

Week 12:
Graphs

nus.soc.cs1102b.week10

8

Readings
Optional

[Weiss] ch20
[CLR] ch5.4

Exercise
20.5

[CLR]: Cormen, Leiserson and Rivest, “Introduction
to Algorithms” QA76.6 Crm RBR

nus.soc.cs1102b.week10

11

Graph

vertex
edge

A graph consists of a set of vertices and a set
of edges between the vertices. In a tree,
there is a unique path between any two
nodes. In a graph, there may be more than
one path between two nodes.

nus.soc.cs1102b.week10

12

Weighted Graph

5

3

-2

5

1

0

In a weighted graph, edges have a weight (or
cost) associated with it. Not all weights are
labeled in this slides for simplicity.

24 October 2002

nus.soc.cs1102b.week10

13

Undirected Graph

In an undirected graph, edges are
bidirectional.

Complete Graph

In a complete graph, a node is connected to
every other nodes. The number of edges in
a complete graph is n(n-1)/2, where n is the
number of vertices. (Why is it so?).
Therefore, the number of edges is O(n2).

nus.soc.cs1102b.week10

15

Path

a

c

d e

b

A path is a sequence of vertices v0, v1, v2, ..
vn where there is an edge between vi and vi+1.
The length of a path p is the number of
edges in p.

nus.soc.cs1102b.week10

16

Cycle

a

c

g

d e

b

f

A path v0, v1, v2, … vn is a cycle if vn = v0
and its length is at least 1. Note that the
definition of path and cycle applies to
directed graph as well.

24 October 2002

nus.soc.cs1102b.week10

17

Disconnected Graph

In a connected graph, there is a path
between every nodes. A graph does not
have to be connected. The above graph has
two connected components.

nus.soc.cs1102b.week10

18

Formally

A graph G = (V, E, w), where
V is the set of vertices
E is the set of edges
w is the weight function

nus.soc.cs1102b.week10

19

Example
V = { a, b, c }
E = { (a,b), (c,b), (a,c) }
w = { ((a,b), 4), ((c, b), 1), ((a,c),-3) }

a

bc

4

1

-3

nus.soc.cs1102b.week10

20

Adjacent Vertices
adj(v) = set of vertices adjacent to v
adj(a) = {b, c}
adj(b) = {}
adj(c) = {b}

∑v |adj(v)| = |E|

adj(v): Neighbours of v

a

bc

4

1

-3

Interested students may refer to [CLR] Sec
5.4 for more precise definition of graph
terminologies.

24 October 2002

Applications

nus.soc.cs1102b.week10

23

Travel Planning

city
direct
flight

5

cost

What is the shortest way to travel between A
and B?

“SHORTEST PATH PROBLEM”

How to mimimize the cost of visiting n
cities such that we visit each city exactly
once, and finishing at the city where we start
from?

“TRAVELLING SALESMAN PROBLEM”

nus.soc.cs1102b.week10

25

Internet

computer
network
link

What is the shortest route to send a packet
from A to B?

“Shortest Path Problem”

nus.soc.cs1102b.week10

28

The Web

web page
web link

Which web pages are important?

Which group of web pages are likely to be
of the same topic?

24 October 2002

nus.soc.cs1102b.week10

30

Module Selection

module
prerequisite

Find a sequence of modules to take such that
the prerequisite requirements are satisfied.

“Topological Sort”

This is an example of a directed, acyclic
graph, or dag for short.

nus.soc.cs1102b.week10

32

SDU Matchmaking

participant

compatible

How to match up as many pairs as possible?

“Maximum matching problem”

This is an example of a bipartite graph. A
bipartite graph is a graph where we can
partition the vertices into two sets V and U.
No edges exists between two vertices in the
same partition.

nus.soc.cs1102b.week10

34

Terrorist

suspects
knows

Who are the important figures in a terrorist
network?

http://www.orgnet.com/hijackers.html

nus.soc.cs1102b.week10

37

Other Applications
Biology
VLSI Layout
Vehicle Routing
Job Scheduling
Facility Location

:
:

24 October 2002

Implementation

nus.soc.cs1102b.week10

39

Adjacency Matrix
double vertex[][];

1

23

4

1

-3

∞1∞3

∞∞∞2

-34∞1

321

This requires O(N2) memory, and is not
suitable for sparse graph. (Only 1/3 of the
matrix in this example contains useful
information).

