 1 to N-1
curr = a[i]
j = i
while j > 0 && a[j-1] > curr

a[j] = a[j-1]
j = j – 1

a[j] = curr

)()1(3 NN Θ=−= Ops of Num

• Let’s look at the outer loop first, the outer
loop has three operations, and are executed N-
1 times. So the total running time is Θ(N).

nus.soc.cs1102b.week7

17

Running Time

for i = 1 to N-1
curr = a[i]
j = i
while j > 0 && a[j-1] > curr

a[j] = a[j-1]
j = j – 1

a[j] = curr

)(
2

)1(1..21 2NNNN Ο∈
−

=−+++≤ Ops of Num

• The inner loop is executed at most i times,
where i is the count of the outer loop. Hence
the number of times it is executed is the
summation of i, for i = 1 to N-1. This is an
arithmetic series, and the value is equal to
N(N-1)/2. By ignoring lower terms and
multiplicative constant, the running time of
the inner loop is O(N2).

• Question: Why do we use Big-O instead of
Big-Θ?

nus.soc.cs1102b.week7

18

Running Time

General Case: O(N2)
Reverse Sorted: Θ(N2)
Sorted: Θ(N)

• The previous slides show the analysis for
general inputs.

• Let’s consider the special cases, when the
input is reversely sorted, and when the input is
already sorted. The running time for these
two cases are Θ(N2) and Θ(N) respectively.
As an exercise, look at the algorithm in the
previous slide, and figure out why this is the
case.

10/12/2002 5

Merge Sort

nus.soc.cs1102b.week7

20

Recall: Recursion
Given a problem P with input I
Know how to solve P if I is trivial
Assume you know how to solve P for
simpler I
Solve P for I

nus.soc.cs1102b.week7

21

Idea

Sort

Merge

• The idea of Mergesort is to split the input
array into half, recursively sort each half.
Then you take the two sorted halves, and
merge them together into a sorted array.

• Note: You should know how to merge two
sorted list/array by now. This part of the
algorithm will be skipped!

nus.soc.cs1102b.week7

22

Example: Splitting

13 26 1 2 2724 38 15

13 26 124 2 27 38 15

13 26 124

13 26 124 13 26 124
:

• We first partition the original array into halves
and recursively sort the two halves. This
means we take the first half, and partition it
into two halves again. Repeat until we have a
partition of one element, which is trivially
sorted.

10/12/2002 6

nus.soc.cs1102b.week7

23

Example: Merging

13 26 124 13 26 124

13 24 1 26

1 13 24 26 2 15 27 38

1 2 13 15 24 26 27 38

:

• We merge the sorted partitions, when we step
out of the recursive calls. Note that to merge
two arrays, we need a temporary array.

nus.soc.cs1102b.week7

24

mergeSort(a, temp, l, r)
if (l < r)

center = (l+r)/2
mergeSort (a, temp, l, center)
mergeSort (a, temp, center + 1, r)
merge(a, temp, left, center+1, right)

• Here is the pseudo-code. temp is the
temporary array.

• Question: Does this algorithm follow the first
three rules of recursion? Why?

nus.soc.cs1102b.week7

25

First call

mergeSort(a, temp, 0, N-1)

• The first time you call mergeSort, pass in 0
and N-1 as the value of l and r.

nus.soc.cs1102b.week7

27

Running Time
Merging N elements Θ(N)
How many merges are there?

• Merging two lists with a total of N elements
takes Θ(N) times.

• Question: Why? Verify this!

10/12/2002 7

nus.soc.cs1102b.week7

28

Running Time

1

N/2N/2

N/4 N/4 N/4 N/4

1 1 1 1 1 1 1 1

N

: :

O(log2N)

• If we visualize the algorithm like this, we can
see that there are actually Θ(log N) levels,
since at each level, we half the array.

• Question: Look back at the algorithm analysis
of binary search. Do you see a similarity
here?

• Question: Is the height of the tree still Θ(log
N) if N is not a power of two? Why?

• Merging each level takes Θ(N) times because
at level i, we are merging 2i arrays, each with
N/2i elements. So we always merge a total of
N elements, even though they are not being
merged into the same array.

