
 

Week 12:
Graphs
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Readings
Optional

[Weiss] ch20
[CLR] ch5.4

Exercise
20.5

[CLR]: Cormen, Leiserson and Rivest, “Introduction 
to Algorithms” QA76.6 Crm RBR
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Graph

vertex
edge

 

A graph consists of a set of vertices and a set 
of edges between the vertices.  In a tree, 
there is a unique path between any two 
nodes.  In a graph, there may be more than 
one path between two nodes.  
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Weighted Graph

5

3

-2
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1

0

 

In a weighted graph, edges have a weight (or 
cost) associated with it.  Not all weights are 
labeled in this slides for simplicity. 
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Undirected Graph

 

In an undirected graph, edges are 
bidirectional.  
 

Complete Graph

 

In a complete graph, a node is connected to 
every other nodes.  The number of edges in 
a complete graph is n(n-1)/2, where n is the 
number of vertices.  (Why is it so?).  
Therefore, the number of edges is O(n2). 
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Path

a

c

d e

b

 

A path is a sequence of vertices v0, v1, v2, .. 
vn where there is an edge between vi and vi+1.  
The length of a path p is the number of 
edges in p. 
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Cycle

a

c

g

d e

b

f

 

A path v0, v1, v2, … vn is a cycle if vn = v0 
and its length is at least 1.  Note that the 
definition of path and cycle applies to 
directed graph as well. 
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Disconnected Graph

 

In a connected graph, there is a path 
between every nodes.  A graph does not 
have to be connected.  The above graph has 
two connected components. 
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Formally

A graph G = (V, E, w), where 
V is the set of vertices
E is the set of edges
w is the weight function
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Example
V = { a, b, c }
E = { (a,b), (c,b), (a,c) }
w = { ((a,b), 4), ((c, b), 1), ((a,c),-3) }

a

bc

4

1

-3
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Adjacent Vertices
adj(v) = set of vertices adjacent to v
adj(a) = {b, c}
adj(b) = {}
adj(c) = {b}

∑v |adj(v)| = |E|

adj(v): Neighbours of v

a

bc

4

1

-3

 

Interested students may refer to [CLR] Sec 
5.4 for more precise definition of graph 
terminologies. 
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Applications
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Travel Planning

city
direct 
flight

5

cost

 

What is the shortest way to travel between A 
and B? 
 
“SHORTEST PATH PROBLEM” 
 
How to mimimize the cost of visiting n 
cities such that we visit each city exactly 
once, and finishing at the city where we start 
from? 
 
“TRAVELLING SALESMAN PROBLEM” 
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Internet

computer
network
link

 

What is the shortest route to send a packet 
from A to B? 
 
“Shortest Path Problem” 
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The Web

web page
web link

 

Which web pages are important? 
 
Which group of web pages are likely to be 
of the same topic? 
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Module Selection

module
prerequisite 

 

Find a sequence of modules to take such that 
the prerequisite requirements are satisfied. 
 
“Topological Sort” 
 
This is an example of a directed, acyclic 
graph, or dag for short. 
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SDU Matchmaking

participant

compatible

 

How to match up as many pairs as possible? 
 
“Maximum matching problem”  
 
This is an example of a bipartite graph.  A 
bipartite graph is a graph where we can 
partition the vertices into two sets V and U.  
No edges exists between two vertices in the 
same partition.   
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Terrorist

suspects
knows

 

Who are the important figures in a terrorist 
network? 
 
http://www.orgnet.com/hijackers.html 
 

nus.soc.cs1102b.week10

37

Other Applications
Biology
VLSI Layout
Vehicle Routing
Job Scheduling
Facility Location

:
:
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Implementation
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Adjacency Matrix
double vertex[][];

1

23

4

1

-3

∞1∞3

∞∞∞2

-34∞1

321

 

This requires O(N2) memory, and is not 
suitable for sparse graph.  (Only 1/3 of the 
matrix in this example contains useful 
information). 
 