How about undirected graph? How would
you represent it?

nus.soc.cs1102b.week10

40

Adjacency List
EdgeList vertex[];

1

23

4

1

-3

3

2

1 3 -3 2 4

2 1

neighbour cost

This requires only O(V + E) memory.

nus.soc.cs1102b.week10

41

Vertex Map

3

2

1 3 -3 2 4

2 1

hash
table

Clementi

Since vertices are usually identified by
names (person, city), not integers, we can
use a hash table to map names to indices in
our adjacency list/matrix.

24 October 2002

Breadth-First
Search

nus.soc.cs1102b.week10

43

Breadth-First Search

A

C

D

B

EF

Given a source node, we like to start
searching from that source. The idea of BFS
is that we visit all nodes that are of distance i
away from the source before we visits nodes
that are of distance i+1 away from the
source. The order of searches is not unique
and depends on the order of neighbours
visited.

nus.soc.cs1102b.week10

50

Breadth-First Search

A

C

D

B

EF

nus.soc.cs1102b.week10

51

Breadth-First Search

0

1

2

2

23

After BFS, we get a tree rooted at the source
node. Edges in the tree are edges that we
followed during searching. We call this
BFS tree. Vertices in the figure are labeled
with their distance from the source.

24 October 2002

nus.soc.cs1102b.week10

53

BFS(v)
Q = new Queue
Q.enq (v)
while Q is not empty

curr = Q.deq()
if curr is not visited

print curr
mark curr as visited
foreach w in adj(curr)

if w is not visited
Q.enq(w)

A

C

D

B

EF

The pseudocode for BFS is very similar to
level-order traversal of trees. The major
difference is that, now we may visit a vertex
twice (since unlike a tree, there may be more
than one path between two vertices).
Therefore, we need to remember which
vertices we have visited before.

nus.soc.cs1102b.week10

54

Building the BFS Tree
Q = new Queue
Q.enq (v)

v.parent = null
while Q is not empty

curr = Q.deq()
if curr is not visited

mark curr as visited
foreach w in adj(curr)

if w is not visited
w.parent = curr
Q.enq(w)

A

C

D

B

EF

We can represent the BFS tree by
maintaining the parent of a vertex during
searching. (This is called “prev” in the
textbook)

nus.soc.cs1102b.week10

55

Calculating Level
Q = new Queue
Q.enq (v)

v.level = 0
while Q is not empty

curr = Q.deq()
if curr is not visited

mark curr as visited
foreach w in adj(curr)

if w is not visited
w.level = curr.level + 1
Q.enq(w)

A

C

D

B

EF

Similarly, we can maintain the distance of a
vertex from the source. (level is equivalent
to dist in the textbook)

nus.soc.cs1102b.week10

56

Search All Vertices
Search(G)

foreach vertex v
mark v as unvisited

foreach vertex v
if v is not visited

BFS(v)

BFS guarantees that if there is a path to a
vertex v from the source, we can always
visit v. But since some vertices maybe
unreachable from the source, we can call
BFS multiple times from multiple sources.

24 October 2002

nus.soc.cs1102b.week10

57

Running Time
Q = new Queue
Q.enq (v)
while Q is not empty
curr = Q.deq()
if curr is not visited
print curr
mark curr as visited
foreach w in adj(curr)

if w is not visited
Q.enq(w)

∑
∈

Θ=Θ
Vw

Ewadj)())((

Main Loop

Initialization

)(VΘ

Total Running Time

)(EV +Θ

Each vertex is enqueued exactly once. The
for loop runs through all vertices in the
adjacency list. Therefore the running time is
O(∑v adj(v)) = O(E).

(Note that technically, it should be O(|E|),
but we will abuse the notation for E and V
to mean the number of edges and vertices as
well).

Depth-First
Search

nus.soc.cs1102b.week10

59

Depth-First Search

A

C

D

B

EF

Idea for DFS is to go as deep as possible.
Whenever there is an outgoing edge, we
follow it.

nus.soc.cs1102b.week10

65

Depth-First Search

A

C

D

B

EF

24 October 2002

nus.soc.cs1102b.week10

66

Depth-First Search

A

C

D

B

EF

nus.soc.cs1102b.week10

67

DFS(v)
S = new Stack
S.push (v)
while S is not empty

curr = S.pop()
if curr is not visited

print curr
mark curr as visited
foreach w in adj(v)

if w is not visited
S.push(w)

A

C

D

B

EF

In DFS, we use a stack to “remember”
where to backtrack to.

nus.soc.cs1102b.week10

68

Recursive Version: DFS(v)
print v
marked v as visited
foreach w in adj(v)

if w is not visited
DFS(w)

A

C

D

B

EF

We can write DFS() recursively. (Trace
through this code using the example above!)

nus.soc.cs1102b.week10

69

Search All Vertices
Search(G)

foreach vertex v
mark v as unvisited

foreach vertex v
if v is not visited

DFS(v)

Just like BFS, we may want to call DFS()
from multiple vertices to make sure that we
visit every vertex in the graph.

