
Oracle® Database
Backup and Recovery Basics

10g Release 2 (10.2)

B14192-01

June 2005

An introduction to the basics of backup and recovery of
Oracle databases, focusing on the use of Recovery Manager
for common backup and recovery tasks.

Oracle Database Backup and Recovery Basics, 10g Release 2 (10.2)

B14192-01

Copyright © 2003, 2005, Oracle. All rights reserved.

Primary Author: Antonio Romero

Contributing Author: Lance Ashdown

Contributors: Tammy Bednar, Anand Beldalker, Timothy Chien, Raymond Guzman, Alex Hwang, Ashok
Joshi, J. William Lee, Valarie Moore, Muthu Olagappan, Samitha Samaranayake, Francisco Sanchez, Steven
Wertheimer, Wanli Yang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xiii

Preface ... xv

Audience... xv
Organization .. xv
Related Documentation.. xvi
Conventions .. xvii
Documentation Accessibility ... xix

1 Backup and Recovery Overview

What is Backup and Recovery?.. 1-1
Physical Backups and Logical Backups .. 1-1
Errors and Failures Requiring Recovery from Backup... 1-2

User Error... 1-2
Media Failure... 1-2

Oracle Backup and Recovery Solutions: RMAN and User-Managed Backup.......................... 1-2
Backup and Recovery: Basic Concepts ... 1-3

Physical Database Structures Used in Recovering Data... 1-3
Datafiles and Data Blocks .. 1-3
Redo Logs .. 1-4
Control Files... 1-4
Undo Segments ... 1-5

The Database Recovery Process: Basic Concepts ... 1-5
Forms of Data Recovery .. 1-6

Datafile Media Recovery: Restore Datafiles, Apply Redo ... 1-6
Complete, Incomplete and Point-In-Time Recovery .. 1-7
Automatic Recovery After Instance Failure: Crash Recovery ... 1-8

Backup and Recovery with RMAN... 1-8
Files That RMAN Can Back Up ... 1-9
RMAN Backup Destinations: Disk and Media Managers... 1-10
Types of Oracle Database Backup under RMAN... 1-10

About Consistent and Inconsistent Backups ... 1-10
About Full and Incremental Backups .. 1-10
About Image Copies, Backup Sets and Backup Pieces... 1-10

Automatic Disk-Based Backup and Recovery: The Flash Recovery Area.................................. 1-11

iv

Oracle Flashback Technology:Alternatives to Point-in-Time Recovery 1-11
About Restore Points .. 1-13

Matching Failures to Backup and Recovery Techniques... 1-13
Media Failure... 1-13
User Error .. 1-14

System Requirements for Backup and Recovery Methods... 1-15
Feature Comparison of Backup Methods ... 1-15

2 Backup and Recovery Strategies

Data Recovery Strategy Determines Backup Strategy .. 2-1
Planning Data Recovery Strategy.. 2-3

Planning Responses to User Error: Point-in-Time Recovery and Flashback Features 2-3
Flashback Database... 2-3
Creating Normal and Guaranteed Restore Points ... 2-3
Database Point-in-Time Recovery .. 2-4
Importing Lost Objects from Logical Backup... 2-4

Planning a Response to Media Failure: Restore and Media Recovery....................................... 2-4
Example: Online Redo Log Recovery .. 2-4

Planning a Response to Datafile Block Corruption: Block Media Recovery 2-5
Planning Backup Strategy .. 2-5

Protecting Your Redundancy Set... 2-5
Deciding Whether to Use a Flash Recovery Area ... 2-7
Deciding Between ARCHIVELOG and NOARCHIVELOG Mode .. 2-7

Implications of Running in NOARCHIVELOG Mode.. 2-7
Implications of Running in ARCHIVELOG Mode .. 2-8

Deciding Whether to Use Oracle Flashback Features and Restore Points................................. 2-8
Choosing a Backup Retention Policy .. 2-8

Implementing Backup Retention Policy with RMAN ... 2-9
Recovery Window-Based Backup Retention Policy .. 2-9
Redundancy-Based Backup Retention Policy.. 2-10

Archiving Older Backups... 2-10
Determining Backup Frequency ... 2-10
Performing Backups Before and After You Make Structural Changes 2-11
Scheduling Backups for Frequently-Updated Tablespaces .. 2-11
Backing Up after NOLOGGING Operations .. 2-11
Exporting Data for Added Protection and Flexibility ... 2-12
Preventing the Backup of Online Redo Logs .. 2-12
Keeping Records of the Hardware and Software Configuration of the Server 2-12

Validating Your Data Recovery Strategy... 2-13
Using BACKUP... VALIDATE .. 2-13
Validating RMAN Backups: VALIDATE and RESTORE VALIDATE................................... 2-14
Testing Your Database Restore and Recovery Procedures .. 2-14

3 Setting Up and Configuring Backup and Recovery

Overview of Interacting With the RMAN Client .. 3-1
Starting and Exiting RMAN ... 3-1
Setting Globalization Support Environment Variables for RMAN .. 3-2

v

Entering RMAN Commands at the Command Prompt... 3-2
Using Command Files with RMAN .. 3-3
Checking Syntax of RMAN Commands and Command Files: CHECKSYNTAX 3-3

Checking RMAN Syntax at the Command Line: Example... 3-4
Checking RMAN Syntax in Command Files: Example... 3-4

Using RMAN to Start Up and Shut Down Databases .. 3-5
Connecting the RMAN Client to Databases ... 3-5

Types of Database Connections Used with RMAN .. 3-6
Authentication for Database Connections.. 3-6
Connecting to the Target Database from the Command Line... 3-6
Connecting to the Target Database from the RMAN Prompt ... 3-7

Setting Up a Database for RMAN Backup .. 3-7
Persistent Configuration Settings: Controlling RMAN Behavior ... 3-8

Displaying Current RMAN Configuration Settings: SHOW.. 3-8
Restoring Default RMAN Configuration Settings: CONFIGURE... CLEAR...................... 3-9

Configuring the Default Device Type for Backups... 3-9
Configuring the Default Backup Type for Disk Backups.. 3-10
Configuring Compressed Backupsets as Default for Tape or Disk ... 3-10
Configuring Disk Devices and Channels... 3-10
Configuring Tape Devices and Channels .. 3-11
Configuring Control File and Server Parameter File Autobackup.. 3-11

Configuring the Control File Autobackup Format ... 3-12
Overriding the Configured Control File Autobackup Format.. 3-12

Setting Up a Flash Recovery Area for RMAN ... 3-13
Choosing a Location for the Flash Recovery Area ... 3-13

Flash Recovery Area, Automatic Storage Management, and Oracle Managed Files 3-14
Files That Can Be Stored in the Flash Recovery Area.. 3-14
Planning the Size of the Flash Recovery Area .. 3-15
Setting Initialization Parameters for Size and Location of the Flash Recovery Area............ 3-15

Flash Recovery Area Size: DB_RECOVERY_FILE_DEST_SIZE 3-16
Flash Recovery Area Location: Initialization Parameter DB_RECOVERY_FILE_DEST 3-16
Sharing a Flash Recovery Area Among Multiple Databases... 3-17
Restrictions on Initialization Parameters When Using Flash Recovery Area 3-17
Adding a Flash Recovery Area to an Existing Database.. 3-17
Using V$RECOVERY_FILE_DEST and V$FLASH_RECOVERY_AREA_USAGE........ 3-18
Disabling the Flash Recovery Area ... 3-18

Configuring the Backup Retention Policy ... 3-19
Configuring a Recovery Window-Based Retention Policy.. 3-19
Configuring a Redundancy-Based Retention Policy .. 3-19
Showing the Current Retention Policy ... 3-19
Disabling the Retention Policy... 3-20

How Oracle Manages Disk Space in the Flash Recovery Area .. 3-20
When Files are Eligible for Deletion from the Flash Recovery Area................................ 3-20
When Space is Not Available in the Flash Recovery Area .. 3-21

Configure Flash Recovery Area for Disk-Based Backups: Example.. 3-21
Create a Database with Multiplexed Files in the Flash Recovery Area: Scenario 3-22
Creating a Database with Only Archived Logs in the Flash Recovery Area: Scenario 3-24

vi

4 Backing Up Databases Using RMAN

Overview of RMAN Backups .. 4-1
Files That RMAN Can Back Up ... 4-2
About RMAN Backup Formats: Image Copies and Backup Sets.. 4-2

About Image Copies ... 4-2
About Backup Sets .. 4-2

About RMAN Full and Incremental Datafile Backups... 4-3
Specifying Options Affecting Output of the RMAN BACKUP Command 4-4

Specifying Output Device Type for RMAN BACKUP ... 4-4
Specifying Image Copy or Backup Set Output for RMAN BACKUP to Disk........................... 4-4
Specifying Output File Locations for RMAN BACKUP... 4-4
Specifying Tags for RMAN BACKUP... 4-5
Using Compressed Backupsets for RMAN Backup.. 4-6

Backing Up Database Files and Archived Logs with RMAN.. 4-7
Making Consistent and Inconsistent Backups with RMAN .. 4-7
Making Whole Database Backups with RMAN .. 4-7
Backing Up Individual Tablespaces with RMAN ... 4-8
 Backing Up Individual Datafiles and Datafile Copies with RMAN.. 4-8

Backing Up Datafiles .. 4-8
Backing Up Datafile Copies... 4-8

Backing Up Control Files with RMAN ... 4-9
Including the Current Control File in a Backup of Other Files .. 4-9
Backing Up the Current Control File Manually ... 4-9
Backing Up a Control File Copy .. 4-10

Backing Up Server Parameter Files with RMAN ... 4-10
Backing Up Archived Redo Logs with RMAN... 4-10

Backing Up Archived Redo Log Files with BACKUP ARCHIVELOG............................ 4-10
Automatic Online Redo Log Switches During Backups of Archived Logs 4-10
Using BACKUP ARCHIVELOG with DELETE INPUT or DELETE ALL INPUT. 4-11

Backing Up Logs with BACKUP ... PLUS ARCHIVELOG.. 4-11
RMAN Incremental Backups .. 4-12

Incremental Backup Algorithm... 4-12
Level 0 and Level 1 Incremental Backups .. 4-13
Differential Incremental Backups .. 4-13
Cumulative Incremental Backups ... 4-14
Basic Incremental Backup Strategy ... 4-15

Making Incremental Backups: BACKUP INCREMENTAL.. 4-16
Incrementally Updated Backups: Rolling Forward Image Copy Backups............................. 4-16

Incrementally Updated Backups: A Basic Example.. 4-16
Incrementally Updated Backups: A One Week Example .. 4-18

Improving Incremental Backup Performance: Change Tracking .. 4-19
Enabling and Disabling Change Tracking ... 4-19
Checking Whether Change Tracking is Enabled... 4-20
Moving the Change Tracking File ... 4-20
Estimating Size of the Change Tracking File on Disk... 4-20

Using RMAN to Validate Database Files ... 4-21
Overview of Reporting on Backups and the RMAN Repository .. 4-21

vii

Listing RMAN Backups, Archived Logs, and Database Incarnations .. 4-22
About RMAN Reports Generated by the LIST Command ... 4-23
Listing Backups ... 4-23

Listing Backups by Backup .. 4-23
Listing Backups by File ... 4-24

Listing Backups in Summary Mode ... 4-25
Listing Selected Backups.. 4-25
Listing Database Incarnations ... 4-26

Reporting on Backups and Database Schema ... 4-27
About Reports of RMAN Backups ... 4-28
Reporting on Files Needing a Backup Under a Retention Policy .. 4-28

Using RMAN REPORT NEED BACKUP with Different Retention Policies 4-29
Using RMAN REPORT NEED BACKUP with Tablespaces and Datafiles 4-29
Using REPORT NEED BACKUP with Backups onTape or Disk Only............................ 4-29

Reporting on Datafiles Affected by Unrecoverable Operations .. 4-30
Reporting Obsolete Backups ... 4-30
Reporting on the Database Schema.. 4-31

5 Data Protection with Restore Points and Flashback Database

Restore Points and Flashback Database: Concepts ... 5-1
About Flashback Database.. 5-2

About the Flashback Database Window ... 5-3
About Normal Restore Points .. 5-3

Commands Supporting the Use of Restore Points... 5-4
About Guaranteed Restore Points ... 5-4

Using Guaranteed Restore Points Instead of Storage Snapshots... 5-4
About Logging for Flashback Database and Guaranteed Restore Points.................................. 5-4

Guaranteed Restore Points and Flash Recovery Area Space Usage 5-5
Logging for Guaranteed Restore Points With Flashback Logging Disabled 5-5
Logging for Flashback Database With Guaranteed Restore Points Defined 5-6

Using Normal and Guaranteed Restore Points .. 5-6
Requirements for Using Guaranteed Restore Points .. 5-6
Creating Normal and Guaranteed Restore Points .. 5-7
Listing Restore Points .. 5-7
Dropping Restore Points ... 5-7
Monitoring Space Usage For Guaranteed Restore Points .. 5-8

Setup and Maintenance for Oracle Flashback Database .. 5-8
Limitations of Flashback Database .. 5-9
Requirements for Enabling Flashback Database ... 5-9
Enabling Logging for Flashback Database ... 5-9
Sizing the Flash Recovery Area to Include Flashback Logs.. 5-10

Estimating Disk Space Requirements for Flashback Database Logs................................ 5-10
Managing Space For Flashback Logs in the Flash Recovery Area... 5-11

Rules for Retention and Deletion of Flashback Logs.. 5-11
Determining the Current Window for Flashback Database ... 5-11
Performance Tuning for Flashback Database ... 5-12
Monitoring Flashback Database Performance Impact... 5-13

viii

Flashback Writer (RVWR) Behavior With I/O Errors .. 5-13

6 Performing Complete Restore and Recovery of Databases

Database Restore and Recovery with RMAN: Overview... 6-1
Scope and Limitations of this Chapter.. 6-2
Restore and Recovery with Enterprise Manager... 6-2

Basic Database Restore and Recovery Scenarios ... 6-3
Restore and Recovery of a Whole Database: Scenario.. 6-3

Recovery of Databases with Read-Only Tablespaces .. 6-4
Re-Creation of Temporary Tablespaces in Whole Database Restore and Recovery......... 6-4

Restore and Complete Recovery of Individual Tablespaces or Datafiles: Scenario................. 6-5
Preparing and Planning Database Restore and Recovery .. 6-5

Database Restore and Recovery Procedure: Outline .. 6-6
Determining Which Database Files to Restore or Recover .. 6-6

Recognizing a Lost Control File ... 6-6
Identifying Datafiles Requiring Media Recovery .. 6-6
Recovery of Read-Only Tablespaces .. 6-8

Determining your DBID.. 6-8
Previewing Backups Used in Restore Operations: RESTORE PREVIEW.................................. 6-9

Using RESTORE... PREVIEW.. 6-9
Using RESTORE... PREVIEW SUMMARY.. 6-9
Using RESTORE... PREVIEW RECALL.. 6-10

Validating the Restore of Backups: RESTORE VALIDATE and VALIDATE BACKUPSET 6-11
Validating Restore from Backup with RESTORE ... VALIDATE...................................... 6-12
Validating Backup Sets with VALIDATE BACKUPSET.. 6-12

RMAN RESTORE: Restoring Lost Database Files from Backup... 6-13
Restoring the Control File from Backup ... 6-13

Default Destination for Restore of the Control File .. 6-13
Restore of the Control File from Control File Autobackup ... 6-14
Restore of the Control File When Using a Flash Recovery Area 6-14
Restoring a Control File When Using a Recovery Catalog ... 6-14
Restore of the Control File From a Known Location .. 6-15
Restore of the Control File to a New Location... 6-15
Limitations When Using a Backup Control File.. 6-15

Restoring the Server Parameter File (SPFILE) from Backup .. 6-15
Restore of the SPFILE from the Control File Autobackup... 6-16
Creating a Client-Side Initialization Parameter File (PFILE) with RMAN...................... 6-17

Restoring and Recovering Datafiles and Tablespaces ... 6-17
Restoring Datafiles from Backup to a New Location ... 6-17
Performing Media Recovery of a Restored Database, Tablespace or Datafile................ 6-18
Restore and Recover of a Single Datafile to a New Location:Example............................ 6-19

Restoring Archived Redo Logs from Backup ... 6-19
Restoring Archived Redo Logs to a New Location... 6-20
Restoring Archived Redo Logs to Multiple Locations ... 6-20

7 Performing Flashback and Database Point-in-Time Recovery

About Point-in-Time Recovery and Flashback Features .. 7-1

ix

About Database Point-in-Time Recovery ... 7-1
Oracle Flashback Technology:Alternatives to Point-in-Time Recovery 7-2

Oracle Flashback Query: Recovering at the Row Level.. 7-3
Oracle Flashback Table: Returning Individual Tables to Past States .. 7-4

Prerequisites for Using Flashback Table... 7-4
Performing Flashback Table ... 7-4

Oracle Flashback Drop: Undo a DROP TABLE Operation .. 7-5
What is the Recycle Bin? ... 7-6
How Tables and Other Objects Are Placed in the Recycle Bin.. 7-6
Naming Convention for Objects in the Recycle Bin.. 7-6
Enabling and Disabling the Recycle Bin ... 7-7
Viewing and Querying Objects in the Recycle Bin ... 7-7
Recycle Bin Capacity and Space Pressure .. 7-8

Understanding Space Pressure ... 7-8
How the Database Responds to Space Pressure... 7-9
Recycle Bin Objects and Segments ... 7-9

Performing Flashback Drop on Tables in the Recycle Bin ... 7-9
Flashback Drop of Multiple Objects With the Same Original Name 7-10

Purging Objects from the Recycle Bin.. 7-10
PURGE TABLE: Purging a Table and Dependent Objects .. 7-11
PURGE INDEX: Freeing Space in the Recycle Bin .. 7-11
PURGE TABLESPACE: Purging All Dropped Objects from a Tablespace 7-11
PURGE RECYCLEBIN: Purging All Objects in a User's Recycle Bin............................... 7-12
PURGE DBA_RECYCLEBIN: Purging All Recycle Bin Objects.. 7-12
Dropping a Tablespace, Cluster, User or Type and the Recycle Bin................................ 7-12

Privileges and Security for Flashback Drop.. 7-12
Limitations and Restrictions on Flashback Drop ... 7-13

Reversing Database Changes with Flashback Database ... 7-13
Performing Flashback Database: Scenario... 7-14

Options After a Successful Flashback Database Operation... 7-15
Options After Flashback Database to the Wrong Time.. 7-16
Flashback Database and Ambiguous SCNs Across Incarnations..................................... 7-16

Performing Flashback Database to a Guaranteed Restore Point ... 7-17
Performing Flashback Database to Undo an OPEN RESETLOGS... 7-17

Flashback Database Across OPEN RESETLOGS With Standby Databases 7-18
Flashback Database To The Right of Open Resetlogs: Example .. 7-18

Performing Database Point-In-Time Recovery ... 7-19
Requirements for Database Point-in-Time Recovery... 7-19
Point-in-Time Recovery and Database Incarnations: Concepts ... 7-19

Understanding Parent, Ancestor and Sibling Database Incarnations.............................. 7-19
Incarnation History of a Database: Example ... 7-19

Sibling Incarnations, Ambiguous SCNs and RESET DATABASE INCARNATION
7-20

Database Incarnations and Orphaned Backups .. 7-21
Uses of Orphaned Backups ... 7-21

Preparing for Database Point-in-Time Recovery.. 7-21
Database Point-in-Time Recovery Within the Current Incarnation .. 7-22

x

Using a Time Expression for Database Point-in-Time Recovery 7-23
Options After Database Point-in-Time Recovery... 7-23
Point-in-Time Recovery to an Ancestor Incarnation ... 7-24

8 Recovery Manager Maintenance Tasks

Managing the RMAN Repository Using Only the Control File ... 8-1
Backing Up and Restoring the Control File.. 8-1
Monitoring the Overwriting of Control File Records ... 8-2

Managing the Overwriting of Control File Records .. 8-2
Interaction of Flash Recovery Area and CONTROL_FILE_RECORD_KEEP_TIME........ 8-3

Using CROSSCHECK to Update the RMAN Repository .. 8-4
About RMAN Crosschecks... 8-4
Basic Use of CROSSCHECK with Backup Sets and Image Copies .. 8-5
Crosschecking Specific Backup Sets and Copies ... 8-5
Crosschecking Backups of Specific Database Files ... 8-6
Limiting RMAN CROSSCHECK to a Backups Since a Specific Time.. 8-6

Deleting Backups ... 8-6
Deleting Specified Backups .. 8-6
Deleting Expired RMAN Backups after CROSSCHECK ... 8-7
Using DELETE FORCE With RMAN Backups.. 8-8
Deleting Obsolete RMAN Backups Based on Retention Policies.. 8-8

DELETE OBSOLETE Behavior When KEEP UNTIL Time Expires..................................... 8-9
Using Multiple RMAN Channels for Maintenance Operations... 8-9

About Allocating Multiple RMAN Channels for Maintenance Commands............................. 8-9
How RMAN Crosschecks and Deletes on Multiple Channels .. 8-9
Crosschecking Disk and Tape Channels with One Command: Example............................... 8-10
Crosschecking on Multiple Oracle Real Application Cluster Nodes: Example..................... 8-11
Deleting on Disk and Tape Channels with One DELETE Command: Example.................... 8-11
Releasing Multiple Channels: Example ... 8-12

Deleting a Database with RMAN .. 8-12
Changing the Status of a Backup Record ... 8-13

Marking a Backup AVAILABLE or UNAVAILABLE ... 8-13
Exempting a Long-Term Backup from the Retention Policy.. 8-13

Cataloging Archived Logs and User-Managed Copies .. 8-14
About Cataloging Archived Logs and User-Managed Copies... 8-14
Cataloging User-Managed Datafile Copies... 8-15
Cataloging Backup Pieces .. 8-16
Cataloging All Files in a Disk Location.. 8-16
Cataloging Flash Recovery Area Contents.. 8-17

Uncataloging RMAN Records .. 8-17
About Uncataloging RMAN Records .. 8-17
Removing Records for Files Deleted with Operating System Utilities 8-17

Flash Recovery Area Maintenance... 8-18
Resolving a Full Flash Recovery Area.. 8-18
Changing the Flash Recovery Area to a New Location... 8-19
Flash Recovery Area Behavior When Instance Crashes During File Creation 8-19

Backing Up to the Flash Recovery Area: Basic Scenarios.. A-1

xi

Scripting Disk-Only Backups .. A-1
Backup Scripts When Few Data Blocks Change.. A-2

Initial Setup.. A-2
Daily Script ... A-2

Backup Scripts When Blocks Change Frequently ... A-5
Backup Scripts When a Moderate Number of Blocks Change Weekly A-5

Initial Setup.. A-6
Weekly Script ... A-6

Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios.. A-7
Configuring the RMAN Environment for Disk and Tape Backups .. A-8
Writing Backup Scripts for Disk and Tape Scenarios .. A-8

Backup Scripts When Few Data Blocks Change.. A-8
Initial Setup.. A-8
Daily Script ... A-8

Backup Scripts When Many Blocks Change ... A-9
Initial Setup.. A-10
Weekly Scripts... A-10
Daily Script .. A-10

Backup Scripts When Blocks Change Moderately .. A-10
Initial Setup.. A-11
Weekly Script ... A-11
Daily Script .. A-11

Backup Scripts When Not Enough Disk Space for a Database Backup........................... A-13
Weekly Script .. A-13
Daily Script .. A-13

Glossary

Index

xii

xiii

Send Us Your Comments

Oracle Database Backup and Recovery Basics, 10g Release 2 (10.2)

B14192-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: 650-506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xiv

xv

Preface

This guide provides a basic conceptual overview of Oracle database backup and
recovery.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

Audience
This manual is intended for database administrators who perform backup and
recovery of an Oracle database server using Recovery Manager (RMAN).

To use this document, you need to know the following:

■ Relational database concepts and basic database administration as described in
Oracle Database Concepts and Oracle Database Administrator's Guide

■ The operating system environment under which you are running the Oracle
database

The conceptual material in Chapter 1, "Backup and Recovery Overview" is of interest
for all users responsible for backup and recovery, not just those using RMAN. The
remainder of the book covers techniques for backup, recovery and maintenance using
Recovery Manager. Users planning to manage backup and recovery without RMAN
should review the conceptual material in Chapter 1 and then turn to Oracle Database
Backup and Recovery Advanced User's Guide for more conceptual material in Part I, and
several chapters on user-managed backup and recovery techniques in Part IV.

Organization
This document contains:

Chapter 1, "Backup and Recovery Overview"
This chapter briefly introduces the basic concepts of Oracle database backup and
recovery, with a comparison of backup and recovery features available with and
without using Recovery Manager.

xvi

Chapter 2, "Backup and Recovery Strategies"
This chapter gives general recommendations for planning your recovery strategies,
and planning backup routines required to meet your recovery objectives.

Chapter 3, "Setting Up and Configuring Backup and Recovery"
This chapter describes how to set up your database to implement your backup and
recovery strategy, including configuring persistent settings that control RMAN's
behavior.

Chapter 4, "Backing Up Databases Using RMAN"
This chapter describes how to perform a range of RMAN-based backups required for
different backup strategies.

Chapter 5, "Data Protection with Restore Points and Flashback Database"
This chapter provides conceptual information about Oracle Flashback Database and
Restore Points, and explains how to prepare your database so that these features are
available to you at recovery time.

Chapter 6, "Performing Complete Restore and Recovery of Databases"
This chapter describes how to use RMAN to recover from damage to your database
due to media failure, using backups created using the techniques described in Chapter
4.

Chapter 7, "Performing Flashback and Database Point-in-Time Recovery"
This chapter describes how to use RMAN and SQL*Plus to repair unwanted database
changes, including database point-in-time recovery of your database, restore points
and the flashback features of Oracle.

Chapter 8, "Recovery Manager Maintenance Tasks"
This chapter describes several backup-related database maintenance tasks, including
how to maintain the RMAN repository, the record of your backup activities used by
RMAN during recovery operations.

Appendix A, "RMAN-Based Disk and Tape Backup Strategies: Scenarios"
This chapter provides detailed examples of backup strategies for your use, based on
the techniques outlined in Chapter 4, "Backing Up Databases Using RMAN".

"Glossary"
This chapter defines common backup and recovery terms.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Database Backup and Recovery Quick Start Guide

■ Oracle Database Backup and Recovery Advanced User's Guide

■ Oracle Database Backup and Recovery Reference

■ Oracle Database SQL Reference

■ Oracle Database Utilities

xvii

Many of the examples in this book use the sample schemas of the seed database, which
is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas
for information on how these schemas were created and how you can use them
yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

xviii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Convention Meaning Example

xix

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xx

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Backup and Recovery Overview 1-1

1
Backup and Recovery Overview

This chapter provides a general overview of backup and recovery concepts, the files in
an Oracle database related to backup and recovery, and the tools available for making
backups of your database, recovering from data loss or other error, and maintaining
records of your backups.

This chapter includes the following topics:

■ What is Backup and Recovery?

■ Backup and Recovery: Basic Concepts

■ The Database Recovery Process: Basic Concepts

■ Forms of Data Recovery

■ Backup and Recovery with RMAN

■ Automatic Disk-Based Backup and Recovery: The Flash Recovery Area

■ Oracle Flashback Technology:Alternatives to Point-in-Time Recovery

■ Matching Failures to Backup and Recovery Techniques

■ System Requirements for Backup and Recovery Methods

■ Feature Comparison of Backup Methods

What is Backup and Recovery?
In general, backup and recovery refers to the various strategies and procedures
involved in protecting your database against data loss and reconstructing the database
after any kind of data loss.

Physical Backups and Logical Backups
A backup is a copy of data from your database that can be used to reconstruct that
data. Backups can be divided into physical backups and logical backups.

Physical backups are backups of the physical files used in storing and recovering your
database, such as datafiles, control files, and archived redo logs. Ultimately, every
physical backup is a copy of files storing database information to some other location,
whether on disk or some offline storage such as tape.

Logical backups contain logical data (for example, tables or stored procedures)
exported from a database with an Oracle export utility and stored in a binary file, for
later re-importing into a database using the corresponding Oracle import utility.

What is Backup and Recovery?

1-2 Backup and Recovery Basics

Physical backups are the foundation of any sound backup and recovery strategy.
Logical backups are a useful supplement to physical backups in many circumstances
but are not sufficient protection against data loss without physical backups.

Unless otherwise specified, the term "backup" as used in the backup and recovery
documentation refers to physical backups, and to back up part or all of your database
is to take some kind of physcial backup. The focus in the backup and recovery
documentation set will be almost exclusively on physical backups.

Errors and Failures Requiring Recovery from Backup
While there are several types of problem that can halt the normal operation of an
Oracle database or affect database I/O operations, only two typically require DBA
intervention and media recovery: media failure, and user errors.

Other failures may require DBA intervention to restart the database (after an instance
failure) or allocate more disk space (after statement failure due to, for instance, a full
datafile) but these situations will not generally cause data loss or require recovery
from backup.

User Error
User errors occur when, either due to an error in application logic or a manual
mis-step, data in your database is changed or deleted incorrectly. Data loss due to user
error includes such missteps as dropping important tables or deleting or changing the
contents of a table. While user training and careful management of privileges can
prevent most user errors, your backup strategy determines how gracefully you recover
the lost data when user error does cause data loss.

Media Failure
A media failure is the failure of a read or write of a disk file required to run the
database, due to a physical problem with the disk such as a head crash. Any database
file can be vulnerable to a media failure.

The appropriate recovery technique following a media failure depends on the files
affected and the types of backup available.

Oracle Backup and Recovery Solutions: RMAN and User-Managed Backup
For performing backup and recovery based on physical backups, you have two
solutions available:

■ Recovery Manager, a tool (with command-line client and Enterprise Manager GUI
interfaces) that integrates with sessions running on the Oracle server to perform a
range of backup and recovery activities, as well as maintaining a repository of
historical data about your backups

■ The traditional user-managed backup and recovery, where you directly manage
the files that make up your database with a mixture of host operating system
commands and SQL*Plus backup and recovery-related capabilities

Both methods are supported by Oracle Corporation and are fully documented.
Recovery Manager is, however, the preferred solution for database backup and
recovery. It can perform the same types of backup and recovery available through
user-managed methods more easily, provides a common interface for backup tasks

See also: Oracle Database Utilities for more details about using
Oracle export and import utilities for logical backups

Backup and Recovery: Basic Concepts

Backup and Recovery Overview 1-3

across different host operating systems, and offers a number of backup techniques not
available through user-managed methods.

Most of the backup and recovery documentation set will focus on RMAN-based
backup and recovery. User-managed backup and recovery techniques are covered in
the later chapters of Oracle Database Backup and Recovery Advanced User's Guide.

Whether you use RMAN or user-managed methods, you can supplement your
physical backups with logical backups of schema objects made using data export
utilities. Data thus saved can later be imported to re-create this data after restore and
recovery. However, logical backups are for the most part beyond the scope of the
backup and recovery documentation.

Backup and Recovery: Basic Concepts
The physical structures of the database and the role each plays in the database
recovery process determine the forms of backup and recovery available through
user-managed techniques and through RMAN.

Physical Database Structures Used in Recovering Data
The files and other structures that make up an Oracle database store data and
safeguard it against possible failures. This discussion introduces each of the physical
structures that make up an Oracle database and their role in the reconstruction of a
database from backup. This section contains these topics:

■ Datafiles and Data Blocks

■ Redo Logs

■ Undo Segments

■ Control Files

Datafiles and Data Blocks
An Oracle database consists of one or more logical storage units called tablespaces.
Each tablespace in an Oracle database consists of one or more files called datafiles,
physical files under the host operating system which collectively contain the data
stored in the tablespace.The simplest Oracle database would have one tablespace,
stored in one datafile.

The database manages the storage space in the datafiles of a database in units called
data blocks. Data blocks are the smallest units of storage that the database can use or
allocate.

Modified or new data is not written to datafiles immediately. Updates are buffered in
memory and written to datafiles at intervals. If a database has not gone through a
normal shutdown (that is, if it is open, or exited abnormally, as in an instance failure or
a SHUTDOWN ABORT) then there are typically changes in memory that have not been
written to the datafiles. Datafiles that were restored from backup, or were not closed
during a consistent shutdown, are typically not completely up to date.

Copies of the datafiles of a database are a critical part of any backup.

See also: Oracle Database Concepts for more detail about the
structure and contents of datafiles and data blocks.

Backup and Recovery: Basic Concepts

1-4 Backup and Recovery Basics

Redo Logs
Redo logs record all changes made to a database's data files. Each time data is
changed in the database, that change is recorded in the online redo log first, before it
is applied to the datafiles.

An Oracle database requires at least two online redo log groups, and in each group
there is at least one online redo log member, an individual redo log file where the
changes are recorded.

 At intervals, the database rotates through the online redo log groups, storing changes
in the current online redo log .

Because the redo log contains a record of all changes to the datafiles, if a backup copy
of a datafile from some point in time and a complete set of redo logs from that time
forward are available, the database can reapply changes recorded in the redo logs, in
order to re-construct the datafile contents at any point between the backup time and
the end of the last redo log. However, this is only possible if the redo log has been
preserved.

Therefore, preserving the redo logs is a major part of most backup strategies. The first
level of preserving the redo log is through a process called archiving. The database
can copy online redo log groups that are not currently in use to one or more archive
locations on disk, where they are collectively called the archived redo log. Individual
files are referred to as archived redo log files. After a redo log file is archived, it can
be backed up to other locations on disk or on tape, for long term storage and use in
future recovery operations.

Without archived redo logs, your database backup and recovery options are severely
limited. Your database must be taken offline before it can be backed up, and if you
must restore your database from backup, the database contents are only available as of
the time of the backup. Reconstructing the state of the database at a point in time
between backups is impossible without the archived log.

Control Files
The control file contains the record of the physical structures of the database and their
status. Several types of information stored in the control file are related to backup and
recovery:

■ Database information (RESETLOGS SCN and time stamp)

■ Tablespace and datafile records (filenames, datafile checkpoints, read/write status,
offline ranges)

■ Information about redo threads (current online redo log)

■ Log records (log sequence numbers, SCN range in each log)

■ A record of past RMAN backups

■ Information about corrupt datafile blocks

The recovery process for datafiles is in part guided by status information in the control
file, such as the database checkpoints, current online redo log file, and the datafile

See also: Oracle Database Administrator's Guide for more details
about the online redo logs, Oracle Database Administrator's Guide for
more details about archived redo logs, and "Deciding Between
ARCHIVELOG and NOARCHIVELOG Mode" on page 2-7 for a
discussion of the implications of archiving or discarding your redo
log files.

The Database Recovery Process: Basic Concepts

Backup and Recovery Overview 1-5

header checkpoints for the datafiles. Loss of the control file makes recovery from a
data loss much more difficult.

Undo Segments
In general, when data in a datafile is updated, "before images" of that data are written
into undo segments. If a transaction is rolled back, this undo information can be used
to restore the original datafile contents.

In the context of recovery, the undo information is used to undo the effects of
uncommitted transactions, once all the datafile changes from the redo logs have been
applied to the datafiles. The database is actually opened before the undo is applied.

You should not have to concern yourself with undo segments or manage them directly
as part of your backup and recovery process.

The Database Recovery Process: Basic Concepts
Reconstructing the contents of all or part of a database from a backup typically
involves two phases: retrieving a copy of the datafile from a backup, and reapplying
changes to the file since the backup from the archived and online redo logs, to bring
the database to a desired SCN since the backup (usually, the present).

To restore a datafile or control file from backup is to retrieve the file onto disk from a
backup location on tape, disk or other media, and make it available to the database
server.

To recover a datafile (also called performing recovery on a datafile), is to take a
restored copy of the datafile and apply to it changes recorded in the database's redo
logs. To recover a whole database is to perform recovery on each of its datafiles.

Figure 1–1 illustrates the basic principle of backing up, restoring, and recovering a
database. Most of the data recovery procedures supported by the Oracle database are
variations on the process described here.

