

9 October 2002

Week 10:
Hash Table

nus.soc.cs1102b.week10

6

Readings
p Required

n [Weiss] ch20

p Exercise
n 20.5

nus.soc.cs1102b.week10

9

Recap

O(log N)

O(log N)

O(log N)

O(log N)

O(log N)

BST

O(N)O(1)O(N)findMax

O(N)O(1)O(N)findMin

O(1) avgO(logN)O(N)Find

O(1) avgO(N)O(N)Delete

O(1) avgO(N)O(1)Insert

Hash
Table

Sorted
Array

Unsorted
Array/List

Hash Table is a data structure that support
the most common dynamic set operations
in constant time on average. It has many
many applications.

Direct Addressing
Table

Direct address table, is a simplified
version of hash table.

9 October 2002

nus.soc.cs1102b.week10

11

SBS Bus Problem
p find(N)

n Does bus service no. N exist?

p insert(N)
n Introduce a new bus service no. N

p delete(N)
n Remove bus service no. N

Consider the problem of maintaining
information about SBS (and TIBS) bus
services. We want to support three
operations find, insert and delete.

nus.soc.cs1102b.week10

12

SBS Bus Problem

:
:

false

true989

true2

false

0

1

Since bus numbers are integers between 0
– 999, we can create an array with 1000
booleans, initialized to false. If bus
service N exists, just set position N to
true. All find, delete, and insert can be
done in O(1) time.

nus.soc.cs1102b.week10

13

Direct Addressing Table

:

989

2

0

1

2, data

989, data

We can extends this idea, if we want to
maintain additional data about a bus. Use
an array of 1000 slots, each can reference
to an Object.

nus.soc.cs1102b.week10

14

Direct Addressing Table
insert (key, data)

a[key] = data

delete (key)
a[key] = null

search (key)
return a[key]

9 October 2002

nus.soc.cs1102b.week10

15

Restrictions
p Keys must be integer
p Range of keys must be small

This works only if keys are integers,
(cannot keep track of bus no NR10,
162M) and the range for the keys must be
small (if keys are phone numbers, you
need an array of size 10 million).

Hash Table

Hash Table is a generalization of direct
addressing table, to remove these
restrictions.

nus.soc.cs1102b.week10

17

Idea
p Map non-integer keys to integers
p Map large integers to smaller integers

HASHING

The idea is to map any keys to small
integers. We call this hashing. The
function that map keys to integers are call
hash function.

nus.soc.cs1102b.week10

18

Hash Table

:

17 66752378,
data

68744483,
data

66752378

68744483

h

h
974

h is a hash function. This example shows
how we map phone numbers to slot
numbers between 0 and 999.

9 October 2002

nus.soc.cs1102b.week10

19

Hash Table
insert (key, data)

a[h(key)] = data

delete (key)
a[h(key)] = null

search (key)
return a[h(key)]

Here is the pseudocode: notice that we
have replaced key with h(key).
(This does not work! See next slide)

nus.soc.cs1102b.week10

20

Hash Table

:

66752378,
data

68744483,
data

h67774385

But a hash function does not guarantee
that two different keys goes into different
slots! This is called a “collision”.

nus.soc.cs1102b.week10

21

Problem
p Two keys can have the same hash value

COLLISION

nus.soc.cs1102b.week10

22

Overview of This Lecture
p How to hash?
p How to resolve collision?

To implement hash table, we need to
answer two questions: how to define a
hash function and how to resolve
collision. They are important issues that
can affect the efficiency of hash table.

9 October 2002

Hash Functions

nus.soc.cs1102b.week10

24

Good Hash Functions

p appear random
p fast
pdepends on all information in the key
p keys that are close have hash values

that are far apart

nus.soc.cs1102b.week10

25

Perfect Hashing Function
p One-to-one mapping between keys and

hash values.
p Maybe possible if all keys are known

It is possible to have a perfect hash
function: where collision is guaranteed
not to occur.

nus.soc.cs1102b.week10

26

Uniform Hashing Function
p Distributes keys evenly

p Example
n if k are integers uniformly distributed among 0 and

X-1







=

∈

X
km

khash

Xk

)(

),0[

A uniform hashing function put a key into
a slot with equal probability.

9 October 2002

Hashing Integers

There are many ways to hash an integer.

nus.soc.cs1102b.week10

28

Division Method

p Mapped into table of m slots

mkkhash %)(=

The most popular one is the division
method: where we use the mod operator
(% in Java) to map an integer to values
between 0 and m-1 (inclusive).

nus.soc.cs1102b.week10

29

mod operator
p n mod m = remainder of n divided by m

nus.soc.cs1102b.week10

30

How to pick m?
p m = 16

p m = 10

p m = 13

The choice of m (or hash table size) is
important. If m is power of two, say 2n,
then key modulo of m is the same of last n
bits of the key.
If m is 10n, then our hash values is the last
n digit of keys.
We usually pick m to be a prime number
close to a power of two.