How about undirected graph? How would 
you represent it? 
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Adjacency List
EdgeList vertex[];

1

23

4

1

-3

3

2

1 3 -3 2 4

2 1

neighbour cost

 

This requires only O(V + E) memory.  
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Vertex Map

3

2

1 3 -3 2 4

2 1

hash
table

Clementi

 

Since vertices are usually identified by 
names (person, city), not integers, we can 
use a hash table to map names to indices in 
our adjacency list/matrix. 
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Breadth-First 
Search
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Breadth-First Search

A

C

D

B

EF

 

Given a source node, we like to start 
searching from that source.  The idea of BFS 
is that we visit all nodes that are of distance i 
away from the source before we visits nodes 
that are of distance i+1 away from the 
source.  The order of searches is not unique 
and depends on the order of neighbours 
visited. 
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Breadth-First Search

A

C

D

B

EF
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Breadth-First Search

0

1

2

2

23

 

After BFS, we get a tree rooted at the source 
node.  Edges in the tree are edges that we 
followed during searching.  We call this 
BFS tree.  Vertices in the figure are labeled 
with their distance from the source.   
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BFS(v)
Q = new Queue
Q.enq (v)
while Q is not empty

curr = Q.deq()
if curr is not visited

print curr
mark curr as visited
foreach w in adj(curr)

if w is not visited
Q.enq(w)

A

C

D

B

EF

 

The pseudocode for BFS is very similar to 
level-order traversal of trees.  The major 
difference is that, now we may visit a vertex 
twice (since unlike a tree, there may be more 
than one path between two vertices).  
Therefore, we need to remember which 
vertices we have visited before.   
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Building the BFS Tree
Q = new Queue
Q.enq (v)

v.parent = null
while Q is not empty

curr = Q.deq()
if curr is not visited

mark curr as visited
foreach w in adj(curr)

if w is not visited
w.parent = curr
Q.enq(w)

A

C

D

B

EF

 

We can represent the BFS tree by 
maintaining the parent of a vertex during 
searching.  (This is called “prev” in the 
textbook) 
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Calculating Level
Q = new Queue
Q.enq (v)

v.level = 0
while Q is not empty

curr = Q.deq()
if curr is not visited

mark curr as visited
foreach w in adj(curr)

if w is not visited
w.level = curr.level + 1
Q.enq(w)

A

C

D

B

EF

 

Similarly, we can maintain the distance of a 
vertex from the source.  (level is equivalent 
to dist in the textbook) 
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Search All Vertices
Search(G)

foreach vertex v
mark v as unvisited

foreach vertex v
if v is not visited

BFS(v)

 

BFS guarantees that if there is a path to a 
vertex v from the source, we can always 
visit v.  But since some vertices maybe 
unreachable from the source, we can call 
BFS multiple times from multiple sources. 
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Running Time
Q = new Queue
Q.enq (v)
while Q is not empty
curr = Q.deq()
if curr is not visited
print curr
mark curr as visited
foreach w in adj(curr)

if w is not visited
Q.enq(w)

∑
∈

Θ=Θ
Vw

Ewadj )())((

Main Loop

Initialization

)(VΘ

Total Running Time

)( EV +Θ

 

Each vertex is enqueued exactly once.  The 
for loop runs through all vertices in the 
adjacency list.  Therefore the running time is 
O(∑v adj(v)) = O(E). 
 
(Note that technically, it should be O(|E|), 
but we will abuse the notation for E and V 
to mean the number of edges and vertices as 
well). 
 

Depth-First 
Search
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Depth-First Search

A

C

D

B

EF

 

Idea for DFS is to go as deep as possible.  
Whenever there is an outgoing edge, we 
follow it. 
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Depth-First Search

A

C

D

B

EF
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Depth-First Search

A

C

D

B

EF
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DFS(v)
S = new Stack
S.push (v)
while S is not empty

curr = S.pop()
if curr is not visited 

print curr
mark curr as visited
foreach w in adj(v)

if w is not visited
S.push(w)

A

C

D

B

EF

 

In DFS, we use a stack to “remember” 
where to backtrack to.  
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Recursive Version: DFS(v)
print v
marked v as visited
foreach w in adj(v)

if w is not visited
DFS(w)

A

C

D

B

EF

 

We can write DFS() recursively.  (Trace 
through this code using the example above!) 
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Search All Vertices
Search(G)

foreach vertex v
mark v as unvisited

foreach vertex v
if v is not visited

DFS(v)

 

Just like BFS, we may want to call DFS() 
from multiple vertices to make sure that we 
visit every vertex in the graph. 
 