• Question: Verify this by calculating the
number of merged that occurs at the lowest
level, the first level and the second level.

nus.soc.cs1102b.week7

29

Running Time
MergeSort Θ(N log N)
Reverse Sorted? Θ(N log N)
Sorted? Θ(N log N)

• The running time of mergesort is hence Θ(N)
x Θ(log N) = Θ(N log N)

• The running time of mergesort is the same
even if the array is already sorted, or is
reverse sorted.

• Question: Verify this! Why?

Quick Sort

• The next sorting algorithm is Quicksort.

10/12/2002 8

nus.soc.cs1102b.week7

31

Idea

x
Partition

≥x x≤x

≥xx≤x
Sort

• The idea is to pick an element from the input,
called pivot, and use it to partition the array.
Let’s say we pick x. We partition the array,
such that those that are less than or equal to x
goes to the left hand side of x, and those that
are greater or equal to x goes to the right hand
side. After partition, we can be sure that x is
its rightful position in a sorted array. (i.e. the
position of x, if the array is sorted will be the
same as its position now.)

• Question: Why is x in its rightful position?
• We now recursively sort the left partition of

the array, and sort the right partition of the
array. After sorting the left and right
partition, the whole array is sorted.

• Important:
o The pivot may move from its initial

position after partition!
o The partition may not be of equal length!
o A partition can be empty! (e.g., if x

happen to be the maximum element)

nus.soc.cs1102b.week7

32

Let’s ignore FOR NOW
how to pick a pivot
how to partition

nus:soc:cs1102b:0203:s1:ooiwt:sort

33

Example

13 26 1 2 2724 38 15

2 26 13 24 271 38 15

2 26 13 24 271 38 15

• We pick 2 as a pivot.
• After partitioning, all elements less than 2

(there are only one in this case, element 1) go
to the left of 2, and all elements greater than 2
go to the right of 2.

• Recursively sort the left partition. Nothing to
do here, since it is already sorted.

• Recursively sort the right partition. Now, pick
24 as pivot.

10/12/2002 9

nus.soc.cs1102b.week7

34

Example

2 15 13 24 271 38 26

2 13 15 24 271 38 26

2 13 15 24 271 38 26

• Elements less than 24 (13, 15) goes to the left.
The rest of elements go to the right.

• Recursively sort the left partition (13,15)
• Recursively sort the right partition (27, 38,

26).
• Pick 38 as pivot.

nus.soc.cs1102b.week7

35

Example

2 13 15 24 271 26 38

2 13 15 24 261 27 38

• Left partition has (27,26), right partition is
empty.

• Recursively sort (26,27)
• DONE!

nus.soc.cs1102b.week7

36

Pseudocode
quickSort (a, low, high)

pivot = pickPivot (a, low, high)
i = partition(a,low, high, pivot)
quickSort(a, low, i-1)
quickSort(a, i+1,high)

• Here is the pseudo code, again we assume that
there exists a method called pickPivot and a
method called partition.

• pickPivot takes in low and high, which are
variables that tells us the portion of the array
we are sorting. It returns the value of the
pivot.

• partition takes in the array, the low and high
index, and the index of the pivot. It partitions
the array and returns the new index of the
pivot.

• We then recursively sort the left and right
partition.

nus.soc.cs1102b.week7

37

Idea: Partition

x

i j

• The idea of partition() is to scan from both
end of the array. Maintain two cursors i and j.
Move the cursors towards each other. i is
used to search for elements that are larger or
equal to x, and j is used to search for elements
that are smaller or equal to x.

10/12/2002 10

nus.soc.cs1102b.week7

38

Idea: Partition

x

a[i]≥x
a[j]≤x

≤x ≥x

• Stop when we encounter an item that is “out
of place” (red items)

nus.soc.cs1102b.week7

39

Idea: Partition

x≤x ≥x

• Swap them and continue.

nus.soc.cs1102b.week7

40

Idea: Partition

≤x ≥x

i

j

• Until i crosses with j

nus.soc.cs1102b.week7

41

Partitioning Algorithm
i = low
j = high
while TRUE

while a[i] < a[pivot] do i = i + 1
while a[j] > a[pivot] do j = j – 1
// a[i] ≥ a[pivot] ≥ a[j]
if i ≥ j then break
swap a[i] a[j]
i = i + 1
j = j - 1

• i and j are “cursors” into the array.
• scan i from left, stop when we encounter an

out-of-place element (an element that belongs
to the right side)

• scan j from right, stop when we encounter an
out-of-place element (an element that belongs
to the left side)

• swap those elements if i hasn’t cross j.
• Question: Trace through the algorithm using a

simple array.