See also: Oracle Database Concepts for more information about
control files.

See also: Oracle Database Concepts for detailed information about
undo segements.

Forms of Data Recovery

1-6 Backup and Recovery Basics

Figure 1–1 Restoring and Recovering a Database

In this example a full backup of a database (copies of its datafiles and control file) is
taken at SCN 100. Redo logs generated during the operation of the database capture all
changes that occur between SCN 100 and SCN 500. Along the way, some logs fill and
are archived. At SCN 500, the datafiles of the database are lost due to a media failure.
The database is then returned to its transaction-consistent state at SCN 500, by
restoring the datafiles from the backup taken at SCN 100, then applying the
transactions captured in the archived and online redo logs and undoing the
uncomitted transactions.

Forms of Data Recovery
The preceding scenario outlined the basics of the restore-and-recovery process. Several
variants on this scenario are important to your backup and recovery work.

This section contains the following topics:

■ Datafile Media Recovery: Restore Datafiles, Apply Redo

■ Complete, Incomplete and Point-In-Time Recovery

■ Automatic Recovery After Instance Failure: Crash Recovery

Datafile Media Recovery: Restore Datafiles, Apply Redo
Datafile media recovery (often simply called media recovery) is the most basic form
of user-initiated data recovery. It can be used to recover from a lost or damaged
current datafile, SPFILE or control file. It can also recover changes that were recorded
in the redo logs but not in the datafiles for a tablespace that went offline without the

Recover (redo changes)
Restored
database

Recovered
database

Media
failure

Backup
database

100 200 300
SCN

400 500

Archived
redo logs

Forms of Data Recovery

Backup and Recovery Overview 1-7

OFFLINE NORMAL option. Datafile media recovery can be performed whether you use
Recovery Manager or user-managed backup and recovery. (For user-managed backup
and recovery, it is in fact the main option available.)

The need to restore a datafile from backup is not detected automatically. The first step
in performing media recovery is to manually restore the datafile by copying it from a
backup. Once a datafile has been restored from backup, however, the database does
automatically detect that this datafile is out of date and must undergo media recovery.

Several situations force you to perform media recovery:

■ You restore a backup of a datafile.

■ You restore a backup control file (even if all datafiles are current).

■ A datafile is taken offline (either by you or automatically by the database) without
the OFFLINE NORMAL option.

For a datafile to be available for media recovery, one of two things must be true:

■ The database that the datafile belongs to must not be open;

or

■ The specific datafile needing recovery must be offline, if the database is open.

A datafile that needs media recovery cannot be brought online until media recovery
has been completed. A database cannot be opened if any of the online datafiles needs
media recovery.

You can manage the expected duration of media recovery as part of your backup and
recovery strategy. It is affected by, for example, the frequency of backups and parallel
recovery parameters.

Complete, Incomplete and Point-In-Time Recovery
Complete recovery is recovering a database to the most recent point in time, without
the loss of any committed transactions. Generally, the term "recovery" refers to
complete recovery.

Occasionally, however, you need to return a database to its state at a past point in time.
For example, to undo the effect of a user error, such as dropping or deleting the
contents of a table, you may want to return the database to its contents before the
delete occurred. In incomplete recovery, also known as point-in-time recovery, the
goal is to restore the database to its state at some previous target SCN or time.
Point-in-time recovery is one possible response to a data loss caused by, for instance, a
user error or logical corruption that goes unnoticed for some time.

Point-in-time recovery is also your only option if you have to perform a recovery and
discover that you are missing an archived log covering time between the backup you
are restoring from and the target SCN for the recovery. Without the missing log, you
have no record of the updates to your datafiles during that period. Your only choice is
to recover the database from the point in time of the restored backup, as far as the
unbroken series of archived logs permits, then perform an OPEN RESETLOGS and
abandon all changes in or after the missing log. (If you discover that you have lost
archived logs and your database is still up, you should do a full backup immediately.)

Backup and Recovery with RMAN

1-8 Backup and Recovery Basics

Automatic Recovery After Instance Failure: Crash Recovery
The crash recovery process is a special form of recovery, which happens the first time
an Oracle database instance is started after a crash (or SHUTDOWN ABORT). In crash
recovery, the goal is to bring the datafiles to a transaction-consistent state, preserving
all committed changes up to the point when the instance failed.

Like crash recovery, datafile media recovery is intended to restore database integrity.
However, there are a number of important differences between the two:

■ Media recovery must be explicitly invoked by a user. The database will not run
media recovery on its own.

■ Media recovery applies needed changes to datafiles that have been restored from
backup, not to online datafiles left over after a crash.

■ Media recovery must use archived logs as well as the online logs, to find changes
reaching back to the time of the datafile backup.

Unlike the forms of recovery performed manually after a data loss, crash recovery uses
only the online redo log files and current online datafiles, as left on disk after the
instance failure. Archived logs are never used during crash recovery, and datafiles are
never restored from backup.

The database applies any pending updates in the online redo logs to the online
datafiles of your database. The result is that, whenever the database is restarted after a
crash, the datafiles reflect all committed changes up to the moment when the haven't
said failure occurred. (After the database opens, any changes that were part of
uncommitted transactions at the time of the crash are rolled back.)

The duration of crash recovery is a function of the number of instances needing
recovery, amount of redo generated in the redo threads of crashed instances since the
last checkpoint, and user-configurable factors such as the number and size of redo log
files, checkpoint frequency, and the parallel recovery setting.You can set parameters in
the database server that can tune the duration of crash recovery. You can also tune
checkpointing to optimize recovery time.

Backup and Recovery with RMAN
As noted earlier, using RMAN gives you access to several data backup and recovery
techniques and features not available at all with user-managed backup and recovery.
The most noteworthy are:

Note: If only one tablespace is affected by the data loss, you have
the option of performing point-in-time recovery on that tablespace
instead of the entire database. Tablespace point-in-time recovery
(often abbreviated TSPITR) is an advanced technique documented
in Oracle Database Backup and Recovery Advanced User's Guide.

Note: Crash recovery in a Real Application Cluster (RAC)
database takes place when all instances in the cluster have failed.
The related process of instance recovery takes place when some but
not all instances fail. For more information on crash and instance
recovery in the context of RAC, refer to Oracle Real Application
Clusters Quick Start.

Backup and Recovery with RMAN

Backup and Recovery Overview 1-9

■ Incremental backups, which provide more compact backups (storing only
changed blocks) and faster datafile media recovery (reducing the need to apply
redo during datafile media recovery)

■ Block media recovery, in which a datafile with only a small number of corrupt
data blocks can be repaired without being taken offline or restored from backup

■ Unused block compression, where RMAN can in some cases skip unused datafile
blocks during backups

■ Binary compression, which uses a compression mechanism integrated into the
Oracle database server to reduce the size of backups

■ Encrypted backups, which uses encryption capabilities integrated into the Oracle
database to store backups in an encrypted format

A complete list of feature differences between RMAN and user-managed backup and
recovery can be found in "Feature Comparison of Backup Methods" on page 1-15.

RMAN also reduces the administration work associated with your backup strategy.
RMAN keeps an extensive record of metadata about backups, archived logs, and its
own activities, known as the RMAN repository. In restore operations, RMAN can use
this information to eliminate the need for you to identify backup files for use in
restores in most situations. You can also generate reports of backup activity using the
information in the repository.

Primary storage for RMAN repository information is in the control file of the
production database. You can also set up an independent recovery catalog, a schema
that stores RMAN repository information for one or many databases in a separate
recovery catalog database.

The remainder of this book, Oracle Database Backup and Recovery Basics, focuses on
using RMAN to implement your backup and recovery strategy.

Files That RMAN Can Back Up
RMAN can back up all database files needed for efficient recovery in the event of a
failure. RMAN supports backing up the following types of files:

■ Datafiles, and image copies of datafiles

■ Control files, and image copies of control files

■ Archived redo logs

■ The current server parameter file

■ Backup pieces, containing other backups created by RMAN

Note: Although the database depends on other types of files for
operation, such as network configuration files, password files, and
the contents of the Oracle home, these files cannot be backed up
with RMAN. Likewise, some features of Oracle, such as external
tables or the BFILE datatype, store data in files other than those
listed here. RMAN cannot back up those files. You must use some
non-RMAN backup solution for any files not in the preceding list.

Backup and Recovery with RMAN

1-10 Backup and Recovery Basics

RMAN Backup Destinations: Disk and Media Managers
RMAN can create and manage backups on disk and on tape, back up backups
originally created on disk to tape, and restore database files from backups on disk or
tape.

Devices used for tape backup are often referred to as SBT (System Backup to Tape)
devices. RMAN interacts with SBT devices through software known as a media
management layer, or media manager.

Types of Oracle Database Backup under RMAN
There are several ways of distinguishing among physical backups, according to the
state the database was in when the backup was created, what parts of the database
were actually backed up, and how the resulting backup was stored.

About Consistent and Inconsistent Backups
Physical backups can also be divided into consistent and inconsistent backups.
Consistent backups are those created when the database is in a consistent state, that is,
when all changes in the redo log have been applied to the datafiles. A database
restored from a consistent backup can be opened immediately, without undergoing
media recovery. However, a consistent backup can only be created after a consistent
shutdown, that is, not after a crash or a SHUTDOWN ABORT.

For reasons of availability, the Oracle database is designed to work equally well with
an inconsistent backup, a backup taken while the database is open. However, when a
database is restored from an inconsistent backup, it must undergo media recovery, so
that the database can apply any pending changes from the online and archived redo
log before the database is opened again. Because archived logs are required for media
recovery, using inconsistent backups requires that your database be run in
ARCHIVELOG mode.

About Full and Incremental Backups
Full backups are backups which include datafiles in their entirety. Full backups can be
created with Recovery Manager or with operating system-level file copy commands.
Incremental backups are based on the idea of making copies only of changed data
blocks in a data file. In recovery, extracting entire changed blocks from an incremental
backup can substitute for applicationof redo for individual datafile updates during the
time covered by the backup, shortening recovery times considerably. Incremental
backups can only be created with RMAN.

About Image Copies, Backup Sets and Backup Pieces
The results of an Oracle database backup created through RMAN can be either image
copies or backup sets. An image copy is a bit-for-bit identical copy of a database file.
RMAN can create image copy backups, although in the process, RMAN will check the
contents for corruption, something that native operating-system file copy utilities
cannot do. RMAN records image copies it creates in the RMAN repository, so that it
can use them when restoring your database. Image copies can also be created using
operating system commands such as cp in Unix or COPY in Windows.

See Also: "About RMAN Full and Incremental Datafile Backups"
on page 4-3 for more details about the different ways to back up
datafiles.

Oracle Flashback Technology:Alternatives to Point-in-Time Recovery

Backup and Recovery Overview 1-11

RMAN can also store its backups in an RMAN-specific format called a backup set. A
backup set is a collection of files called backup pieces, each of which may contain the
backup of one or several database files. A backup task performed in RMAN can create
one or more backup sets, which are recorded in the RMAN repository. Backup sets are
also the only form in which RMAN can write backups to media manager devices like
tape libraries. Backup sets are only created and accessed through Recovery Manager.

Automatic Disk-Based Backup and Recovery: The Flash Recovery Area
The components that creates different backup and recovery-related files have no
knowledge of each other or of the size of the file systems where they store their data.
With Automatic Disk-Based Backup and Recovery, you can create a flash recovery
area, which automates management of backup-related files. Choose a location on disk
and an upper bound for storage space, and set a retention policy that governs how
long backup files are needed for recovery, and the database manages the storage used
for backups, archived redo logs, and other recovery-related files for your database
within that space. Files no longer needed are eligible for deletion when RMAN needs
to reclaim space for new files.

Using a flash recovery area minimizes the need to manually manage dsk space for
your backup-related files and balance the use of space among the different types of
files. Oracle recommends that you enable a flash recovery area to simplify your
backup management.

Oracle Flashback Technology:Alternatives to Point-in-Time Recovery
Oracle Flashback Technology provides a set of features that provide useful alternatives
to support viewing past states of data, and winding data back and forth in time,
without requiring you to restore large portions of your database from backup or
perform point-in-time recovery. The flashback features of Oracle are more efficient and
less disruptive than media recovery in most circumstances in which they are
applicable.

 Most of the flashback features of Oracle operate at the logical level, viewing and
manipulating database objects, as follows:

■ Oracle Flashback Query lets you specify a target time and then run queries
against your database, viewing results as they would have appeared at that time.
To recover from an unwanted change like an erroneous update to a table, a user
could choose a target time before the error and run a query to retrieve the contents
of lost or changed rows.

■ Oracle Flashback Version Query lets you view all the versions of all the rows that
ever existed in one or more tables in a specified time interval, as updates were
applied to the tables. You can also retrieve metadata about the differing versions of
the rows, including start time, end time, operation, and transaction ID of the

Note: If you create image copies outside of RMAN, you must use the
CATALOG command to record them in the RMAN repository before
RMAN can make use of them.

See Also: "About RMAN Backup Formats: Image Copies and
Backup Sets" on page 4-2 for more details about image copies and
backup sets.

Oracle Flashback Technology:Alternatives to Point-in-Time Recovery

1-12 Backup and Recovery Basics

transaction that created the version. This feature can be used both to recover lost
data values and to audit changes to the tables queried.

■ Oracle Flashback Transaction Query lets you view changes made by a single
transaction, or by all the transactions during a period of time.

■ Oracle Flashback Table returns a table to its state at a previous point in time. You
can restore table data while the database is online, undoing changes only to the
specified table.

■ Oracle Flashback Drop reverses the effects of a DROP TABLE statement.

Flashback Table, Flashback Query, Flashback Transaction Query and Flashback Version
Query all rely on undo data, records of the effects of each update to an Oracle database
and values overwritten in the update. Used primarily for such purposes as providing
read consistency for SQL queries and rolling back transactions, these undo records
contain the information required to reconstruct data as it stood at a past time and all
changes since that time.

Flashback Drop is built around a mechanism called the Recycle Bin, which Oracle
uses to manage dropped database objects until the space they occupied is needed to
store new data.

At the physical level, Oracle Flashback Database provides a more efficient direct
alternative to database point-in-time recovery. If you have datafiles which merely have
unwanted changes, then you can use Flashback Database to cause your current
datafiles revert to their contents at a past time. The end product is much like the result
of a point-in-time recovery, but is generally much faster because it does not require
restoring datafiles from backup, and requires only limited application of redo
compared to media recovery.

Flashback Database uses flashback logs to access past versions of data blocks, as well
as some information from the archived redo log. Flashback Database requires that you
configure a flash recovery area for your database, because the flashback logs can only
be stored there. Flashback logging is not enabled by default. Space used for flashback
logs is managed automatically by the database, and balanced against space required
for other files in the flash recovery area.

Note: The logical-level flashback features of Oracle are not
dependent upon RMAN, and are available whether or not RMAN is
part of your backup strategy.

Note:

■ Flashback Database is integrated with RMAN, which can
automatically retrieve from backup any archived logs needed
during Flashback Database. It can also be used from within
SQL*Plus without the use of RMAN, but if used in this mode you
must make all required archived logs available on disk yourself.

■ If insufficient space is allocated for the flash recovery area, then
flashback logs may be deleted to make room for backups and
archived log files. Database point-in-time recovery can generally
deliver the same result as flashback database, returning your
database to its contents at a past point in time,

Matching Failures to Backup and Recovery Techniques

Backup and Recovery Overview 1-13

About Restore Points
The Oracle database also supports restore points in conjunction with Flashback
Database and restore and recovery features.

A normal restore point is an alias corresponding to an SCN, which you can create at
any time if you anticipate needing to return part or all of your database to its contents
at that time. Future point-in-time recovery, Flashback Table and Flashback Database
operations are simplified because you do not need to research or record the target SCN
for the operation.

Creating a guaranteed restore point ensures that you can use Flashback Database to
return your database to the time of the restore point.

Matching Failures to Backup and Recovery Techniques
In planning your database backup and recovery strategy, you must try to anticipate
the errors that will arise, and put in place the backups needed to recover from
them.While there are several types of problem that can halt the normal operation of an
Oracle database or affect database I/O operations, only two typically require DBA
intervention and media recovery: media failure, and user errors. Instance failures,
network failures, failures of Oracle database background processes and failure of a
statement to execute due to, for instance, exhaustion of some resource such as space in
a datafile may require DBA intervention, and might even crash a database instance,
but will not generally cause data loss or the need to recover from backup.

This section contains these topics:

■ Media Failure

■ User Error

Media Failure
Database operation after a media failure of online redo log files or control files
depends on whether the online redo log or control file is protected by multiplexing, as
recommended. When an online redo log or control file is multiplexed, multiple copies
of the file are maintained on the system. Multiplexed files should be stored on separate
disks.

If a media failure damages a disk containing one copy of a multiplexed online redo
log, then the database can usually continue to operate without significant interruption.

See Also:

■ "Using Normal and Guaranteed Restore Points" on page 5-6 for
more information about the use of normal and guaranteed
restore points

■ Chapter 7, "Performing Flashback and Database Point-in-Time
Recovery" for more information about the use of the flashback
features of Oracle in a data recovery context

■ Oracle Database Concepts and Oracle Database Administrator's
Guide for more information on undo data and automatic undo
management

■ Oracle Database Application Developer's Guide - Fundamentals for
more information on Flashback Query, Flashback Transaction
Query and Flashback Version Query

Matching Failures to Backup and Recovery Techniques

1-14 Backup and Recovery Basics

Damage to a nonmultiplexed online redo log causes database operation to halt and
may cause permanent loss of data.

Damage to any control file, whether it is multiplexed or not, halts database operation
when the database attempts to read or write to the damaged control file (which
happens frequently, for example at every checkpoint and log switch).

Media failures are eitherread errors or write errors. In a read error, the instance cannot
read a datafile and an operating system error is returned to the application, along with
an error indicating that the file cannot be found, cannot be opened, or cannot be read.
The database continues to run, but the error is returned each time an unsuccessful read
occurs. At the next checkpoint, a write error will occur when the database attempts to
write the file header as part of the standard checkpoint process.

The effect of a datafile write error depends upon which tablespace the datafile is in.

If the instance cannot write to a datafile in the SYSTEM tablespace, an undo
tablespace (if the database is in automatic undo management mode, which is the
preferred choice in Release 10g), or a datafile in a tablespace containing active rollback
segments (if in manual undo management mode), then the database issues an error
and shuts down the instance. All files in the SYSTEM tablespace and all datafiles
containing rollback segments must be online in order for the database to operate
properly.

If the instance cannot write to a datafile other than those in the preceding list, then the
result depends on whether the database is running in ARCHIVELOG mode or not.

In ARCHIVELOG mode, the database records an error in the database writer trace file
and takes the affected datafile offline. (All other datafiles in the tablespace containing
this datafile remain online.) You can then rectify the underlying problem and restore
and recover the affected tablespace.

In NOARCHIVELOG mode, the database writer background process DBWR fails, and
the instance fails, the cause of the problem determines the required response. If the
problem is temporary (for example, a disk controller was powered off), then crash
recovery usually can be performed using the online redo log files. In such situations,
the instance can be restarted without resorting to media recovery. However, if a
datafile is damaged, then you must restore a consistent backup of the entire database.

User Error
Typically, a user error like dropping a table or deleting rows from a table requires one
of the following responses:

■ Re-importing the dropped object, if a suitable export file exists or if the object is
still available at a standby database

■ Performing tablespace point-in-time recovery (TSPITR) of one or more
tablespaces

■ Re-entering the lost data manually, if a record of them exists

■ Returning the database to a past state using database point-in-time recovery

■ Using one of the flashback features of the Oracle database to recover from logical
corruption by returning affected objects to a past state

The recovery options available to you will be a function of your backup strategy. For
example, if you are running in NOARCHIVELOG mode then you have limited
point-in-time recovery options.

Feature Comparison of Backup Methods

Backup and Recovery Overview 1-15

System Requirements for Backup and Recovery Methods
When choosing a backup and recovery solution, find one that is appropriate for the
database environment. For example, if you manage only databases of release 8.0 or
higher, then you can use RMAN to manage your backup and recovery requirements.
Releases older than 8.0 will have to be managed using some method besides RMAN.

Table 1–1 describes the version and system requirements for different database backup
and recovery methods.

Feature Comparison of Backup Methods
Besides being limited by system requirements, the backup and recovery solution you
choose should be driven by the features that you want. Table 1–2 compares the
features of the different backup methods.

See Also:

■ Oracle Database Backup and Recovery Advanced User's Guide to
learn how to perform point-in-time recovery for an entire
database

■ Oracle Database Backup and Recovery Advanced User's Guide to
learn how to perform tablespace point-in-time recovery

■ Oracle Database Backup and Recovery Advanced User's Guide to
learn how to use the flashback features of the Oracle database

Table 1–1 Requirements for Different Backup Methods

Backup Method Type Version Available Requirements

Recovery Manager
(RMAN)

Physical Oracle version 8.0
and higher

Third-party media manager
(only if backing up to tape)

Operating System Physical All versions Operating system backup
utility (for example, UNIX dd
command)

Export Logical All versions N/A

Table 1–2 Feature Comparison of Backup Methods

Feature Recovery Manager User-Managed Export

Closed database backups Supported. Requires
instance to be mounted.

Supported. Not supported.

Open database backups Supported. No need to use
BEGIN/END BACKUP
statements.

Supported. Must use
BEGIN/END BACKUP
statements.

Requires rollback or undo
segments to generate
consistent backups.

Incremental backups Supported. Not supported. Not supported.

Corrupt block detection Supported. Identifies
corrupt blocks and logs in
V$DATABASE_BLOCK_
CORRUPTION.

Not supported. Supported. Identifies
corrupt blocks in the
export log.

Automatic record
keeping of files in
backups

Supported. Establishes the
name and locations of all
files to be backed up
(whole database,
tablespace, datafile or
control file backup).

Not supported. Files to be
backed up must be
specified manually.

Supported. Performs
either full, user, or table
backups.

Feature Comparison of Backup Methods

1-16 Backup and Recovery Basics

Recovery catalogs Supported. Backups are
recorded inthe RMAN
repository, which is
contained in the control
file and optionally in the
recovery catalog database.

Not supported. DBA must
keep own records of
backups.

Not supported.

Backups to media
manager

Supported. Interfaces with
a media manager. RMAN
also supports proxy copy,
a feature that allows the
media manager to manage
the transfer of data.

Supported. Backup to tape
is manual or controlled by
a media manager.

Supported.

Backs up initialization
parameter file

Supported. Supported. Not supported.

Backs up password and
networking files

Not supported. Supported. Not supported.

Platform-independent
language for backups

Supported. Not supported. Supported.

Table 1–2 (Cont.) Feature Comparison of Backup Methods

Feature Recovery Manager User-Managed Export

Backup and Recovery Strategies 2-1

2
Backup and Recovery Strategies

This chapter offers guidelines and considerations for developing an effective backup
and recovery strategy.

This chapter includes the following sections:

■ Data Recovery Strategy Determines Backup Strategy

■ Planning Data Recovery Strategy

■ Planning Backup Strategy

■ Validating Your Data Recovery Strategy

Data Recovery Strategy Determines Backup Strategy
To decide on backup strategies, start with your data recovery requirements and your
data recovery strategy. Each type of data recovery will require that you take certain
types of backup.

Failures can run the gamut from user error, datafile block corruption and media failure
to situations like the complete loss of a data center. How quickly you can resume
normal operation of your database is a function of what kinds of restore and recovery
techniques you include in your planning. Each restore and recovery technique will
impose requirements on your backup strategy, including which features of the Oracle
database you use to take, store and manage your backups.

When thinking about recovery strategies, ask yourself questions like these:

■ If a disk failed and destroyed some of the database files, such as datafiles or redo
logs, how would you recover the lost files? As described in "Planning a Response
to Media Failure: Restore and Media Recovery" on page 2-4, you should be able to
handle the loss of datafiles, control files, and online redo logs.

■ If a logic error in an application or a user error caused the loss of important data
from one or several tables or tablespaces, how could you recover that data, and
what would happen to database updates since the error? Could you determine
the cause of the error, to prevent it from happening again? As described in
"Planning Responses to User Error: Point-in-Time Recovery and Flashback
Features" on page 2-3, techniques available to you include point-in-time recovery
of the whole database or one or more tablespaces, importing data from earlier
logical exports with one of the data import utilities, and using the Oracle
database's flashback features.

■ If the instance alert log indicates that one or more tables contains corrupt blocks,
how can you repair the corruption? Does the tablespace have to remain available
during the repair? As described in "Planning a Response to Datafile Block

Data Recovery Strategy Determines Backup Strategy

2-2 Backup and Recovery Basics

Corruption: Block Media Recovery" on page 2-5, the RMAN BLOCKRECOVER
command can help you in this situation. Also, troubleshoot recovery with the
SQL*Plus RECOVER ... TEST command.

■ If the entire data center is destroyed, can you perform disaster recovery? Assume
that all you have is an archive tape containing backups. How would you recover
the database? How long would that recovery take?

■ If you were not available to recover your database, could someone else recover it
in your absence? Are your recovery procedures sufficiently automated and
documented?

With these needs in mind, decide how you can take advantage of features related to
backup and recovery, and look at how each feature meets some requirement of your
backup strategy. For example:

■ Using Recovery Manager simplifies most backup and recovery operations
compared to user-managed backup and recovery. It automates management of
most backup files, including the deletion of backups and archived redo logs from
disk or tape when no longer needed to meet recovery goals. It provides detailed
reporting on backup activities, can verify that your available backups can be used
to recover your database. Finally, RMAN makes possible many recovery
techniques not available if you are using user-managed backup and recovery, such
as incremental backups.

■ Flashback Database will help you restore a database to a previous time much
faster than media recovery. However, you must decide in advance to keep
flashback logs, and keeping flashback logs requires that you configure a flash
recovery area.

■ Block media recovery may be better than datafile media recovery if availability is
critical. While block media recovery is possible even if you do not base your
backup and recovery strategy on RMAN, RMAN-based block media recovery can
be performed more quickly and with less effort.

Once you decide which features to use in your recovery strategy, you can plan your
backup strategy, answering the following questions, among others:

■ How and where will you store your recovery-related files? Will you use a flash
recovery area? Will you use an ASM disk group to provide redundancy? Will you
store backups on tape or other offline storage, or only on disk?

■ At what intervals will you take scheduled backups? And what form of physical
backups will you take in each situation?

■ What situations require you to take a database backup outside of the regular
schedule? Sometimes you must take an unscheduled backup to ensure that you
can recover your data, such as after an OPEN RESETLOGS or after changes to your
database such as NOLOGGING operations that do not appear in the redo log. You
may also have business requirements that require backups for auditing purposes
or other reasons not related to database recovery.

■ How can you validate your backups, to ensure that you can recover your database
when necessary?

■ How do you manage records of your backups? Do you use RMAN with a recovery
catalog?

■ Do you have detailed recovery plans that cover each type of failure? How do your
DBAs can execute these plans in a crisis? Can scripts be written to automate
execution of these plans in a crisis?

Planning Data Recovery Strategy

Backup and Recovery Strategies 2-3

■ Can you apply Oracle database availability technologies, such as Data Guard or
Real Application Clusters, to improve availability during a database failure? How
does using these availability technologies affect your backup and recovery
strategy?

These are of course only a few of the considerations you should take into account.
Available resources (hardware, media, staff, budget, and so on) will also be factors in
your decision.

Planning Data Recovery Strategy
Your data recovery strategy should include responses to any number of database
failure scenarios. The key to an effective, efficient strategy is envisioning failure
modes, matching Oracle database recovery techniques and tools to the failure modes
in which they are useful, and then making sure you incorporate the necessary backup
types to support those recovery techniques.

To help match failure modes to recovery techniques that can help resolve them, refer to
the following sections:

■ Planning Responses to User Error: Point-in-Time Recovery and Flashback Features

■ Planning a Response to Media Failure: Restore and Media Recovery

■ Planning a Response to Datafile Block Corruption: Block Media Recovery

Planning Responses to User Error: Point-in-Time Recovery and Flashback Features
A user or application may make unwanted changes to your database, such as
erroneous updates, deleting the contents of a table, or dropping database objects. An
adequate backup and recovery strategy uses the many features of the Oracle database
to let you return your database to the desired state, with the minimum possible impact
upon database availability, and minimal DBA effort.

Depending on the situations you anticipate, consider incorporating each of the
following options into your strategy for repsonding to data loss, and then set up your
database to make these options possible.

Flashback Database
Using Flashback Database enables you to return your whole database to a previous
state without restoring old copies of your datafiles from backup, as long as you have
enabled logging for flashback database in advance.

You can turn on flashback logging to allow a return to an arbitrary SCN as far in the
past as the available flashback logs permit, or you can create guaranteed restore points
at specific SCNs, such as before major database updates, which ensure that Flashback
Database can be used to return the database to its state at a specific moment.

You must have a flash recovery area configured for logging for flashback database or
guaranteed restore points.

Creating Normal and Guaranteed Restore Points
As noted, guaranteed restore points ensure that you can return your database to a
specific previous time using Flashback Database. Normal restore points do not provide
protection for your data, but they are a convenience because by creating one, you can
avoid having to record the SCN of the database before an operation from which you
wish to recover using point-in-time recovery or flashback table, or having to
investigate after the operation to determine the correct SCN.

Planning Data Recovery Strategy

2-4 Backup and Recovery Basics

No special setup is required for using normal restore points, though you must plan on
creating restore points before they are needed.

Database Point-in-Time Recovery
You can perform point-in-time recovery, bringing one tablespace or the whole
database back to its state before the time of the error. In either case, you need backups
from before the time of the error, plus the redo logs from the time of the backup to the
time of the error.

Importing Lost Objects from Logical Backup
If you have performed a logical backup by exporting the contents of the affected
tables, sometimes you can import the data back into the table. This technique
presumes that you are regularly exporting logical backups of your data, and that any
changes between exports are unimportant.

Planning a Response to Media Failure: Restore and Media Recovery
A media failure occurs when a problem external to the database prevents Oracle from
reading from or writing to a file during database operations. Typical media failures
include physical failures, such as head crashes, and the overwriting, deletion or
corruption of a database file. Media failures are less common than user or application
errors, but your backup and recovery strategy should prepare for them.

The type of media failure determines the recovery technique to use. For example, the
strategy you use to recover from a corrupted datafile is different from the strategy for
recovering from the loss of the control file.

Example: Online Redo Log Recovery
The method of recovery from loss of all members of an online log group depends on a
number of factors, such as:

■ The state of the database (open, crashed, closed consistently, and so on)

Note: Oracle's Flashback Technology provides faster and less
disruptive alternatives to media recovery in many circumstances.

■ Oracle Flashback Database is a physical-level recovery
mechanism similar to media recovery, but generally faster and
not requiring the restore of data from backup.

■ Oracle Flashback Table and Oracle Flashback Drop work at the
logical level, undoing unwanted changes to tables, including
reversing the effects of DROP TABLE statements.

■ Oracle Flashback Query and Oracle Flashback Version Query
are useful in viewing past contents of tables and investigating
how and when logical corruptions affected your database.

Information about these features is collected in Chapter 7,
"Performing Flashback and Database Point-in-Time Recovery". This
document will allude to such features where they can be helpful
and provide pointers for more information. Familiarize yourself
with these features before planning your backup and recovery
strategy, because you may find that they can be quite valuable and
require limited advanced planning.

Planning Backup Strategy

Backup and Recovery Strategies 2-5

■ Whether the lost redo log group was current

■ Whether the lost redo log group was archived

For example:

■ If you lose the current group, and the database is not closed consistently (either it
is open, or it has crashed), then you will have to restore an old backup and
perform point-in-time recovery, followed by OPEN RESETLOGS. You will lose all
transactions that were in the lost log. You should take a new full database backup
immediately after the OPEN RESETLOGS. Backups from before the OPEN
RESETLOGS will not be recoverable because of the lost log.

■ If you lose the current redo log group, and if the database is closed consistently,
then you can perform OPEN RESETLOGS with no transaction loss. However, you
should take a new full database backup. Backups from before the OPEN
RESETLOGS will not be recoverable because of the lost log.

■ If you lose a noncurrent redo log group, then you can use the ALTER DATABASE
CLEAR LOGFILE statement to re-create all members in the group. No transactions
are lost. If the lost redo log group was archived before it was lost, then nothing
further is required. Otherwise, you should immediately take a new full backup of
your database. Backups from before the log was lost will not be recoverable
because of the lost log.

Planning a Response to Datafile Block Corruption: Block Media Recovery
If a small number of blocks within one or more datafiles are corrupt, you can perform
block media recovery instead of restoring the datafiles from backup and performing
complete media recovery of those files. The Recovery Manager BLOCKRECOVER
command can be used to restore and recover specified data blocks while the database
is open and the corrupted datafile is online.

Planning Backup Strategy
Your plans for data recovery strategies are the basis of your plans for backup strategy.
This discussion describes general guidelines that can help you decide when to perform
database backups, which parts of a database you should back up, what tools Oracle
provides for those backups, and how to configure your database to improve its
robustness and make backup and recovery easier. Of course, the specifics of your
strategy must balance the needs of your restore strategy with questions of cost,
resources, personnel and other factors.

Protecting Your Redundancy Set
The set of files needed to recover an Oracle database from the failure of any of its
files—a datafile, control file, or online redo log—is called the redundancy set. The
redundancy set should contain:

■ The last backup of the control file and all the datafiles

■ All archived redo logs generated after the last backup was taken

■ Duplicates of the current control file and online redo log files, generated by Oracle
database multiplexing, operating system mirroring, or both

See Also: Oracle Database Backup and Recovery Advanced User's
Guide to learn how to perform block media recovery with RMAN.

Planning Backup Strategy

2-6 Backup and Recovery Basics

■ Copies of configuration files such as the server parameter file, tnsnames.ora,
and listener.ora

A minimal production-level database thus requires at least two disk drives: one to
hold the files in the redundancy set and one to hold the database files. Ideally, separate
the redundancy set from the primary files in every way possible: on separate volumes,
separate file systems, and separate RAID devices.

The simplest way to manage your redundancy set is to use a flash recovery area, on a
separate device from the working set files. However, whether or not you use a flash
recovery area, Oracle recommends the following practices:

■ Multiplex the online redo log files and current control file at the database level.
(For instance, configure the database to write its online logs to two or more
destinations, so that each write is a separate operation carried out by the database,
rather than by operating system-level or hardware-level redundancy.) If you
multiplex at the database level, then an I/O failure or lost write should only
corrupt one of the copies.

 Ideally, the multiplexed files should be on different disks mounted under different
disk controllers. The flash recovery area is an excellent location for one copy of
these files.

You can also mirror the online redo logs and current control file at the operating
system or hardware level, but this is not a substitute for multiplexing at the
database level.

■ If running in ARCHIVELOG mode, archive the redo logs to multiple locations,
ideally on different disks. If you are using a flash recovery area, use it as one of the
archiving locations.

■ Use operating system or hardware mirroring for the control file. All copies of the
control file multiplexed at the database level must be available at all times, or the
instance will crash. If you use operating system or hardware mirroring for your
control file, your database can continue to operate even if one copy of the control
file mirrored at the operating system level is unavailable due to a disk failure.

■ Use operating system or hardware mirroring for the primary datafiles if possible,
to avoid having to perform media recovery for simple disk failures.

■ Keep at least one copy of the entire redundancy set—including the most recent
backup—on disk. The flash recovery area is the ideal location for the redundancy
set.

■ If the target database is stored on a RAID device, then store the redundancy set on
a set of disks that are not in the same RAID device.

■ If you store the redundancy set on tape, then maintain at least two copies of the
data to protect against the risk of tape failure. Also, if you have more than one
backup of the same data, then consider keeping backups from different points in
time. In this way, if one backup or split mirror was created when the database was
corrupted, you may still have a backup from a time when the database was not
corrupted.

Caution: Do not store the redundancy set on the same disk that
contains the datafiles, online logs and control files of the database.
Otherwise, the disk becomes a single point of failure for the database.
If this disk fails, you lose committed transactions.