The running time for DFS is O(V + E).
(Why?)

24 October 2002

nus.soc.cs1102b.week10

71

Two more times!

A

D

H

C

GF

E

B

For practice, trace through the above graph
using BFS and DFS.

Single-Source
Shortest Path

nus.soc.cs1102b.week10

73

Definition
A path on a graph G is a sequence of vertices v0,
v1, v2, .. vn where (vi,vi+1)∈ E

The cost of a path is the sum of the cost of all
edges in the path.

A

C

D

B

EF

In Single-source shortest path problem, we
are given a vertex v, and we want to find the
path with minimum cost to every other
vertex. The term “distance” and “length” of
the path will be used interchangeably with
the “cost” of a path.

nus.soc.cs1102b.week10

74

Unweighted Shortest Path

A

C

D

B

EF

If a graph is unweighted, we can treat the
cost of each edge as 1.

24 October 2002

nus.soc.cs1102b.week10

75

ShortestPath(s)

Run BFS(s)
w.level: shortest distance from s
w.parent: shortest path from s

The shortest path for an unweighted graph
can be found using BFS. To get the shortest
path from a source s to a vertex v, we just
trace back the parent pointer from v back to
s. The number of edges in the path is given
by the level of a vertex in the BFS tree.
(Why does BFS guarantee that the paths are
shortest?)

nus.soc.cs1102b.week10

76

Positive Weighted
Shortest Path

A

C

D

B

EF

5

51

2

3

1

3
1

4

Next, we look at another version of the
problem, where the edges have positive cost
function.

nus.soc.cs1102b.week10

77

BFS(s) does not work
Must keep track of smallest distance so
far.

If we found a new, shorter path, update
the distance.

Convince yourself the BFS does not solve
our shortest path problem here. Distance
here refers to the cost of the path, not the
number of edges as in BFS.

nus.soc.cs1102b.week10

78

Idea 1

10

6
2

8

s w

v

In the following figures, we label a node
with the shortest distance discovered so far
from the source. Here is the basic idea that
will help us solve our shortest path problem.
If the current shortest distance from s to w is
10, to v is 6, and the cost of edge (v,w) is 2,
then we have discovered a shorter path from
s to w (through v).

24 October 2002

nus.soc.cs1102b.week10

80

Definition
distance(v) : shortest distance so far from

s to v

parent(v) : previous node on the shortest
path so far from s to v

cost(u, v) : the cost of edge from u to v

nus.soc.cs1102b.week10

81

Example

10

6
2

8

s w

v
distance(w) = 8

cost(v,w) = 2

parent(w) = v

Relax(v,w)
d = distance(v) + cost(v,w)
if distance(w) > d then

distance(w) = d
parent(w) = v

10

6
2

10
s w

v

10

6
2

8
s w

v

We now look at the pseudocode for a
RELAX operation, based on our first idea.

nus.soc.cs1102b.week10

79

Idea 2

≥6

6
≥6

≥6

≥6

≥6
≥6

v

w

The second idea is that if we know the
shortest distance so far from w to v is 6, and
the shortest distances so far from w to other
nodes are bigger or equal to 6, then there
cannot be a shorter path to v through the
other white nodes. (This is only true if costs
are positive!)

24 October 2002

nus.soc.cs1102b.week10

83

Dijkstra’s Algorithm

A

C

D

B

EF

5

51

2

3

1

3
1

4

Now we are ready to describe our single
source, shortest path algorithm for graphs
with positive weights. The algorithm is
called Dijkstra’s algorithm.

nus.soc.cs1102b.week10

93

Dijkstra’s Algorithm

0

5

8

8

610

5

1

2

3

4

nus.soc.cs1102b.week10

94

Dijkstra’s Algorithm
color all vertices yellow
foreach vertex w

distance(w) = INFINITY
distance(s) = 0

nus.soc.cs1102b.week10

95

Dijkstra’s Algorithm
while there are yellow vertices

v = yellow vertex with min distance(v)
color v red
foreach neighbour w of v

relax(v,w)