10/12/2002 11

nus.soc.cs1102b.week7

43

Running Time
pickPivot Θ(1)
partition Θ(N)

• Let’s assume for now we use a very simple
method to pick a pivot, say, we pick the first
element. This can be done in Θ(1) time.

• partition requires scanning the whole array.
After we examine an element, we know which
partition this element belongs to. So we only
need to scan the whole array once. Hence,
running time for partition is Θ(N).

nus.soc.cs1102b.week7

44

Running Time: Balance
Partition

1

N/2N/2

N/4 N/4 N/4 N/4

1 1 1 1 1 1 1 1

N

: :

log2N

• Recall that partition does not guarantee that
we always divide the array into halves. So we
have to analyze different cases. Suppose
partition always split the array evenly, then
we get this picture, similar to merge sort.
There will be Θ(log N) levels of recursion.
Each level takes Θ(N). So the running time is
Θ(Nlog N).

nus.soc.cs1102b.week7

45

Running Time (Worst Case)

N-11

1 N-2 N

N

1 N-3

1 1

• Suppose we pick our pivot badly, and every
time we partition the array, one of the
partition is always empty. We end up with
this case. Note that now we have N levels.

• The running time is thus O(N2).

nus.soc.cs1102b.week7

47

Running Time

Θ (N log N)Average Case

Θ (N2)Worst Case

Θ (N log N)Best Case

• It turn out that balanced partition is the best
we can get. Quicksort, therefore, has the best
running time of Θ(NlogN) and worst case
running time of Θ(N2).

• Luckily, the average running time of
Quicksort is Θ(N log N). The analysis of this
is in the book, but is not covered in this
course.

10/12/2002 12

nus.soc.cs1102b.week7

48

Bad Pivot Picking
Always use the first
pickPivot(a, low, high)

return low

Bad Input
Input is sorted

• We have seen that picking a good pivot is
important. An example of bad pivot picking
is to always pick the first one. This behaves
badly if the input is sorted.

• Question: Why? Verify by a simple example.

nus.soc.cs1102b.week7

49

Better Pivot
Middle Element
pickPivot(a, low, high)

return (low + high)/2

Median of Three
pickPivot(a, low, high)

middle = (low + high)/2
return index of the median of a[low],

a[middle], a[high]

• A better way to pick a pivot is to pick the
middle element in the array. Another way,
used in the book, is to pick the median of the
first/last and middle element as the pivot.

nus.soc.cs1102b.week7

50

Small Arrays

x
Partition

≥x x≤x

≥xx≤x

Insertion
Sort

size<threshold?

• Since Quicksort has an overhead in picking
pivot and partitioning the array, it is not the
best algorithm for sorting small arrays, simple
(but asymptotically slower) algorithm may be
faster in this case.

• An enhancement to Quicksort is to check the
size of the partition: if it is smaller than a
threshold or cutoff value, we use insertion sort
to sort the partition and do not recur further.

Recap

10/12/2002 13

nus.soc.cs1102b.week7

52

Running Time

Worst CaseAverage CaseAlgorithm

O(N2)O(N2)InsertionSort

O (N log N)O(N log N)MergeSort

O (N2)O(N log N)QuickSort

nus.soc.cs1102b.week7

53

Question

Can we sort faster
than O(N log N)?

nus.soc.cs1102b.week7

54

Answer

No!
but…

nus.soc.cs1102b.week7

55

Lower Bound
InsertionSort, Merge Sort and Quick Sort
sort by comparing values only --
Comparison-based Sorting

It can be shown that the running time for
comparison-based sorting is Ω(N log N).

10/12/2002 14

nus.soc.cs1102b.week7

56

Linear-Time Sorting
If we assume certain knowledge about the
inputs, we can do better than O(N log N)

Example: Radix Sort, Counting Sort

• Radix Sort and Counting Sort are two linear
time sorting algorithms. They can achieve
linear time because they assume some
properties in the input. For example,
Counting Sort can be use to sort integers
within a given range.

nus.soc.cs1102b.week7

57

Readings
Required

[Weiss] ch8.1 – 8.3
[Weiss] ch8.5 – 8.6

Fun
http://www.scs.carleton.ca/~morin/misc/sortalg/

