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Week 10: 
Hash Table

 

 

nus.soc.cs1102b.week10

6

Readings
p Required

n [Weiss] ch20

p Exercise
n 20.5
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Recap

O(log N)

O(log N)

O(log N)

O(log N)

O(log N)

BST

O(N)O(1)O(N)findMax

O(N)O(1)O(N)findMin

O(1) avgO(logN)O(N)Find

O(1) avgO(N)O(N)Delete

O(1) avgO(N)O(1)Insert

Hash
Table

Sorted
Array

Unsorted
Array/List

 

Hash Table is a data structure that support 
the most common dynamic set operations 
in constant time on average.  It has many 
many applications. 
 

Direct Addressing
Table

 

Direct address table, is a simplified 
version of hash table. 
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SBS Bus Problem
p find(N)

n Does bus service no. N exist?

p insert(N)
n Introduce a new bus service no. N

p delete(N)
n Remove bus service no. N 

 

Consider the problem of maintaining 
information about SBS (and TIBS) bus 
services.  We want to support three 
operations find, insert and delete. 
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SBS Bus Problem

:
:

false

true989

true2

false

0

1

 

Since bus numbers are integers between 0 
– 999, we can create an array with 1000 
booleans, initialized to false.  If bus 
service N exists, just set position N to 
true.  All find, delete, and insert can be 
done in O(1) time. 
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Direct Addressing Table

:

989

2

0

1

2, data

989, data

 

We can extends this idea, if we want to 
maintain additional data about a bus.  Use 
an array of 1000 slots, each can reference 
to an Object. 
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Direct Addressing Table
insert (key, data)

a[key] = data

delete (key)
a[key] = null

search (key)
return a[key]
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Restrictions
p Keys must be integer
p Range of keys must be small

 

This works only if keys are integers, 
(cannot keep track of bus no NR10, 
162M) and the range for the keys must be 
small (if keys are phone numbers, you 
need an array of size 10 million). 
 

Hash Table

 

Hash Table is a generalization of direct 
addressing table, to remove these 
restrictions. 
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Idea
p Map non-integer keys to integers
p Map large integers to smaller integers

HASHING

 

The idea is to map any keys to small 
integers.  We call this hashing.  The 
function that map keys to integers are call 
hash function. 
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Hash Table

:

17 66752378,
data

68744483,
data

66752378

68744483

h

h
974

 

h is a hash function.  This example shows 
how we map phone numbers to slot 
numbers between 0 and 999.  
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Hash Table
insert (key, data)

a[ h(key) ] = data

delete (key)
a[ h(key) ] = null

search (key)
return a[ h(key) ]

 

Here is the pseudocode: notice that we 
have replaced key with h(key). 
(This does not work! See next slide) 
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Hash Table

:

66752378,
data

68744483,
data

h67774385

 

But a hash function does not guarantee 
that two different keys goes into different 
slots!  This is called a “collision”. 
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Problem
p Two keys can have the same hash value

COLLISION
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Overview of This Lecture
p How to hash?
p How to resolve collision?

 

To implement hash table, we need to 
answer two questions: how to define a 
hash function and how to resolve 
collision.  They are important issues that 
can affect the efficiency of hash table. 
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Hash Functions
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Good Hash Functions

p appear random
p fast
pdepends on all information in the key
p keys that are close have hash values 

that are far apart
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Perfect Hashing Function
p One-to-one mapping between keys and 

hash values.
p Maybe possible if all keys are known

 

It is possible to have a perfect hash 
function: where collision is guaranteed 
not to occur. 
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Uniform Hashing Function
p Distributes keys evenly

p Example
n if k are integers uniformly distributed among 0 and 

X-1







=

∈

X
km

khash

Xk

)(

),0[

 

A uniform hashing function put a key into 
a slot with equal probability. 
 