9 October 2002

nus.soc.cs1102b.week10

31

Rule
p Pick m to be a prime number not too

close to power of two.

nus.soc.cs1102b.week10

32

Multiplication Method
1.Multiply by a number 0 <= A < 1
2.Extract the fractional part

3.Multiply by m

 () kAkAmkhash −=)(

Another method is the multiplication
method. The golden ratio = (sqrt(5) – 1)/2
seems to be a good choice for A.

Hashing Strings

nus.soc.cs1102b.week10

34

Hashing of Strings
hash(s, m)

sum = 0
foreach character c in s

sum += c
return sum % m

To hash a string, we can just sum up all
ascii values of ecah characters.

9 October 2002

nus.soc.cs1102b.week10

35

hash(“Tan Ah Teck”, 11)
= (“T” + “a” + “n” + “ “ +

“A” + “h” + “ “ +
“T” + “e” + “c” + “k”) % 11

= (84 + 97 + 110 + 32 +
65 + 104 + 32 +
84 + 101 + 99 + 107) % 11

= 825 % 11
= 0

nus.soc.cs1102b.week10

36

Hashing of Strings
p Lee Chin Tan
p Chen Le Tian
p Chan Tin Lee

Does not depend on
position of characters!

This only depends on the characters that
are present in a string, not their positions.

nus.soc.cs1102b.week10

37

Hashing of Strings
hash(s)

sum = 0
foreach character c in s

sum += sum*37 + c
return sum % m

A better way is to “shift” the sum
everytime, so that the position affects the
calculated hash values. (Note: Java’s
String.hashCode() uses 31 instead of 37)

Collision
Resolution

9 October 2002

nus.soc.cs1102b.week10

39

Probability of Collision
p von Mises Paradox: "How many people

must be in a room before the probability
that some share a birthday, ignoring the
year and leap days, becomes at least 50
percent?"

nus.soc.cs1102b.week10

40

Probability of Collision
Q(n) = Probability of unique birthday for n people
=

P(n) = Probability of collisions for n people
= 1 – Q(n)

P(23) = 0.507

365
1365...

365
362

365
363

365
364 +−×× n

nus.soc.cs1102b.week10

41

Probability of Collision

Collision is very likely!

If we more than 23 keys into a table with
365 slots, more than half of the time we
get collision.

nus.soc.cs1102b.week10

42

Collision Resolutions
p Separate Chaining
p Linear Probing
p Quadratic Probing
p Double Hashing

9 October 2002

Separate Chaining

nus.soc.cs1102b.week10

44

Idea

0

m-1

k2,data

k1,data

k3,data

k4,data

Separate Chaining is the most straight
forward method, using a linked- list to
store the collided keys.

nus.soc.cs1102b.week10

45

Hash Table
insert (key, data)

insert data into the list a[h(key)]

delete (key)
delete data from the list a[h(key)]

search (key)
find key from the list a[h(key)]

Insertion can be done in O(1) time. But
deletion and search takes O(n) time where
n is the length of the list.

nus.soc.cs1102b.week10

46

Analysis
p n: number of keys
p m: number of slots
p L: load factor

p L = n/m
p Average length of list = L

9 October 2002

nus.soc.cs1102b.week10

47

Average Running Time
p Search O(1 + L)
p Insert O(1)
p Delete O(1 + L)

p If L is bounded by some constant, then all
three operations are O(1)

However, we can bound the length of the
chain by a constant.

nus.soc.cs1102b.week10

48

Rehashing
p To keep L bounded, we may need to

reconstruct the whole table

When ever the load factor exceeds the
bound, we need to rehash all keys into a
bigger table (increase m to reduce L)

Linear Probing

nus.soc.cs1102b.week10

50

Linear Probing

0

1

2

3

4

5

6

hash(k)
k mod 7

In linear probing, when we get a collision,
we scan through the table looking for an
empty slot (wrapping around when we
reach the last slot)

9 October 2002

nus.soc.cs1102b.week10

53

Insert 21

0 14

21

18

1

2

3

4

5

6

hash(k)
k mod 7

21 collides with 14. Look for the next
empty slot.

nus.soc.cs1102b.week10

54

Insert 1

0 14

21

1

18

1

2

3

4

5

6

hash(k)
k mod 7

1 collided with 21. Look for an empty
slot.

nus.soc.cs1102b.week10

55

Insert 35

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

nus.soc.cs1102b.week10

56

Find 35

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

FOUND 35

Find a values is similar to find. We probe
the array starting from the original hash
position (in this case hash(35) = 0)

9 October 2002

nus.soc.cs1102b.week10

57

Find 8

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

8 NOT FOUND

When probing, if we reach an empty slot,
we know that the value does not exist in
the hash table.

nus.soc.cs1102b.week10

58

Delete 21

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

To delete, we first find the value, and
remove it from the table.

nus.soc.cs1102b.week10

59

Find 35

0 14

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

35 NOT FOUND!

We cannot simply remove a value,
because it can affect find() !

nus.soc.cs1102b.week10

60

Problem

Cannot Delete!