The running time for DFS is O(V + E).  
(Why?) 
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Two more times!

A

D

H

C

GF

E

B

 

For practice, trace through the above graph 
using BFS and DFS. 
 

Single-Source
Shortest Path
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Definition
A path on a graph G is a sequence of vertices v0, 
v1, v2, .. vn where (vi,vi+1)∈ E

The cost of a path is the sum of the cost of all 
edges in the path.

A

C

D

B

EF

 

In Single-source shortest path problem, we 
are given a vertex v, and we want to find the 
path with minimum cost to every other 
vertex.  The term “distance” and “length” of 
the path will be used interchangeably with 
the “cost” of a path. 
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Unweighted Shortest Path

A

C

D

B

EF

 

If a graph is unweighted, we can treat the 
cost of each edge as 1. 
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ShortestPath(s)

Run BFS(s)
w.level: shortest distance from s
w.parent:  shortest path from s

 

The shortest path for an unweighted graph 
can be found using BFS.  To get the shortest 
path from a source s to a vertex v, we just 
trace back the parent pointer from v back to 
s.  The number of edges in the path is given 
by the level of a vertex in the BFS tree.   
(Why does BFS guarantee that the paths are 
shortest?) 
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Positive Weighted 
Shortest Path

A

C

D

B

EF

5

51

2

3

1

3
1

4

 

Next, we look at another version of the 
problem, where the edges have positive cost 
function. 
 

nus.soc.cs1102b.week10

77

BFS(s) does not work
Must keep track of smallest distance so 
far.

If we found a new, shorter path, update 
the distance.

 

Convince yourself the BFS does not solve 
our shortest path problem here.  Distance 
here refers to the cost of the path, not the 
number of edges as in BFS. 
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Idea 1

10

6
2

8

s w

v

 

In the following figures, we label a node 
with the shortest distance discovered so far 
from the source.  Here is the basic idea that 
will help us solve our shortest path problem.  
If the current shortest distance from s to w is 
10, to v is 6, and the cost of edge (v,w) is 2, 
then we have discovered a shorter path from 
s to w (through v). 
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Definition
distance(v) : shortest distance so far from 

s to v

parent(v) : previous node on the shortest 
path so far from s to v

cost(u, v) : the cost of edge from u to v
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Example

10

6
2

8

s w

v
distance(w) = 8

cost(v,w) = 2

parent(w) = v

 

 

Relax(v,w)
d = distance(v) + cost(v,w)
if distance(w) > d then

distance(w) = d
parent(w) = v

10

6
2

10
s w

v

10

6
2

8
s w

v

 

We now look at the pseudocode for a 
RELAX operation, based on our first idea.   
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Idea 2

≥6

6
≥6

≥6

≥6

≥6
≥6

v

w

 

The second idea is that if we know the 
shortest distance so far from w to v is 6, and 
the shortest distances so far from w to other 
nodes are bigger or equal to 6, then there 
cannot be a shorter path to v through the 
other white nodes.  (This is only true if costs 
are positive!) 
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Dijkstra’s Algorithm

A

C

D

B

EF
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51
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1

3
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Now we are ready to describe our single 
source, shortest path algorithm for graphs 
with positive weights.  The algorithm is 
called Dijkstra’s algorithm.   
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Dijkstra’s Algorithm

0

5

8

8
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1
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Dijkstra’s Algorithm
color all vertices yellow
foreach vertex w

distance(w) = INFINITY
distance(s) = 0
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Dijkstra’s Algorithm
while there are yellow vertices

v = yellow vertex with min distance(v)
color v red
foreach neighbour w of v

relax(v,w)
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Running Time
color all vertices yellow
foreach vertex w

distance(w) = INFINITY
distance(s) = 0
while there are yellow vertices

v = yellow vertex with min distance(v)
color v red
foreach neighbour w of v

relax(v,w)