Planning Backup Strategy

Backup and Recovery Strategies 2-7

Deciding Whether to Use a Flash Recovery Area
It is recommended that you take advantage of the flash recovery area to store as many
backup and recovery-related files as as possible, including disk backups and archived
redo logs.

Some features of Oracle database backup and recovery, such as Oracle Flashback
Database and guaranteed restore points, require the use of a flash recovery area.
However, having a flash recovery area for use by these features does not force you to
use it to store all recovery-related files.

Even when its use is not required, however, the flash recovery area offers a number of
advantages over other on-disk backup storage methods. Backups moved to tape from
the flash recovery area are retained on disk until space is needed for other required
files, reducing the need to restore backups from tape. At the same time, obsolete files
no longer needed to meet your recoverability goals and files backed up to tape become
eligible for deletion and are deleted when space is needed. The DBA no longer has to
manually delete old backups, and, it is less likely that a DBA accidentally deletes
redundancy set files.

Deciding Between ARCHIVELOG and NOARCHIVELOG Mode
The redo logs of your database provide a complete record of changes to the datafiles of
your database (with a few exceptions, such as direct path loads).

You can run your database in one of two modes: ARCHIVELOG mode or
NOARCHIVELOG mode. In ARCHIVELOG mode, a used online redo log group must
be copied to one or more archive destinations before it can be reused. Archiving the
redo log preserves all transactions stored in that log, so that they can be used in
recovery operations later. In NOARCHIVELOG mode, the online redo log groups are
simply overwritten when the log is reused. All information about transactions
recorded in that redo log group is lost.

Implications of Running in NOARCHIVELOG Mode
Running your database in NOARCHIVELOG mode imposes severe limitations on
your backup and recovery strategy.

■ You cannot perform online backups of your database. You must shut your
database down cleanly before you can take a backup in NOARCHIVELOG mode.

■ You cannot use any data recovery techniques that require the archived redo logs.
These include complete and point-in-time media recovery, as described in "Forms
of Data Recovery" on page 1-6, and more advanced recovery techniques such as
point-in-time recovery of individual tablespaces and Flashback Database
(described in Oracle Database Backup and Recovery Advanced User's Guide.).

If you are running in NOARCHIVELOG mode and you must recover from damage to
datafiles due to disk failure, you have two main options for recovery:

■ Drop all objects that have any extents located in the affected files, and then drop
the files. The remainder of the database is intact, but all data in the affected files is
lost.

See Also: "Setting Up a Flash Recovery Area for RMAN" on
page 3-13 for more about the uses and benefits of the flash recovery
area.

Planning Backup Strategy

2-8 Backup and Recovery Basics

■ Restore the entire database from the most recent backup, and lose all changes to
the database since the backup. (Recovering changes since the backup would
require performing media recovery, which uses the archived redo logs.)

Implications of Running in ARCHIVELOG Mode
For most applications, running in ARCHIVELOG mode is preferable to running in
NOARCHIVELOG mode because you have more flexible recovery options after a data
loss, such as point-in-time recovery of the database or some tablespaces. There are,
however, associated costs of running in ARCHIVELOG mode:

■ Space must be set aside for archiving destinations, locations on disk where the
archived redo logs will be stored. These can become quite large in databases with
large numbers of updates.

■ The stored archived redo logs must be managed. To limit the disk space used by
archived redo logs, archived redo logs can be moved to tape for longer-term
storage, and older logs no longer needed to meet your recoverability goals should
be deleted. (RMAN can automate most of the management of archived redo logs,
by recording the location and contents of all archived redo logs, making it easy to
move archived logs to tape, and identifying and deleting redo logs no longer
required to meet your recoverability objectives.)

■ Some performance overhead is associated with the background processes ARC0
through ARCn which copy filled online redo logs to the archiving destinations.

When performance requirements are extreme or disk space limitations are severe, it
may be preferable to run in NOARCHIVELOG mode in spite of the limitations that this
choice imposes upon your recovery options.

Deciding Whether to Use Oracle Flashback Features and Restore Points
Using the flashback features of Oracle improves the availability of your database when
repairing the effects of unwanted database changes. The logical-level flashback
features allow the objects not affected to remain available, and Flashback Database
allows for faster rewind of the entire database than point-in-time recovery.

If you intend to take advantage of the logical-level flashback features of Oracle, you
must take into account how the database manages undo data. See Oracle Database
Concepts and Oracle Database Administrator's Guide for more information about undo
data and automatic undo management.

Incorporating Flashback Database or guaranteed restore points into your strategy
requires that you enable a flash recovery area, as well as creating guaranteed restore
points at the right points in time, or configuring flashback logging. See Chapter 5,
"Data Protection with Restore Points and Flashback Database" for more information on
the role that these features can play in your data protection strategy and the
requirements for using them separately or together.

Choosing a Backup Retention Policy
Your backup retention policy is the rule you set regarding which backups must be
retained (whether on disk or other backup media) to meet your recovery and other
requirements.

Backup retention policy can be based on redundancy or a recovery window. In a
redundancy-based retention policy, you specify a number n such that you always keep
at least n distinct backups of each file in your database. In a recovery window-based
retention policy, you specify a time interval in the past (for example, one week, or one

Planning Backup Strategy

Backup and Recovery Strategies 2-9

month) and keep all backups required to let you perform point-in-time recovery to any
point during that window.

A backup no longer needed to satisfy the backup retention policy is said to be
obsolete.

Implementing Backup Retention Policy with RMAN
RMAN automates the implementation of a backup retention policy, using the
following commands:

■ CONFIGURE RETENTION POLICY command lets you set the retention policy that
will apply to all of your database files by default.

■ REPORT OBSOLETE command lets you list backups currently on disk that are
obsolete under the retention policy. You can also specify parameters to see which
files would be obsolete under different retention policies.

■ DELETE OBSOLETE command deletes the files which REPORT OBSOLETE lists as
obsolete.

■ CHANGE... KEEP lets you set a separate retention policy for specific backups, such
as long-term backups kept for archival purposes. You can specify that a given
backup must be kept until a future time, or even specify that a backup be kept
forever. CHANGE... NOKEEP is used to let the retention policy apply to a backup
previously protected by CHANGE... KEEP.

If you use a flash recovery area to store your backups, the database will delete obsolete
backups automatically as disk space is needed for newer backups, archived logs and
other files. For backups stored on disk outside a flash recovery area and for backups
stored on tape, you should periodically run the DELETE OBSOLETE command to
remove obsolete backups.

Recovery Window-Based Backup Retention Policy
A recovery window-based retention policy lets you guarantee that you can perform
point-in-time recovery to any point in the past, up to a number of days that you
specify. The earliest point in time to which you can recover your database under your
retention policy is known as the point of recoverability. All backups required for
recovery or point-in-time recovery back to that time will be retained.

Use a recovery window-based backup retention policy if your business requirements
dictate that any possible logical damage to the database must be reparable as long as it
is discovered within a given period of time. Set the recovery window to that period of
time.

Note that satisfying a recovery window-based retention policy will generally require
that you keep backups older than the beginning of the recovery window. A
point-in-time recovery to the beginning of the recovery window would require a
restore from this backup, and then applying all changes between the backup time and
the point of recoverability. For example, you might configure a recovery window of
three days:

RMAN> CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 3 DAYS;

If your last full database backup was six days ago, RMAN will keep the six-day-old
backup, and all redo logs required to roll the database forward to the beginning of the
recovery window three days ago, in addition to any backups and redo logs needed to
recover the database to all points in time within the three day window.

Planning Backup Strategy

2-10 Backup and Recovery Basics

A recovery window-based backup retention policy provides the most certain
recoverability for your data. The disadvantage is that more careful disk space planning
is required, since it may not be obvious how many backups of datafiles and archived
logs must be retained to guarantee the recovery window.

Redundancy-Based Backup Retention Policy
A redundancy-based backup retention policy determines whether a backup is obsolete
based on how many backups of a file are currently on disk. You might configure a
redundancy level of 3:

RMAN> CONFIGURE RETENTION POLICY TO REDUNDANCY 3;

In this case, RMAN keeps three backups of each database file, and all redo logs
required to recover all retained datafile backups to the current time. Any older
backups will be considered obsolete.

For example, assume that you make backups of a datafile every day, starting on a
Monday. On Thursday, you make your fourth backup of the datafile, and the backup
from Monday becomes obsolete because you have the backups from Tuesday,
Wednesday and Thursday. On Friday, the backup from Tuesday becomes obsolete,
because you have the backups from Wednesday, Thursday and Friday.

Archiving Older Backups
There are several reasons to keep older backups of datafiles and archived logs:

■ An older backup of datafiles and archived logs is necessary for performing
point-in-time recovery to a time before your most recent backup.

■ If your most recent backup is corrupt, you can still recover your database using an
older backup and the complete set of archived logs since that older backup.

■ You may want to keep a copy of the database for archival purposes.

To perform point-in-time recovery to a given target time earlier than your current
point of recoverability, then you need a database backup that completed before the
target time, as well as all of the archived logs created between the time the backup was
started and the target time. For example, if you take full database backups starting at
1:00 AM on February 1 (at SCN 10000) and on February 14 (at SCN 20000), and if you
decide on February 28 to use point-in-time recovery to bring your database to its state
at 9:00AM February 7 (SCN 13500), then you must use the February 1 backup, plus all
redo logs containing changes from between the beginning of the creation of the backup
(SCN 10000) and 9:00AM February 7 (SCN 13500).

Determining Backup Frequency
Frequent backups are essential for any recovery scheme. Base the frequency of
backups on the rate or frequency of database changes such as:

■ Addition and deletion of tables

■ Insertions and deletions of rows in existing tables

■ Updates to data within tables

The more frequently your database is updated, the more often you should perform
database backups. The scenario in "Backup Scripts When Blocks Change Frequently"
on page A-5 backs up the database every week.

Planning Backup Strategy

Backup and Recovery Strategies 2-11

If database updates are relatively infrequent, then you can make whole database
backups infrequently and supplement them with incremental backups (which will be
relatively small because few blocks have changed). The scenario in "Backup Scripts
When Few Data Blocks Change" on page A-8 describes how to develop a backup
strategy based on a single whole database backup.

Performing Backups Before and After You Make Structural Changes
There are times when you will need to take a backup of your database independent of
your regular backup schedule. If you make any of the following structural changes,
then perform a backup of the appropriate portion of your database immediately before
and after completing the following changes:

■ Create or drop a tablespace.

■ Add or rename a datafile in an existing tablespace.

■ Add, rename, or drop an online redo log group or member.

If you are in NOARCHIVELOG mode, then you must shut down the database and
perform a consistent whole database backup after any such change. If you are running
in ARCHIVELOG mode, then you must make a control file backup after any such
change, using either RMAN's BACKUP CONTROLFILE command or the SQL ALTER
DATABASE BACKUP CONTROLFILE statement.

Scheduling Backups for Frequently-Updated Tablespaces
If you run in ARCHIVELOG mode, then you can back up an individual tablespace or
even a single datafile. You might want to do this for one or more tablespaces that are
updated much more often than the rest of your database, as is sometimes the case for
the SYSTEM tablespace and automatic undo tablespaces.

More frequent backups of heavily-used datafiles can shorten recovery times in some
situations. You may have a database where most updates are restricted to a small set of
tablespaces. If you take a full database backup each Sunday, then recovery from a
media failure affecting the frequently updated tablespaces on Friday requires
re-applying large amounts of redo. Daily backups of the frequently-updated
tablespaces reduces the amount of redo to apply without requiring a daily full
database backup.

Backing Up after NOLOGGING Operations
When a direct path load is performed to populate a database, no redo data is logged
for those database changes. You cannot recover these changes after a restore from
backup using conventional media recovery. Likewise, when tables and indexes are
created as NOLOGGING, the database does not log redo data for these objects, which
means that you cannot recover these objects from existing backups. Therefore, you
should back up your datafiles after operations for which no redo data is logged.

See Also: Appendix A, "RMAN-Based Disk and Tape Backup
Strategies: Scenarios" on page A-1

See Also: Oracle Database Administrator's Guide for information
about managing undo tablespaces

Planning Backup Strategy

2-12 Backup and Recovery Basics

Exporting Data for Added Protection and Flexibility
Oracle database import and export utilities are used to export database objects (tables,
stored procedures, and so forth) from databases to be stored as files, and re-import
objects from those files. An export provides a logical-level snapshot of the exported
objects at the time of the export, as a binary file that can be imported back into the
source database or some other database. Consider exporting portions or all of a
database for supplemental protection and flexibility in a database's backup strategy.

While useful, database exports are not a substitute for whole database backups. They
cannot provide the same complete recovery advantages of physical-level backups. For
example, you cannot apply archived logs to logical backups in order to update lost
changes.

Preventing the Backup of Online Redo Logs
Online redo logs, unlike archived logs, should never be backed up. The chief danger
associated by having backups of online redo logs is that you may accidentally restore
those backups without meaning to, and corrupt your database.

Online redo log backups are also not particularly useful, for the following reasons:

■ If your database is in ARCHIVELOG mode, then the archiver is already archiving
the filled redo logs automatically.

■ If your database is in NOARCHIVELOG mode, then the only type of physical
backups that you can perform are closed, consistent, whole database backups. The
files in this type of backup are all consistent and do not need recovery, so the
online logs are not useful after a restore from backup.

The best method for protecting the online logs against media failure is to multiplex
them, with multiple log members in each group, on different disks attached to
different disk controllers.

Keeping Records of the Hardware and Software Configuration of the Server
During the stress of a recovery situation, it is important that you have all necessary
information at your disposal. This is especially true if for some reason you need to
contact Oracle Support because you run into a problem that you do not understand.
You should have the following documentation about the hardware configuration:

■ The name, make, and model of the machine that hosts the database

Note: You can use either a full backup of your datafiles or an
incremental backup. Either one will capture all changed blocks,
including blocks changed by unrecoverable operations.

See Also: Oracle Database SQL Reference for information about the
UNRECOVERABLE option of the CREATE TABLE ... AS SELECT
and CREATE INDEX statements.

See also: Oracle Database Utilities for more details about exporting
and importing data for logical backup

Note: RMAN does not permit you to back up online redo logs.
You must archive a redo log before backing it up.

Validating Your Data Recovery Strategy

Backup and Recovery Strategies 2-13

■ The version and patch of the operating system

■ The number of disks and disk controllers

■ The disk capacity and free space

■ The names of all datafiles

■ The name and version of the media management software (if you use a third-party
media manager)

You should also keep the following documentation about the software configuration:

■ The name of the database instance (SID)

■ The database identifier (DBID)

■ The version and patch release of the Oracle database server

■ The version and patch release of the networking software

■ The method (RMAN or user-managed) and frequency of database backups

■ The method of restore and recovery (RMAN or user-managed)

You should keep this information both in electronic and hardcopy form. For example,
if you save this information in a text file on the network or in an email message, then if
the entire system goes down, you may not have access to this data.

It is especially important to keep a record of the DBID. If you have to restore and
recover your database including the loss of the SPFILE and control file, you will need
the DBID during the recovery process. See "Basic Database Restore and Recovery
Scenarios" on page 6-3 for details on how the DBID is used during recovery.

Validating Your Data Recovery Strategy
Practice backup and recovery techniques in a test environment before and after you
move to a production system. In this way, you can measure the thoroughness of your
strategies and minimize problems before they occur in a real situation. Performing test
recoveries regularly ensures that your archiving, backup, and recovery procedures
work. It also helps you stay familiar with recovery procedures, so that you are less
likely to make a mistake in a crisis.

If you use RMAN, then one option is to run the DUPLICATE command to create a test
database using backups of your production database. If you perform user-managed
backup and recovery, then you can either create a new database, a standby database,
or a copy of an existing database to test your backups.

Using BACKUP... VALIDATE
Using the RMAN BACKUP... VALIDATE command causes RMAN to read all of the
specified database files that would be input for a specific backup task, without actually
producing any backups as output. For example, BACKUP DATABASE VALIDATE
causes RMAN to read all files that would be backed up in backing up the entire
database and ensure that they are intact and not corrupted. All of the data blocks in
the input files are validated, exactly as they are when a real backup takes place. This
process can provide a useful integrity check for your database.

See Also: Oracle Database Backup and Recovery Advanced User's
Guide to learn about RMAN testing methods, troubleshooting
SQL*Plus recovery, block media recovery, and RMAN disaster
recovery

Validating Your Data Recovery Strategy

2-14 Backup and Recovery Basics

Validating RMAN Backups: VALIDATE and RESTORE VALIDATE
The RMAN VALIDATE and RESTORE VALIDATE commands should be part of
ongoing testing of your recovery plan. VALIDATE causes RMAN to read specified
backups on disk or tape and report whether they are intact and usable in a restore
operation. RESTORE... VALIDATE causes RMAN to check whether the set of
available backups is sufficient to restore the specified database objects. For
example,RESTORE TABLESPACE TBS_1 VALIDATE selects backups sufficient to
restore the named tablespace, just as RMAN does in a real restore operation, and reads
the backups to ensure that they are present and not corrupted.

Testing Your Database Restore and Recovery Procedures
You can also test your backups by performing a complete test of your restore and
recovery strategy onto different hardware. Ideally, use a hardware and software
configuration for the test that is as similar as possible to the environment available to
you in a real disaster recovery scenario.

See Also: "Using RMAN to Validate Database Files" on page 4-21
for more details on using BACKUP VALIDATE and RESTORE
VALIDATE

Setting Up and Configuring Backup and Recovery 3-1

3
Setting Up and Configuring Backup and

Recovery

This chapter describes how to start and interact with the RMAN client, and prepare
the RMAN environment for implementation of your backup and recovery strategy.

This chapter includes the following topics:

■ Overview of Interacting With the RMAN Client

■ Connecting the RMAN Client to Databases

■ Setting Up a Database for RMAN Backup

■ Setting Up a Flash Recovery Area for RMAN

Overview of Interacting With the RMAN Client
This section describes basic interactions with the RMAN client, such as starting and
exiting the RMAN client, entering commands at the command prompt, and using
command line arguments. It contains the following sections:

■ Starting and Exiting RMAN

■ Setting Globalization Support Environment Variables for RMAN

■ Entering RMAN Commands at the Command Prompt

■ Using Command Files with RMAN

■ Checking Syntax of RMAN Commands and Command Files: CHECKSYNTAX

Starting and Exiting RMAN
You have the following basic options for starting RMAN:

■ Start the RMAN executable at the operating system command line without
specifying any connection options, as in this example:

% rman

Note: While Oracle Flashback Database and guaranteed restore
points are not true database backups, they can be an important part of
your data protection strategy. These features may require some initial
setup, depending upon how you incorporate them in your backup
strategy. See Chapter 5, "Data Protection with Restore Points and
Flashback Database" for more information about how to set up your
database to use these features.

Overview of Interacting With the RMAN Client

3-2 Backup and Recovery Basics

■ Start the RMAN executable at the operating system command line while
connecting to a target database and, possibly, a recovery catalog, as in these
examples:

% rman TARGET /
% rman TARGET SYS/oracle@trgt NOCATALOG
% rman TARGET / CATALOG rman/cat@catdb

To quit RMAN and terminate the program, type EXIT or QUIT at the RMAN prompt.
For example:

RMAN> EXIT

Setting Globalization Support Environment Variables for RMAN
Before invoking RMAN, it may be useful to set the NLS_DATE_FORMAT and NLS_
LANG environment variables. These variables determine the format used for the time
parameters in RMAN commands such as RESTORE, RECOVER, and REPORT.

The following example shows typical language and date format settings:

NLS_LANG=american
NLS_DATE_FORMAT='Mon DD YYYY HH24:MI:SS'

If you are going to use RMAN to connect to an unmounted database and mount the
database later while RMAN is still connected, then set the NLS_LANG environment
variable so that it also specifies the character set used by the database.

A database that is not mounted assumes the default character set, which is US7ASCII.
If your character set is different from the default, then RMAN returns errors after the
database is mounted. For example, if the character set is WE8DEC, you can set the NLS_
LANG parameter as follows:

NLS_LANG=american_america.we8dec

NLS_LANG and NLS_DATE_FORMAT must be set for NLS_DATE_FORMAT to be used.

Entering RMAN Commands at the Command Prompt
When the RMAN client is ready for your commands, it displays the command prompt,
as in this example:

RMAN>

Enter commands for RMAN to execute. For example:

RMAN> CONNECT TARGET /

Note: Most RMAN commands require that RMAN connect to at least
a target database to perform useful work. See "Connecting the RMAN
Client to Databases" on page 3-5 for more details on connecting
RMAN to different types of databases.

See Also:

■ Oracle Database Reference for more information about the NLS_
LANG and NLS_DATE_FORMAT parameters

■ Oracle Database Globalization Support Guide

Overview of Interacting With the RMAN Client

Setting Up and Configuring Backup and Recovery 3-3

RMAN> CONNECT CATALOG rman/rman@inst2

RMAN> BACKUP DATABASE ;

Most RMAN commands take a number of parameters and must end with a semicolon.
(The few exceptions, such as STARTUP, SHUTDOWN, and CONNECT, can be used
with or without a semicolon.)

When you enter a line of text that is not a complete command, RMAN prompts for
continuation input with a line number. For example:

RMAN> BACKUP DATABASE
2> INCLUDE CURRENT
3> CONTROLFILE
4> ;

Using Command Files with RMAN
For repetitive tasks, you can create a text file containing RMAN commands, and start
the RMAN client with the @ argument, followed by a filename. For example, create a
text file cmdfile1 in the current directory contained one line of text as shown here:

BACKUP DATABASE INCLUDE CURRENT CONTROLFILE;

You can run this command file from the command line as shown in this example, and
the command contained in it is executed:

% rman TARGET / @cmdfile1

After the command completes, RMAN exits.

 You can also use the @ command at the RMAN command prompt to execute the
contents of a command file during an RMAN session. RMAN reads the file and
executes the commands in it. For example:

RMAN> @cmdfile1

After the command file contents have been executed, RMAN displays the following
message:

RMAN> **end-of-file**

Unlike the case where a command file is executed from the operating system
command line, RMAN does not exit.

Checking Syntax of RMAN Commands and Command Files: CHECKSYNTAX
You may want to test some RMAN commands for syntactic correctness without
executing them, either entering them at the command prompt or reading them in from
a command file. Use the command-line argument CHECKSYNTAX to start the RMAN
client in a mode in which it only parses the commands you enter and returns an
RMAN-00558 error for commands that are not legal RMAN syntax.

See also: Oracle Database Backup and Recovery Reference for more
details about using @ and command files

Overview of Interacting With the RMAN Client

3-4 Backup and Recovery Basics

Checking RMAN Syntax at the Command Line: Example
To test commands at the command line, start RMAN with the CHECKSYNTAX
parameter, and then enter the commands to be tested, as shown in the following
example:

% rman CHECKSYNTAX
Recovery Manager: Release 10.2.0.1.0 - Production on Sun Jun 12 02:41:03 2005

Copyright (c) 1982, 2005, Oracle. All rights reserved.
RMAN> run [backup database;]

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-00558: error encountered while parsing input commands
RMAN-01006: error signalled during parse

 RMAN-02001: unrecognized punctuation symbol "["

RMAN> run { backup database; }

The command has no syntax errors

RMAN>

Checking RMAN Syntax in Command Files: Example
To test commands in a command file, start RMAN with the CHECKSYNTAX parameter,
and use the @ argument to name the command file to be passed. For example, use a
text editor to create a command file /tmp/goodcmdfile with the following contents:

#command file with legal syntax
restore database;
recover database;

Also create another command file, /tmp/badcmdfile, with the following contents:

#command file with bad syntax commands
restore database
recover database

When you run the command files through RMAN with CHECKSYNTAX, the output is:

% rman CHECKSYNTAX @/tmp/goodcmdfile
Recovery Manager: Release 10.2.0.1.0 - Production on Sun Jun 12 02:41:03 2005

Copyright (c) 1982, 2005, Oracle. All rights reserved.

RMAN> # command file with legal syntax
2> restore database;
3> recover database;
4>
The cmdfile has no syntax errors

Recovery Manager complete.

% rman checksyntax @/tmp/badcmdfile
Recovery Manager: Release 10.2.0.1.0 - Production on Sun Jun 12 02:41:03 2005

Copyright (c) 1982, 2005, Oracle. All rights reserved.

Connecting the RMAN Client to Databases

Setting Up and Configuring Backup and Recovery 3-5

RMAN> #command file with syntax error
2> restore database
3> recover
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS===============
RMAN-00571: ===
RMAN-00558: error encountered while parsing input commands
RMAN-01005: syntax error: found "recover": expecting one of: "archivelog,
 channel, check, controlfile, clone, database, datafile, device,
 from, force, high, (, preview, ;, skip, spfile, standby, tablespace,
 until, validate"
RMAN-01007: at line 3 column 1 file: /tmp/badcmdfile

Using RMAN to Start Up and Shut Down Databases
When an RMAN procedure requires that your database be started, shut down or
brought to MOUNT or NOMOUNT state, you can use the RMAN client to start up
and shut down the target database. The following example uses the RMAN SHUTDOWN
and STARTUP commands to shut the target database down cleanly, and then mount it
in preparation for a backup:

% rman TARGET /
RMAN> SHUTDOWN IMMEDIATE # closes database consistently
RMAN> STARTUP MOUNT

To change the state of a target database that is in NOMOUNT or MOUNT state, you
must either use SQL*Plus or use the RMAN SQL command to issue a SQL statement,
as shown in these examples:

RMAN> SQL 'ALTER DATABASE OPEN';

RMAN> SQL 'ALTER DATABASE OPEN';

RMAN> SQL 'ALTER DATABASE OPEN';

Connecting the RMAN Client to Databases
This section describes connecting the RMAN client to target databases. It contains the
following topics:

■ Types of Database Connections Used with RMAN

■ Authentication for Database Connections

■ Connecting to the Target Database from the Command Line

■ Connecting to the Target Database from the RMAN Prompt

In the examples in this section, the generic values used have the following meanings.

Value Used in
Example Meaning

SYS User with SYSDBA privileges

oracle The password for connecting as SYSDBA specified in the target database's
orapwd file

trgt The net service name for the target database

Connecting the RMAN Client to Databases

3-6 Backup and Recovery Basics

Types of Database Connections Used with RMAN
To perform useful work, the RMAN client must connect to a target database, the
database to be backed up or recovered. Depending upon the task to be performed and
your specific backup strategy, the RMAN client may also connect to two other
databases:

■ The recovery catalog database, which provides an optional backup store for the
RMAN repository in addition to the control file

■ An auxiliary database, which may be a standby database, or an instance created
for performing a specific task such as duplicating a database, transporting
tablespaces without taking the making database read-only, or performing
tablespace point-in-time recovery.

Authentication for Database Connections
When connecting to a target or auxiliary database, you must have the SYSDBA
privilege.

 You can connect as SYSDBA with a password file or with operating system
authentication.

If the target database uses password files, then you can connect using a password. Use
a password file for either local or remote access. You must use a password file if you
are connecting remotely as SYSDBA with a net service name.

If you connect to the database using operating system authentication, you must set the
environment variable specifying the Oracle SID. For example, to set the SID to trgt at
the UNIX command line enter:

% ORACLE_SID=trgt; export ORACLE_SID

A SYSDBA privilege is not required when connecting to the recovery catalog. Note that
you must grant the RECOVERY_CATALOG_OWNER role to the schema owner.

For automatic auxiliary instances, RMAN ensures that you have SYSDBA privilege
when it sets up the instance.

Connecting to the Target Database from the Command Line
To connect to the target database from the operating system command line, enter the
connection as in the following examples:

Note: For many tasks that use an auxiliary database, RMAN creates
an automatic auxiliary instance for use during the task, connects to it,
performs the task, and then destroys it when the task is completed.
You do not given any explicit command to conect to automatic
auxiliary databases.

Note: Unlike SQL*Plus, RMAN does not require that you specify
the SYSDBA privilege when connecting to a database. Because all
RMAN database connections require SYSDBA privilege, RMAN
always implicitly attempts to connect with this privilege.

See Also: Oracle Database Administrator's Guide to learn how to
authenticate users on a database

Setting Up a Database for RMAN Backup

Setting Up and Configuring Backup and Recovery 3-7

example of operating system authentication
% rman TARGET / NOCATALOG
example of Oracle Net authentication
% rman TARGET SYS/oracle@trgt NOCATALOG

You can also start RMAN without specifying NOCATALOG or CATALOG as follows:

example of operating system authentication
% rman TARGET /
example of Oracle Net authentication
% rman TARGET SYS/oracle@trgt

If you do not specify NOCATALOG on the command line, and if you do not specify
CONNECT CATALOG after RMAN has started, then RMAN begins to work in
NOCATALOG mode the first time that you run a command that requires the use of the
RMAN repository.

If you connect to the target database on the operating system command line, then you
can begin executing commands after the RMAN prompt is displayed.

Connecting to the Target Database from the RMAN Prompt
If you start RMAN without connecting to the target database, then you must issue a
CONNECT TARGET command at the RMAN prompt to connect to a target database and
begin performing useful work. This example connects to a target database using
operating system authentication:

% rman
RMAN> CONNECT TARGET /

This example connects to the target database with database-level credentials:

% rman
RMAN> connect target SYS/oracle@trgt

Setting Up a Database for RMAN Backup
Backing up a database with RMAN is meant to be simple. Therefore, for most of the
parameters required for RMAN backup, there are sensible defaults which will let you
do basic backup and recovery without extensive setup or configuration.

However, when implementing an RMAN-based backup strategy, you can use RMAN
more effectively if you understand the more common options available to you. Many
of these can be set in the RMAN environment on a persistent basis, so that you do not
have to specify the same options every time you issue a command.

The following discussion presents how RMAN's default behaviors can be changed for
your backup and recovery environment and strategies, and introduces the major
settings available to you and their most common possible values.

This section includes the following topics:

■ Persistent Configuration Settings: Controlling RMAN Behavior

■ Configuring the Default Backup Type for Disk Backups

Note: Once you have executed a command that uses the RMAN
repository in NOCATALOG mode, you must exit and restart RMAN to
be able to connect to a recovery catalog.

Setting Up a Database for RMAN Backup

3-8 Backup and Recovery Basics

■ Configuring Disk Devices and Channels

■ Configuring Tape Devices and Channels

■ Configuring Compressed Backupsets as Default for Tape or Disk

■ Configuring Control File and Server Parameter File Autobackup

Persistent Configuration Settings: Controlling RMAN Behavior
To simplify ongoing use of RMAN for backup and recovery, the RMAN lets you set a
number of persistent configuration settings for each target database. These settings
control many aspects of RMAN's behavior when working with that database, such as
backup retention policy, default destinations for backups to tape or disk, default
backup device type (tape or disk), and so on.

The default values for these configuration settings let you use RMAN effectively
without changing any of them. However, as you develop a more advanced backup
and recovery strategy, you will have to change these settings to implement that
strategy. Use the RMAN SHOW and CONFIGURE commands to view and change the
RMAN configuration settings.

Displaying Current RMAN Configuration Settings: SHOW
The SHOW command is used to display the current value of one or all of RMAN's
configured settings, as well as whether those commands are currently set to their
default value.

After you connect to the target database and recovery catalog (if you use one), run the
SHOW command with the name of a setting you wish to view. For example:

RMAN> SHOW RETENTION POLICY;
RMAN> SHOW DEFAULT DEVICE TYPE;

The SHOW ALL command displays the current settings of all parameters that you can
set with the CONFIGURE command. The output includes both parameters you have
changed and parameters that are still set to the default.

To view all configured settings, run the RMAN SHOW ALL command, as in this
example:

RMAN> SHOW ALL; # shows all CONFIGURE settings, both user-entered and default

Sample output for SHOW ALL follows:

RMAN configuration parameters are:
CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 3 DAYS;
CONFIGURE BACKUP OPTIMIZATION ON;
CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default
CONFIGURE CONTROLFILE AUTOBACKUP ON;
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE SBT_TAPE TO '%F'; #
default
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '%F'; # default
CONFIGURE DEVICE TYPE 'SBT_TAPE' PARALLELISM 2 BACKUP TYPE TO COMPRESSED
BACKUPSET;
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE SBT_TAPE TO 1; # default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE SBT_TAPE TO 1; # default

See Also: Oracle Database Backup and Recovery Reference for
CONFIGURE syntax

Setting Up a Database for RMAN Backup

Setting Up and Configuring Backup and Recovery 3-9

CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE CHANNEL DEVICE TYPE 'SBT_TAPE' PARMS 'SBT_
LIBRARY=mylibrary.disksbt,ENV=(BACKUP_PARAM=value)';
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ENCRYPTION FOR DATABASE OFF; # default
CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO NONE; # default
CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/disk1/oracle/dbs/snapcf_ev.f'; # default

The configuration is displayed as the series of RMAN commands required to re-create
the configuration. You can save the output of SHOW ALL into a text file and use that
command file to re-create the configuration on the same or a different target database.

Restoring Default RMAN Configuration Settings: CONFIGURE... CLEAR
You can return any setting to its default value by using CONFIGURE... CLEAR, as in
these examples:

RMAN> CONFIGURE BACKUP OPTIMIZATION CLEAR;
RMAN> CONFIGURE RETENTION POLICY CLEAR;
RMAN> CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK CLEAR;

Configuring the Default Device Type for Backups
By default, RMAN sends all backups to an operating system specific directory on disk.
You can also configure RMAN to make backups to media such as tape.

After configuring an sbt (that is, tape or media management) device according to the
instructions in your media management vendor documentation, you can make the
media manager the default device:

CONFIGURE DEFAULT DEVICE TYPE TO sbt;

After configuring the default device type, the backups produced by any BACKUP
command which does not specify the destination device type are directed to the
configured default device type. For example, the following commands would produce
a series of backups on tape:

CONFIGURE DEFAULT DEVICE TYPE TO sbt;
BACKUP DATABASE;
BACKUP DATAFILE 3;
BACKUP DATABASE PLUS ARCHIVELOG;

To configure disk as the default device for backups, you can either use CONFIGURE...
CLEAR to restore the default setting, or explicitly configure the default device as
shown:

CONFIGURE DEFAULT DEVICE TYPE TO DISK;

See Also: Oracle Database Backup and Recovery Reference for SHOW
syntax

Setting Up a Database for RMAN Backup

3-10 Backup and Recovery Basics

Configuring the Default Backup Type for Disk Backups
You can configure backup sets or image copies as the default, using either of the
following commands:

RMAN> CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COPY; # image copies
RMAN> CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO BACKUPSET; # uncompressed

The default for backups to disk, as with tape, is backup set. Note that there is no
analogous option for media manager devices, because RMAN can only write backups
to media manager devices as backup sets.

Configuring Compressed Backupsets as Default for Tape or Disk
You can configure RMAN to use compressed backupsets by default on a particular
device type, by using the CONFIGURE DEVICE TYPE command with the BACKUP
TYPE TO COMPRESSED BACKUPSET option, as shown in the following examples.

RMAN> CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COMPRESSED BACKUPSET;
RMAN> CONFIGURE DEVICE TYPE sbt BACKUP TYPE TO COMPRESSED BACKUPSET;

To disable compression, use the CONFIGURE DEVICE TYPE command with
arguments specifying your other desired settings, but omitting the COMPRESSED
keyword, as in the following examples:

RMAN> CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO BACKUPSET;
RMAN> CONFIGURE DEVICE TYPE sbt BACKUP TYPE TO BACKUPSET;

Configuring Disk Devices and Channels
RMAN channels (connections to server sessions on the target database) perform all
RMAN tasks. By default, RMAN allocates one disk channel for all operations.

The following command configures RMAN to write disk backups to the /backup
directory (refer to "Backing Up Database Files and Archived Logs with RMAN" on
page 4-7).:

CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/backup/ora_df%t_s%s_s%p';

The format specifier %t is replaced with a four byte time stamp, %s with the backup
set number, and %p with the backup piece number.

