Week 8: Trees

nus.soc.cs1102b.week8

Readings

o Required
= [Weiss] ch18.1 - 18.3
= [Weiss] ch18.4.4
= [Weiss] ch19.1 - 19.2
o Exercises
= [Weiss] 18.1, 18.2, 18.3, 18.9
= [Weiss] 19.1, 19.15 - 19.19

o Fun
= http://www.seanet.com/users/arsen/avitree.html

nus.soc.cs1102b.week8

Tree
internal
root nodes
leaves
Relationship

oA is parent of B and C
oB and C are children of A
oB and C are siblings

nus.soc.cs1102b.week8

9 October 2002

Relationship

o E is uncle/auntie of BC
oD is ancestor of ABCDE
oB is descendant of ABD (D)

nus.soc.cs1102b.week8 13

nus.soc.cs1102b.week8 14

Height

oLength of path to the deepest
leaf.
= height of A is 2

nus.soc.cs1102b.week8 15

Size

o Number of descendants.
msize of Ais 4

nus.soc.cs1102b.week8 16

Depth
o Length of path to the root.
mdepth of Ais 1
\depth

9 October 2002

A node is an ancestor of itself, and a descendant
of itsdlf.

Applications

o Family Tree
o Directory Tree
o Organization Chart

nus.soc.cs1102b.week8 17

Implementation

o “first-child, next-sibling”

class TreeNode

{
Object element;
TreeNode firstchild;
TreeNode nextSibling;
// Methods. .

}

nus.soc.cs1102b.week8 19

Implementation

O-®
©-®
O

nus.soc.cs1102b.week8 2

I Tree is recursivel!

9 October 2002

Binary Trees

nus.soc.cs1102b.week8 2

Just like atree, abinary treeisrecursivein

Binary Tree nature.

nus.soc.cs1102b.week8 2

An empty binary treeis just a reference to null.
An Empty Binary Tree

nus.soc.cs1102b.week8 E

We can add other members, such as a reference
to parent (see successor()) and size of the subtree

Implementation (see findKth()).

class BinaryNode

{
Object element;
BinaryNode left;
BinaryNode right;
// Methods..

class BinaryTree

{

BinaryNode root;
// Methods

nus.soc.cs1102b.week8 E3

9 October 2002 4

Size of a Tree

size(T)
if T is empty
return 0
else
return 1+size(T.left)+size(T.right)

nus.soc.cs1102b.week8 z

Full Binary Tree

nus.soc.cs1102b.week8 EY

Complete Binary Tree

nus.soc.cs1102b.week8 3

Height of a Tree
height(T)
if T is empty
return -1
else
return 1 + max (height(T.left), height(T.right))

9 October 2002

In afull binary tree, every node must have either
0 or 2 children.

A complete binary treeis afull binary tree where
all leaves are of the same depth.

Property

How many nodes
in a complete binary
tree of height h?

nus.soc.cs1102b.week8

Traversal

nus.soc.cs1102b.week8

Binary Tree

Post-order Traversal

postorder(T)
if T is not empty then
postorder(T.left)
postorder(T.right)
print T.element

nus.soc.cs1102b.week8

Pre-order traversal

preorder(T)
if T is not empty then
print T.element
preorder(T.left)
preorder(T.right)

nus.soc.cs1102b.week8

9 October 2002

Number of nodes = 2™* —1
Height is O(log N).

In-order Traversal

inorder(T)
if T is not empty then
inorder(T.left)
print T.element
inorder(T.right)

nus.soc.cs1102b.week8

Traversal Example

Pre-order: 1245893 607

nus.soc.cs1102b.week8

Traversal Example

In-order: 4 285916037

nus.soc.cs1102b.week8

Traversal Example
Post-order: 4895206731

9 October 2002

Level-order Traversal

(1
(2) 3)
@ B & @
® © ©

Level-order: 1234567890

nus.soc.cs1102b.week8

if T is empty return
Q = new Queue
Q.enq(T)
while Q is not empty
curr = Q.deq()
print curr.element
if T.left is not empty
Q.enq(curr.left)
if curr.right is not empty
Q.enq(curr.right)

(1)
(2] (3)
® @ ©
® © ©

nus.soc.cs1102b.week8 2

I levelOrder(T)

Binary Search Tree

nus.soc.cs1102b.week8 3

Dynamic Set Operation

o insert (key, data)

o delete (key)

o data = search (key)

o key = findMin ()

o key = findMax ()

o key = findKth (k)

o data[] = findBetween (low, high)
o successor (key)

o predecessor (key)

nus.soc.cs1102b.week8 “

9 October 2002

What do you get when you replace the queue
with a stack?

Running Time

Unsorted
Array/List

Sorted
Array

Sorted
LinkedList

insert

0(1)

o(N)

delete

O(N)

O(N)

find

o(N)

O(logN)

findMin

O(N)

o(1)

findMax

O(N)

o(1)

c.cs1102b.week8

Recap

Unsorted
array/list

Sorted
Array

Sorted
List

findKth

O(N)

0(1)

find
Between

O(N)

O(k + logN)

sucessor

O(N)

O(log N)

nus.soc.cs1102b.week8

o All operations O(log N)
o findBetween O(k + logN)

nus.soc.cs1102b.week8

a7

BST Property

<X

nus.soc.cs1102b.week8

I Binary Search Tree

9 October 2002

Variable k is the size of the output of
findBetween().

The BST property holds recursively, which
means the left sub-tree and right sub-tree must
be BST aswell.