O(V2 + E)

 

Initialization takes O(V) time.  Picking the 
vertex with minimum distance(v) can take 
O(V) time, and relaxing the neighbours take 
O(adj(v)) time.  The sum of these over all 
vertices is O(V2+E).  We can improve this, 
if we can improve the running time for 
picking the minimum. 
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Using Priority Queue
foreach vertex w

distance(w) = INFINITY
distance(s) = 0
pq = new PriorityQueue(V)

while pq is not empty
v = pq.deleteMin()
foreach neighbour w of v

relax(v,w) 

 

Since priority queue supports efficient 
minimum picking operation, we can use a 
priority queue here to improve the running 
time.   Note that we no longer color vertices 
here.  Yellow vertices in the previous 
pseudocode are now vertices that are in the 
priority queue.   
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Initialization  O(V)
foreach vertex w

distance(w) = INFINITY
distance(s) = 0
pq = new PriorityQueue(V)

 

Initialization still takes O(V) 
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Main Loop
while pq is not empty

v = pq.deleteMin()
foreach neighbour w of v

relax(v,w) 

 

But we have to be more careful with the 
analysis of the main loop.  We know that 
each deleteMin() takes O(log V) time.  But 
relax(v,w) is no longer O(1). 
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Main Loop
while pq is not empty

v = pq.deleteMin()
foreach neighbour w of v

d = distance(v) + cost(v,w)
if distance(w) > d then

// distance(w) = d
pq.decreaseKey(w, d)
parent(w) = v

O((V+E) log V)

 

If we expand the code for relax(), we will 
see that we cannot simply update 
distance(v), since distance(v) is a key in pq.  
Here, we use an operation called 
decreaseKey() that updates the key value of 
distance(v) in the priority queue.  
decreaseKey() can be done in O(log V) time.  
(How?). 
 
The running time for this new version of 
Dijkstra’s algorithm takes O((V+E)log V) 
time. 
 

nus.soc.cs1102b.week10

101

cost(u,v) < 0?

A

C

D

B

EF

-5

51

2

3

1

3
1

-4

 

Dijkstra’s does not work for graphs with 
negative weights.  There are two problems. 
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Problem 1

10

6
≥6

≥6

≥6

≥6
≥6

v

w

-5

 

Even if we know the shortest path from w to 
v is 6, there may be a shorter path through 
the other white nodes as the weight can be 
negative. 
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Problem 2

A

C

D

B

EF
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If a cycle with negative weights (1 + 3 – 5 = 
-1) exists in the graph, the shortest path is 
not well defined, as we can keep going in 
the negative weighed cycle to get a path 
with smaller cost.   
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Basic Idea
foreach edge (u,v)

relax(u , v)

We will get the shortest paths of length 1 
between s and all other vertices.

Repeat the above pseudocode |V|-1 
times.

 

Here is the idea behind the algorithm for 
solving the general case shortest path 
problem. 
 
We repeat |V| - 1 times since a path between 
two vertices has at most |V| - 1 edges. (Note 
that we consider only simple path, i.e., path 
with no cycles.) 
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Bellman-Ford Algorithm

0

8

8

8

88

5

31

-2

-3

1

3
1
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The algorithm to solve this is called 
Bellman-Ford Algorithm.  Trace through the 
pseudocode given below, and check your 
answer against the next slide. 
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Bellman-Ford Algorithm

0

5

1

2

3-1
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31
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1
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Bellman-Ford Algorithm
do |V|-1 times

foreach edge (u,v) 
relax(u,v)

// check for negative weight cycle
foreach edge (u,v)

if distance(u) < distance(v) + cost(v,u)
ERROR: has negative cycle

 

I claim that the running time for Bellman-
Ford algorithm is O(VE). Verify this claim. 
 

 