 

9 October 2002 

Hashing Integers

 

There are many ways to hash an integer. 
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Division Method

p Mapped into table of m slots

mkkhash %)( =

 

The most popular one is the division 
method: where we use the mod operator 
(% in Java) to map an integer to values 
between 0 and m-1 (inclusive). 
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mod operator
p n mod m = remainder of n divided by m
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How to pick m?
p m = 16

p m = 10

p m = 13

 

The choice of m (or hash table size) is 
important. If m is power of two, say 2n, 
then key modulo of m is the same of last n 
bits of the key. 
If m is 10n, then our hash values is the last 
n digit of keys. 
We usually pick m to be a prime number 
close to a power of two. 
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Rule
p Pick m to be a prime number not too

close to power of two.
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Multiplication Method
1.Multiply by a number 0 <= A < 1
2.Extract the fractional part

3.Multiply by m

 ( ) kAkAmkhash −=)(

 

Another method is the multiplication 
method.  The golden ratio = (sqrt(5) – 1)/2 
seems to be a good choice for A. 
 

Hashing Strings
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Hashing of Strings
hash(s, m)

sum = 0
foreach character c in s

sum += c
return sum % m

 

To hash a string, we can just sum up all 
ascii values of ecah characters. 
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hash(“Tan Ah Teck”, 11)
= (“T” + “a” + “n” + “  “ +

“A” + “h” + “  “ +
“T” + “e” + “c” + “k”) % 11

= (84 + 97 + 110 + 32 +
65 + 104 + 32 +
84 + 101 + 99 + 107) % 11

= 825 % 11
= 0
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Hashing of Strings
p Lee Chin Tan
p Chen Le Tian
p Chan Tin Lee

Does not depend on 
position of characters!

 

This only depends on the characters that 
are present in a string, not their positions. 
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Hashing of Strings
hash(s)

sum = 0
foreach character c in s

sum += sum*37 + c
return sum % m

 

A better way is to “shift” the sum 
everytime, so that the position affects the 
calculated hash values.  (Note: Java’s 
String.hashCode( ) uses 31 instead of 37) 
 

Collision 
Resolution
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Probability of Collision
p von Mises Paradox: "How many people 

must be in a room before the probability 
that some share a birthday, ignoring the 
year and leap days, becomes at least 50 
percent?" 
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Probability of Collision
Q(n) = Probability of unique birthday for n people
=

P(n) = Probability of collisions for n people
= 1 – Q(n)

P(23) = 0.507

365
1365...

365
362

365
363

365
364 +−×× n
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Probability of Collision

Collision is very likely!

 

If we more than 23 keys into a table with 
365 slots, more than half of the time we 
get collision. 
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Collision Resolutions
p Separate Chaining 
p Linear Probing
p Quadratic Probing
p Double Hashing
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Separate Chaining
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Idea

0

m-1

k2,data

k1,data

k3,data

k4,data

 

Separate Chaining is the most straight 
forward method, using a linked- list to 
store the collided keys. 
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Hash Table
insert (key, data)

insert data into the list a[ h(key) ]

delete (key)
delete data from the list a[ h(key) ]

search (key)
find key from the list a[ h(key) ]

 

Insertion can be done in O(1) time.  But 
deletion and search takes O(n) time where 
n is the length of the list. 
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Analysis
p n:  number of keys
p m: number of slots
p L:  load factor

p L = n/m
p Average length of list = L
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Average Running Time
p Search O(1 + L)
p Insert  O(1)
p Delete  O(1 + L)

p If L is bounded by some constant, then all 
three operations are O(1)

 

However, we can bound the length of the 
chain by a constant. 
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Rehashing
p To keep L bounded, we may need to 

reconstruct the whole table

 

When ever the load factor exceeds the 
bound, we need to rehash all keys into a 
bigger table (increase m to reduce L) 
 

Linear Probing
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Linear Probing

0

1

2

3

4

5

6

hash(k)
k mod 7

 

In linear probing, when we get a collision, 
we scan through the table looking for an 
empty slot (wrapping around when we 
reach the last slot) 
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Insert 21

0 14

21

18

1

2

3

4

5

6

hash(k)
k mod 7

 

21 collides with 14.  Look for the next 
empty slot. 
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Insert 1

0 14

21

1

18

1

2

3

4

5

6

hash(k)
k mod 7

 

1 collided with 21.  Look for an empty 
slot. 
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Insert 35

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7
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Find 35

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

FOUND 35

 

Find a values is similar to find.  We probe 
the array starting from the original hash 
position (in this case hash(35) = 0) 
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Find 8