You can also configure an Automatic Storage Management disk group as your
destination, as in the following example:

CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '+dgroup1';

Note: You can always direct backups to a specific device type, DISK
or SBT, using the DEVICE TYPE clause of the BACKUP command. For
example:

BACKUP DEVICE TYPE sbt DATABASE;
BACKUP DEVICE TYPE DISK DATABASE;

See Oracle Database Backup and Recovery Reference for more details on
using the BACKUP command with the DEVICE TYPE clause.

Setting Up a Database for RMAN Backup

Setting Up and Configuring Backup and Recovery 3-11

Configuring Tape Devices and Channels
Some media managers require configuration settings that are passed by including a
PARMS string in the CONFIGURE command, as follows:

CONFIGURE CHANNEL DEVICE TYPE sbt PARMS='ENV=mml_env_settings';

The contents of your PARMS string depend on your media management library. Refer
to your media management vendor's documentation for details.

You can configure parallelism settings, backup set compression and other options for
the SBT device using CONFIGURE DEVICE TYPE SBT. (These settings for the device
type are set independently of the channel configuration for your device set in the
previous example.) The following command configures two sbt channels for use in
RMAN jobs:

CONFIGURE DEVICE TYPE sbt PARALLELISM 2;
old RMAN configuration parameters:
CONFIGURE DEVICE TYPE 'SBT_TAPE' BACKUP TYPE TO COMPRESSED BACKUPSET PARALLELISM
1;
new RMAN configuration parameters:
CONFIGURE DEVICE TYPE 'SBT_TAPE' PARALLELISM 2 BACKUP TYPE TO COMPRESSED
BACKUPSET;
new RMAN configuration parameters are successfully stored

RMAN> configure device type sbt backup type to backupset;

old RMAN configuration parameters:
CONFIGURE DEVICE TYPE 'SBT_TAPE' PARALLELISM 2 BACKUP TYPE TO COMPRESSED
BACKUPSET;
new RMAN configuration parameters:
CONFIGURE DEVICE TYPE 'SBT_TAPE' BACKUP TYPE TO BACKUPSET PARALLELISM 2;
new RMAN configuration parameters are successfully stored

Note that the CONFIGURE commands used in this example to set parallelism and
backup type do not affect the values of settings not specified, that is, the default
backup type of compressed backupset was not changed by the CONFIGURE DEVICE
TYPE SBT PARALLELISM 1 command.

Configuring Control File and Server Parameter File Autobackup
RMAN can be configured to automatically back up the control file and server
parameter file whenever the database structure metadata in the control file changes
and whenever a backup record is added. The autobackup enables RMAN to recover
the database even if the current control file, catalog, and server parameter file are lost.

Because the filename for the autobackup uses a well-known format, RMAN can search
for it without access to a repository, and then restore the server parameter file. After
you have started the instance with the restored server parameter file, RMAN can
restore the control file from an autobackup. After you mount the control file, the
RMAN repository is available and RMAN can restore the datafiles and find the
archived redo log.

Note: By configuring an explicit format for disk channels, you direct
backups away from the flash recovery area, if you have configured
one. You lose the disk space management capabilities of the flash
recovery area.

Setting Up a Database for RMAN Backup

3-12 Backup and Recovery Basics

You can enable the autobackup feature by running this command:

CONFIGURE CONTROLFILE AUTOBACKUP ON;

You can disable the feature by running this command:

CONFIGURE CONTROLFILE AUTOBACKUP OFF;

Configuring the Control File Autobackup Format
By default, the format of the autobackup file for all configured devices is the
substitution variable %F. This variable format translates into
c-IIIIIIIIII-YYYYMMDD-QQ, where:

■ IIIIIIIIII stands for the DBID.

■ YYYYMMDD is a time stamp of the day the backup is generated

■ QQ is the hex sequence that starts with 00 and has a maximum of FF

You can change the default format by using the following command, where
deviceSpecifier is any valid device such as DISK or sbt, and 'string' must
contain the substitution variable %F (and no other substitution variables) and is a valid
handle for the specified device:

CONFIGURE CONTROLFILE AUTOBACKUP FORMAT
 FOR DEVICE TYPE deviceSpecifier TO 'string';

For example, you can run the following command:

CONFIGURE CONTROLFILE AUTOBACKUP FORMAT
 FOR DEVICE TYPE DISK TO '?/oradata/cf_%F';

The following example configures the autobackup to write to an Automatic Storage
Management disk group:

CONFIGURE CONTROLFILE AUTOBACKUP
 FOR DEVICE TYPE DISK TO '+dgroup1/%F';

To clear control file autobackup formats for a device, use the following commands:

CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK CLEAR;
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE sbt CLEAR;

If you have set up a flash recovery area for your database, you can direct control file
autobackups to the flash recovery area by clearing the control file autobackup format
for disk.

Overriding the Configured Control File Autobackup Format
The SET CONTROLFILE AUTOBACKUP FORMAT command, which you can specify
either within a RUN block or at the RMAN prompt, overrides the configured
autobackup format in the current session only.

The order of precedence is:

1. SET CONTROLFILE AUTOBACKUP FORMAT (within a RUN block)

See Also:

■ Oracle Database Backup and Recovery Advanced User's Guide for a
conceptual overview of control file autobackups

■ Oracle Database Backup and Recovery Reference for CONFIGURE
syntax

Setting Up a Flash Recovery Area for RMAN

Setting Up and Configuring Backup and Recovery 3-13

2. SET CONTROLFILE AUTOBACKUP FORMAT (at RMAN prompt)

3. CONFIGURE CONTROLFILE AUTOBACKUP FORMAT

The following example shows how the two forms of SET CONTROLFILE AUTOBACKUP
FORMAT interact:

RMAN> SET CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO 'controlfile_%F';
RMAN> BACKUP AS COPY DATABASE;
RMAN> RUN {
 SET CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '/tmp/%F.bck';
 BACKUP AS BACKUPSET DEVICE TYPE DISK DATABASE;
 }

The first SET CONTROLFILE AUTOBACKUP FORMAT controls the name of the control
file autobackup until the RMAN client exits, overriding any configured control file
autobackup format. The SET CONTROFILE AUTOBACKUP FORMAT in the RUN block
overrides the SET CONTROLFILE AUTOBACKUP FORMAT outside the RUN block for
the duration of the RUN block.

Setting Up a Flash Recovery Area for RMAN
As explained in "Automatic Disk-Based Backup and Recovery: The Flash Recovery
Area" on page 1-11, the flash recovery area feature lets you set up a location on disk
where the database can create and manage a variety of backup and recovery-related
files on your behalf.

Using a flash recovery area simplifies the ongoing administration of your database by
automatically naming recovery-related files, retaining them as long as they are needed
for restore and recovery activities, and deleting them when they are no longer needed
to restore your database and space is needed for some other backup and
recovery-related purpose.

Your long-term backup and recovery administration can be greatly simplified by using
a flash recovery area. Use of the flash recovery area is strongly recommended. You
may want to set up a flash recovery area as one of the first steps in implemeting your
backup strategy.

This section outlines the functions of the flash recovery area, identifies the files stored
there, explains the rules for how files are managed there, and introduces the most
important configuration options.

Choosing a Location for the Flash Recovery Area
When setting up a flash recovery area, you must choose a location (a directory or
Automatic Storage Management disk group) to hold the files. The flash recovery area
cannot be stored on a raw file system.

You must also determine a disk quota for the flash recovery area, the maximum space
to be used for all files stored there. You must choose a location large enough to
accomodate the required disk quota. When the disk space limit is approached, Oracle
can delete nonessential files to make room for new files, subject to the limitations of
the retention policy.

The flash recovery area should be on a separate disk from the database area, where
active database files such as datafiles, control files, and online redo logs are stored.
Keeping the flash recovery area on the same disk as the database area exposes you to
loss of both your live database files and backups in the event of a media failure.

Setting Up a Flash Recovery Area for RMAN

3-14 Backup and Recovery Basics

Flash Recovery Area, Automatic Storage Management, and Oracle Managed Files
The flash recovery area is closely related to and can be used in conjunction with two
other Oracle features: Oracle Managed Files and Automatic Storage Management.

Oracle Managed Files (OMF) is a service that automates naming, location, creation and
deletion of database files such as control files, redo log files, datafiles and others, based
on a few initialization parameters. It can simplify many aspects of the DBA's work by
eliminating the need to devise your own policies for such details.

The flash recovery area is built on top of OMF, so the flash recovery area can be stored
anywhere Oracle-managed files can. Oracle Managed Files can be used on top of a
traditional file system supported by the host operating system (for example, VxFS or
ODM).

The flash recovery area can also be used with Oracle's Automatic Storage Management
(ASM). ASM consolidates storage devices into easily managed disk groups and
provides benefits such as mirroring and striping without requiring a third-party
logical volume manager.

Even if you choose not to set up the flash recovery area in ASM storage, you can still
use Oracle Managed Files to manage your backup files in an ASM disk group. You will
lose one of the major benefits of the flash recovery area, the automatic deletion of files
no longer needed to meet your recoverability goals as space is needed for more recent
backups. However, the other automatic features of OMF will still function.

Files That Can Be Stored in the Flash Recovery Area
The files in the flash recovery area can be classified as permanent or transient. The
only permanent files (assuming these are configured to be stored in the flash recovery
area) are multiplexed copies of the current control file and online redo logs. These
cannot be deleted without causing the instance to fail. All other files are transient,
because Oracle will generally eventually delete these files, at some point after they
become obsolete under the retention policy or have been backed up to tape. Transient
files include archived redo logs, datafile copies, control file copies, control file
autobackups, and backup pieces.

Note: There are special considerations for choosing a location for
the flash recovery area in a RAC environment. The location must be
on a cluster file system, ASM or a shared directory configured
through NFS. The location and disk quota must be the same on all
instances.

Note: When storing backup files, using OMF on top of
Automatic Storage Management without using a flash recovery
area is supported but discouraged. It is awkward to directly
manipulate files under Automatic Storage Management.

Setting Up a Flash Recovery Area for RMAN

Setting Up and Configuring Backup and Recovery 3-15

Planning the Size of the Flash Recovery Area
The larger the flash recovery area is, the more useful it becomes. Ideally, the flash
recovery area should be large enough to contain all of the following files:

■ A copy of all datafiles

■ Incremental backups, as used by your chosen backup strategy

■ Online redo logs

■ Archived redo logs not yet backed up to tape

■ Control files

■ Control file autobackups (which include copies of the control file and SPFILE)

If providing this much space is impractical, it is best to create an area large enough to
keep a backup of the most important tablespaces and all the archived logs not yet
copied to tape. At an absolute minimum, the flash recovery area must be large enough
to contain the archived logs that have not been copied to tape.

To determine the disk quota and current disk usage in the flash recovery area, query
the view V$RECOVERY_FILE_DEST.

Formulas for estimating a useful flash recovery area size depend upon several factors
in your backup and recovery strategy:

■ Whether your database has a small or large number of data blocks that change
frequently;

■ Whether you store backups only on disk, or on disk and tape;

■ Whether you use a redundancy-based retention policy, or a recovery
window-based retention policy;

■ Whether you plan to use Flashback Database or guaranteed restore points as
alternatives to point-in-time recovery to recover from logical errors.

Specific formulas are provided for many different backup scenarios in Appendix A,
"RMAN-Based Disk and Tape Backup Strategies: Scenarios". If you want to use
Flashback Database, you must add extra space to the flash recovery area, as discussed
in "Sizing the Flash Recovery Area to Include Flashback Logs" on page 5-10.

Setting Initialization Parameters for Size and Location of the Flash Recovery Area
To enable the flash recovery area, you must set the two initialization parameters DB_
RECOVERY_FILE_DEST_SIZE (which specifies the disk quota, or maximum space to
use for flash recovery area files for this database) and DB_RECOVERY_FILE_DEST
(which specifies the location of the flash recovery area).

Note: The Oracle Flashback Database feature, which provides an
convenient alternative to point-in-time recovery, generates
flashback logs, which are also considered transient files and must
be stored in the flash recovery area. However, unlike other transient
files, flashback logs cannot be backed up to other media. They are
automatically deleted as space is needed for other files in the flash
recovery area. See Chapter 5, "Data Protection with Restore Points
and Flashback Database" for more details about Oracle Flashback
Database.

Setting Up a Flash Recovery Area for RMAN

3-16 Backup and Recovery Basics

Initialization parameters can be specified by any of the following means:

■ Include them initialization parameter file of the target database

■ Specify them with the SQL statement ALTER SYSTEM SET

■ Use the Database Configuration Assistant to set them

To find out the current flash recovery area location, query V$RECOVERY_FILE_DEST.

Flash Recovery Area Size: DB_RECOVERY_FILE_DEST_SIZE
This initialization parameter specifies the maximum storage in bytes of data to be used
by the flash recovery area for this database.

Flash Recovery Area Location: Initialization Parameter DB_RECOVERY_FILE_DEST
This parameter specifies a valid disk location for file creation, which can be a directory
on a file system, or Automatic Storage Management disk group.

Note: .

■ DB_RECOVERY_FILE_DEST_SIZE must be set before DB_
RECOVERY_FILE_DEST.

■ In a RAC database, all instances must have the same values for
these parameters.

See Also:

■ Oracle Database Administrator's Guide for details on setting and
changing database initialization parameters

See Also: Oracle Database SQL Reference for ALTER SYSTEM syntax

Note: The value specified does not include certain kinds of disk
overhead:

■ Block 0 or the OS block header of each Oracle file is not included
in this size. Allow an extra 10% for this data when computing the
actual disk usage required for the flash recovery area.

■ DB_RECOVERY_FILE_DEST_SIZE does not indicate the real size
occupied on disk when the underlying file system is mirrored,
compressed, or in some other way affected by overhead not
known to Oracle. For example, if you can configure the flash
recovery area on a normal redundancy (2-way mirrored) ASM
disk group, each file of X bytes occupies 2X bytes on the ASM
disk group. In such a case, DB_RECOVERY_FILE_DEST_SIZE
must be set to no more than 1/2 the size of the disks for the ASM
disk group. Likewise, when using a high redundancy (three-way
mirrored) ASM disk group, DB_RECOVERY_FILE_DEST_SIZE
must be no more than 1/3 the size of the disks in the disk group,
and so on.

Setting Up a Flash Recovery Area for RMAN

Setting Up and Configuring Backup and Recovery 3-17

Sharing a Flash Recovery Area Among Multiple Databases
Mutliple database can have the same value for DB_RECOVERY_FILE_DEST, if one of
the following conditions is met:

■ No two databases for which DB_UNIQUE_NAME is specified have the same value
for DB_UNIQUE_NAME.

■ For those databases where no DB_UNIQUE_NAME is provided, no two databases
have the same value for DB_NAME.

For example, you might want to set up primary and standby databases to share the
same DB_RECOVERY_FILE_DEST. These two databases will have the same DB_NAME
but one of them must have a DB_UNIQUE_NAME different from DB_NAME.

When databases share a single flash recovery area in this fashion, the file system or
ASM disk group holding the flash recovery area should be large enough to hold all of
the recovery files for all of the databases. Add all the values for DB_RECOVERY_FILE_
DEST_SIZE for the different databases, and then allow for any overhead such as
mirroring or compression in allocating actual disk space, as described in "Flash
Recovery Area Size: DB_RECOVERY_FILE_DEST_SIZE" on page 3-16.

Restrictions on Initialization Parameters When Using Flash Recovery Area
Using a flash recovery area has implications for some other initialization parameters:

■ You cannot use the LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST
parameters to specify redo log archive destinations. You must instead use the
newer LOG_ARCHIVE_DEST_n parameters. See Oracle Database Reference for
details on the semantics of the LOG_ARCHIVE_DEST_n parameters.

■ LOG_ARCHIVE_DEST_10 is implicitly set to USE_DB_RECOVERY_FILE_DEST
(meaning that archived redo log files will be sent to the flash recovery area) if you
create a recovery area and do not set any other local archiving destinations.

■ Oracle Corporation recommends that DB_RECOVERY_FILE_DEST not be the same
as DB_CREATE_FILE_DEST or any of the DB_CREATE_ONLINE_LOG_DEST_n
parameters. A warning will appear in the alert log if DB_RECOVERY_FILE_DEST
is the same as any of the other parameters listed here.

Adding a Flash Recovery Area to an Existing Database
To create a flash recovery area, you can set the necessary parameters in the
initialization parameter file (PFILE) and restart the database. You can also set the DB_
RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE initialization
parameters using ALTER SYSTEM, to add a flash recovery area to an open database, as
shown in this example.

1. After you start SQL*Plus and connect to the database, set the size of the flash
recovery area. For example, set it to 10 GB:

SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE = 10G SCOPE=BOTH SID='*';

Set SCOPE to BOTH make the change both in memory and the server parameter
file. (Setting SID to "*" has no effect in a single-instance database; in a RAC
database it causes the change to take effect across all instances.)

Note: DB_RECOVERY_FILE_DEST_SIZE must be set before DB_
RECOVERY_FILE_DEST.

Setting Up a Flash Recovery Area for RMAN

3-18 Backup and Recovery Basics

2. Set the location of the flash recovery area. For example, if the location is the file
system directory /disk1/flash_recovery_area, then you can do the
following:

SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST = '/disk1/flash_recovery_area'
SCOPE=BOTH SID='*';

If the flash recovery area location is an Automatic Storage Management disk
group named disk1, for example, then you can do the following:

SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST = '+disk1' SCOPE=BOTH SID='*';

Using V$RECOVERY_FILE_DEST and V$FLASH_RECOVERY_AREA_USAGE
The V$RECOVERY_FILE_DEST and V$FLASH_RECOVERY_AREA_USAGE views can
help you determine whether you have allocated enough space for your flash recovery
area.

Query the V$RECOVERY_FILE_DEST view to find out the current location, disk quota,
space in use, space reclaimable by deleting files, and total number of files in the flash
recovery area.

SQL> SELECT * FROM V$RECOVERY_FILE_DEST;

NAME SPACE_LIMIT SPACE_USED SPACE_RECLAIMABLE NUMBER_OF_FILES
-------------- ----------- ---------- ----------------- ---------------
/mydisk/rcva 5368709120 109240320 256000 28

Query the V$FLASH_RECOVERY_AREA_USAGE view to find out the percentage of the
total disk quota used by different types of files, and how much space for each type of
file can be reclaimed by deleting files that are obsolete, redundant, or already backed
up to tape.

SQL> SELECT * FROM V$FLASH_RECOVERY_AREA_USAGE;

FILE_TYPE PERCENT_SPACE_USED PERCENT_SPACE_RECLAIMABLE NUMBER_OF_FILES
------------ ------------------ ------------------------- ---------------
CONTROLFILE 0 0 0
ONLINELOG 2 0 22
ARCHIVELOG 4.05 2.01 31
BACKUPPIECE 3.94 3.86 8
IMAGECOPY 15.64 10.43 66
FLASHBACKLOG .08 0 1

See the Oracle Database Reference for more details on the V$RECOVERY_FILE_DEST
and V$FLASH_RECOVERY_AREA views.

Disabling the Flash Recovery Area
To disable the flash recovery area, set the DB_RECOVERY_FILE_DEST initialzation
parameter to a null string. For example, use this SQL*Plus statement to change the
parameter on a running database:

ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='' SCOPE=BOTH SID="*";

The database will no longer provide the space management features of the flash
recovery area for the files stored in the old DB_RECOVERY_FILE_DEST location. The
files will still be known to the RMAN repository, however, and available for backup
and restore activities.

Setting Up a Flash Recovery Area for RMAN

Setting Up and Configuring Backup and Recovery 3-19

Configuring the Backup Retention Policy
The backup retention policy specifies which backups must be retained to meet your
data recovery requirements. This policy can be based on a recovery window (the
maximum number of days into the past for which you can recover) or redundancy
(how many copies of each backed-up file to keep).

Use the CONFIGURE command to set the retention policy.

Configuring a Recovery Window-Based Retention Policy
The RECOVERY WINDOW parameter of the CONFIGURE command specifies the number
of days between the current time and the earliest point of recoverability. RMAN does
not consider any full or level 0 incremental backup as obsolete if it falls within the
recovery window. Additionally, RMAN retains all archived logs and level 1
incremental backups that are needed to recover to a random point within the window.

Run the CONFIGURE RETENTION POLICY command at the RMAN prompt. This
example ensures that you can recover the database to any point within the last week:

RMAN> CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 7 DAYS;

RMAN does not automatically delete backups rendered obsolete by the recovery
window. Instead, RMAN shows them as OBSOLETE in the REPORT OBSOLETE output
and in the OBSOLETE column of V$BACKUP_FILES. RMAN deletes obsolete files if
you run the DELETE OBSOLETE command.

Configuring a Redundancy-Based Retention Policy
The REDUNDANCY parameter of the CONFIGURE RETENTION POLICY command
specifies how many backups of each datafile and control file that RMAN should keep.
In other words, if the number of backups for a specific datafile or control file exceeds
the REDUNDANCY setting, then RMAN considers the extra backups as obsolete. The
default retention policy is REDUNDANCY=1.

As you produce more backups, RMAN keeps track of which ones to retain and which
are obsolete. RMAN retains all archived logs and incremental backups that are needed
to recover the nonobsolete backups.

Assume that you make a backup of datafile 7 on Monday, Tuesday, Wednesday, and
Thursday. You now have four backups of the datafile. If REDUNDANCY is 2, then the
Monday and Tuesday backups are obsolete. If you make another backup on Friday,
then the Wednesday backup becomes obsolete.

Run the CONFIGURE RETENTION POLICY command at the RMAN prompt, as in the
following example:

CONFIGURE RETENTION POLICY TO REDUNDANCY 3;

Showing the Current Retention Policy
You can view the currently configured retention policy with the SHOW RETENTION
POLICY command. Sample output follows:

RMAN> SHOW RETENTION POLICY;

RMAN configuration parameters are:

See Also:

■ Oracle Database Backup and Recovery Reference for CONFIGURE
syntax

Setting Up a Flash Recovery Area for RMAN

3-20 Backup and Recovery Basics

CONFIGURE RETENTION POLICY TO REDUNDANCY 3;

Disabling the Retention Policy
When you disable the retention policy, RMAN does not consider any backup as
obsolete.

To disable the retention policy, run this command:

CONFIGURE RETENTION POLICY TO NONE;

Configuring the retention policy to NONE is not the same as clearing it. Clearing it
returns it to its default setting of REDUNDANCY=1, whereas NONE disables it
completely.

If you disable the retention policy and run REPORT OBSOLETE or DELETE OBSOLETE
without passing a retention policy option to the command, RMAN issues an error
because no retention policy exists to determine which backups are obsolete.

How Oracle Manages Disk Space in the Flash Recovery Area
Oracle does not delete eligible files from the flash recovery area until the space must
be reclaimed for some other purpose. The effect is that files recently moved to tape are
often still available on disk for use in recovery. The recovery area can thus serve as a
kind of cache for tape. Once the flash recovery area is full, Oracle automatically deletes
eligible files to reclaim space in the flash recovery area as needed.

When Files are Eligible for Deletion from the Flash Recovery Area
There are relatively simple rules governing when files become eligible for deleteion
from the flash recovery area:

■ Permanent files are never eligible for deletion.

■ Files that are obsolete under the configured retention policy are eligible for
deletion.

■ Transient files that have been copied to tape are eligible for deletion.

■ In a Data Guard environment, archived redo log deletion policy governs when
archived redo log files can be deleted from the flash recovery area. See Oracle Data
Guard Concepts and Administration for details on archived redo log deletion policy.

Note: If you are using a flash recovery area, then you should not
run your database with the retention policy disabled. If files are
never considered obsolete, then a file can only be deleted from the
flash recovery area if it has been backed up to some other disk
location or to a tertiary storage device such as tape. It is quite likely
that all of the space in your recovery area will be used. This
interferes with the normal operation of your database as described
in "When Space is Not Available in the Flash Recovery Area" on
page 3-21.

Setting Up a Flash Recovery Area for RMAN

Setting Up and Configuring Backup and Recovery 3-21

When Space is Not Available in the Flash Recovery Area
If, for instance, the RMAN retention policy requires keeping a set of backups larger
than the flash recovery area disk quota, or if the retention policy is set to NONE, then
the flash recovery area can fill completely with no reclaimable space.

The database issues a warning alert when reclaimable space is less than 15% and a
critical alert when reclaimable space is less than 3%. To warn the DBA of this
condition, an entry is added to the alert log and to the DBA_OUTSTANDING_ALERTS
table (used by Enterprise Manager). However, the database continues to consume
space in the flash recovery area until there is no reclaimable space left.

When the recovery area is completely full, the error you will receive is:

ORA-19809: limit exceeded for recovery files
ORA-19804: cannot reclaim nnnnn bytes disk space from mmmmm limit

where nnnnn is the number of bytes required and mmmm is the disk quota for the flash
recovery area.

The database handles a flash recovery area with insufficient reclaimable space just as it
handles a disk full condition. Often, the result is an database hang, but not always. For
example, if the flash recovery area is one of your mandatory redo log archiving
destinations, and the database cannot archive a new log because the recovery area is
full, then the archiver may, depending on your configuration, retry archiving
periodically until space is freed in the recovery area. For information on how a
particular feature of Oracle responds to a disk full condition, see the documentation
for that feature.

Configure Flash Recovery Area for Disk-Based Backups: Example
In this example the database is configured as follows:

■ Archived logs and RMAN backups are stored in the flash recovery area.

■ The control file and online redo log copies are stored in directories in the file
system outside the flash recovery area.

■ Datafiles are expected to be no larger than 3GB in size. No more than 4GB of
archived redo log files should be retained.

The backup strategy in this example is based on incremental backups. The control file
will be automatically backed up to the flash recovery area.

Note: Exactly which of the eligible files will be deleted to satisfy a
space request is unpredictable. The rules governing the selection of
specific files for deletion are likely to change between releases and
are dependent upon your configuration. The safe and reliable way
to control deletion of files from the flash recovery area is to change
your retention policy. If you wish to increase the likelihood that
files moved to tape are also retained on disk to minimize expected
restore and recovery times, increase the flash recovery area quota.

See Also:

■ "Resolving a Full Flash Recovery Area" on page 8-18 for more
on how to address situations where the flash recovery area
frequently fills to capacity and there are no files eligible for
deletion

Setting Up a Flash Recovery Area for RMAN

3-22 Backup and Recovery Basics

The flash recovery area is sized to 10GB, room enough for control file autobackups, a
whole database level 0 incremental backup (which consists of image copies of the 3GB
of datafiles), plus several incremental level 1 backups.

To implement this strategy, the parameter file contains the following entries:

DB_NAME=sample
set location for current datafiles:
DB_CREATE_FILE_DEST = '/u02/oradata/wrk_area'
set location for control files and online redo logs:
DB_CREATE_ONLINE_LOG_DEST_1 = '/u03/oradata/wrk_area'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u04/oradata/wrk_area'
set flash recovery area location and size
DB_RECOVERY_FILE_DEST = '/u01/oradata/rcv_area'
DB_RECOVERY_FILE_DEST_SIZE = 10G

Because the parameter file does not set any of the LOG_ARCHIVE_DEST_n parameters,
Oracle sends archived logs to the flash recovery area only.

Once the target database is started, the following RMAN commands configure the
retention policy, backup optimization, and the control file autobackup:

RMAN> CONFIGURE RETENTION POLICY TO REDUNDANCY 1;
RMAN> CONFIGURE BACKUP OPTIMIZATION ON;
RMAN> CONFIGURE CONTROLFILE AUTOBACKUP ON;

Any disk-based backups are now directed to your flash recovery area.

Create a Database with Multiplexed Files in the Flash Recovery Area: Scenario
Assume that you want to create a database with the following properties:

■ The control files, datafiles, and online redo logs are stored as Oracle managed files
in a single file system directory.

■ One multiplexed copy of the control file is kept in the flash recovery area

■ Multiplexed copies of the online redo logs are kept in the flash recovery area

■ Redo log files are archived both to the flash recovery area and another file system,
separate from the work area

■ RMAN backups are directed to the flash recovery area by default

To create a database with a flash recovery area:

1. Create a PFILE for the database, including the initialization parameters required to
use a flash recovery area and direct online and archived logs, a copy of the control
file, . Assume that you set the following:

set DB_NAME
DB_NAME=sample
set destination for OMF datafiles, control file and online redo logs
DB_CREATE_FILE_DEST = /u01/oradata/wrk_area/
set log archiving destinations to a file system location

See also: "Scripting Disk-Only Backups" on page A-1 for
examples of backup jobs you could run in this environment.

See Also: Oracle Database Backup and Recovery Advanced User's
Guide for more detailed information about file creation in the flash
recovery area

Setting Up a Flash Recovery Area for RMAN

Setting Up and Configuring Backup and Recovery 3-23

and the flash recovery area
LOG_ARCHIVE_DEST_1 = 'LOCATION=/arc_dest1'
LOG_ARCHIVE_DEST_2 = 'LOCATION=USE_DB_RECOVERY_FILE_DEST'
multiplexed copies of control file and online logs in flash recovery area
rman backups also go here
DB_RECOVERY_FILE_DEST = 'LOCATION=/u01/oradata/rcv_area'
DB_RECOVERY_FILE_DEST_SIZE = 10G

The DB_CREATE_FILE_DEST parameter sets the default directory for all datafiles,
online logs, and control files. Another copy of the control file and online logs is
created in the flash recovery area.

2. After you set the initialization parameters, create the database. For example, start
SQL*Plus and enter:

SQL> CREATE DATABASE sample;

The preceding statement has the following effects:

■ Datafiles are created as Oracle managed files in DB_CREATE_FILE_DEST.

■ Because no LOGFILE clause was included, online log groups are created by
default. Each group has two members, one in DB_CREATE_FILE_DEST, the
other in DB_RECOVERY_FILE_DEST.

■ Because the CONTROL_FILES parameter was not set, Oracle creates a control
file in DB_CREATE_FILE_DEST (primary) and DB_RECOVERY_FILE_DEST
(multiplexed copy). On a Linux system, the filenames might look like the
following:

/u02/oradata/wrk_area/SAMPLE/controlfile/o1_mf_3ajeikm_.ctl #primary
ctlfile
/u01/oradata/rcv_area/SAMPLE/controlfile/o1_mf_6adjkid_.ctl #ctl file copy
/u02/oradata/wrk_area/SAMPLE/logfile/o1_mf_0_orrm31z_.log #log grp1, mem 1
/u01/oradata/rcv_area/SAMPLE/logfile/o1_mf_1_ixfvm8w9).log #log grp 1 mem 2
/u02/oradata/wrk_area/SAMPLE/logfile/o1_mf_2_2xyz16am_.log # log grp2, mem
1
/u01/oradata/rcv_area/SAMPLE/logfile/o1_mf_2_q89tmp28_.log #log grp 2, mem
2

■ Oracle uses LOG_ARCHIVE_DEST_1 and LOG_ARCHIVE_DEST_2 as
destinations for archiving the redo logs. Archived redo log files are created in
the flash recovery area because LOG_ARCHIVE_DEST_2 is configured to be
the flash recovery area.

Because you enabled a local redo log archiving destination, LOG_ARCHIVE_
DEST_10 is not implicitly set to the flash recovery area.

The archived redo log files in the flash recovery area are given
Oracle-managed filenames that are not based on the LOG_ARCHIVE_FORMAT
parameter. For example, if you generate an archived log:

ALTER SYSTEM ARCHIVE LOG CURRENT;

An archived log file is created in the primary archiving location, as well as the
following flash recovery area subdirectory: /u01/oradata/rcv_
area/SAMPLE/archivelog/YYYY_MM_DD

where YYYY_MM_DD is the creation date format.

3. You may want to create more online redo log groups for this database. To do so,
use the ALTER DATABASE ADD LOGFILE statement in SQL*Plus. When no file
name is specified, it creates another log file member in the destinations already

Setting Up a Flash Recovery Area for RMAN

3-24 Backup and Recovery Basics

specified for online logs, including the flash recovery area. For example,the
following statement creates a new log group with two members: one in DB_
CREATE_FILE_DEST and another in DB_RECOVERY_FILE_DEST:

ALTER DATABASE ADD LOGFILE;

Creating a Database with Only Archived Logs in the Flash Recovery Area: Scenario
Assume that you want to create a database in which the control files, datafiles, and
online redo logs are Oracle managed files in a single file system directory.
Additionally, you want to do the following:

■ Archive each redo log to the flash recovery area (and only to the flash recovery
area)

■ Send RMAN backups to the flash recovery area by default.

To create a database with a flash recovery area:

1. Set the relevant initialization parameters. Assume that you set the following:

DB_NAME=sample
DB_CREATE_FILE_DEST = '/u02/oradata/wrk_area'
DB_RECOVERY_FILE_DEST = '/u01/oradata/rcv_area'
DB_RECOVERY_FILE_DEST_SIZE = 10G
if you set the following parameters, then the online redo logs *and*
current control file are located here
DB_CREATE_ONLINE_LOG_DEST_1 = '/u03/oradata/wrk_area'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u04/oradata/wrk_area'

The DB_CREATE_FILE_DEST parameter sets the default file system directory for
the datafiles. The DB_CREATE_ONLINE_LOG_DEST_n parameter sets the default
file system directories for the online redo logs and control files. DB_RECOVERY_
FILE_DEST sets the file system directory for archived logs.

2. After you set the initialization parameters, create the database. For example, start
SQL*Plus and enter:

CREATE DATABASE sample;

No multiplexed copies of the online redo logs or control files are created in the
flash recovery area.

3. Because you enabled a flash recovery area, Oracle automatically sets LOG_
ARCHIVE_DEST_10 to the flash recovery area. The filenames in the flash recovery
area are given Oracle managed filenames that are not based on the LOG_
ARCHIVE_FORMAT parameter. For example, generate an archived log:

ALTER SYSTEM ARCHIVE LOG CURRENT;

On Linux, the preceding statement creates an archived log in a flash recovery area
subdirectory: /u01/oradata/rcv_area/SAMPLE/archivelog/YYYY_MM_DD,
where YYYY_MM_DD is the creation date format.

4. If you need to add more online redo log groups, execute the ALTER DATABASE
ADD LOGFILE statement. When no file name is specified, it creates another log file

See Also: Oracle Database Backup and Recovery Advanced User's
Guide for more detailed information about file creation in the flash
recovery area

Setting Up a Flash Recovery Area for RMAN

Setting Up and Configuring Backup and Recovery 3-25

member in each DB_CREATE_ONLINE_LOG_DEST_n location (but not the flash
recovery area). For example, enter the following:

ALTER DATABASE ADD LOGFILE;

On Linux, the preceding statement creates one member in /u03/oradata/wrk_
area/SAMPLE/logfile and another member in /u04/oradata/wrk_
area/SAMPLE/logfile. On other platforms, the specific file and directory
names are platform-dependent.

Setting Up a Flash Recovery Area for RMAN

3-26 Backup and Recovery Basics

Backing Up Databases Using RMAN 4-1

4
Backing Up Databases Using RMAN

This chapter illlustrates how to perform the most common backup tasks and
implement backup strategies using Recovery Manager.

This chapter includes the following topics:

■ Overview of RMAN Backups

■ Backing Up Database Files and Archived Logs with RMAN

■ RMAN Incremental Backups

■ Using RMAN to Validate Database Files

■ Overview of Reporting on Backups and the RMAN Repository

■ Listing RMAN Backups, Archived Logs, and Database Incarnations

■ Reporting on Backups and Database Schema

Overview of RMAN Backups
Backing up all or part of your database is accomplished by using the BACKUP
command from within the RMAN client.

Note: Detailed scenarios and scripts for disk-only and
disk-and-tape backup strategies are provided in Appendix A,
"RMAN-Based Disk and Tape Backup Strategies: Scenarios".
Strategies are categorized by levels of database update activity, disk
space to be allocated for backups, and database recoverability
requirements. RMAN commands for initial setup and daily and
weekly backups are provided for each strategy. Once you have
familiarized yourself with the different forms of backup supported
by RMAN, including incrementally updated backups and the use
of the flash recovery area, refer to the examples in Appendix A for
help in planning your own backup strategy.