Example

(1
(2) 3)
@ B & @

® @ ©

Not a BST

nus.soc.cs1102b.week8 £

What do you get when you traverse aBST inin
Example order?
(5
I (5)

1 8
© B@® & ©

@ @ @

A BST

nus.soc.cs1102b.week8 51

Finding Minimum Element

while T.leftis not empty
T =T.left
return T.element

nus.soc.cs1102b.week8 2

Finding xinT

while T is not empty
if T.element == x then
return T
else if T.elements < x then
T = T.left
else
T =T.right
return NOT FOUND

nus.soc.cs1102b.week8 3

9 October 2002 10

How to Insert 6?

()
(3) (8)
O @@ ©
e

insert(x,T)

if T is empty
return new BinaryNode(x) e
else if x < T.element

T.left = insert(x,T.left) 9 e

else if x > T.element

T.right = insert(x, T.right)
else o 9 0 9
ERROR!

return T 9

How to delete?

()
(3) (8)
O @@ ©
2 ©®

After Inserting 6
(5)
(3] (8)
2 ©

9 October 2002

Method insert(x,T) returns the new tree after
inserting x into T.

11

Method delete(x, T) returns the new tree after
delete(x,T): Case 1 deleting x from T.

if T has no children
if x == T.element

return empty tree @
else

NOT FOUND

nus.soc.cs1102b.week8 CY

delete(x,T): Case 2
if T has 1 child T.left
if x == T.element
return T.left
else

T.left = delete(x, T.left)
return T

nus.soc.cs1102b.weeks 61

delete(x,T): Case 2

if T has 1 child T.right
if x == T.element
return T.right
else
T.right = delete(x,T.right)
return T

nus.soc.cs1102b.weeks 62

delete(x,T): Case 3

()
(3) (8)
O @@ ©

2 ©

nus.soc.cs1102b.week8 6

9 October 2002 12

delete(x,T): Case 3

(&)
(3) (8)
O @@ ©

©

nus.soc.cs1102b.week8 6

else if x < T.element
T.left = delete(x, T.left)
else
T.right = delete(x, T.right)
return T

nus.soc.cs1102b.week8 3

Successor

O.
(3) 10
Q @ @ W
@ © @
®

nus.soc.cs1102b.week8 &

Successor(T)

// find next largest element
if T.rightis not empty
return findMin(T.right)
else if T is a left child
return parent of T
else T is a right child

let x be the first ancestor of T that is a left
child

return parent of x

nus.soc.cs1102b.week8 &

delete(x,T): Case 3
if T has two children
if x == T.element
T.element = findMin(T.right)
T.right = delete(T.element, T.right)

9 October 2002

Successor returns the next larger element in the
tree.

Successor(5) is 6.

Successor(4) is 5.

11 does not have a successor.

What happen if we cannot find such an x?
This means that there is no successor for T.
(i.e. T is the maximum).

We need areference to the parent for this
operation, so that we can traverse up the tree.
Second and third case can actualy be
combined into one.

Question: why is the algorithm on the left
correct? Think about it using the property of
BST.

13

findKth(T,K)

(8)
(3) 16
@ ® @

@ © @

© @ @
®

findKthSmallest(T,K)

let L be the size of T.left
ifK==L+1
return T.element
elseifK <=L
return findKthSmallest(T.left, K)
else
return findKthSmallest(T.right, K- L - 1)

findKthLargest(T,K)

let L be the size of T.right
ifK==L+1
return T.element
elseifK <=L
return findKthLargest(T.right, K)
else
return findKthLargest(T.left, K - L - 1)

Size of a Tree
1)
size o G
@ ©® @ O

9 October 2002

Observation:
if anode, T, has 6 elements in its right sub-
tree, we know that T isthe 7" largest
element in the tree.
The1%,2" .6 largest elements must bein
the right sub-tree.
The 9" largest element in T is the 2" largest
element in the left sub-treeof T. (9-6-1=
2)

14

Running Time
o find O(h)
o findMin O(h)
o insert O(h)
o delete O(h)
o successor O(h)
o findKth O(h)

When you insert nodes in increasing order, you
get a skewed tree. Therefore hisactualy in

BUT o0

9 October 2002 15

*

Return the node containing the successor of x. This nethod is part of
Bi narySearchTree class. | assune that BinaryNode has a nmenber call ed
parent. |If a node is the root, parent points to null, otherw se it
points to its parent. (Mdifying insert/delete to maintain the parent
pointer is a good exercise to help you understand Bi narySearchTree.)

* Ok ok % % % ¥ *

@aramx the itemwhose successor we want to search for.
@eturn the successor or null if no successor exists.

*

*/

public Bi naryNode successor(Conparable x)
{

find(x, root);

nul)

Bi naryNode t =
if (t.right !=
{

/1 right child is not enpty, just call findMn on the right

/1 child.

return findMn(t.right);

}
else // t has no right child

{

if (t.parent == null)

{
/1 t is the root and has no right child. so t nust be
/Il the largest. (i.e. no successor).
return nul |;

else if (t.parent.left == 1)

I/l t is a left child, return the parent.
return t.parent;

}
else if (t.parent.right ==1)

{
/Il t is aright child. find the first ancestor that is

/1 a left child.
Bi naryNode p = t.parent;
while (p.parent !'= null)

if (p.parent.left == p)

/1l pis the first ancestor that is a left child.

/] return its parent.
return p.parent;

}

el se

{

/'l proceed to the next ancestor.
p = p.parent;
}

}
/'l reach the root and found nothing. t nust be the |argest.
return null;

}
}

return null; // to make conpiler happy.

9 October 2002 16