24 October 2002

nus.soc.cs1102b.week10

96

Running Time
color all vertices yellow
foreach vertex w

distance(w) = INFINITY
distance(s) = 0
while there are yellow vertices

v = yellow vertex with min distance(v)
color v red
foreach neighbour w of v

relax(v,w)

O(V2 + E)

Initialization takes O(V) time. Picking the
vertex with minimum distance(v) can take
O(V) time, and relaxing the neighbours take
O(adj(v)) time. The sum of these over all
vertices is O(V2+E). We can improve this,
if we can improve the running time for
picking the minimum.

nus.soc.cs1102b.week10

97

Using Priority Queue
foreach vertex w

distance(w) = INFINITY
distance(s) = 0
pq = new PriorityQueue(V)

while pq is not empty
v = pq.deleteMin()
foreach neighbour w of v

relax(v,w)

Since priority queue supports efficient
minimum picking operation, we can use a
priority queue here to improve the running
time. Note that we no longer color vertices
here. Yellow vertices in the previous
pseudocode are now vertices that are in the
priority queue.

nus.soc.cs1102b.week10

98

Initialization O(V)
foreach vertex w

distance(w) = INFINITY
distance(s) = 0
pq = new PriorityQueue(V)

Initialization still takes O(V)

nus.soc.cs1102b.week10

99

Main Loop
while pq is not empty

v = pq.deleteMin()
foreach neighbour w of v

relax(v,w)

But we have to be more careful with the
analysis of the main loop. We know that
each deleteMin() takes O(log V) time. But
relax(v,w) is no longer O(1).

24 October 2002

Main Loop
while pq is not empty

v = pq.deleteMin()
foreach neighbour w of v

d = distance(v) + cost(v,w)
if distance(w) > d then

// distance(w) = d
pq.decreaseKey(w, d)
parent(w) = v

O((V+E) log V)

If we expand the code for relax(), we will
see that we cannot simply update
distance(v), since distance(v) is a key in pq.
Here, we use an operation called
decreaseKey() that updates the key value of
distance(v) in the priority queue.
decreaseKey() can be done in O(log V) time.
(How?).

The running time for this new version of
Dijkstra’s algorithm takes O((V+E)log V)
time.

nus.soc.cs1102b.week10

101

cost(u,v) < 0?

A

C

D

B

EF

-5

51

2

3

1

3
1

-4

Dijkstra’s does not work for graphs with
negative weights. There are two problems.

nus.soc.cs1102b.week10

102

Problem 1

10

6
≥6

≥6

≥6

≥6
≥6

v

w

-5

Even if we know the shortest path from w to
v is 6, there may be a shorter path through
the other white nodes as the weight can be
negative.

nus.soc.cs1102b.week10

103

Problem 2

A

C

D

B

EF

-5

51

2

3

1

3
1

-4

If a cycle with negative weights (1 + 3 – 5 =
-1) exists in the graph, the shortest path is
not well defined, as we can keep going in
the negative weighed cycle to get a path
with smaller cost.

24 October 2002

24 October 2002

nus.soc.cs1102b.week10

105

Basic Idea
foreach edge (u,v)

relax(u , v)

We will get the shortest paths of length 1
between s and all other vertices.

Repeat the above pseudocode |V|-1
times.

Here is the idea behind the algorithm for
solving the general case shortest path
problem.

We repeat |V| - 1 times since a path between
two vertices has at most |V| - 1 edges. (Note
that we consider only simple path, i.e., path
with no cycles.)

nus.soc.cs1102b.week10

106

Bellman-Ford Algorithm

0

8

8

8

88

5

31

-2

-3

1

3
1

-4

The algorithm to solve this is called
Bellman-Ford Algorithm. Trace through the
pseudocode given below, and check your
answer against the next slide.

nus.soc.cs1102b.week10

110

Bellman-Ford Algorithm

0

5

1

2

3-1

5

31

-2

-3

1

3
1

-4

nus.soc.cs1102b.week10

111

Bellman-Ford Algorithm
do |V|-1 times

foreach edge (u,v)
relax(u,v)

// check for negative weight cycle
foreach edge (u,v)

if distance(u) < distance(v) + cost(v,u)
ERROR: has negative cycle

I claim that the running time for Bellman-
Ford algorithm is O(VE). Verify this claim.