Many of the backup techniques described in this chapter are also
used in the Oracle-provided backup strategy provided by
Enterprise Manager and described in Oracle Database 2 Day DBA.

Restore Points and Flashback Database provide functionality that is
complementary to the backup capabilities here, in that they allow
you to prepare your database so that you can later reverse
unwanted changes. Consider incorporating them into your backup
and recovery strategy. See Chapter 4, "Backing Up Databases Using
RMAN" for more information on these features.

Overview of RMAN Backups

4-2 Backup and Recovery Basics

RMAN uses the configured settings and channels for your database, the record of
previous backups in the RMAN repository and the control file's record of the structure
of your database to determine an efficient set of specific steps to perform in response
to a BACKUP command, and then carries out those steps.

In many cases, once your database has been configured in accordance with your
backup strategy, an RMAN backup of your entire database can often be performed
with the following simple command:

RMAN> BACKUP DATABASE;

Files That RMAN Can Back Up
RMAN's BACKUP command supports backing up the following types of files:

■ Database files, including datafiles, control files, and the server parameter file
(SPFILE)

■ Archived redo logs

■ Other backups created by RMAN, including such as datafile and control file image
copies, and backup sets containing SPFILEs, control files, datafiles and archived
logs

Although the database depends on other types of files for operation, such as network
configuration files, password files, and the contents of the Oracle home, these files
cannot be backed up with RMAN. Likewise, some features of Oracle, such as external
tables, may depend upon files other than the datafiles, control files, and redo log for
storing information. RMAN cannot back up these files. Use some non-RMAN backup
solution for any files not in the preceding list.

About RMAN Backup Formats: Image Copies and Backup Sets
RMAN backups can be stored in one of two formats: as image copies or as backup
sets.

About Image Copies
An image copy is a bit-for-bit duplicate of a database file, identical to a copy made
with an operating system command. (RMAN-created image copies are, however,
recorded in the RMAN repository, unlike file copies created using operating
system-level commands.)

Image copy backups can only be created on disk. RMAN can create image copies of
datafiles and datafile copies, control files and control file copies, archived redo logs,
and backup pieces. RMAN creates image copies when the AS COPY option is used with
the BACKUP command.

About Backup Sets
RMAN can also store backup information a logical structure called a backup set. A
backup set contains the data from one or more datafiles, archived redo logs, or control
files or SPFILE. (Datafiles and archivelogs cannot be mixed together in the same
backup set.) You can also back up existing backup sets into another backup set.

See Also: Oracle Database Backup and Recovery Advanced User's
Guide for more detailed information about RMAN's handling of
image copies

Overview of RMAN Backups

Backing Up Databases Using RMAN 4-3

A backup set consists of one or more files in an RMAN-specific format, known as
backup pieces. By default, a backup set consists of one backup piece. For example,
you can back up ten datafiles into a single backup set consisting of a single backup
piece (that is, one backup piece will be produced as output, the backup set consists of
the single file containing the backup piece, and the backup piece and the backup set
that contains it will be recorded in the RMAN repository). A file cannot be split across
backup sets.

Only RMAN can create or restore from backup sets. When multiple files are backed up
into the same backup set, they are read concurrently and their data is multiplexed
together.

Backup sets are the only type of backup that RMAN supports on media manager
devices such as tapes. Backup sets can also be created on disk. By default, RMAN
creates backups both on both disk and on tape as backup sets.

When backing up datafiles to backup sets, RMAN is able to skip some datafile blocks
that do not currently contain data, reducing the size of backup sets and the time
required to create them. This behavior, known as unused block compression, means
that backups of datafiles as backup sets are generally smaller than image copy backups
and take less time to write. This behavior is fundamental to how RMAN writes
datafiles into backup pieces, and cannot be disabled. For more information about how
and when unused blocks are skipped, see Oracle Database Backup and Recovery
Reference.

RMAN also supports binary compression of backup sets, where the backup set
contents are compressed before being written to disk using a compression algorithm
tuned for compression of datafiles and archived log files. The use of binary
compression is described in "Using Compressed Backupsets for RMAN Backup" on
page 4-6.

About RMAN Full and Incremental Datafile Backups
RMAN backups of datafiles can be either full datafile backups, or incremental
backups.

A full backup of a datafile is a backup that includes every used data block in the file. If
a full datafile backup is created as an image copy, the entire file contents are
reproduced exactly. (If backing the datafile up to a backup set, then unused blocks may
be skipped, as described in "About Backup Sets" on page 4-2)

An incremental backup of a datafile captures images of blocks in the datafile changed
since a specific point in time, usually the time of a previous incremental backup.
Incremental backups are always stored as backup sets. The resulting backup sets are
generally smaller than full datafile backups, unless every block in the datafile is
changed. RMAN can only create incremental backups of datafiles, not of archived redo
log files or other files.

During media recovery, RMAN uses the block images from incremental backups, to
update changed blocks to their contents at the SCN where the block was created in a
single step. Without incremental backups, all changes must be applied one at a time
from the archived redo logs. Recovery using incremental backups is therefore much

Note: The backup set is the smallest unit of a backup. RMAN only
records backup sets in the repository that complete successfully.
There is no such thing as a partial backup set. You cannot usefully
manipulate individual backup pieces.

Specifying Options Affecting Output of the RMAN BACKUP Command

4-4 Backup and Recovery Basics

faster than applying changes one at a time from the archived redo logs. Incremental
backups also capture changes to data blocks made by NOLOGGING operations, which
are not recorded in the redo log. For these reasons, whenever incremental backups are
available for use in media recovery, RMAN uses incremental backups instead of
archived logs.

Specifying Options Affecting Output of the RMAN BACKUP Command
If you specify only the minimum required options for an RMAN command such as
BACKUP DATABASE, RMAN determines the destination device, locations for backup
output, and tag for the backup automatically based on your configured environment
and built-in RMAN defaults. However, you can provide arguments to BACKUP to
override these defaults and configured settings. The most common are described in
the following sections:

■ Specifying Output Device Type for RMAN BACKUP

■ Specifying Image Copy or Backup Set Output for RMAN BACKUP to Disk

■ Specifying Output File Locations for RMAN BACKUP

■ Specifying Tags for RMAN BACKUP

Specifying Output Device Type for RMAN BACKUP
The BACKUP command takes a DEVICE TYPE clause that specifies whether to back up
to disk or to an SBT device, as shown in this example:

BACKUP DATABASE DEVICE TYPE DISK;

When BACKUP is used without a DEVICE TYPE clause, the backup is stored on the
configured default device (DISK or sbt) as set using CONFIGURE DEFAULT DEVICE
TYPE as described in "Configuring the Default Device Type for Backups" on page 3-9.

Specifying Image Copy or Backup Set Output for RMAN BACKUP to Disk
As noted, RMAN can create backups on disk as image copies or as backup sets. Setting
the default output type is described in "Configuring the Default Backup Type for Disk
Backups" on page 3-10. You can override this default with the AS COPY or AS
BACKUPSET clauses to the BACKUP command. To back up your data to disk as image
copies, use BACKUP AS COPY:

BACKUP AS COPY DEVICE TYPE DISK DATABASE;

To back up your data into backup sets, use the BACKUP AS BACKUPSETclause. You
can let backup sets be created on the configured default device, or direct them
specifically to disk or tape, as shown here:

BACKUP AS BACKUPSET DATABASE;
BACKUP AS BACKUPSET DEVICE TYPE DISK DATABASE;
BACKUP AS BACKUPSET DEVICE TYPE SBT DATABASE;

Specifying Output File Locations for RMAN BACKUP
RMAN generates unique filenames for the output from the backup based on the
following set of rules, listed in order of priority:

■ You can specify a FORMAT clause with the individual BACKUP command to direct
the output to a specific location, as shown here:

Specifying Options Affecting Output of the RMAN BACKUP Command

Backing Up Databases Using RMAN 4-5

BACKUP DATABASE FORMAT="/tmp/backup_%U";

Backups in this case are stored with generated unique filenames in the location
/tmp/backups/. Note that the %U, used to generate a unique string at that point
in the filename, is required.

You can also use the FORMAT clause to name an ASM disk group as backup
destination, as shown in this example:

RMAN> BACKUP DATABASE FORMAT '+dgroup1'; # sets an ASM disk group

No %U is required in this instance, because ASM generates unique file names as
needed.

■ If a FORMAT setting is configured for the specific channel used for the backup, then
this setting controls the generated filename.

■ If a FORMAT setting is configured for the device type used for the backup, then this
setting controls the generated filename.

■ If the backup is a disk backup and a flash recovery area is configured, then the
backup is stored under an automatically generated name in the flash recovery
area.

■ If none of the other conditions in this list apply, then the default location and
filename format are platform-specific.

Specifying Tags for RMAN BACKUP
RMAN attaches an identifier called a tag to every backup it creates, as a way of
identifying that backup that can be used with later RMAN commands.

When you use the BACKUP command, you can specify the to be assigned to the
backups taken with a particular command. You could use this tag to identify backups
taken at a given time, such as 2003_year_end. You can also use a tag repeatedly for a
series of backups created over time. For example, you might label a series of weekly
incremental backups with a tag such as weekly_incremental.

In practice, tags are often used to distinguish a series of backups created as part of a
single strategy, such as an incremental backup strategy. Many forms of the BACKUP
command let you associate a tag with a backup, and many RESTORE and RECOVER
commands let you specify a tag to restrict which backups to use in the RESTORE or
RECOVER operation.

If you do not specify a tag with a BACKUP command, then RMAN generates a unique
tag and assigns it to the backups created by the command.

To specify a tag to identify a group of backups, use the TAG clause of the BACKUP
command. For example, enter:

RMAN> BACKUP DATABASE TAG = 'weekly_backup'; # gives the backup a tag identifier

If a backup is not assigned a tag using the TAG clause to the BACKUP command, then
RMAN generates a tag automatically and assigns it to the backup.

Specifying Options Affecting Output of the RMAN BACKUP Command

4-6 Backup and Recovery Basics

Using Compressed Backupsets for RMAN Backup
For any use of the BACKUP command that creates backupsets, you can take advantage
of RMAN's support for binary compression of backupsets, by using the AS
COMPRESSED BACKUPSET option to the BACKUP command. The resulting backupsets
are compressed using an algorithm optimized for efficient compression of Oracle
database files. No extra uncompression steps are required during recovery if you use
RMAN's integrated compression.

The primary disadvantage of using RMAN binary compression is performance
overhead during backups and restores.Backup performance while creating
compressed backupsets is CPU bound. If you have more than one CPU, you can use
increased parallelism to run jobs on multiple CPUs and thus improve performance.

This example backs up the entire database and archived logs to the configured default
backup destination (disk or tape), producing compressed backupsets:

BACKUP AS COMPRESSED BACKUPSET DATABASE PLUS ARCHIVELOG;

This example backups up several datafiles to the default device, using binary
compression:

BACKUP AS COMPRESSED BACKUPSET DATAFILE 1,2,4;

Predictably, creating compressed backupsets imposes significant extra CPU overhead
during backup and restore, which can slow the backup process. The performance
penalty may be worth paying, however, in some circumstances:

■ If you are using disk-based backups and disk space in your flash recovery area or
other disk-based backup destination is limited

■ If you are performing your backups to some device over a network and reduced
network bandwidth is more important than CPU usage

■ If you are using some archival backup media such as CD or DVD, where reducing
backup sizes saves on media costs and archival storage

Note: The characters used in a tag must be limited to the
characters that are legal in filenames on the target file system. For
example, ASM does not support the use of the - character in the
filenames it uses interally, so a tag including a - (such as
weekly-incremental) is not a legal tag name if you are storing
backups in ASM disk groups.

See Also: Oracle Database Backup and Recovery Reference for the
default format description in BACKUP ... TAG

Note: If you are backing up to tape and your tape device performs
its own compression, you should not use both RMAN backupset
compression and the media manager vendor's compression. In
most instances you will get better results using the media
manager's compression. See the discussion of tuning RMAN's tape
backup performance in Oracle Database Backup and Recovery
Advanced User's Guide for details.

Backing Up Database Files and Archived Logs with RMAN

Backing Up Databases Using RMAN 4-7

For more information on performance considerations when using binary compression
of backup sets, see the description of the AS COMPRESSED BACKUPSET option of the
BACKUP command, in Oracle Database Backup and Recovery Reference.

Backing Up Database Files and Archived Logs with RMAN
This section contains these topics:

■ Making Consistent and Inconsistent Backups with RMAN

■ Specifying Options Affecting Output of the RMAN BACKUP Command

■ Making Whole Database Backups with RMAN

■ Backing Up Individual Tablespaces with RMAN

■ Backing Up Individual Datafiles and Datafile Copies with RMAN

■ Backing Up Control Files with RMAN

■ Backing Up Server Parameter Files with RMAN

■ Backing Up Archived Redo Logs with RMAN

Making Consistent and Inconsistent Backups with RMAN
A consistent backup of the database is one taken when the database is in a consistent
state, that is, one taken after the database has been shut down normally (using
SHUTDOWN NORMAL, SHUTDOWN IMMEDIATE or SHUTDOWN
TRANSACTIONAL). At this point, all changes in the redo log have been applied to
the datafiles. If you mount the database and take a backup at this point, then you can
restore the database from this backup at a later date and open it without performing
media recovery.

Any backup taken when the database has not been shut down normally is an
inconsistent backup. When a database is restored from an inconsistent backup, Oracle
must perform media recovery before the database can be opened, applying any
pending changes from the redo logs.

As long as your database is running in ARCHIVELOG mode, and you back up your
archived redo log files as well as your datafiles, inconsistent backups can be the
foundation for a sound backup and recovery strategy. Inconsistent backups are an
important part of the backup strategy for most databases, because they offer superior
availability. For example, backups taken while the database is still open are
inconsistent backups.

Making Whole Database Backups with RMAN
You can perform whole database backups with the database mounted or open. To
perform a whole database backup, from the RMAN prompt, use the BACKUP

Note: When performing user-managed backups, taking online
backups required that you place your datafiles into backup mode
using the ALTER DATABASE/TABLESPACE BEGIN BACKUP
statement. RMAN does not require the use of backup mode for the
creation of online backups. Do not use ALTER
DATABASE/TABLESPACE BEGIN BACKUP before an RMAN
backup.

Backing Up Database Files and Archived Logs with RMAN

4-8 Backup and Recovery Basics

DATABASE command. The simplest form of the command requires no parameters, as
shown in this example:

RMAN> BACKUP DATABASE;

This example shows the procedure for taking a whole database backup to the default
destination:

RMAN> BACKUP DATABASE; # uses automatic channels to make backup
RMAN> SQL 'ALTER SYSTEM ARCHIVE LOG CURRENT'; # switches logs and archives all
logs

By archiving the logs immediately after the backup, you ensure that you have a full set
of archived logs through the time of the backup. This guarantees that you can perform
media recovery after restoring this backup.

Backing Up Individual Tablespaces with RMAN
You can backup one or more individual tablespaces with the BACKUP TABLESPACE
command. You can use this command when the database is mounted or open.

To back up a tablespace:

After starting RMAN, run the BACKUP TABLESPACE command at the RMAN prompt.
This example backs up the users and tools tablespaces to tape, using the
MAXSETSIZE parameter to specify that no backup set should be greater than 10 MB:

BACKUP DEVICE TYPE sbt MAXSETSIZE = 10M TABLESPACE users, tools;

Oracle translates the tablespace name internally into a list of datafiles.

 Backing Up Individual Datafiles and Datafile Copies with RMAN
You can back up datafiles and datafile copies when the database is mounted or open.

Backing Up Datafiles
With RMAN connected to the target database, use the BACKUP DATAFILE command
to back up individual datafiles. You can specify the datafiles by name or number.

This example uses an sbt channel to back up datafiles 1 through4 and a datafile copy
stored at /tmp/system01.dbf to tape:

BACKUP DEVICE TYPE sbt
 DATAFILE 1,2,3,4
 DATAFILECOPY '/tmp/system01.dbf';

If CONFIGURE CONTROLFILE AUTOBACKUP is ON, then RMAN writes the current
control file and SPFILE to a separate autobackup piece. Otherwise, these files are
automatically included in the backup set that contains datafile 1.

Backing Up Datafile Copies
Use the BACKUP DATAFILECOPY command to back up datafile copies. Datafile copies
exist on disk only.

To back up a datafile copy:

While connected to the target database, run the BACKUP DATAFILECOPY command at
the RMAN prompt. This example backs up datafile /tmp/system01.dbf to tape:

BACKUP DEVICE TYPE sbt DATAFILECOPY '/tmp/system01.dbf';

Backing Up Database Files and Archived Logs with RMAN

Backing Up Databases Using RMAN 4-9

Backing Up Control Files with RMAN
You can back up the control file when the database is mounted or open. RMAN uses a
snapshot control file to ensure a read-consistent version. If CONFIGURE CONTROLFILE
AUTOBACKUP is ON (by default it is OFF), then RMAN automatically backs up the
control file and server parameter file after every backup and after database structural
changes. The control file autobackup contains metadata about the previous backup,
which is crucial for disaster recovery.

If the autobackup feature is not set, then you must manually back up the control file in
one of the following ways:

■ Run BACKUP CURRENT CONTROLFILE

■ Include a backup of the control file within any backup by using the INCLUDE
CURRENT CONTROLFILE option of the BACKUP command

■ Back up datafile 1, because RMAN automatically includes the control file and
SPFILE in backups of datafile 1

A manual backup of the control file is not the same as a control file autobackup. In
manual backups, only RMAN repository data for backups within the current RMAN
session is in the control file backup, and a manually backed-up control file cannot be
automatically restored.

Including the Current Control File in a Backup of Other Files
 To include the current control file in a backup, specify the INCLUDE CURRENT
CONTROLFILE option after specifying the backup object. In this example, the default
configured channel is to an sbt device. This command backs up tablespace users to
tape and includes the current control file in the backup:

BACKUP DEVICE TYPE sbt TABLESPACE users INCLUDE CURRENT CONTROLFILE;

If the autobackup feature is enabled, then RMAN also creates an autobackup of the
control file after the BACKUP TABLESPACE command completes, so that the control file
autobackup contains the record of the backup that was taken.

Backing Up the Current Control File Manually
After starting RMAN, run the BACKUP CURRENT CONTROLFILE command. This
example backs up the current control file to the default disk device and assigns a tag:

BACKUP CURRENT CONTROLFILE TAG = mondaypmbackup;

If the control file autobackup feature is enabled, then RMAN makes two control file
backups in this example: the explicit control file backup (BACKUP CURRENT
CONTROLFILE) and the autobackup of the control file and server parameter file.

Note: If the control file block size is not the same as the block size for
datafile 1, then the control file cannot be written into the same backup
set as the datafile. RMAN writes the control file into a backup set by
itself if the block size is different.

See Also: Oracle Database Backup and Recovery Advanced User's
Guide to learn more about control file autobackups

Backing Up Database Files and Archived Logs with RMAN

4-10 Backup and Recovery Basics

Backing Up a Control File Copy
This example creates a control file backup with the BACKUP CONTROLFILECOPY
command.

To back up a control file copy:

After starting RMAN, run the BACKUP CONTROLFILECOPY command at the RMAN
prompt. This example creates the control file copy '/tmp/control01.ctl' on disk
and then backs it up to tape:

BACKUP AS COPY CURRENT CONTROLFILE FORMAT '/tmp/control01.ctl';
BACKUP DEVICE TYPE sbt CONTROLFILECOPY '/tmp/control01.ctl';

Backing Up Server Parameter Files with RMAN
As explained in "Backing Up Control Files with RMAN" on page 4-9, RMAN
automatically backs up the current server parameter file in certain cases. The BACKUP
SPFILE command backs up the parameter file explicitly. For example:

BACKUP DEVICE TYPE sbt SPFILE;

The SPFILE that is backed up is the one currently in use by the instance. If the instance
is started with a client-side initialization parameter file, then RMAN does not back up
anything when this command is used.

Backing Up Archived Redo Logs with RMAN
Archived redo logs are the key to successful media recovery. Back them up regularly.
You can back up logs with BACKUP ARCHIVELOG, or back up logs while backing up
datafiles and control files by specifying BACKUP ... PLUS ARCHIVELOG.

Backing Up Archived Redo Log Files with BACKUP ARCHIVELOG
To back up archived redo logs, use the BACKUP ARCHIVELOG command at the RMAN
prompt. This example uses a configured disk or sbt channel to back up one copy of
each log sequence number for all archived redo logs:

BACKUP ARCHIVELOG ALL;

Even if your redo logs are being archived to multiple destinations and you use RMAN
to back up archived redo logs, RMAN selects only one copy of the archived redo log
file to include in the backup set. (Since logs with the same log sequence number are
identical, there is no need to include more than one copy.)

You can also specify a range of archived redo logs by time, SCN, or log sequence
number, as in the following example:

BACKUP ARCHIVELOG
 FROM TIME 'SYSDATE-30' UNTIL TIME 'SYSDATE-7';

Automatic Online Redo Log Switches During Backups of Archived Logs When taking a backup
of archived redo logs that includes the most recent log (that is, a BACKUP ...
ARCHIVELOG command is run without the UNTIL or SEQUENCE option) if the
database is open, then before beginning the backup, RMAN will switch out of the
current online redo log group, and all online redo logs that have not yet been archived,
up to and including the redo log group that was current when the command was
issued. This ensures that the backup contains all redo that was generated prior to the
start of the command.

Backing Up Database Files and Archived Logs with RMAN

Backing Up Databases Using RMAN 4-11

Using BACKUP ARCHIVELOG with DELETE INPUT or DELETE ALL INPUT You can specify the
DELETE INPUT or DELETE ALL INPUT clauses for the BACKUP ARCHIVELOG
command to delete archived logs after they are backed up, eliminating the separate
step of manually deleting the archived redo logs. With DELETE INPUT, RMAN only
deletes the specific copy of the archived redo log chosen for the backup set. With
DELETE ALL INPUT, RMAN will delete each backed-up archived redo log file from all
log archiving destinations.

For example, assume that you archive to /arc_dest1, /arc_dest2, and /arc_
dest3, and you run the following command:

BACKUP DEVICE TYPE sbt
 ARCHIVELOG ALL
 DELETE ALL INPUT;

In this case RMAN backs up only one copy of each log sequence number in these
directories, and then deletes all copies of any log that it backed up from the archiving
destinations. If you had specified DELETE INPUT rather than DELETE ALL INPUT,
then RMAN would only delete the specific archived redo log files that it backed up
(for example, it would delete the archived redo log files in /arc_dest1 if those were
the files used as the source of the backup, but it would leave the contents of the /arc_
dest2 and /arc_dest3 intact) .

If you issue BACKUP ARCHIVELOG ALL or BACKUP ARCHIVELOG LIKE '...', and
there are no archived redo log files to back up, then RMAN does not signal an error.

Backing Up Logs with BACKUP ... PLUS ARCHIVELOG
You can add archived redo logs to a backup of other files by using the BACKUP ...
PLUS ARCHIVELOG clause. Adding BACKUP ... PLUS ARCHIVELOG causes RMAN to
do the following:

1. Runs the ALTER SYSTEM ARCHIVE LOG CURRENT command.

2. Runs BACKUP ARCHIVELOG ALL. Note that if backup optimization is enabled, then
RMAN skips logs that it has already backed up to the specified device.

3. Backs up the rest of the files specified in BACKUP command.

4. Runs the ALTER SYSTEM ARCHIVE LOG CURRENT command.

5. Backs up any remaining archived logs generated during the backup.

This guarantees that datafile backups taken during the command are recoverable to a
consistent state.

To back up archived redo logs with BACKUP ... PLUS ARCHIVELOG:

After starting RMAN, run the BACKUP ... PLUS ARCHIVELOG command at the
RMAN prompt . This example backs up the database and all archived logs:

BACKUP DEVICE TYPE sbt
 DATABASE PLUS ARCHIVELOG;

Note: If backup optimization is enabled, then RMAN skips
backups of archived logs that have already been backed up to the
specified device.

RMAN Incremental Backups

4-12 Backup and Recovery Basics

RMAN Incremental Backups
You can make incremental backups of databases, individual tablespaces or datafiles.

As with other backups, if you are in ARCHIVELOG mode, you can make incremental
backups if the database is open; if the database is in NOARCHIVELOG mode, then you
can only make incremental backups when the database is closed.

The goal of an incremental backup is to back up only those data blocks that have
changed since a previous backup.

The primary reasons for making incremental backups part of your strategy are:

■ For use in a strategy based on incrementally updated backups, where these
incremental backups are used to periodically roll forward an image copy of the
database

■ To reduce the amount of time needed for daily backups

■ To save network bandwidth when backing up over a network

■ To get adequate backup performance when the aggregate tape bandwidth
available for tape write I/Os is much less than the aggregate disk bandwidth for
disk read I/Os

■ To be able to recover changes to objects created with the NOLOGGING option. For
example, direct load inserts do not create redo log entries and their changes cannot
be reproduced with media recovery. They do, however, change data blocks and so
are captured by incremental backups.

■ To reduce backup sizes for NOARCHIVELOG databases. Instead of making a whole
database backup every time, you can make incremental backups. (Note that you
must perform a consistent shutdown before creating an incremental backup of a
NOARCHIVELOG database.)

One effective strategy is to make incremental backups to disk, and then back up the
resulting backup sets to a media manager with BACKUP AS BACKUPSET. The
incremental backups are generally smaller than full backups, which limits the space
required to store them until they are moved to tape. Then, when the incremental
backups on disk are backed up to tape, it is more likely that tape streaming can be
sustained because all blocks of the incremental backup are copied to tape. There is no
possibility of delay due to time required for RMAN to locate changed blocks in the
datafiles.

Incremental Backup Algorithm
Each data block in a datafile contains a system change number (SCN), which is the
SCN at which the most recent change was made to the block. During an incremental
backup, RMAN reads the SCN of each data block in the input file and compares it to
the checkpoint SCN of the parent incremental backup. If the SCN in the input data
block is greater than or equal to the checkpoint SCN of the parent, then RMAN copies
the block.

Note that if you enable the block change tracking feature, RMAN can refer to the
change tracking file to identify changed blocks in datafiles without scanning the full
contents of the datafile. Once enabled, block change tracking does not alter how you
take or use incremental backups, other than offering increased performance. See

See Also: Oracle Database Concepts for more information about
NOLOGGING mode

RMAN Incremental Backups

Backing Up Databases Using RMAN 4-13

"Improving Incremental Backup Performance: Change Tracking" on page 4-19 for more
details about enabling block change tracking.

Level 0 and Level 1 Incremental Backups
Incremental backups can be either level 0 or level 1. A level 0 incremental backup,
which is the base for subsequent incremental backups, copies all blocks containing
data, backing the datafile up into a backup set just as a full backup would. The only
difference between a level 0 incremental backup and a full backup is that a full backup
is never included in an incremental strategy.

A level 1 incremental backup can be either of the following types:

■ A differential backup, which backs up all blocks changed after the most recent
incremental backup at level 1 or 0

■ A cumulative backup, which backs up all blocks changed after the most recent
incremental backup at level 0

Incremental backups are differential by default.

The size of the backup file depends solely upon the number of blocks modified and
the incremental backup level.

Differential Incremental Backups
In a differential level 1 backup, RMAN backs up all blocks that have changed since the
most recent cumulative or differental incremental backup, whether at level 1 or level 0.
RMAN determines which level 1 backup occurred most recently and backs up all
blocks modified after that backup. If no level 1 is available, RMAN copies all blocks
changed since the level 0 backup.

The following command performs a level 1 differential incremental backup of the
database:

RMAN> BACKUP INCREMENTAL LEVEL 1 DATABASE;

If no level 0 backup is available, then the behavior depends upon the compatibility
mode setting. If compatibility is >=10.0.0, RMAN copies all blocks changed since the
file was created, and stores the results as a level 1 backup. In other words, the SCN at
the time the incremental backup is taken is the file creation SCN. If compatibility
<10.0.0, RMAN generates a level 0 backup of the file contents at the time of the
backup, to be consistent with the behavior in previous releases.

Note: Cumulative backups are preferable to differential backups
when recovery time is more important than disk space, because
during recovery each differential backup must be applied in
succession. Use cumulative incremental backups instead of
differential, if enough disk space is available to store cumulative
incremental backups.

RMAN Incremental Backups

4-14 Backup and Recovery Basics

Figure 4–1 Differential Incremental Backups (Default)

In the example shown in Figure 4–1, the following occurs:

■ Sunday

An incremental level 0 backup backs up all blocks that have ever been in use in
this database.

■ Monday - Saturday

On each day from Monday through Saturday, a differential incremental level 1
backup backs up all blocks that have changed since the most recent incremental
backup at level 1 or 0. So, the Monday backup copies blocks changed since Sunday
level 0 backup, the Tuesday backup copies blocks changed since the Monday level
1 backup, and so forth.

■ The cycle is repeated for the next week.

Cumulative Incremental Backups
In a cumulative level 1 backup, RMAN backs up all the blocks used since the most
recent level 0 incremental backup. Cumulative incremental backups reduce the work
needed for a restore by ensuring that you only need one incremental backup from any
particular level. Cumulative backups require more space and time than differential
backups, however, because they duplicate the work done by previous backups at the
same level.

The following command performs a cumulative level 1 incremental backup of the
database:

BACKUP INCREMENTAL LEVEL 1 CUMULATIVE DATABASE; # blocks changed since level 0

SunDay

Backup
level

Mon Tues Wed Thur Fri Sat Sun

0 1 1 1 1 1 1 0

Mon Tues Wed Thur Fri Sat Sun

1 1 1 1 1 1 0

RMAN Incremental Backups

Backing Up Databases Using RMAN 4-15

Figure 4–2 Cumulative Incremental Backups

In the example shown in Figure 4–2, the following occurs:

■ Sunday

An incremental level 0 backup backs up all blocks that have ever been in use in
this database.

■ Monday - Saturday

A cumulative incremental level 1 backup copies all blocks changed since the most
recent level 0 backup. Because the most recent level 0 backup was created on
Sunday, the level 1 backup on each day Monday through Saturday backs up all
blocks changed since the Sunday backup.

■ The cycle is repeated for the next week.

Basic Incremental Backup Strategy
Choose a backup scheme according to an acceptable MTTR (mean time to recover). For
example, you can implement a three-level backup scheme so that a full or level 0
backup is taken monthly, a cumulative level 1 is taken weekly, and a differential level 1
is taken daily. In this scheme, you never have to apply more than a day's worth of redo
for complete recovery.

When deciding how often to take full or level 0 backups, a good rule of thumb is to
take a new level 0 whenever 50% or more of the data has changed. If the rate of change
to your database is predictable, then you can observe the size of your incremental
backups to determine when a new level 0 is appropriate. The following query displays
the number of blocks written to a backup set for each datafile with at least 50% of its
blocks backed up:

SELECT FILE#, INCREMENTAL_LEVEL, COMPLETION_TIME, BLOCKS, DATAFILE_BLOCKS
 FROM V$BACKUP_DATAFILE
 WHERE INCREMENTAL_LEVEL > 0
 AND BLOCKS / DATAFILE_BLOCKS > .5

SunDay

Backup
level

Mon Tues Wed Thur Fri Sat Sun

0 1 1 1 1 1 1 0

Mon Tues Wed Thur Fri Sat Sun

1 1 1 1 1 1 0

RMAN Incremental Backups

4-16 Backup and Recovery Basics

 ORDER BY COMPLETION_TIME;

Compare the number of blocks in differential or cumulative backups to a base level 0
backup. For example, if you only create level 1 cumulative backups, then when the
most recent level 1 backup is about half of the size of the base level 0 backup, take a
new level 0.

Making Incremental Backups: BACKUP INCREMENTAL
After starting RMAN, run the BACKUP INCREMENTAL command at the RMAN
prompt. This example makes a level 0 incremental backup of the database:

BACKUP INCREMENTAL LEVEL 0 DATABASE;

This example makes a differential level 1 backup of the SYSTEM tablespace and
datafile tools01.dbf. It will only back up those data blocks changed since the most
recent level 1 or level 0 backup:

BACKUP INCREMENTAL LEVEL 1
 TABLESPACE SYSTEM
 DATAFILE 'ora_home/oradata/trgt/tools01.dbf';

This example makes a cumulative level 1 backup of the tablespace users, backing up
all blocks changed since the most recent level 0 backup.

BACKUP INCREMENTAL LEVEL = 1 CUMULATIVE
 TABLESPACE users;

Incrementally Updated Backups: Rolling Forward Image Copy Backups
Oracle's Incrementally Updated Backups feature lets you avoid the overhead of taking
full image copy backups of datafiles, while providing the same recovery advantages as
image copy backups.

At the beginning of a backup strategy, RMAN creates an image copy backup of the
datafile. Then, at regular intervals, such as daily, level 1 incremental backups are taken,
and applied to the image copy backup, rolling it forward to the point in time when the
level 1 incremental was created.

During restore and recovery of the database, RMAN can restore from this
incrementally updated copy and then apply changes from the redo log, with the same
results as restoring the database from a full backup taken at the SCN of the most
recently applied incremental level 1 backup.

A backup strategy based on incrementally updated backups can help minimize time
required for media recovery of your database. For example, if you run scripts to
implement this strategy daily, then at recovery time, you never have more than one
day of redo to apply.

Incrementally Updated Backups: A Basic Example
To create incremental backups for use in an incrementally updated backups strategy,
you must use the BACKUP... FOR RECOVER OF COPY WITH TAG form of the BACKUP
command. How the command works is best understood in the context of an example
script that would implement the strategy.

This script, run on a regular basis, is all that is required to implement a strategy based
on incrementally updated backups:

RUN {
 RECOVER COPY OF DATABASE WITH TAG 'incr_update';

RMAN Incremental Backups

Backing Up Databases Using RMAN 4-17

 BACKUP INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG 'incr_update'
 DATABASE;
 }

The syntax used in the script does not, however, make it clear how the strategy works.
To understand the script and the strategy, it is necessary to understand the effects of
these two commands when no datafile copies or incremental backups exist.

■ The BACKUP INCREMENTAL LEVEL 1... FOR RECOVER OF COPY WITH
TAG... command does not actually always create a level 1 incremental backup. If
there is no level 0 image copy backup of an particular datafile, then executing this
command creates an image copy backup of the datafile on disk with the specified
tag instead of creating the level 1 backup.

Thus, the first time the script runs, it creates the image copy of the datafile needed
to begin the cycle of incremental updates. In the second run and all subsequent
runs, it produces level 1 incremental backups of the datafile.

■ The RECOVER COPY OF DATABASE WITH TAG... command causes RMAN to
apply any available incremental level 1 backups to a set of datafile copies with the
specified tag.

If there is no incremental backup or no datafile copy, the command generates a
message but does not generate an error.

The first time the script runs, this command has no effect, because there is neither
a datafile copy nor a level 1 incremental backup.

The second time the script runs, there is a datafile copy (created by the first
BACKUP command), but no incremental level 1 backup, so again, the command has
no effect.

On the third run and all subsequent runs, there is a datafile copy and a level 1
incremental from the previous run, so the level 1 incremental is applied to the
datafile copy, bringing the datafile copy up to the checkpoint SCN of the level 1
incremental.

Note also the following details about how this example works:

■ Each time a datafile is added to the database, an image copy of the new datafile is
created the next time the script runs. The time after that, the first level 1
incremental for that datafile is created, and on all subsequent runs the new datafile
is processed like any other datafile.

■ Tags must be used to identify the incremental level 0 datafile copies created for use
in this strategy, so that they do not interfere with other backup strategies you
implement. If you have multiple incremental backup strategies in effect, RMAN
cannot unambiguously create incremental level 1 backups unless you tag level 0
backups.

The incremental level 1 backups to apply to those image copies are selected based
upon the checkpoint SCNs of the image copy datafiles and the available

Note: Even when the BACKUP INCREMENTAL LEVEL 1 ... FOR
RECOVER OF COPY command is used with DEVICE TYPE SBT to create
a backup on tape, the first time it is used it creates the image copy on
disk, and does not write any backup on tape. Subsequent incremental
level 1 backups can be created on tape once the image copy is on disk.