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

8 NOT FOUND

 

When probing, if we reach an empty slot, 
we know that the value does not exist in 
the hash table. 
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Delete 21

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

 

To delete, we first find the value, and 
remove it from the table. 
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Find 35

0 14

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

35 NOT FOUND!

 

We cannot simply remove a value, 
because it can affect find( ) ! 
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Problem

Cannot Delete!
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How to delete?
p Lazy Deletion
p Three different states

n occupied
n occupied but mark as deleted
n empty

 

When a value is removed from linear 
probed hash table, we just mark it as 
“deleted”, instead of emptying the slot. 
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Delete 21

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

X
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Find 35

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

X

FOUND 35

 

 

nus.soc.cs1102b.week10

64

Insert 15

0 14

21

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7

X

 

When we insert, we can put a value into 
either an empty slot, or a slot that has 
been marked as deleted. 
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Insert 15

0 14

15

1

35

18

1

2

3

4

5

6

hash(k)
k mod 7
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Problem

Primary Clustering

 

The problem with linear probing is that it 
can create many consecutive occupied 
slots, increasing the running time of 
find/insert/delete.  This is called primary 
clustering. 
 

Quadratic Probing

 

An improvement to linear probing is 
quadratic probing. 
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Linear Probing

hash(key)
( hash(key) + 1 ) % m
( hash(key) + 2 ) % m
( hash(key) + 3 ) % m

:

 

The probe sequence for linear probing is 
this. 
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Quadratic Probing

hash(key)
( hash(key) + 1 ) % m
( hash(key) + 4 ) % m
( hash(key) + 9 ) % m

:

 

For quadratic probing, we use this probe 
sequence. 
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Insert 3

0

3

18

1

2

3

4

5

6

hash(k)
k mod 7
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Insert 38

0 38

3

18

1

2

3

4

5

6

hash(k)
k mod 7

 

Notice that the calculation of +1 +4 +9 .. 
starts from the original hash position.  If 
we were to start from the previous probe 
position, the probe sequence should be +1 
+3 +5 ..+ (2i -1).   
 
(Q: Show mathematically that they are the 
same) 
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Theorem
p If L < 0.5, and m is prime, then we can 

always find an empty slot if table is not 
full.

 

How can we be sure that quadratic 
probing always terminate? Insert 12 into 
the previous example, follow by 10. See 
what happen?  
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Problems
p If two keys have the same initial position, 

their probe sequence is the same.
p Secondary clustering.

 

Using quadratic probing requires more 
careful design of hash table.  It also 
suffers from a (less minor) problem – if 
two keys has the same initial position, 
they have the same probe sequence. 
 

Double Hashing

 

Double hashing uses a second hash 
function to calculate the probe sequence, 
so unless two keys have the same hash 
values for both hash functions, they have 
different probe sequences. 
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Double Hashing

hash(key)
(hash(key) + hash2(key)) % m
(hash(key) + 2*hash2(key)) % m
(hash(key) + 3*hash2(key)) % m

:

 

hash2(key) is the secondary hash function.  
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Insert 21

0 14

21

18

1

2

3

4

5

6

hash(k)
k mod 7

hash2(k)
k mod 5

 

We use k%5 as the secondary hash 
function in this example.  Can you give 
two keys that have the same probe 
sequence in this example? 
 
If we insert 21, the probe sequence is the 
same as linear probing. 
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Insert 4

0 14

21

18

4

1

2

3

4

5

6

hash(k)
k mod 7

hash2(k)
k mod 5

 

If we insert 4, the probe sequence is 4, 8, 
12 … (from the first probe position) or 4, 
4, 4, … (from the previous probe 
position). 
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Insert 35

0 14

21

18

4

1

2

3

4

5

6

hash(k)
k mod 7

hash2(k)
k mod 5

 

But if we insert 35, the probe sequence is 
0, 0, 0, … 
What is wrong? 
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Warning
p Secondary hash function must not 

evaluate to 0  !

p Change hash2(key) to

hash2(key) = 5 – (key % 5)
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Good Collision Resolution
p Minimize clustering
p Can find an empty slot if L is small
p Give different probe sequence when initial 

probe is the same
p Fast

 

 

 