9 October 2002

nus.soc.cs1102b.week10

61

How to delete?
p Lazy Deletion
p Three different states

n occupied
n occupied but mark as deleted
n empty

When a value is removed from linear
probed hash table, we just mark it as
“deleted”, instead of emptying the slot.

nus.soc.cs1102b.week10

62

Delete 21

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

X

nus.soc.cs1102b.week10

63

Find 35

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

X

FOUND 35

nus.soc.cs1102b.week10

64

Insert 15

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

X

When we insert, we can put a value into
either an empty slot, or a slot that has
been marked as deleted.

9 October 2002

nus.soc.cs1102b.week10

65

Insert 15

0 14

15

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

nus.soc.cs1102b.week10

67

Problem

Primary Clustering

The problem with linear probing is that it
can create many consecutive occupied
slots, increasing the running time of
find/insert/delete. This is called primary
clustering.

Quadratic Probing

An improvement to linear probing is
quadratic probing.

nus.soc.cs1102b.week10

69

Linear Probing

hash(key)
(hash(key) + 1) % m
(hash(key) + 2) % m
(hash(key) + 3) % m

:

The probe sequence for linear probing is
this.

9 October 2002

nus.soc.cs1102b.week10

70

Quadratic Probing

hash(key)
(hash(key) + 1) % m
(hash(key) + 4) % m
(hash(key) + 9) % m

:

For quadratic probing, we use this probe
sequence.

nus.soc.cs1102b.week10

71

Insert 3

0

3

18

1

2

3

4

5

6

hash(k)
k mod 7

nus.soc.cs1102b.week10

72

Insert 38

0 38

3

18

1

2

3

4

5

6

hash(k)
k mod 7

Notice that the calculation of +1 +4 +9 ..
starts from the original hash position. If
we were to start from the previous probe
position, the probe sequence should be +1
+3 +5 ..+ (2i -1).

(Q: Show mathematically that they are the
same)

nus.soc.cs1102b.week10

73

Theorem
p If L < 0.5, and m is prime, then we can

always find an empty slot if table is not
full.

How can we be sure that quadratic
probing always terminate? Insert 12 into
the previous example, follow by 10. See
what happen?

9 October 2002

nus.soc.cs1102b.week10

74

Problems
p If two keys have the same initial position,

their probe sequence is the same.
p Secondary clustering.

Using quadratic probing requires more
careful design of hash table. It also
suffers from a (less minor) problem – if
two keys has the same initial position,
they have the same probe sequence.

Double Hashing

Double hashing uses a second hash
function to calculate the probe sequence,
so unless two keys have the same hash
values for both hash functions, they have
different probe sequences.

nus.soc.cs1102b.week10

76

Double Hashing

hash(key)
(hash(key) + hash2(key)) % m
(hash(key) + 2*hash2(key)) % m
(hash(key) + 3*hash2(key)) % m

:

hash2(key) is the secondary hash function.

nus.soc.cs1102b.week10

77

Insert 21

0 14

21

18

1

2

3

4

5

6

hash(k)
k mod 7

hash2(k)
k mod 5

We use k%5 as the secondary hash
function in this example. Can you give
two keys that have the same probe
sequence in this example?

If we insert 21, the probe sequence is the
same as linear probing.

9 October 2002

nus.soc.cs1102b.week10

78

Insert 4

0 14

21

18

4

1

2

3

4

5

6

hash(k)
k mod 7

hash2(k)
k mod 5

If we insert 4, the probe sequence is 4, 8,
12 … (from the first probe position) or 4,
4, 4, … (from the previous probe
position).

nus.soc.cs1102b.week10

79

Insert 35

0 14

21

18

4

1

2

3

4

5

6

hash(k)
k mod 7

hash2(k)
k mod 5

But if we insert 35, the probe sequence is
0, 0, 0, …
What is wrong?

nus.soc.cs1102b.week10

80

Warning
p Secondary hash function must not

evaluate to 0 !

p Change hash2(key) to

hash2(key) = 5 – (key % 5)

nus.soc.cs1102b.week10

81

Good Collision Resolution
p Minimize clustering
p Can find an empty slot if L is small
p Give different probe sequence when initial

probe is the same
p Fast