RMAN Incremental Backups

4-18 Backup and Recovery Basics

incremental level 1 backups. (The tag used on the image copy being recovered is
not a factor in the selection of the incremental level backups.)

In practice, you would schedule the example script to run once each day, possibly at
midnight. On a typical night (that is, after the first two nights), when the script
completed the following files would be available for a point-in-time recovery:

■ An image copy of the database, as of the checkpoint SCN of the preceding run of
the script, 24 hours earlier

■ An incremental backup for the changes since the checkpoint SCN of preceding run

■ Archived redo logs including all changes between the checkpoint SCN of the
image copy and the current time

If, at some point during the following 24 hours, you need to restore and recover your
database from this backup, for either complete or point-in-time recovery, you can
restore the datafiles from the incrementally updated datafile copies, and apply changes
from the most recent incremental level 1 and the redo logs to reach the desired SCN.
At most, you will have 24 hours of redo to apply, which limits how long point-in-time
recovery will take.

Incrementally Updated Backups: A One Week Example
The basic example can be extended to provide fast recoverability to a window greater
than 24 hours. Alter the RECOVER COPY... WITH TAG to perform incomplete
recovery of the datafile copies to the point in time in the past where you want your
window of recoverability to begin. This example shows how to maintain a seven day
window:

RUN {
 RECOVER COPY OF DATABASE WITH TAG 'incr_update'
 UNTIL TIME 'SYSDATE - 7';
 BACKUP INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG 'incr_update'
 DATABASE;
 }

The effect of the script is as follows:

■ On the first night the RECOVER COPY... UNTIL TIME statement has no effect,
and the BACKUP INCREMENTAL... FOR RECOVER OF COPY statement creates
the incremental level 0 copy.

■ On the second through seventh nights, the RECOVER COPY... UNTIL TIME
statement has no effect because TIME 'SYSDATE - 7' is still a time in the
future. The BACKUP INCREMENTAL... FOR RECOVER OF COPY statement
creates differetial incremental level 1 backups containing the block changes for the
previous day.

■ On the eighth and all subsequent nights night, the RECOVER COPY... UNTIL
TIME statement applies the level 1 incremental from seven days ago to the copy of
the database. The BACKUP INCREMENTAL... FOR RECOVER OF COPY
statement creates an incremental backup containing the changes for the previous
day.

As with the basic example, you have fast recoverability to any point in time between
the SCN of the datafile copies and the present, using block changes from the

See Also: Oracle Database 2 Day DBA to see how this technique is
used in the Oracle-suggested backup strategy in Enterprise
Manager.

RMAN Incremental Backups

Backing Up Databases Using RMAN 4-19

incremental backups and individual changes from the redo logs. Because you have the
daily level 1 incrementals, you still never need to apply more than one day of redo.

Improving Incremental Backup Performance: Change Tracking
RMAN's change tracking feature for incremental backups improves incremental
backup performance by recording changed blocks in each datafile in a change tracking
file. If change tracking is enabled, RMAN uses the change tracking file to identify
changed blocks for incremental backup, thus avoiding the need to scan every block in
the datafile.

After enabling change tracking, the first level 0 incremental backup still has to scan the
entire datafile, as the change tracking file does not yet reflect the status of the blocks.
Subsequent incremental backup that use this level 0 as parent will take advantage of
the change tracking file.

Using change tracking in no way changes the commands used to perform incremental
backups, and the change tracking files themselves generally require little maintenance
after initial configuration.

Change tracking is disabled by default, because it does introduce some minimal
performance overhead on your database during normal operations. However, the
benefits of avoiding full datafile scans during backup are considerable, especially if
only a small percentage of data blocks are changed between backups. If your backup
strategy involves incremental backups, then you should enable change tracking.

One block change tracking file is created for the whole database. By default, the block
change tracking file is created as an Oracle managed file in DB_CREATE_FILE_DEST.
You can also specify the name of the block change tracking file, placing it in any
location you choose.

Oracle saves enough change-tracking information to enable incremental backups to be
taken using any of the 8 most recent incremental backups as its parent.

Although RMAN does not support backup and recovery of the change-tracking file
itself, if the whole database or a subset needs to be restored and recovered, then
recovery has no user-visible effect on change tracking. After the restore and recovery,
the change tracking file is cleared, and starts recording block changes again. The next
incremental backup after any recovery is able to use change-tracking data.

Enabling and Disabling Change Tracking
You can enable or disable change tracking when the database is either open or
mounted. To alter the change tracking setting, you must use SQL*Plus to connect to
the target database with administrator privileges.

To store the change tracking file in the database area, set DB_CREATE_FILE_DEST in
the target database. Then issue the following SQL statement to enable change tracking:

SQL> ALTER DATABASE ENABLE BLOCK CHANGE TRACKING;

You can also create the change tracking file in a location you choose yourself, using the
following SQL statement:

SQL> ALTER DATABASE ENABLE BLOCK CHANGE TRACKING
 USING FILE '/mydir/rman_change_track.f' REUSE;

The REUSE option tells Oracle to overwrite any existing file with the specified name.

To disable change tracking, use this SQL statement:

SQL> ALTER DATABASE DISABLE BLOCK CHANGE TRACKING;

RMAN Incremental Backups

4-20 Backup and Recovery Basics

If the change tracking file was stored in the database area, then it is deleted when you
disable change tracking.

Checking Whether Change Tracking is Enabled
From SQL*Plus, you can query V$BLOCK_CHANGE_TRACKING.STATUS to determine
whether change tracking is enabled, and if it is, query V$BLOCK_CHANGE_
TRACKING.FILENAME to display the filename.

Moving the Change Tracking File
If you need to move the change tracking file, the ALTER DATABASE RENAME FILE
command updates the control file to refer to the new location. The process outlined in
this section describes how to change the location of the change tracking file while
preserving its contents.

To relocate the change tracking file:

1. If necessary, determine the current name of the change tracking file:

SELECT filename
FROM V$BLOCK_CHANGE_TRACKING;

2. Shut down the database. For example:

SHUTDOWN IMMEDIATE

3. Using host operating system commands, move the change tracking file to its new
location.

4. Mount the database and move the change tracking file to a location that has more
space. For example:

ALTER DATABASE RENAME FILE
 'ora_home/dbs/change_trk.f' TO '/new_disk/change_trk.f';

5. Open the database:

ALTER DATABASE OPEN;

If you cannot shut down the database, then you must disable change tracking and
re-enable it at the new location, as in the following example:

ALTER DATABASE DISABLE BLOCK CHANGE TRACKING;
ALTER DATABASE ENABLE BLOCK CHANGE TRACKING USING FILE 'new_location';

If you choose this method, you will lose the contents of the change tracking file. Until
the next time you complete a level 0 incremental backup, RMAN will have to scan the
entire file.

Estimating Size of the Change Tracking File on Disk
The size of the change tracking file is proportional to the size of the database and the
number of enabled threads of redo. The size is not related to the frequency of updates
to the database. Typically, the space required for block change tracking is
approximately 1/30,000 the size of the data blocks to be tracked. Note, however, the
following two factors that may cause the file to be larger than this estimate suggests:

■ To avoid overhead of allocating space as your database grows, the change tracking
file size starts at 10MB, and new space is allocated in 10MB incremenents. Thus,

Overview of Reporting on Backups and the RMAN Repository

Backing Up Databases Using RMAN 4-21

for any database up to approximately 300GB the file size is no smaller than 10MB,
for up to approximately 600GB the file size is no smaller than 20MB, and so on.

■ For each datafile, a minimum of 320K of space is allocated in the change tracking
file, regardless of the size of the file. Thus, if you have a large number of relatively
small datafiles, the change tracking file is larger than for databases with a smaller
number of larger datafiles containing the same data.

Using RMAN to Validate Database Files
You can use the VALIDATE option of the BACKUP command to verify that database
files exist and are in the correct locations, and have no physical or logical corruptions
that would prevent RMAN from creating backups of them. When performing a
BACKUP... VALIDATE, RMAN reads the files to be backed up in their entirety, as it
would during a real backup. It does not, however, actually produce any backup sets or
image copies.

If the backup validation discovers corrupt blocks, then RMAN updates the
V$DATABASE_BLOCK_CORRUPTION view with rows describing the corruptions. You
can repair corruptions using block media recovery, documented in Oracle Database
Backup and Recovery Advanced User's Guide. After a corrupt block is repaired, the row
identifying this block is deleted from the view.

For example, you can validate that all database files and archived logs can be backed
up by running a command as follows:

BACKUP VALIDATE DATABASE ARCHIVELOG ALL;

The RMAN client displays the same output that it would if it were really backing up
the files. If RMAN cannot validate the backup of one or more of the files, then it issues
an error message. For example, RMAN may show output similar to the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of backup command at 08/29/2002 14:33:47
ORA-19625: error identifying file /oracle/oradata/trgt/arch/archive1_6.dbf
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3

You cannot use the MAXCORRUPT or PROXY parameters with the VALIDATE option.

Overview of Reporting on Backups and the RMAN Repository
You can obtain information from the RMAN repository in several different ways:

■ The RMAN LIST and REPORT commands provide extensive information on
available backups and how they can be used to restore and recover your database.
LIST is described in "Listing RMAN Backups, Archived Logs, and Database
Incarnations" on page 4-22 and REPORT is described in "Reporting on Backups and
Database Schema" on page 4-27.

See Also:

■ Oracle Database Backup and Recovery Reference for BACKUP syntax

■ Oracle Database Backup and Recovery Advanced User's Guide to
learn how to repair corrupt blocks discovered by BACKUP ...
VALIDATE

Listing RMAN Backups, Archived Logs, and Database Incarnations

4-22 Backup and Recovery Basics

■ When the database is open, a number of V$ views provide direct access to RMAN
repository records in the control file. If your database is registered in a recovery
catalog, RC_ views that mostly correspond to the V$ views provide direct access to
the RMAN repository data stored in the recovery catalog. You can query views
from either group in SQL*Plus. Some V$ views such as V$DATAFILE_HEADER,
V$PROCESS, and V$SESSION, contain information not found in the recovery
catalog views. The V$ views are documented in Oracle Database Reference and the
RC_ views are documented in Oracle Database Backup and Recovery Reference .

■ The RESTORE command supports a PREVIEW clause, which provides detailed
information about how RMAN can restore and recover all or part of your
database, given the set of backups available. RESTORE... PREVIEW is documented
in "Previewing Backups Used in Restore Operations: RESTORE PREVIEW" on
page 6-9.

Listing RMAN Backups, Archived Logs, and Database Incarnations
The LIST command uses the information in the RMAN repository to provide lists of
backups, archived logs, and database incarnations. You can use the output of LIST to
identify specific backups you wish to use with other RMAN commands.

This section contains these topics:

■ About RMAN Reports Generated by the LIST Command

■ Listing Backups

■ Listing Backups by File

■ Listing Backups in Summary Mode

■ Listing Selected Backups

■ Listing Database Incarnations

Note: If backups have been manipulated outside of the control of
RMAN (for example, if some disk-based backups have been deleted,
or tape backups are temporarily unavailable or permanently lost) then
see Chapter 8, "Recovery Manager Maintenance Tasks" for details on
how to update the RMAN repository record of backups to reflect the
actual set of available backups, using commands such as CHANGE,
CROSSCHECK, and DELETE. Otherwise, the output of the commands
and views listed here may be misleading, and RMAN may not be able
to find the backups to restore and recover your database until you
update the repository.

See Also:

■ Oracle Database Backup and Recovery Advanced User's Guide to
learn how to keep the RMAN repository up to date

■ Oracle Database Backup and Recovery Reference for LIST syntax

■ Oracle Database Backup and Recovery Reference for REPORT syntax

■ Oracle Database Backup and Recovery Reference for RESTORE
PREVIEW syntax

Listing RMAN Backups, Archived Logs, and Database Incarnations

Backing Up Databases Using RMAN 4-23

About RMAN Reports Generated by the LIST Command
You can control how the output is displayed by using the BY BACKUP and BY FILE
options of the LIST command and choosing between the SUMMARY and VERBOSE
options.

The primary purpose of the LIST command is to determine which backups are
available. For example, you can list:

■ Backups and proxy copies of a database, tablespace, datafile, archived redo log, or
control file

■ Backups that have expired

■ Backups restricted by time, path name, device type, tag, or recoverability

■ Incarnations of a database

Note that the V$BACKUP_FILES also contains list information for backups.

Listing Backups
By default, RMAN lists backups by backup, which means that it serially lists each
backup or proxy copy and then identifies the files included in the backup. You can also
list backups by file.

By default, RMAN lists in verbose mode. You can also list backups in a summary
mode if the verbose mode generates too much output.

Listing Backups by Backup
To list backups by backup, connect to the target database and recovery catalog (if you
use one), and then execute the LIST BACKUP command. Specify the desired objects
with the listObjList clause. For example, you can enter:

LIST BACKUP; # lists backup sets, image copies, and proxy copies
LIST BACKUPSET; # lists only backup sets and proxy copies
LIST COPY; # lists only disk copies

Optionally, specify EXPIRED to identify backups not found during a crosscheck:

LIST EXPIRED BACKUP;

Examine the output (refer to Oracle Database Backup and Recovery Reference for an
explanation of the various column headings in the LIST output). Sample output of
LIST BACKUP follows:

List ofCHANGE, CROSSCHECK, and DELETE Backup Sets
===================

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
7 136M DISK 00:00:20 04-NOV-03
 BP Key: 7 Status: AVAILABLE Compressed: NO Tag: TAG20031104T200759
 Piece Name: /oracle/work/RDBMS/backupset/2003_11_04/o1_mf_annnn_TAG20031104T200759_ztjxx3k8_.bkp

 List of Archived Logs in backup set 7
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 1 173832 21-OCT-03 174750 21-OCT-03
 1 2 174750 21-OCT-03 174755 21-OCT-03
 1 3 174755 21-OCT-03 174758 21-OCT-03

 1 37 533321 01-NOV-03 575472 03-NOV-03
 1 38 575472 03-NOV-03 617944 04-NOV-03

Listing RMAN Backups, Archived Logs, and Database Incarnations

4-24 Backup and Recovery Basics

 1 39 617944 04-NOV-03 631495 04-NOV-03

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
8 Full 2M DISK 00:00:01 04-NOV-03
 BP Key: 8 Status: AVAILABLE Compressed: NO Tag: TAG20031104T200829
 Piece Name: /ade/lashdown_rdbms/oracle/dbs/c-774627068-20031104-01
 Controlfile Included: Ckp SCN: 631510 Ckp time: 04-NOV-03
 SPFILE Included: Modification time: 21-OCT-03

Sample output of LIST COPY follows:

List of Archived Log Copies
Key Thrd Seq S Low Time Name
------- ---- ------- - --------- ----
37 1 37 A 01-NOV-03 /oracle/work/RDBMS/archivelog/2003_11_03/o1_mf_1_37_ztd4hl5d_.arc
38 1 38 A 03-NOV-03 /oracle/work/RDBMS/archivelog/2003_11_04/o1_mf_1_38_zthvg168_.arc
39 1 39 A 04-NOV-03 /oracle/work/RDBMS/archivelog/2003_11_04/o1_mf_1_39_ztjxwxwy_.arc

Listing Backups by File
Specify the desired objects with the listObjList or recordSpec clause (refer to
Oracle Database Backup and Recovery Reference). If you do not specify an object, then
RMAN displays copies of all database files and archived logs. By default, RMAN lists
in verbose mode, which means that it provides extensive, multiline information.

To list backups by file, connect the RMAN client to the target database and recovery
catalog (if you use one), and then execute LIST with the BY FILE option, specifying
the desired objects to list and options.For example, you can enter:

LIST BACKUP BY FILE; # shows backup sets, proxy copies, and image copies
LIST COPY BY FILE; # shows only disk copies

For another example, you could specify the EXPIRED option to identify backups not
found during a crosscheck:

LIST EXPIRED BACKUP BY FILE;

Examine the output (refer to Oracle Database Backup and Recovery Reference for an
explanation of the various column headings in the LIST output). Sample output
follows:

List of Datafile Backups
========================

File Key TY LV S Ckp SCN Ckp Time #Pieces #Copies Compressed Tag
---- ------- - -- - ---------- --------- ------- ------- ---------- ---
1 5 B F A 631092 04-NOV-03 1 1 YES TAG20031104T195949
 2 B F A 175337 21-OCT-03 1 1 NO TAG20031021T094513
2 5 B F A 631092 04-NOV-03 1 1 YES TAG20031104T195949
 2 B F A 175337 21-OCT-03 1 1 NO TAG20031021T094513

... some rows omitted

List of Archived Log Backups
============================

Thrd Seq Low SCN Low Time BS Key S #Pieces #Copies Compressed Tag
---- ------- ---------- --------- ------- - ------- ------- ---------- ---
1 1 173832 21-OCT-03 7 A 1 1 NO TAG20031104T200759
 1 A 1 1 NO TAG20031021T094505
1 2 174750 21-OCT-03 7 A 1 1 NO TAG20031104T200759
 1 A 1 1 NO TAG20031021T094505
... some rows omitted

Listing RMAN Backups, Archived Logs, and Database Incarnations

Backing Up Databases Using RMAN 4-25

1 38 575472 03-NOV-03 7 A 1 1 NO TAG20031104T200759
1 39 617944 04-NOV-03 7 A 1 1 NO TAG20031104T200759

List of Controlfile Backups
===========================
CF Ckp SCN Ckp Time BS Key S #Pieces #Copies Compressed Tag
---------- --------- ------- - ------- ------- ---------- ---
631510 04-NOV-03 8 A 1 1 NO TAG20031104T200829
631205 04-NOV-03 6 A 1 1 NO TAG20031104T200432
175380 21-OCT-03 4 A 1 1 NO TAG20031021T094639

List of SPFILE Backups
======================
Modification Time BS Key S #Pieces #Copies Compressed Tag
----------------- ------- - ------- ------- ---------- ---
21-OCT-03 8 A 1 1 NO TAG20031104T200829
21-OCT-03 6 A 1 1 NO TAG20031104T200432

Listing Backups in Summary Mode
By default the LIST output is detailed, but you can also specify that RMAN display
the output in summarized form. Specify the desired objects with the
listObjectList or recordSpec clause. If you do not specify an object, then LIST
BACKUP displays all backups.

After connecting to the target database and recovery catalog (if you use one), execute
LIST BACKUP, specifying the desired objects and options. For example:

LIST BACKUP SUMMARY; # lists backup sets, proxy copies, and disk copies

You can also specify the EXPIRED keyword to identify those backups that were not
found during a crosscheck:

LIST EXPIRED BACKUP SUMMARY;

Sample output follows:

List of Backups
===============
Key TY LV S Device Type Completion Time #Pieces #Copies Compressed Tag
------- -- -- - ----------- --------------- ------- ------- ---------- ---
1 B A A SBT_TAPE 21-OCT-03 1 1 NO TAG20031021T094505
2 B F A SBT_TAPE 21-OCT-03 1 1 NO TAG20031021T094513
3 B A A SBT_TAPE 21-OCT-03 1 1 NO TAG20031021T094624
4 B F A SBT_TAPE 21-OCT-03 1 1 NO TAG20031021T094639
5 B F A DISK 04-NOV-03 1 1 YES TAG20031104T195949
6 B F A DISK 04-NOV-03 1 1 NO TAG20031104T200432
7 B A A DISK 04-NOV-03 1 1 NO TAG20031104T200759
8 B F A DISK 04-NOV-03 1 1 NO TAG20031104T200829

Refer to Oracle Database Backup and Recovery Reference for an explanation of the various
column headings in the LIST output.

Listing Selected Backups
You can specify several different conditions to narrow your LIST output.

After connecting to the target database and recovery catalog (if you use one), execute
LIST COPY or LIST BACKUP with the listObjList or recordSpec condition. For
example, enter any of the following commands:

lists backups of all files in database
LIST BACKUP OF DATABASE;

Listing RMAN Backups, Archived Logs, and Database Incarnations

4-26 Backup and Recovery Basics

lists copy of specified datafile
LIST COPY OF DATAFILE 'ora_home/oradata/trgt/system01.dbf';
lists specified backup set
LIST BACKUPSET 213;
lists datafile copy
LIST DATAFILECOPY '/tmp/tools01.dbf';

You can also restrict the search by specifying the maintQualifier or RECOVERABLE
clause. For example, enter:

specify a backup set by tag
LIST BACKUPSET TAG 'weekly_full_db_backup';
specify a backup or copy by device type
LIST COPY OF DATAFILE 'ora_home/oradata/trgt/system01.dbf' DEVICE TYPE sbt;
specify a backup by directory or path
LIST BACKUP LIKE '/tmp/%';
specify a backup or copy by a range of completion dates
LIST COPY OF DATAFILE 2 COMPLETED BETWEEN '10-DEC-2002' AND '17-DEC-2002';
specify logs backed up at least twice to tape
LIST ARCHIVELOG ALL BACKED UP 2 TIMES TO DEVICE TYPE sbt;

The output depends upon the options you pass to the LIST command. For example,
the following lists copies of datafile 1:

RMAN> list backup of datafile 1;

List of Backup Sets
===================

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
2 Full 230M SBT_TAPE 00:00:49 21-OCT-03
 BP Key: 2 Status: AVAILABLE Compressed: NO Tag: TAG20031021T094513
 Handle: 02f4eatc_1_1 Media: /smrdir
 List of Datafiles in backup set 2
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 Full 175337 21-OCT-03 /oracle/dbs/tbs_01.f

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
5 Full 233M DISK 00:04:30 04-NOV-03
 BP Key: 5 Status: AVAILABLE Compressed: NO Tag: TAG20031104T195949
 Piece Name: /oracle/work/RDBMS/backupset/2003_11_04/o1_mf_nnndf_TAG20031104T195949_
ztjxfvgz_.bkp
 List of Datafiles in backup set 5
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 Full 631092 04-NOV-03 /ade/lashdown_rdbms/oracle/dbs/tbs_01.f

Listing Database Incarnations
Each time an OPEN RESETLOGS operation is performed on a database, this operation
creates a new incarnation of the database. Database incarnations and their effect upon

See Also:

■ Oracle Database Backup and Recovery Reference for listObjList
syntax

■ Oracle Database Backup and Recovery Reference for an explanation
of the various columns in the LIST output

Reporting on Backups and Database Schema

Backing Up Databases Using RMAN 4-27

database recovery with RMAN are explained in more detail in Oracle Database Backup
and Recovery Advanced User's Guide.

When performing incremental backups, RMAN can use a backup from a previous
incarnation or the current incarnation as a basis for subsequent incremental backups.
When performing restore and recovery, RMAN can use backups from a previous
incarnation in restore and recovery operations just as it would use backups from the
current incarnation, as long as all archived logs are available.

Use the LIST INCARNATION command to see the incarnations of your database.

To list database incarnations:

After connecting to the target database and the recovery catalog if applicable, run
LIST INCARNATION:

RMAN> LIST INCARNATION;

If you are using a recovery catalog, and if you register multiple target databases in the
same catalog, then you can distinguish them by using the OF DATABASE option:

RMAN> LIST INCARNATION OF DATABASE prod3;

Refer to Oracle Database Backup and Recovery Reference for an explanation of the various
column headings in the LIST output). Sample output follows:

RMAN> LIST INCARNATION OF DATABASE;

List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- -------- ---------------- ------ ---------- ----------
1 1 RDBMS 774627068 PARENT 1 21-OCT-03
2 2 RDBMS 774627068 CURRENT 173832 21-OCT-03

The preceding output indicates that a RESETLOGS was performed on database trgt at
SCN 164378, resulting in a new incarnation. The incarnation is distinguished by
incarnation key (represented in the Inc Key column).

Reporting on Backups and Database Schema
The RMAN REPORT command analyzes the available backups and your database to
answer imoprtant questions, such as:

■ Which files need a backup?

■ Which files have had unrecoverable operations performed on them?

■ Which backups are obsolete and can be deleted?

■ What was the physical schema of the database at some previous time?

■ Which files have not been backed up recently?

Reporting on Backups and Database Schema

4-28 Backup and Recovery Basics

 This section contains the following topics:

■ About Reports of RMAN Backups

■ Reporting on Files Needing a Backup Under a Retention Policy

■ Reporting on Datafiles Affected by Unrecoverable Operations

■ Reporting Obsolete Backups

■ Reporting on the Database Schema

About Reports of RMAN Backups
Reports enable you to confirm that your backup and recovery strategy is in fact
meeting your requirements for database recoverability. The two major forms of
REPORT used to determine whether your database is recoverable are:

■ REPORT NEED BACKUP

Reports which database files need to be backed up to meet a configured or
specified retention policy

■ REPORT UNRECOVERABLE

Reports which database files require backup because they have been affected by
some NOLOGGING operation such as a direct-path insert

Reporting on Files Needing a Backup Under a Retention Policy
Use the REPORT NEED BACKUP command to determine which database files need
backup under a specific retention policy.

Note: The results of REPORT are only correct if the RMAN
repository has an accurate record of available backups and the state
of your database. For example, if backups have been deleted from
disk or tape outside of RMAN, reports generated by RMAN do not
automatically reflect these changes.

If some backups recorded in the RMAN repository have been
deleted, or if some are temporarily unavailable due to a storage
device being offline or media being unavailable, you can use the
CROSSCHECK commands to update the status of all backups, or the
CHANGE, CATALOG, UNCATALOG and DELETE commands to directly
set the status of individual backups. See Chapter 8, "Recovery
Manager Maintenance Tasks" to learn how to update the RMAN
repository to reflect your actual available backups.

Note: The REPORT command use the information in the RMAN
repository as the basis for their output. If backups have been
manipulated outside of the control of RMAN (for example, if you
believe some disk-based backups have been deleted, or tape backups
are temporarily unavailable or permanently lost) then see Chapter 8,
"Recovery Manager Maintenance Tasks" for details on how to update
the RMAN repository record to contain the actual set of available
backups using the CROSSCHECK, CHANGE, CATALOG, UNCATALOG and
DELETE commands. Otherwise, the output of REPORT may be
misleading.

Reporting on Backups and Database Schema

Backing Up Databases Using RMAN 4-29

With no arguments, REPORT NEED BACKUP reports which objects need backup under
the currently configured retention policy. The output for a configured retention policy
of REDUNDANCY 1 is similar to this example:

REPORT NEED BACKUP;

RMAN retention policy will be applied to the command
RMAN retention policy is set to redundancy 1
Report of files with less than 1 redundant backups
File #bkps Name
---- ----- ---
2 0 /oracle/oradata/trgt/undotbs01.dbf

Using RMAN REPORT NEED BACKUP with Different Retention Policies
You can specify different criteria for REPORT NEED BACKUP, using one of the
following forms of the command:

■ REPORT NEED BACKUP RECOVERY WINDOW OFn DAYS

Displays objects requiring backup to satisfy a recovery window-based retention
policy.

■ REPORT NEED BACKUP REDUNDANCYn

Displays objects requiring backup to satisfy a redundancy-based retention policy.

■ REPORT NEED BACKUP DAYS = n

Displays files that require more than n days' worth of archived redo log files for
recovery.

■ REPORT NEED BACKUP INCREMENTAL n

Displays files that require application of more than n incremental backups for
recovery.

Using RMAN REPORT NEED BACKUP with Tablespaces and Datafiles
REPORT NEED BACKUP can check the entire database, skip specified tablespaces, or
check only specific tablespaces or datafiles against different retention policies, as
shown in the following examples:

RMAN> REPORT NEED BACKUP RECOVERY WINDOW OF 2 DAYS DATABASE SKIP TABLESPACE TBS_2;
RMAN> REPORT NEED BACKUP REDUNDANCY 2 DATAFILE 1;
RMAN> REPORT NEED BACKUP TABLESPACE TBS_3; # uses configured retention policy
RMAN> REPORT NEED BACKUP INCREMENTAL 2; # checks entire database

Using REPORT NEED BACKUP with Backups onTape or Disk Only
You can limit the backups tested by REPORT NEED BACKUP to disk-based or
tape-based backups only, as shown in these examples:

Note: If you disable the retention policy using CONFIGURE
RETENTION POLICY TO NONE, then REPORT NEED BACKUP returns
an error message, because without a retention policy, RMAN
cannot determine which files need to be backed up.

See Also: Oracle Database Backup and Recovery Reference for all
possible options for REPORT NEED BACKUP and an explanation of
the various column headings in the output

Reporting on Backups and Database Schema

4-30 Backup and Recovery Basics

RMAN> REPORT NEED BACKUP RECOVERY WINDOW OF 2 DAYS DATABASE DEVICE TYPE SBT;
RMAN> REPORT NEED BACKUP DEVICE TYPE DISK;
RMAN> REPORT NEED BACKUP TABLESPACE TBS_3 DEVICE TYPE SBT;

Reporting on Datafiles Affected by Unrecoverable Operations
When a datafile has been changed by an unrecoverable operation, such as a direct load
insert, normal media recovery cannot be used to recover the file, because an
unrecoverable operation does not generate redo. You must perform either a full or
incremental backup of affected datafiles after such operations, to ensure that data
blocks affected by the unrecoverable operation can be recovered using RMAN.

To identify datafiles affected by an unrecoverable operation and the type of backup
required to ensure the datafile can be restored from backup, use the REPORT
UNRECOVERABLE command, as shown in this example:

RMAN> REPORT UNRECOVERABLE;
Report of files that need backup due to unrecoverable operations
File Type of Backup Required Name
---- ----------------------- -----------------------------------
1 full /oracle/oradata/trgt/system01.dbf

Reporting Obsolete Backups
You can report backup sets, backup pieces and datafile copies that are obsolete, that is,
not needed to meet a specified retention policy, by specifying the OBSOLETE keyword.
If you do not specify any other options, then REPORT OBSOLETE displays the backups
that are obsolete according to the current retention policy, as shown in the following
example:

RMAN> REPORT OBSOLETE;
Datafile Copy 44 08-FEB-05 /backup/ora_df549738566_s70_s1
Datafile Copy 45 08-FEB-05 /backup/ora_df549738567_s71_s1
Datafile Copy 46 08-FEB-05 /backup/ora_df549738568_s72_s1
Backup Set 26 08-FEB-05
 Backup Piece 26 08-FEB-05 /backup/ora_df549738682_s76_s1
.
.
.

You can also check which backups are obsolete under different recovery
window-based or redundancy-based retention policies, by using REPORT OBSOLETE
with RECOVERY WINDOW and REDUNDANCY options, as shown in these examples:

REPORT OBSOLETE RECOVERY WINDOW OF 3 DAYS;
REPORT OBSOLETE REDUNDANCY 1;

You can specify to only consider backups on disk or on tape when checking for
obsolete files, by specifying a device type with the REPORT command, as in this
example:

REPORT OBSOLETE RECOVERY WINDOW OF 3 DAYS DEVICE TYPE DISK;
REPORT OBSOLETE REDUNDANCY 1;

To report obsolete backups:

1. Connect to your target database and your recovery catalog (if you are using a
recovery catalog.)

Reporting on Backups and Database Schema

Backing Up Databases Using RMAN 4-31

2. To make sure that your RMAN repository has current information about the status
of different backups, you may want to issue CROSSCHECK commands to update
the status of backups in the repository compared to their status on disk, or use the
CHANGE, CATALOG, UNCATALOG and DELETE commands to directly specify the
status of individual backups.

In the simplest case, you could crosscheck all backups on disk, tape or both, using
any one of the following commands:

RMAN> CROSSCHECK BACKUP DEVICE TYPE DISK;
RMAN> CROSSCHECK BACKUP DEVICE TYPE SBT;
RMAN> CROSSCHECK BACKUP; # crosshecks all backups on all devices

See Chapter 8, "Recovery Manager Maintenance Tasks" for more details on how to
update the RMAN repository record to contain the actual set of available backups.

3. Run REPORT OBSOLETE to identify which backups are obsolete because they are
no longer needed for recovery. Here are several examples:

lists backups that not needed to recover the database to within last week
REPORT OBSOLETE RECOVERY WINDOW OF 7 DAYS;

lists backups not needed for redundancy-based retention policy, considering
only backups stored on tape
REPORT OBSOLETE REDUNDANCY = 2 DEVICE TYPE sbt;

Reporting on the Database Schema
The REPORT SCHEMA command lists and displays information about the database files.

After connecting RMAN to the target database and recovery catalog (if you use one),
issue REPORT SCHEMA as shown in this example:

RMAN> REPORT SCHEMA;
List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 450 SYSTEM *** /oracle/oradata/tbs_01.f
2 50 SYSAUX *** /oracle/oradata/tbs_ax1.f
3 2 SYSTEM *** /oracle/oradata/tbs_02.f
4 2 TBS_1 *** /oracle/oradata/tbs_11.f
.
.
.
21 2 TBS_4 *** /oracle/oradata/tbs_43.f
22 2 TBS_5 *** /oracle/oradata/tbs_53.f

List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------

See Also:

■ "Configuring the Backup Retention Policy" on page 3-19 for a
conceptual overview of RMAN backup retention policy

■ "Deleting Expired RMAN Backups after CROSSCHECK" on
page 8-7 for information on deleting RMAN backups and
deleting records of RMAN backups from the RMAN repository

Reporting on Backups and Database Schema

4-32 Backup and Recovery Basics

1 40 TEMP 32767 /oracle/oradata/tbs_tmp1.f

Note: If you use a recovery catalog, then you can use the atClause
to specify a past time, SCN, or log sequence number, as shown in
these examples of the command:

REPORT SCHEMA AT TIME 'SYSDATE-14'; # schema 14 days ago
REPORT SCHEMA AT SCN 1000; # schema at scn 1000
REPORT SCHEMA AT SEQUENCE 100 THREAD 1; # schema at sequence 100

Data Protection with Restore Points and Flashback Database 5-1

5
Data Protection with Restore Points and

Flashback Database

This chapter explains the concepts of Flashback Database and restore points, and
explains setup, ongoing monitoring and maintenance associated with these features
when incorporated into your data protection strategy.

This chapter contains the following sections:

■ Restore Points and Flashback Database: Concepts

■ Using Normal and Guaranteed Restore Points

■ Setup and Maintenance for Oracle Flashback Database

Restore Points and Flashback Database: Concepts
Flashback Database and Restore Points are two related data protection features of
Oracle that provide more efficient alternatives to point-in-time recovery for reversing
unwanted database changes. This section provides a conceptual overview of
Flashback Database first, and then of Restore Points.

Flashback Database enables you to wind your entire database backward in time,
reversing the effects of unwanted database changes within a given time window. The
effects are similar to database point-in-time recovery.

Restore points provide capabilities related to Flashback Database as well as other
recovery operations. Guaranteed restore points, in particular, provide a
complementary capability to Flashback Database, allowing you to select an SCN and
enforce the requirement that Flashback Database be usable to that SCN, though not
necessarily to SCNs between the guaranteed restore point and the present SCN.

Restore points and Flashback Database can be used independently of each other or
together. In both cases, the RMAN FLASHBACK DATABASE command or the SQL*Plus
FLASHBACK DATABASE statement is used to actually return the database to a specified
SCN, as in the following examples:

FLASHBACK DATABASE TO RESTORE POINT ’before_upgrade’;
FLASHBACK DATABASE TO SCN 202381;

Note: Detailed information on recovery scenarios that use Flashback
Database and normal and guaranteed restore points can be found in
Chapter 7, "Performing Flashback and Database Point-in-Time
Recovery".

Restore Points and Flashback Database: Concepts

5-2 Product Title/BookTitle as a Variable

It is easier, however, to explain the functionality of guaranteed restore points, the
interactions of the two features and the tradeoffs in choosing to use either or both of
them, after an overview of the more general Flashback Database functionality.

This section contains the following topics:

■ About Flashback Database

■ About Normal Restore Points

■ About Guaranteed Restore Points

■ About Logging for Flashback Database and Guaranteed Restore Points

About Flashback Database
Oracle Flashback Database, accessible from both RMAN (by means of the FLASHBACK
DATABASE command) and SQL*Plus (by means of the FLASHBACK DATABASE
statement), lets you quickly recover the entire database from logical data corruptions
or user errors.

It is similar to conventional point in time recovery in its effects, allowing you to return
a database to its state at a time in the recent past. Flashback Database is, however,
much faster than point-in-time recovery, because it does not require restoring datafiles
from backup and it requires applying fewer changes from the archived redo logs.

Flashback Database can be used to reverse most unwanted changes to a database, as
long as the datafiles are intact. This includes returning a database to its state in
previous incarnations, that is, undoing the effects of an OPEN RESETLOGS operation.

Flashback Database uses its own logging mechanism, creating flashback logs which
are stored in the flash recovery area. You can only use Flashback Database if flashback
logs are available. Therefore, you must set up your database in advance to create
flashback logs if you want to take advantage of this feature.

To enable Flashback Database, you set up a flash recovery area, and set a flashback
retention target, to specify how far back into the past you want to be able to restore
your database with Flashback Database.

From that time on, at regular intervals, the database copies images of each altered
block in every datafile into the flashback logs. These block images can later be reused
to reconstruct the datafile contents as of any moment at which logs were captured.

When a database is restored to its state at some past target time using Flashback
Database, each block changed since that time is restored from the copy of the block in
the flashback logs most immediately prior to the desired target time. The redo log is
then used to re-apply changes since the time that block was copied to the flashback
logs.

Note: Detailed information on the use of the FLASHBACK DATABASE
command in reversing unwanted database changes can be found in
"Reversing Database Changes with Flashback Database" on page 7-13.

Note: Redo logs must be available for the entire time period spanned
by the flashback logs, whether on tape or on disk. (In practice,
however, redo logs are generally needed much longer than the
flashback retention target to support point-in-time recovery.)

Restore Points and Flashback Database: Concepts

Data Protection with Restore Points and Flashback Database 5-3

About the Flashback Database Window
The range of SCNs for which there is currently enough flashback log data to support
the FLASHBACK DATABASE command is called the flashback database window. If
space in the flash recovery area is low, then flashback logs may be deleted to free space
for files required by the configured retention policy. The result is that the flashback
database window can be shorter than the flashback retention target, depending upon
the size of the flash recovery area, other backups that must be retained and how much
flashback logging data is needed.

About Normal Restore Points
Creating a normal restore point assigns the restore point name to a specific point in
time or SCN, as a kind of bookmark or alias you can use with commands that
recognize a RESTORE POINT clause as a shorthand for specifying an SCN.

Before performing any operation that you may have to reverse, you can create a
normal restore point. The name of the restore point and the SCN are recorded in the
control file. Then, if you later need to use Flashback Database, Flashback Table, or
point-in-time recovery, you can refer to the target time using the name of the restore
point instead of a time expression or SCN. Defining a normal restore point before an
operation to be reversed later eliminates the need to manually record an SCN in

Note: The flashback retention target is a target, not an absolute
guarantee that Flashback Database will be available.

If your flash recovery area is not large enough to hold both the
flashback logs and files that must be retained to meet the retention
policy, such as archived redo logs and other backups, then the
flashback logs from the earliest SCNs may be deleted to make room in
the flash recovery area for other files.

The flashback database window cannot extend further back than the
earliest SCN in the available flashback logs. Flashback logs cannot be
backed up outside the flash recovery area, so to increase the likelihood
that enough logs are retained to meet the flashback database window,
maximize the free space available in your flash recovery area. See
"Sizing the Flash Recovery Area to Include Flashback Logs" on
page 5-10 for details.

There are also a number of operations you can perform on your
database, such as dropping a tablespace or shrinking a datafile, which
cannot be reversed with Flashback Database. After such an operation,
the flashback database window begins at the time immediately
following that operation.

If FLASHBACK DATABASE fails because the flashback database
window is not long enough, database point-in-time recovery
(DBPITR) can be used in most cases to achieve a similar result. See
"Performing Database Point-In-Time Recovery" on page 7-19 for
details on DBPITR.

Using guaranteed restore points is the only way to ensure that you can
use Flashback Database to return to a specific point in time or
guarantee the size of the flashback window. See "About Guaranteed
Restore Points" on page 5-4 for more information on guaranteed
restore points and Flashback Database.

Restore Points and Flashback Database: Concepts

5-4 Product Title/BookTitle as a Variable

advance, or investigate the correct SCN after the fact using features such as Flashback
Query.

Normal restore points are very lightweight. The control file can maintain a record of
thousands of normal restore points with no significant impact upon database
performance. Normal restore points eventually age out of the control file if not
manually deleted, so they require no ongoing maintenance.

Commands Supporting the Use of Restore Points
Restore points can be used to specify the target SCN in the following contexts:

■ The RECOVER DATABASE and FLASHBACK DATABASE commands in RMAN

■ The FLASHBACK TABLE statement in SQL*Plus

About Guaranteed Restore Points
Like normal restore points, guaranteed restore points can be used as aliases for SCNs
in recovery operations. However, they also provide specific functionality related to the
use of the Flashback Database feature.

Creating a guaranteed restore point at a particular SCN enforces the requirement that
you can perform a Flashback Database operation to return your database to its state at
that SCN, even if flashback logging is not enabled for your database. If flashback
logging is enabled, creating a guaranteed restore point enforces the retention of
flashback logs required for Flashback Database back to any point in time after the
creation of the earliest guaranteed restore point.

A guaranteed restore point can be used to revert a whole database to a known good
state days or weeks ago, as long as there is enough disk space in flash recovery area to
store the needed logs. As with Flashback Database, even the effects of NOLOGGING
operations like direct load inserts can be reversed using guaranteed restore points.

Using Guaranteed Restore Points Instead of Storage Snapshots
In practice, guaranteed restore points provide a useful alternative to storage snapshots,
which are often used to protect a database before risky operations like large-scale
database updates, or application patching or upgrading. Rather than creating a
snapshot or duplicate database against which to test the operation, you can create a
guaranteed restore point on a primary or standby database, and then perform the
risky operation, with the certainty that the required flashback logs are retained.

About Logging for Flashback Database and Guaranteed Restore Points
The logging for Flashback Database and guaranteed restore points is based upon
capturing images of datafile blocks before changes are applied, so that these images

Note: In general, a guaranteed restore point can be used as an alias
for an SCN with any command that works with a normal restore
point. Except as noted, the information about where and how to use
normal restore points applies to guaranteed restore points as well.

Note: Limitations that apply to Flashback Database also apply to
guaranteed restore points. For example, shrinking a datafile or
dropping a tablespace can prevent flashing back the affected datafiles
to the guaranteed restore point.

Restore Points and Flashback Database: Concepts

Data Protection with Restore Points and Flashback Database 5-5

can be used to return the datafiles to their previous state when a FLASHBACK
DATABASE command is executed.

 The chief differences between normal flashback logging and logging for guaranteed
restore points are related to when blocks are logged and whether the logs can be
deleted in response to space pressure in the flash recovery area. These differences
affect space usage for logs and database performance.

Whether to enable logging for flashback database, use guaranteed restore points, or
both depends upon your recoverability goals, and the implications in performance and
in space usage for these features, separately and when used together.

Guaranteed Restore Points and Flash Recovery Area Space Usage
When you create a guaranteed restore point, with or without enabling full flashback
database logging, you must monitor the space available in your flash recovery area.
No file in the flash recovery area is eligible for deletion if it is required to satisfy the
guarantee. Thus, retention of flashback logs and other files required to satisfy the
guarantee, as well as files required to satisfy your backup retention policy, can cause
the flash recovery area to fill completely.

Logging for Guaranteed Restore Points With Flashback Logging Disabled
If a guaranteed restore point is created when logging for Flashback Database is
disabled, then, the first time a datafile block is modified after the time of the
guaranteed restore point, an image of the block before the modification is stored in the
flashback logs. The flashback logs thus preserve the contents of every changed data
block at the time that the guaranteed restore point was created. However, subsequent
modifications to the same block do not cause the block contents to be logged again,
unless another guaranteed restore point has been created since the block was last
modified.

This method of logging has the following important consequences:

■ The available block images can be used to re-create the datafile contents at the
time of a guaranteed restore point using FLASHBACK DATABASE, but you cannot
use FLASHBACK DATABASE to reach points in time between the guaranteed restore
points and the current time, as is possible when logging for Flashback Database is
enabled. If you need to return the database to an intermediate point in time, your
only option is database point-in-time recovery.

■ Because each block that changes is only logged once, disk space usage for logging
for guaranteed restore points when flashback logging is disabled is generally
considerably less than normal flashback logging. You could maintain a guaranteed
restore point for days or even weeks without concern over the ongoing growth of

Caution: If no files are eligible for deletion from the flash recovery
area because of the requirements imposed by your retention policy
and the guaranteed restore point, then the database behaves as if it
has encountered a disk full condition. In many circumstances, this
causes your database to halt. See "When Space is Not Available in the
Flash Recovery Area" on page 3-21 for more information on the effects
of a full flash recovery area.

See also: See "Managing Space For Flashback Logs in the Flash
Recovery Area" on page 5-11 for instructions on how to monitor flash
recovery area disk space usage.

Using Normal and Guaranteed Restore Points

5-6 Product Title/BookTitle as a Variable

flashback logs that occurs if logging for Flashback Database is enabled. The
performance overhead of logging for a guaranteed restore point without flashback
database logging is generally lower as well.

 If your primary need is to be able to return your database to the specific point in time
at which the guaranteed restore point was created, then it is generally more efficient
to turn off logging for Flashback Database and use only guaranteed restore points.
For example, in a scenario in which you are performing an application upgrade on a
production database server over a weekend, you could create a guaranteed restore
point at the start of the upgrade process and, if the process failed at the end, reverse
the changes using FLASHBACK DATABASE instead of restoring the database from
backups.

Logging for Flashback Database With Guaranteed Restore Points Defined
If Flashback Database is enabled and one or more guaranteed restore points is defined,
then the database performs normal flashback logging, which causes some performance
overhead and, depending upon the pattern of activity on your database, can cause
signifcant space pressure in the flash recovery area. However, unlike normal logging
for Flashback Database, the flash recovery area always retains the flashback logs
required to allow FLASHBACK DATABASE to any time as far back as the earliest
currently defined guaranteed restore point. Flashback logs are not deleted in response
to space pressure, if they are required to satisfy the guarantee.

In this scenario you have the full flexibility of FLASHBACK DATABASE to any point in
the flashback window, and the certainty of the guaranteed restore point, but you must
monitor space used in the flash recovery area to support the guarantee, as described in
"Monitoring Space Usage For Guaranteed Restore Points" on page 5-8 and "Managing
Space For Flashback Logs in the Flash Recovery Area" on page 5-11.

Using Normal and Guaranteed Restore Points
This section describes the commands used to manage normal and guaranteed restore
points. This section contains the following topics:

■ Creating Normal and Guaranteed Restore Points

■ Listing Restore Points

■ Dropping Restore Points

Requirements for Using Guaranteed Restore Points
To support the use of guaranteed restore points, the database must satisfy the
following requirements:

■ The COMPATIBLE initialization parameter must be set to 10.2 or greater.

■ The database must be running in ARCHIVELOG mode. The FLASHBACK
DATABASE operation used to return your database to a guaranteed restore point
requires the use of archived redo logs from around the time of the restore point.

■ A flash recovery area must be configured, as described in "Setting Up a Flash
Recovery Area for RMAN" on page 3-13. Guaranteed restore points use a
mechanism similar to flashback logging, and as with flashback logging, Oracle
must store the required logs in the flash recovery area.

■ If flashback database is not enabled, then the database must be mounted, not open,
when creating the first guaranteed restore point (or if all previously created
guaranteed restore points have been dropped).

Using Normal and Guaranteed Restore Points

Data Protection with Restore Points and Flashback Database 5-7

Creating Normal and Guaranteed Restore Points
To create normal or guaranteed restore points, use the CREATE RESTORE POINT
statement in SQL*Plus, providing a name for the restore point and specifying whether
it is to be a guaranteed restore point or a normal one (the default).

The database can be open or mounted when creating restore points. If it is mounted,
then it must have been shut down cleanly (unless this is a physical standby database).

This example shows how to create a normal restore point:

SQL> CREATE RESTORE POINT before_upgrade;
Restore point created.

This example shows how to create a guaranteed restore point:

SQL> CREATE RESTORE POINT before_upgrade GUARANTEE FLASHBACK DATABASE;
Restore point created.

Listing Restore Points
To see a list of the currently defined restore points, use the V$RESTORE_POINT control
file view, by means of the following query:

SQL> SELECT NAME, SCN, TIME, DATABASE_INCARNATION#,
 GUARANTEE_FLASHBACK_DATABASE,STORAGE_SIZE
 FROM V$RESTORE_POINT;

You can view the name of each restore point, the SCN, wall-clock time and database
incarnation number at which the restore points were created, whether each restore
point is a guaranteed restore point, and how much space in the flash recovery area is
being used to support information needed for Flashback Database operations to that
restore point.

You can also use the following query to view only the guaranteed restore points:

SQL> SELECT NAME, SCN, TIME, DATABASE_INCARNATION#,
 GUARANTEE_FLASHBACK_DATABASE, STORAGE_SIZE
 FROM V$RESTORE_POINT
 WHERE GUARANTEE_FLASHBACK_DATABASE='YES';

For normal restore points, STORAGE_SIZE is zero. For guaranteed restore points,
STORAGE_SIZE indicates the amount of disk space in the flash recovery area used to
retain logs required to guarantee FLASHBACK DATABASE to that restore point.

Full information about the columns of V$RESTORE_POINT can be found in the Oracle
Database Reference.

Dropping Restore Points
When you are satisfied that you do not need an existing restore point, or when you
want to create a new restore point with the name of an existing restore point, you can

Note: There are no special requirements for using normal restore
points.

See also: Oracle Database SQL Reference for reference information
about the SQL CREATE RESTORE POINT statement

Setup and Maintenance for Oracle Flashback Database

5-8 Product Title/BookTitle as a Variable

drop the restore point, using the DROP RESTORE POINT SQL*Plus statement. For
example:

SQL> DROP RESTORE POINT before_app_upgrade;
Restore point dropped.

The same statement is used to drop both normal and guaranteed restore points.

Guaranteed restore points never age out of the control file. They remain until they are
explicitly dropped.

Monitoring Space Usage For Guaranteed Restore Points
When guaranteed restore points are defined on your database, you should monitor the
amount of space used in your flash recovery area for files required to meet the
guarantee. Use the query for viewing guaranteed restore points in "Listing Restore
Points" on page 5-7 and refer to the STORAGE_SIZE column to determine the space
required for files related to each guaranteed restore point. To see the total usage of
your flash recovery area, use the query provided in "Using V$RECOVERY_FILE_DEST
and V$FLASH_RECOVERY_AREA_USAGE" on page 3-18.

Setup and Maintenance for Oracle Flashback Database
This section describes planning for Oracle Flashback Database, configuring your
database to use it and useful maintenance, monitoring and tuning procedures.

This discussion contains the following topics:

■ Limitations of Flashback Database

■ Requirements for Enabling Flashback Database

■ Enabling Logging for Flashback Database

■ Sizing the Flash Recovery Area to Include Flashback Logs

■ Managing Space For Flashback Logs in the Flash Recovery Area

■ Determining the Current Window for Flashback Database

■ Performance Tuning for Flashback Database

■ Monitoring Flashback Database Performance Impact

Note: Normal restore points eventually age out of the control file,
even if not explicitly dropped. The rules governing retention of
restore points in the control file are:

■ The most recent 2048 restore points are always kept in the control
file, regardless of their age.

■ Any restore point more recent than the value of CONTROL_FILE_
RECORD_KEEP_TIME is retained, regardless of how many restore
points are defined.

Normal restore points that do not meet either of these conditions may
age out of the control file.

See also: Oracle Database SQL Reference for reference information
about the SQL DROP RESTORE POINT statement

Setup and Maintenance for Oracle Flashback Database

Data Protection with Restore Points and Flashback Database 5-9

Limitations of Flashback Database
Because Flashback Database works by undoing changes to the datafiles that exist at
the moment that you run the command, it has the following limitations:

■ Flashback Database can only undo changes to a datafile made by an Oracle
database. It cannot be used to repair media failures, or to recover from accidential
deletion of datafiles.

■ You cannot use Flashback Database to undo a shrink datafile operation.

■ If the database control file is restored from backup or re-created, all accumulated
flashback log information is discarded. You cannot use FLASHBACK DATABASE to
return to a point in time before the restore or re-creation of a control file.

■ When using Flashback Database with a target time at which a NOLOGGING
operation was in progress, block corruption is likely in the database objects and
datafiles affected by the NOLOGGING operation. For example, if you perform a
direct-path INSERT operation in NOLOGGING mode, and that operation runs
from 9:00 to 9:15 on April 3, 2005, and you later need to use Flashback Database to
return to the target time 09:07 on that date, the objects and datafiles updated by
the direct-path INSERT may be left with block corruption after the Flashback
Database operation completes.

If possible, avoid using Flashback Database with a target time or SCN that
coincides with a NOLOGGING operation. Also, perform a full or incremental
backup of the affected datafiles immediately after any NOLOGGING operation to
ensure recoverability to points in time after the operation. If you expect to use
Flashback Database to return to a point in time during an operation such as a
direct-path INSERT, consider performing the operation in LOGGING mode.

See the discussion of logging_clause in Oracle Database SQL Reference for more
information about operations that support NOLOGGING mode.

Requirements for Enabling Flashback Database
The requirements for enabling Flashback Database are:

■ Your database must be running in ARCHIVELOG mode, because archived logs are
used in the Flashback Database operation.

■ You must have a flash recovery area enabled, because flashback logs can only be
stored in the flash recovery area.

■ For Real Application Clusters databases, the flash recovery area must be stored in
a clustered file system or in ASM.

Enabling Logging for Flashback Database
To enable logging for Flashback Database, set the DB_FLASHBACK_RETENTION_
TARGET initialization parameter and issue the ALTER DATABASE FLASHBACK ON
statement. Follow the process outlined here:

1. Start SQL*Plus and ensure that the database is mounted, but not open. For
example:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

2. Optionally, set theDB_FLASHBACK_RETENTION_TARGET to the length of the
desired flashback window in minutes:

Setup and Maintenance for Oracle Flashback Database

5-10 Product Title/BookTitle as a Variable

SQL> ALTER SYSTEM SET DB_FLASHBACK_RETENTION_TARGET=4320; # 3 days

By default DB_FLASHBACK_RETENTION_TARGET is set to one day (1440 minutes).

3. Enable the Flashback Database feature for the whole database:

SQL> ALTER DATABASE FLASHBACK ON;

By default, flashback logs are generated for all permanent tablespaces. If you wish,
you can reduce overhead by disabling flashback logging for specific tablespaces:

SQL> ALTER TABLESPACE tbs_3 FLASHBACK OFF;

You can re-enable flashback logging for a tablespace later with this command:

SQL> ALTER TABLESPACE tbs_3 FLASHBACK ON;

Note that if you disable Flashback Database for a tablespace, then you must take its
datafiles offline before running FLASHBACK DATABASE.

You can disable flashback logging for the entire database with this command:

SQL> ALTER DATABASE FLASHBACK OFF;

You can also enable flashback logging on a standby database. Enabling Flashback
Database on a standby database enables you to perform Flashback Database on the
standby database. Flashback Database of standby databases has a number of
applications in the Data Guard environment. See Oracle Data Guard Concepts and
Administration for details.

Sizing the Flash Recovery Area to Include Flashback Logs
When using Flashback Database, you must add extra space to the flash recovery area
to hold the flashback logs, along with the other files stored in the flash recovery area.

The setting of the DB_FLASHBACK_RETENTION_TARGET initialization parameter
determines, indirectly, how much flashback log data the database retains. The size of
flashback logs generated by the database for a given time period can vary
considerably, however, depending on the specific database workload. If more blocks
are affected by database updates during a given interval, then more disk space is used
by the flashback log data generated for that interval.

Estimating Disk Space Requirements for Flashback Database Logs
The V$FLASHBACK_DATABASE_LOG view can help you estimate how much space to
add to your flash recovery area for flashback logs. After you have enabled logging for
Flashback Database and set a flashback retention target, allow the database to run
under a normal workload for a while, to generate a representative sample of flashback
logs. Then run the following query:

SQL>
SELECT ESTIMATED_FLASHBACK_SIZE FROM V$FLASHBACK_DATABASE_LOG;

The result is an estimate of the disk space needed to meet the current flashback
retention target, based on the database workload since Flashback Database was
enabled. Add the amount of disk space specified in $FLASHBACK_DATABASE_
LOG.ESTIMATED_FLASHBACK_SIZE to your flash recovery area size, to hold the
expected database flashback logs.

Space usage in the flash recovery area is always balanced among backups and
archived logs which must be kept according to the retention policy, and other files

Setup and Maintenance for Oracle Flashback Database

Data Protection with Restore Points and Flashback Database 5-11

which may be subject to deletion, such as flashback logs and backups already backed
up to tape but still cached on disk. If you have not allocated enough space in your
flash recovery area to store your flashback logs and still meet your other backup
retention requirements, flashback logs may be deleted from the recovery area to make
room.

Managing Space For Flashback Logs in the Flash Recovery Area
You cannot manage the flashback logs in the flash recovery area directly, other than by
setting the flashback retention target or using guaranteed restore points. You can,
however, manage flash recovery area space as a whole, in order to maximize space
available for retention of flashback database logs. In this way you increase the
likelihood of achieving the flashback retention target.

To make space for flashback logs, back up the other contents of your flash recovery
area to tape, using commands such as BACKUP RECOVERY AREA, BACKUP BACKUPSET
and so on. Then use the DELETE command to explicitly remove files from the flash
recovery area once they have been backed up on tape. If this still does not create
enough space to satisfy your backup retention policy and flashback retention target,
allocate more space for your flash recovery area.

Rules for Retention and Deletion of Flashback Logs
The following rules govern the flash recovery area's creation, retention, overwriting
and deletion of flashback logs:

■ A flashback log is created whenever necessary to satisfy the flashback retention
target, as long as there is enough space in the flash recovery area.

■ A flashback log can be reused, once it is old enough that it is no longer needed to
satisfy the flashback retention target.

■ If the database needs to create a new flashback log and the flash recovery area is
full or there is no disk space, then the oldest flashback log is reused instead.

■ If the flash recovery area is full, then an archived redo log may be automatically
deleted by the flash recovery area to make space for other files. In such a case, any
flashback logs that would require the use of that redo log file for the use of
FLASHBACK DATABASE are also deleted.

Determining the Current Window for Flashback Database
When flashback logging is enabled, the earliest SCN in the flashback database window
can be determined by querying V$FLASHBACK_DATABASE_LOG.OLDEST_
FLASHBACK_SCN and V$FLASHBACK_DATABASE_LOG.OLDEST_FLASHBACK_TIME
as shown in this example:

SELECT OLDEST_FLASHBACK_SCN, OLDEST_FLASHBACK_TIME
 FROM V$FLASHBACK_DATABASE_LOG;

Note: BACKUP RECOVERY AREA does not include the flashback logs
when backing up flash recovery area contents to tape.

Note: Re-using the oldest flashback log shortens the flashback
database window. If enough flashback logs are reused due to a lack of
disk space, the flashback retention target may not be satisfied.

Setup and Maintenance for Oracle Flashback Database

5-12 Product Title/BookTitle as a Variable

If the results of this query regularly indicate that the flashback database window does
not satisfy the flashback retention target, you may need to increase your flash recovery
area to accomodate more flashback logs.

The most recent SCN that can be reached with Flashback Database is the current SCN
of the database. This query returns the current SCN:

SQL> SELECT CURRENT_SCN FROM V$DATABASE;

Performance Tuning for Flashback Database
Maintaining flashback logs imposes comparatively limited overhead on an Oracle
database instance. Changed blocks are written from memory to the flashback logs at
relatively infrequent, regular intervals, to limit processing and I/O overhead.

To achieve good performance for large production databases with Flashback Database
enabled, Oracle recommends the following:

■ Use a fast file system for your flash recovery area, preferably without operating
system file caching. Files the database creates in the flash recovery area, including
flashback logs, are typically large. Operating system file caching is typically not
effective for these files, and may actually add CPU overhead for reading from and
writing to these files. Thus, it is recommended to use a file system that avoids
operating system file caching, such as ASM.

■ Configure enough disk spindles for the file system that will hold the flash
recovery area. For large production databases, multiple disk spindles may be
needed to support the required disk throughput for the database to write the
flashback logs effectively.

■ If the storage system used to hold the flash recovery area does not have
non-volatile RAM, try to configure the file system on top of striped storage
volumes, with a relatively small stripe size such as 128K. This will allow each
write to the flashback logs to be spread across multiple spindles, improving
performance

■ For large, production databases, set the init.ora parameter LOG_BUFFER to be at
least 8MB. This makes sure the database allocates maximum memory (typically
16MB) for writing flashback database logs.

The overhead of turning on logging for Flashback Database depends on the mixture of
reads and writes in the database workload. The more write-intensive the workload,
the higher the overhead caused by turning on logging for Flashback Database.
(Queries do not change data and thus do not contribute to logging activity for
Flashback Database.)

Caution: This view indicates how much flashback log data is
available for your database. However, there are operations, such as
shrinking or dropping a datafile, which can prevent Flashback
Database from succeeding against your entire database, even if
flashback log data is available. The results of this query do not reflect
such limitations.

Setup and Maintenance for Oracle Flashback Database

Data Protection with Restore Points and Flashback Database 5-13

Monitoring Flashback Database Performance Impact
The best way to monitor system usage due to flashback logging is to take performance
statistics using the Oracle Statspack. For example, if you see "flashback buf free
by RVWR" as the top wait event, it indicates that Oracle cannot write flashback logs
very quickly. In such a case, you may want to tune the file system and storage used by
the flash recovery area, possibly using one of the methods described in "Performance
Tuning for Flashback Database" on page 5-12.

The V$FLASHBACK_DATABASE_STAT view (described in Oracle Database Reference)
shows the bytes of flashback data logged by the database. Each row in the view shows
the statistics accumulated (typically over the course of an hour). The FLASHBACK_
DATA and REDO_DATA columns describe bytes of flashback data and redo data written
respectively during the time interval, while the DB_DATA column describe bytes of
data blocks read and written. Note that FLASHBACK_DATA and REDO_DATA
correspond to sequential writes, while DB_DATA corresponds to random reads and
writes.

Because of the difference between sequential I/O and random I/O, a better indication
of I/O overhead is the number of I/O operations issued for flashback logs. The
following statistics in V$SYSSTAT can tell you the number of I/O operations your
instance has issued for various purposes:

See Oracle Database Reference for more details on columns in the V$SYSSTAT view.

Flashback Writer (RVWR) Behavior With I/O Errors
When flashback is enabled or when there are guaranteed restore points, the
background process RVWR writes flashback data to flashback database logs in the
flash recovery area. If RVWR encounters an I/O error, the following behavior is
expected:

■ If there are any guaranteed restore points defined, the instance will crash when
RVWR encounters I/O errors.

■ If no guaranteed restore points are defined, the instance will not crash when
RVWR encounters I/O errors. There are 2 cases:

– On a primary database, Oracle automatically disables flashback database
while the database is open. All existing transactions and queries will proceed
unaffected. This behavior is expected for both single instance and RAC.

– On a physical or logical standby, RVWR will appear to be hung, retrying the
I/O periodically. This may eventually hang the logical standby or the
managed recovery of physical standby. (Oracle does not crash the standby
instance because it does not want to crash the primary database in turn in max

Column Name Column Meaning

Physical write I/O
request

The number of write operations issued for writing data blocks

physical read I/O
request

The number of read operations issued for reading data blocks

redo writes The number of write operations issued for writing to the redo
log.

flashback log writes The number of write operations issued for writing to flashback
logs.

Setup and Maintenance for Oracle Flashback Database

5-14 Product Title/BookTitle as a Variable

protection mode.) To resolve the hang, a DBA can either perform a SHUTDOWN
ABORT or issue ALTER DATABASE FLASHBACK OFF.

Performing Complete Restore and Recovery of Databases 6-1

6
Performing Complete Restore and Recovery

of Databases

This chapter introduces the tools that RMAN makes available for recovering your
database from backup. It includes the following topics:

■ Database Restore and Recovery with RMAN: Overview

■ Basic Database Restore and Recovery Scenarios

■ Preparing and Planning Database Restore and Recovery

■ RMAN RESTORE: Restoring Lost Database Files from Backup

Database Restore and Recovery with RMAN: Overview
The focus of this chapter is on how you use RMAN and backups created with RMAN
to return your database to normal operation after the loss of one or more database files
needed for its normal operation. The database files that RMAN backs up and can
recover are the control file, server parameter file, datafiles and archived redo log files.

The chapter is organized as follows:

■ "Basic Database Restore and Recovery Scenarios" on page 6-3 presents some
common database restore and recovery scenarios in their entirety. If one of these
scenarios matches your situation, then you can follow the procedure outlined here.
Even if your situation is not an exact match for any of these, a review of the
scenarios can help you create a plan for your own recovery process.

■ "Preparing and Planning Database Restore and Recovery" on page 6-5 provides a
general outlinie you can use to plan a restore-and-recovery operation, including
how to determine which files need restore and recovery and what steps need to be
taken during the recovery. It also describes how to preview the backups that
RMAN will use during the restore operation, and how to verify that the backups
to be used in the restore operation are valid.

■ "RMAN RESTORE: Restoring Lost Database Files from Backup" on page 6-13
presents a number of recovery procedures in isolation, such as how to restore a
control file, an SPFILE, individual datafiles and redo logs, along with requirements
in the event that you restore a particular type of file, such as steps you must take if
you are restoring from a backup control file. If your exact restore and recovery
scenario is not one of the basic scenarios outlined in the chapter, you can follow
the processes outlined here to perform the individual tasks in your recovery plan.

The two most important RMAN commands used in database recovery are:

Database Restore and Recovery with RMAN: Overview

6-2 Backup and Recovery Basics

■ RESTORE, which retrieves files from RMAN backups based on the contents of the
RMAN repository

■ RECOVER, which performs complete or point-in-time media recovery using
available datafiles and redo logs.

Typically, you will set the state of the database appropriately for the data recovery
operation to be performed, allocate or configure channels required to communicate
with the disk and media manager, and then run a series of RESTORE and RECOVER
commands. RMAN retrieves all needed files from backup and performs media
recovery on all restored datafiles, to return your database to the desired state.

Scope and Limitations of this Chapter
This chapter introduces the techniques which will cover the most common restore and
recovery scenarios. Anyone performing restore and recovery, even in complex
scenarios not covered here, should be familiar with the techniques outlined in this
chapter. Note, however, the following limitations on the scope of this discussion:

■ Most of this chapter will focus on restore-and-recovery scenarios in which a
media failure has damaged some or all of your database files, and your goal is to
return your whole database to normal operation by restoring the damaged files
from backup and recover all database changes in the redo log. While some more
advanced types of recovery, such as point-in-time recovery of the whole database
or individual tablespaces to recover from user errors, are mentioned in passing,
Chapter 7, "Performing Flashback and Database Point-in-Time Recovery"
discusses these techniques in detail.

■ While there may be passing references to using RMAN with a recovery catalog,
details on how use of RMAN changes with a recovery catalog are covered in
Oracle Database Backup and Recovery Advanced User's Guide.

■ The discussion in this chapter will be limited to Oracle databases running in a
single-instance configuration. While RMAN can perform restore and recovery of
databases in Real Application Clusters and Data Guard configurations, such
scenarios are beyond the scope of this manual. After reviewing this chapter for the
basics of backup and recovery, refer to Oracle Database Oracle Clusterware and Oracle
Real Application Clusters Administration and Deployment Guide and Oracle Data Guard
Concepts and Administration for more information about using RMAN in those
contexts.

Restore and Recovery with Enterprise Manager
Enterprise Manager provides access to much of the database restore and recovery
functionality provided by RMAN through a set of recovery wizards, that lead the DBA
through a variety of recovery procedures based on an analysis of your database, your
available backups and your data recovery objectives.

Using RMAN through Enterprise Manager, you can perform the simpler restore and
recovery scenarios outlined in this chapter, as well as much more sophisticated restore

See Also:

■ Chapter 7, "Performing Flashback and Database Point-in-Time
Recovery" for details on database point-in-time recovery
(DBPITR) and Flashback Database

■ Oracle Database Backup and Recovery Advanced User's Guide for
details on tablespace point-in-time recovery (TSPITR)

Basic Database Restore and Recovery Scenarios

Performing Complete Restore and Recovery of Databases 6-3

and recovery techniques such as point-in-time recovery and even use of the flashback
features of the Oracle database, which allow for efficent repair of both media failure
and user errors.

While the underlying functionality is the same, and the command-line client provides
more flexibility, in many common situations, use of the Enterprise Manager interface
to RMAN's restore and recovery features will be simpler than using the RMAN
command line client directly.

See Oracle Database 2 Day DBA for more details on the restore and recovery features of
Enterprise Manager.

Basic Database Restore and Recovery Scenarios
You can plan a strategy for recovering from most data losses using the process
outlined in "Preparing and Planning Database Restore and Recovery" on page 6-5 and
the task-specific procedures in "RMAN RESTORE: Restoring Lost Database Files from
Backup" on page 6-13. However, some of the most common scenarios for database
restore and recovery are presented in full here:

■ Restore and Recovery of a Whole Database: Scenario

■ Restore and Complete Recovery of Individual Tablespaces or Datafiles: Scenario

The procedures outlined here will restore the whole database or individual tablespaces
to their original locations.

To use the procedures in this section, the following requirements must be met:

■ The current control file must be intact.

■ You must have the complete set of archived logs and incremental backups needed
for media recovery of your available datafile backups.

■ For any datafiles for which you have no backup, you must have a complete set of
online and archived redo logs going back to the creation of that datafile. (With a
complete set of redo logs, RMAN can re-create a datafile for which there is no
backup, by creating an empty datafile and then re-applying all changes since the
file was created as part of the recovery process.)

If automatic channels are configured, then RMAN allocates all channels configured for
the available device types according to their parallelism settings. Otherwise, you must
enclose your RESTORE and RECOVER commands in a RUN block, and begin by
manually allocating the appropriate DISK or sbt channels. Otherwise, your RESTORE
command will fail on attempting to retrieve backups from that device.

Restore and Recovery of a Whole Database: Scenario
In this scenario, you have a current control file and SPFILE but all datafiles are
damaged or lost. You must restore and recover the whole database.

The database in this example has one read-only tablespace, history, which must be
restored from backup but which does not need media recovery.

To restore and recover the database when the current control file is available:

1. After connecting to the target database, make sure the database is mounted.

RMAN> STARTUP MOUNT

Basic Database Restore and Recovery Scenarios

6-4 Backup and Recovery Basics

2. Use the SHOW ALL command to see what channels are configured for access to
backup devices. If automatic channels are not configured, then manually allocate
one or more channels.

3. Restore the database using the RESTORE DATABASE command, and recover it
using the RECOVER DATABASE command.

4. Examine the output to see if recovery was successful. If so, open the database.

This example performs restore and recovery of the database, using automatic
channels.

RMAN> RESTORE DATABASE;
RMAN> RECOVER DATABASE DELETE ARCHIVELOG MAXSIZE 25M;

The RECOVER DATABASE command as used here illustrates two useful options:

■ DELETE ARCHIVELOG causes RMAN to delete restored log files after they have
been applied to the datafiles, to save disk space.

■ MAXSIZE 25M limits space occupied by restored logs at any given moment to
25MB. This gives you more control over disk space usage by the restored logs.
Note that if a single achived redo log file is larger than the specified MAXSIZE
value, you will get an error. You will have to try your command again with a
larger MAXSIZE value.

Recovery of Databases with Read-Only Tablespaces
Read-only tablespaces may require special handling in a restore and recover operation.
By default, the restore operation will skip read-only tablespaces. If a read-only
tablespace is at the SCN where it became read-only after it is restored from backup, no
redo will be applied to it when the rest of the database is recovered. You can force
RMAN to restore any missing datafiles belonging to read-only tablespaces by using
the CHECK READONLY option to the RESTORE command:

RMAN> RESTORE DATABASE CHECK READONLY;
RMAN> RECOVER DATABASE DELETE ARCHIVELOG;

If RMAN completes the recovery without error, you can open the database:

RMAN> ALTER DATABASE OPEN;

Re-Creation of Temporary Tablespaces in Whole Database Restore and Recovery
After restore and recovery of a whole database, when the database is opened, any
missing temporary tablespaces recorded in the control file version of the RMAN
repository are re-created with their previous creation size, AUTOEXTEND and MAXSIZE
attributes.

If the tempfiles were originally created as Oracle-managed files, then they are
re-created in the current DB_CREATE_FILE_DEST. Otherwise they are re-created at
their previous locations.

If RMAN is unable to re-create the file due to an I/O error or some other cause, then
the error is reported in the alert log and the database open operation continues.

Note: Only temporary tablespaces that are missing are re-created. If
a tempfile is still present at the location recorded in the RMAN
repository but has an invalid header, then RMAN does not re-create
the file.

Preparing and Planning Database Restore and Recovery

Performing Complete Restore and Recovery of Databases 6-5

Restore and Complete Recovery of Individual Tablespaces or Datafiles: Scenario
In this scenario, the database is open, and some but not all of the datafiles are
damaged. You want to restore and recover the damaged tablespace, while leaving the
database open so that the rest of the database remains available.

Assume that, using the procedure described in "Determining Which Database Files to
Restore or Recover" on page 6-6 to identify datafiles needing recovery, you discover
that the damaged datafiles are from the tablespaces users.

This example restores and recovers the tablespace, using configured channels and
letting RMAN choose the backups to use in restoring the tablespace and any needed
incremental backups and logs from disk or tape.

1. Connect to the target database and the recovery catalog database (if applicable),
and make sure the database is mounted or open. For example:

2. Take the tablespaces affected offline using ALTER TABLESPACE ... OFFLINE
IMMEDIATE if they are not already offline.

RMAN> SQL 'ALTER TABLESPACE users OFFLINE IMMEDIATE';

3. Restore the tablespace or datafile with the RESTORE command, and recover it with
the RECOVER command. (Use configured channels, or if desired, use a RUN block
and allocate channels to improve performance of the RESTORE and RECOVER
commands.)

RMAN> RESTORE TABLESPACE users;

RMAN> RECOVER TABLESPACE users;

4. If RMAN reported no errors during the recovery, then bring the tablespace back
online:

RMAN> SQL 'ALTER TABLESPACE users ONLINE';
At this point the process is complete.

Preparing and Planning Database Restore and Recovery
While RMAN makes carrying out most database restore and recovery tasks much
simpler, you still have to plan your database restore and recovery actions based on
which database files have been lost and your recovery goal.

RMAN can make most of the important decisions about the restore process for you,
but you may want to preview and even override its decisions in some circumstances.
For example, if you know a given backup is unavailable, due to a tape being stored
offsite or a device being inaccessible, you can direct RMAN to not use that backup
during the restore process.

RMAN provides tools to let you preview which backups will be used in a restore, and
to validate the contents of the backups to ensure that they can be used in future restore
operations.

Note: When using a recovery catalog, if the control file has been
restored from backup, the RMAN repository stored in the restored
control file is updated with information about the temporary
tablespaces recorded in the recovery catalog version of the RMAN
repository. This ensures that the most recent configuration of
temporary tablespaces is re-created.

Preparing and Planning Database Restore and Recovery

6-6 Backup and Recovery Basics

Database Restore and Recovery Procedure: Outline
The basic procedure for performing restore and recovery with RMAN is as follows:

1. Determine which database files must be restored from backup, and which backups
(which specific tapes, or specific backup sets or image copies on disk) to use for
the restore operation. The files to be restored may include the control file, SPFILE,
archived redo log files, and datafiles.

2. Place the database in the state appropriate for the type of recovery that you are
performing. For example, if you are recovering a single tablespace or datafile, then
you can keep the database open and take the tablespace or datafile offline. If you
are restoring all datafiles, then you must shut down the database and then mount
it before you can perform the restore.

3. Restore lost database files from backup with the RESTORE command. You may
restore files to their original locations, or you may have to restore them to other
locations if, for instace, a disk has failed. You may also have to update the SPFILE
if you have changed the control file locations, or the control file if you have
changed the locations of datafiles or redo logs.

4. Perform media recovery on restored datafiles, if any, with the RECOVER command.

5. Perform any final steps required to make the database available for users again.
For example, re-open the database if necessary, as happens when restoring lost
control files, or bring offline tablespaces online if restoring and recovering
individual tablespaces.

This outline is intended to encompass a wide range of different scenarios. Depending
upon your situation, some of the steps described may not apply. (For example, you do
not need to perform media recovery if the only file restored from backup is the
SPFILE.) You will have to devise your final recovery plan based on your situation.

Determining Which Database Files to Restore or Recover
The methods of determining which files require restore or recovery depend upon the
type of file that is lost. This section contains the following topics:

Recognizing a Lost Control File
It is generally obvious when the control file of your database must be restored. The
database shuts down immediately if any of the control file copies becomes inaccessible
and reports an error if you try to start it without a valid control file at each location
specified in the CONTROL_FILES initialization parameter.

Loss of some but not all copies of your control file does not require recovery of the
control file from backup. When one copy of the control file is lost, the database will
automatically shut down. You can either copy an intact copy of the control file over the
damaged or missing control file, or update the parameter file so that does not refer to
the damaged or missing control file. Once the CONTROL_FILES parameter references
only present, intact copies of the control file, you can restart your database.

Note that if you restore the control file from backup, you must perform media
recovery of the whole database and then perform an OPEN RESETLOGS, even if no
datafiles have to be restored.

Identifying Datafiles Requiring Media Recovery
When and how to recover depends on the state of the database and the location of its
datafiles. To determine which if any files require media recovery, use the following
procedure:

Preparing and Planning Database Restore and Recovery

Performing Complete Restore and Recovery of Databases 6-7

1. Start SQL*Plus and connect to the target database. For example, issue the
following to connect to trgt:

% sqlplus 'SYS/oracle@trgt AS SYSDBA'

2. Determine the status of the database by executing the following SQL query:

SELECT STATUS FROM V$INSTANCE;

If the status is OPEN, then the database is open. However, some datafiles may
require media recovery.

3. Query the V$DATAFILE_HEADER view to determine the status of your datafiles.
Run the following SQL statements to check the datafile headers:

COL FILE# FORMAT 999
COL STATUS FORMAT A7
COL ERROR FORMAT A10
COL TABLESPACE_NAME FORMAT A10
COL NAME FORMAT A30

SELECT FILE#, STATUS, ERROR, RECOVER, TABLESPACE_NAME, NAME
FROM V$DATAFILE_HEADER
WHERE RECOVER = 'YES' OR (RECOVER IS NULL AND ERROR IS NOT NULL);

Each row returned represents a datafile that either requires media recovery or has
an error requiring a restore. Check the RECOVER and ERROR columns. RECOVER
indicates whether a file needs media recovery, and ERROR indicates whether there
was an error reading and validating the datafile header.

If ERROR is not NULL, then the datafile header cannot be read and validated. Check
for a temporary hardware or operating system problem causing the error. If there
is no such problem, you must restore the file or switch to a copy.

If the ERROR column is NULL and the RECOVER column is YES, then the file
requires media recovery (and may also require a restore from backup).

You can also queryV$RECOVER_FILE to list datafiles requiring recovery by
datafile number with their status and error information.

SELECT FILE#, ERROR, ONLINE_STATUS, CHANGE#, TIME
 FROM V$RECOVER_FILE;

To find datafile and tablespace names, you can also perform useful joins using the
datafile number and the V$DATAFILE and V$TABLESPACE views. For example:

Note: Because V$DATAFILE_HEADER only reads the header block
of each datafile, it does not detect all problems that require the
datafile to be restored. For example, you cannot tell whether a
datafile contains corrupt data blocks using V$DATAFILE_HEADER.

Note: You cannot use V$RECOVER_FILE with a control file
restored from backup or a control file that was re-created after the
time of the media failure affecting the datafiles. A restored or
re-created control file does not contain the information needed to
update V$RECOVER_FILE accurately.

Preparing and Planning Database Restore and Recovery

6-8 Backup and Recovery Basics

COL DF# FORMAT 999
COL DF_NAME FORMAT A35
COL TBSP_NAME FORMAT A7
COL STATUS FORMAT A7
COL ERROR FORMAT A10
COL CHANGE# FORMAT 99999999
SELECT r.FILE# AS df#, d.NAME AS df_name, t.NAME AS tbsp_name,
 d.STATUS, r.ERROR, r.CHANGE#, r.TIME
FROM V$RECOVER_FILE r, V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND d.FILE# = r.FILE#
;

The ERROR column identifies the problem for each file requiring recovery.

Recovery of Read-Only Tablespaces
Recovery is not needed on any read-only tablespace during crash or instance recovery.
During startup, recovery verifies that each online read-only datafile does not need
media recovery, by checking whether the file was not restored from a backup taken
before it was made read-only.

Determining your DBID
In situations requiring the recovery of your SPFILE or control file from autobackup,
such as disaster recovery when you have lost all database files, you will need to use
your DBID. Your DBID should be recorded along with other basic information about
your database, as recommended in "Deciding Between ARCHIVELOG and
NOARCHIVELOG Mode" on page 2-7.

If you do not have a record of the DBID of your database, there are two places you can
find it without opening your database.

■ The DBID is used in forming the filename for the control file autobackup. Locate
that file, and then refer to "Configuring the Control File Autobackup Format" on
page 3-12 to see where the DBID appears in the filename.

■ If you have any text files that preserve the output from an RMAN session, the
DBID is displayed by the RMAN client when it starts up and connects to your
database. Typical output follows:

% rman TARGET /
Recovery Manager: Release 10.2.0.1.0 - Production on Sun Jun 12 02:41:03 2005

Copyright (c) 1982, 2005, Oracle. All rights reserved.

connected to target database: RDBMS (DBID=774627068)

RMAN>

See Also: Oracle Database Reference for information about the V$
views

Note: If you restore a read-only tablespace from a backup taken
before the tablespace was made read-only, then you cannot access the
tablespace until you perform media recovery on it.

Preparing and Planning Database Restore and Recovery

Performing Complete Restore and Recovery of Databases 6-9

Previewing Backups Used in Restore Operations: RESTORE PREVIEW
The RESTORE command supports a PREVIEW option, which identifies the backups
(backup sets or image copies, on disk or sequential media like tapes) required to carry
out a given restore operation, based on the information in the RMAN repository. Use
RESTORE... PREVIEW when planning your restore and recovery operation, to ensure
that all required backups are available or to identify situations in which you may want
to direct RMAN to use or avoid specific backups.

For example, RESTORE... PREVIEW output may indicate that, during a RESTORE
operation, RMAN will request a backup from a tape during the restore process which
you know is temporarily unavailable. You can then use the CHANGE... UNAVAILABLE
command (described in "Marking a Backup AVAILABLE or UNAVAILABLE" on
page 8-13) to set the backup status to UNAVAILABLE. If you then run RESTORE...
PREVIEW again, RMAN will show you the backups it would use to perform a restore
operation without using the unavailable backup.

In some cases, a backup may be listed as AVAILABLE but it is in fact vaulted, that is,
stored remotely and requires retrieval before it can be used in a restore. If RMAN
selects such a backup for use in a restore operation, the operation fails with an error.
RESTORE... PREVIEW lets you identify any backups that are stored remotely, and
RESTORE...PREVIEW RECALL is used to request that backups needed for a RESTORE
operation but that are stored remotely be recalled from remote storage.

Using RESTORE... PREVIEW
RESTORE ... PREVIEW can be applied to any RESTORE operation to create a detailed
report of every backup to be used in the requested RESTORE operation, as well as the
necessary target SCN for recovery after the RESTORE operation is complete. Here are a
few examples of RESTORE commands using the PREVIEW option:

RESTORE DATABASE PREVIEW;
RESTORE TABLESPACE users PREVIEW;
RESTORE DATAFILE 3 PREVIEW;
RESTORE ARCHIVELOG FROM LOGSEQ 200 PREVIEW;
RESTORE ARCHIVELOG FROM TIME 'SYSDATE-7' PREVIEW;
RESTORE ARCHIVELOG FROM SCN 234546 PREVIEW;

RESTORE... PREVIEW output is in the same format as the output of the LIST
command. See Oracle Database Backup and Recovery Reference for details on interpreting
the output of RESTORE... PREVIEW.

Using RESTORE... PREVIEW SUMMARY
If the detailed report produced by RESTORE... PREVIEW provides more information
than is needed, use the RESTORE... PREVIEW SUMMARY option to suppress much of the
detail about specific files used and affected by the restore process. Here are some
examples of RESTORE used with the PREVIEW SUMMARY option:

RESTORE DATABASE PREVIEW SUMMARY;
RESTORE TABLESPACE users PREVIEW SUMMARY;
RESTORE DATAFILE 3 PREVIEW SUMMARY;
RESTORE ARCHIVELOG FROM SCN 234546 PREVIEW SUMMARY;

RESTORE... PREVIEW SUMMARY reports are in the same format as the output from the
LIST SUMMARY command. See Oracle Database Backup and Recovery Reference for
details on interpreting the output of RESTORE... PREVIEW SUMMARY.

Preparing and Planning Database Restore and Recovery

6-10 Backup and Recovery Basics

Using RESTORE... PREVIEW RECALL
RESTORE... PREVIEW RECALL can be used with any RESTORE operation, in cases a
restore fails due to a needed backup being stored remotely.

The following command shows the output in a case where RESTORE ... PREVIEW
indicates that a needed backup is stored remotely:

RMAN> restore archivelog all preview;

Starting restore at 10-JUN-05
using channel ORA_DISK_1
using channel ORA_SBT_TAPE_1

List of Backup Sets
===================

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
31 12.75M SBT_TAPE 00:00:02 10-JUN-05
 BP Key: 33 Status: AVAILABLE Compressed: NO Tag: TAG20050610T152755
 Handle: 15gmknbs Media: /v1,15gmknbs

 List of Archived Logs in backup set 31
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 1 221154 06-JUN-05 222548 06-JUN-05
 1 2 222548 06-JUN-05 222554 06-JUN-05
 1 3 222554 06-JUN-05 222591 06-JUN-05
 1 4 222591 06-JUN-05 246629 07-JUN-05
 1 5 246629 07-JUN-05 262451 10-JUN-05

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
32 256.00K SBT_TAPE 00:00:01 10-JUN-05
 BP Key: 34 Status: AVAILABLE Compressed: NO Tag: TAG20050610T153105
 Handle: 17gmknhp_1_1 Media: /v1,17gmknhp_1_1

 List of Archived Logs in backup set 32
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 6 262451 10-JUN-05 262547 10-JUN-05
 1 7 262547 10-JUN-05 262565 10-JUN-05

List of remote backup files
============================
 Handle: 15gmknbs Media: /v1,15gmknbs
 The "List of remote backup files" at the end of the output identifies the backups that
are stored remotely. In such a case, using RESTOREARCHIVELOG ALL PREVIEW
RECALL initiates recall for the remote backups and produces the following output:

RMAN> restore archivelog all preview recall;

Starting restore at 10-JUN-05
using channel ORA_DISK_1
using channel ORA_SBT_TAPE_1

List of Backup Sets
===================

Preparing and Planning Database Restore and Recovery

Performing Complete Restore and Recovery of Databases 6-11

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
31 12.75M SBT_TAPE 00:00:02 10-JUN-05
 BP Key: 33 Status: AVAILABLE Compressed: NO Tag: TAG20050610T152755
 Handle: 15gmknbs Media: /v1,15gmknbs

 List of Archived Logs in backup set 31
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 1 221154 06-JUN-05 222548 06-JUN-05
 1 2 222548 06-JUN-05 222554 06-JUN-05
 1 3 222554 06-JUN-05 222591 06-JUN-05
 1 4 222591 06-JUN-05 246629 07-JUN-05
 1 5 246629 07-JUN-05 262451 10-JUN-05

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
32 256.00K SBT_TAPE 00:00:01 10-JUN-05
 BP Key: 34 Status: AVAILABLE Compressed: NO Tag: TAG20050610T153105
 Handle: 17gmknhp_1_1 Media: /v1,17gmknhp_1_1

 List of Archived Logs in backup set 32
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 6 262451 10-JUN-05 262547 10-JUN-05
 1 7 262547 10-JUN-05 262565 10-JUN-05

Initiated recall for the following list of remote backup files
==
 Handle: 15gmknbs Media: /v1,15gmknbs
Finished restore at 10-JUN-05

You can repeat the RESTORE... PREVIEW command until no backups needed for the
restore are reported as remote.

You can append RECALL to any RESTORE... PREVIEW command, as in these
examples:

RESTORE TABLESPACE users PREVIEW RECALL;
RESTORE DATAFILE 3 PREVIEW RECALL;

Validating the Restore of Backups: RESTORE VALIDATE and VALIDATE BACKUPSET
The RESTORE ... VALIDATE and VALIDATE BACKUPSET commands test whether you
can restore from your backups. You can test the availability of usable backups for any
desired RESTORE operation, or test the contents of a specific backup for use in
RESTORE operations. The contents of the backups are actually read and validated for
corruption to ensure that the objects to be restored can be restored from them. You
have these options:

■ RESTORE ... VALIDATE tests whether RMAN can restore a specific object from a
backup. RMAN chooses which backups to use.

■ VALIDATE BACKUPSET tests the validity of a backup set that you specify.

Preparing and Planning Database Restore and Recovery

6-12 Backup and Recovery Basics

Validating Restore from Backup with RESTORE ... VALIDATE
You can enter any valid RESTORE command specifying the VALIDATE clause to test
whether usable backups for that RESTORE operation are available. When validating
backups with RESTORE... VALIDATE, the database can be mounted or open.

This example illustrates validating the restore of the backup control file, SYSTEM
tablespace, and all archived logs:

RESTORE CONTROLFILE VALIDATE;
RESTORE TABLESPACE SYSTEM VALIDATE;
RESTORE ARCHIVELOG ALL VALIDATE;
RESTORE DATAFILE 4,5,6 VALIDATE;

If you see error messages in the output and the following message, then RMAN cannot
restore one or more of the specified files from your available backups:

RMAN-06026: some targets not found - aborting restore

If you see an error message stack and output similar to the following, for example,
then RMAN encountered a problem reading the specified backup:

RMAN-03009: failure of restore command on c1 channel at 12-DEC-01 23:22:30
ORA-19505: failed to identify file "oracle/dbs/1fafv9gl_1_1"
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3

If you do not see an error stack, then RMAN successfully tested restore of the specified
objects from the available backups and should be able to restore these objects
successfully during a real restore and recovery operation.

Validating Backup Sets with VALIDATE BACKUPSET
The BACKUP VALIDATE command requires that you know the primary keys of the
backup sets that you want to validate.

To specify which backup sets to validate:

Find the backup sets that you want to validate by running LIST commands, noting
primary keys. For example:

LIST BACKUP;

Validate the restore of the backup sets, referencing them by the primary keys. This
example validates the restore of backup sets 56 and 57:

VALIDATE BACKUPSET 56,57;

See Also:

■ Oracle Database Backup and Recovery Reference for RESTORE
syntax

■ Oracle Database Backup and Recovery Reference for VALIDATE
syntax

Note: You do not have to take datafiles offline when validating the
restore of datafiles, because validation of backups of the datafiles only
reads the backups and does not affect the production datafiles.

RMAN RESTORE: Restoring Lost Database Files from Backup

Performing Complete Restore and Recovery of Databases 6-13

If the output contains the message " validation complete", then RMAN
successfully validated the restore of the specified backup set. For example:

using channel ORA_DISK_1
channel ORA_DISK_1: starting validation of archive log backupset
channel ORA_DISK_1: restored backup piece 1
piece handle=/oracle/dbs/0mdg9v8l_1_1 tag=TAG20020208T155604 params=NULL
channel ORA_DISK_1: validation complete

RMAN RESTORE: Restoring Lost Database Files from Backup
This section discusses how to restore the different types of database file backed up by
RMAN. Once you have an overall plan for restoring the lost parts of your database,
look here for details on how to execute the individual tasks in your plan.

This section contains the following topics:

■ Restoring the Control File from Backup

■ Restoring the Server Parameter File (SPFILE) from Backup

■ Restoring and Recovering Datafiles and Tablespaces

■ Restoring Archived Redo Logs from Backup

Restoring the Control File from Backup
Loss or corruption of all copies of your control file requires restore of the control file
from backup. The RESTORE CONTROLFILE command is used to restore the control
file.

RMAN can restore the control file to its default location (determined by rules
described in the following section) or to one or more different locations of your choice,
using the RESTORE CONTROLFILE... TO destination option.

Default Destination for Restore of the Control File
When restoring the control file, the default destination is all of the locations defined in
the CONTROL_FILES initialization parameter. If you do not set the CONTROL_FILES
initialization parameter, the database uses the same rules to determine the destination
for the restored control file as it uses when creating a control file if the CONTROL_
FILES parameter is not set. These rules are described in Oracle Database SQL Reference
in the description of the CREATE CONTROLFILE statement.

Note: After restoring the control files of your database from
backup, you must perform complete media recovery of the
database as described in "Performing Media Recovery of a Restored
Database, Tablespace or Datafile" on page 6-18, and then open your
database with the RESETLOGS option. The only exception is the
case described in "Restore of the Control File to a New Location" on
page 6-15, where you restore your control file to a location not
listed in the CONTROL_FILES initialization parameter. In that case,
you create a copy of your control file in the specified location
without touching your running database.

RMAN RESTORE: Restoring Lost Database Files from Backup

6-14 Backup and Recovery Basics

Restore of the Control File from Control File Autobackup
If you are not using a recovery catalog, you must restore your control file from an
autobackup. If you want to restore the control file from autobackup, the database must
be in a NOMOUNT state. You must first set the DBID for your database, and then use
the RESTORE CONTROLFILE FROM AUTOBACKUP command:

RMAN> SET DBID 320066378;
RMAN> RUN {
 SET CONTROLFILE AUTOBACKUP FORMAT
 FOR DEVICE TYPE DISK TO 'autobackup_format';
 RESTORE CONTROLFILE FROM AUTOBACKUP;
 }

RMAN uses the autobackup format and DBID to determine where to hunt for the
control file autobackup. If one is found, RMAN restores the control file from that
backup to all of the control file locations listed in the CONTROL_FILES initialization
parameter.

For information on how to determine the correct value for autobackup_format, see
the description of CONFIGURE CONTROLFILE AUTOBACKUP FORMAT in the entry for
CONFIGURE in Oracle Database Backup and Recovery Reference

See "Determining your DBID" on page 6-8 for details on how to determine your DBID.

Restore of the Control File When Using a Flash Recovery Area
The commands used for restoring your control file are the same, whether or not you
are using a flash recovery area. However, if you are using a flash recovery area, RMAN
updates a control file restored from backup, by performing an implicit crosscheck of all
disk-based backups and image copies listed in the control file, and cataloging any
backups in the flash recovery area that are not recorded in the restored control file. As
a result the restored control file has a complete and accurate record of all backups in
your flash recovery area and any other backups that were known to the control file at
the time of the backup. This improves the usefulness of the restored control file in the
restoration of the rest of your database.

Tape backups are not automatically crosschecked after the restore of a control file. If
you are using tape backups, then after restoring the control file and mounting the
database you must crosscheck the backups on tape, as shown in this example:

RMAN> CROSSCHECK BACKUP DEVICE TYPE SBT;

Restoring a Control File When Using a Recovery Catalog
Restoring a lost control file from autobackup is easier when using a recovery catalog
than when using only the control file to store the RMAN repository. The recovery
catalog contains a complete record of your backups, including backups of the control
file. Therefore, you do not have to specify your DBID or control file autobackup
format.

To restore the control file, connect RMAN to the target database and the recovery
catalog, and bring the database to NOMOUNT state. Then issue the RESTORE
CONTROLFILE command with no parameters, as in this example:

% rman TARGET rman/rman CATALOG catdb/catdb
RMAN> RESTORE CONTROLFILE;

The restored control file is written to all locations listed in the CONTROL_FILES
initialization parameter.

RMAN RESTORE: Restoring Lost Database Files from Backup

Performing Complete Restore and Recovery of Databases 6-15

For more details on restrictions on using RESTORE CONTROLFILE in different
situations, see the discussion of RESTORE CONTROLFILE in Oracle Database Backup
and Recovery Reference.

Restore of the Control File From a Known Location
You can restore the control file from a known control file copy using this form of the
command:

RMAN> RESTORE CONTROLFILE from 'filename';

The control file copy found at the location specified by filename will be written to all
locations listed in the CONTROL_FILES initialization parameter.

Restore of the Control File to a New Location
One way to restore the control file to one or more new locations is to change the
CONTROL_FILES initialization parameter, and then use the RESTORE CONTROLFILE
command with no arguments to restore the control file to the default locations. For
example, if you are restoring your control file after a disk failure made some but not all
CONTROL_FILES locations unusable, you can change CONTROL_FILES to replace
references to the failed disk with pathnames pointing to another disk, and then run
RESTORE CONTROLFILE with no arguments.

You can also restore the control file to any location you choose other than the
CONTROL_FILES locations, by using the form RESTORE CONTROLFILE TO
'filename' [FROM AUTOBACKUP]:

RESTORE CONTROLFILE TO '/tmp/my_controlfile';

You can perform this operation with the database in NOMOUNT, MOUNT or OPEN
states, because you are not overwriting any of the control files currently in use. Any
existing file named 'filename' is overwritten. After restoring the control file to a
new location, you can then update the CONTROL_FILES initialization parameter to
include the new location.

Limitations When Using a Backup Control File
After you restore your database using a backup control file, you must run RECOVER
DATABASE and perform an OPEN RESETLOGS on the database.

For more details on restrictions on using RESTORE CONTROLFILE in different
scenarios (such as when using a recovery catalog, or restoring from a specific backup),
see the discussion of RESTORE CONTROLFILE in Oracle Database Backup and Recovery
Reference.

Restoring the Server Parameter File (SPFILE) from Backup
If you lose your server parameter file (SPFILE), RMAN can restore it to its default
location or to a location of your choice.

Unlike the loss of the control file, the loss of your SPFILE does not cause your instance
to immediately stop. Your instance may continue operating, although you will have to
shut it down and restart it after restoring the SPFILE.

Note the following when restoring the SPFILE:

See Also: Oracle Database Backup and Recovery Reference for
RESTORE CONTROLFILE syntax.

RMAN RESTORE: Restoring Lost Database Files from Backup

6-16 Backup and Recovery Basics

■ If the instance is already started with the server parameter file, then you cannot
overwrite the existing server parameter file.

■ When the instance is started with a client-side initialization parameter file, RMAN
restores the SPFILE to the default SPFILE location if the TO clause is not used. The
default location is platform-specific (for example, ?/dbs/spfile.ora on
Linux).

■ Restoring the SPFILE is one situation in which a recovery catalog can simplify
your recovery procedure, because you can avoid the step of having to record and
remember your DBID. This procedure assumes that you are not using a recovery
catalog.

RMAN can also create a client-side initialization parameter file based on a backup of
an SPFILE.

To restore the server parameter file:

1. If the database is up at the time of the loss of the SPFILE, connect to the target
database. For example, run:

% rman TARGET /

If the database is not up when the SPFILE is lost, and you are not using a recovery
catalog, then you must set the DBID of the target database. See "Determining your
DBID" on page 6-8 for details on determining your DBID.

2. Shut down the instance and restart it without mounting. When the SPFILE is not
available, RMAN starts the instance with a dummy parameter file. For example:

RMAN> STARTUP FORCE NOMOUNT;

3. Restore the server parameter file. If restoring to the default location, then run:

RMAN> RESTORE SPFILE FROM AUTOBACKUP;

If restoring to a nondefault location, then you could run commands as in the
following example:

RMAN> RESTORE SPFILE TO '/tmp/spfileTEMP.ora' FROM AUTOBACKUP;

4. Restart the instance with the restored file. If restarting with a server parameter file
in a nondefault location, then create a new client-side initialization parameter file
with the single line SPFILE=new_location, where new_location is the path name
of the restored server parameter file. Then, restart the instance with the client-side
initialization parameter file.

For example, create a file /tmp/init.ora which contains the single line:

SPFILE=/tmp/spfileTEMP.ora

Then use this RMAN command, to restart the instance based on the restored
SPFILE:

RMAN> STARTUP FORCE PFILE=/tmp/init.ora; # startup with /tmp/spfileTEMP.ora

Restore of the SPFILE from the Control File Autobackup
If you have configured control file autobackups, the SPFILE is backed up with the
control file whenever an autobackup is taken.

If you want to restore the SPFILE from the autobackup, you must first set the DBID for
your database, and then use the RESTORE SPFILE FROM AUTOBACKUP command.

RMAN RESTORE: Restoring Lost Database Files from Backup

Performing Complete Restore and Recovery of Databases 6-17

The procedure is similar to restoring the control file from autobackup. You must first
set the DBID for your database, and then use the RESTORE CONTROLFILE FROM
AUTOBACKUP command:

RMAN> SET DBID 320066378;
RMAN> RUN {
 SET CONTROLFILE AUTOBACKUP FORMAT
 FOR DEVICE TYPE DISK TO 'autobackup_format';
 RESTORE SPFILE FROM AUTOBACKUP;
 }

RMAN uses the autobackup format and DBID to hunt for control file autobackups,
and if a control file autobackup is found, restores the SPFILE from that backup to its
default location.

For information on how to determine the correct value for autobackup_format, see
the description of CONFIGURE CONTROLFILE AUTOBACKUP FORMAT in the entry for
CONFIGURE in Oracle Database Backup and Recovery Reference

See "Determining your DBID" on page 6-8 for details on how to determine your DBID.

Creating a Client-Side Initialization Parameter File (PFILE) with RMAN
You can also restore the server parameter file as a client-side initialization parameter
file with the TO PFILE 'filename' clause. The filename you specify should be on a
file system accessible from the host where the RMAN client is running. This file need
not be accessible directly from the host running the instance. This command creates a
PFILE called /tmp/initTEMP.ora on the system running the RMAN client:

RMAN> RESTORE SPFILE TO PFILE '/tmp/initTEMP.ora';

To restart the instance using the client-side PFILE, use the following command, again
running RMAN on the same client machine:

RMAN> STARTUP FORCE PFILE='/tmp/initTEMP.ora';

Restoring and Recovering Datafiles and Tablespaces
Restoring a tablespace to its original location and performing media recovery on it is
described in "Restore and Complete Recovery of Individual Tablespaces or Datafiles:
Scenario" on page 6-5. However, you may need to restore a datafile to a location other
than its original location if, for example, the disk containing the original location of the
datafiles has failed.

Restoring Datafiles from Backup to a New Location
The important step in restoring datafiles from backup to a new location is to update
the control file to reflect the new locations of the datafiles. The following example
shows the use of the RMAN SET NEWNAME command to specify the new names, and
the SWITCH command to update the control file to start referring to the datafiles by
their new names.

As with restoring datafiles from backup to their original locations, you should take the
affected tablespaces offline at the start of restoring datafiles from backup to a new
location.

Then, create a RUN block to encompass your RESTORE and RECOVER commands. For
each file to be moved to a new location, use the SET NEWNAME command to specify the
new location for that file.

RMAN RESTORE: Restoring Lost Database Files from Backup

6-18 Backup and Recovery Basics

Then, still within the RUN block, run the RESTORE TABLESPACE or RESTORE
DATAFILE as normal. RMAN restores each datafile to the location specified with SET
NEWNAME, rather than its original location.

After the RESTORE command but before the RECOVER command in your RUN block,
use a SWITCH command to update the control file with the new filenames of the
datafiles. The SWITCH command is equivalent to the SQL statement ALTER DATABASE
RENAME FILE. SWITCH DATAFILE ALL updates the control file to reflect the new
names for all datafiles for which a SET NEWNAME has been issued in the RUN block.

This example restores the datafiles in tablespaces users and tools to a new location,
then performs recovery. Assume that the old datafiles were stored in directory
/olddisk and the new ones will be stored in /newdisk.

RUN
{
 SQL 'ALTER TABLESPACE users OFFLINE IMMEDIATE';
 SQL 'ALTER TABLESPACE tools OFFLINE IMMEDIATE';
 # specify the new location for each datafile
 SET NEWNAME FOR DATAFILE '/olddisk/users01.dbf' TO
 '/newdisk/users01.dbf';
 SET NEWNAME FOR DATAFILE '/olddisk/tools01.dbf' TO
 '/newdisk/tools01.dbf';
 # to restore to an ASM disk group named dgroup, use:
 # SET NEWNAME FOR DATAFILE '/olddisk/trgt/tools01.dbf'
 # TO '+dgroup';
 RESTORE TABLESPACE users, tools;
 SWITCH DATAFILE ALL; # update control file with new filenames
 RECOVER TABLESPACE users, tools;
}

If recovery is successful, then bring the tablespaces online:

SQL 'ALTER TABLESPACE users ONLINE';
SQL 'ALTER TABLESPACE tools ONLINE';

Performing Media Recovery of a Restored Database, Tablespace or Datafile
Media recovery reapplies all changes from the archived and online redo logs and
available incremental backups to datafiles restored from backup.

The simplest way to perform media reccovery is to use the RECOVER DATABASE
command, with no arguments:

RMAN> RECOVER DATABASE;

You can also perform media recovery of individual tablespaces or datafiles, or skip
certain tablespaces while recovering the rest of the database, as shown in the following
examples:

RMAN> RECOVER DATABASE SKIP TABLESPACE users;

RMAN> RECOVER TABLESPACE users, tools;

RMAN> RECOVER DATAFILE '/newdisk/users01.dbf','/newdisk/tools01.dbf';

RMAN> RECOVER DATAFILE 4;

See Also: Oracle Database Backup and Recovery Reference for
SWITCH syntax

RMAN RESTORE: Restoring Lost Database Files from Backup

Performing Complete Restore and Recovery of Databases 6-19

RMAN will restore from backup any archived redo logs required during the recovery
operation. If backups are stored on a media manager, note that channels must be
configured in advance or a RUN block with ALLOCATE CHANNEL commands must be
used to enable access to backups stored there.

One very useful option in managing disk space associated with these restored files is
the DELETE ARCHIVELOG option, which causes the deletion of restored archived redo
logs from disk once they are no longer needed for the RECOVER operation:

RMAN> RECOVER TABLESPACE users, tools DELETE ARCHIVELOG;

Note that when RMAN restores archived redo log files to the flash recovery area in
order to perform a RECOVER operation, the restored logs are automatically deleted
after they are applied to the datafiles, even if you do not use the DELETE
ARCHIVELOG option.

See Oracle Database Backup and Recovery Reference for more details on options for the
RECOVER command.

Restore and Recover of a Single Datafile to a New Location:Example
This procedure restores a single datafile to a new location and perform media recovery
on it. This lets you restore and recover if the old location is inaccessible because of a
problem such as a media failure.

RUN {
 SET NEWNAME FOR DATAFILE 3 to 'new_location';
 RESTORE DATAFILE 3;
 SWITCH DATAFILE 3;
 RECOVER DATAFILE 3;
}

If you want to store a datafile to a new Oracle Managed Files location, you can use this
form of the command:

RUN {
 SET NEWNAME FOR DATAFILE 3 to NEW;
 RESTORE DATAFILE 3;
 SWITCH DATAFILE 3;
 RECOVER DATAFILE 3;
}

Oracle will store the restored file in an OMF location, generating a filename for it.

Restoring Archived Redo Logs from Backup
RMAN will restore archived redo log files from backup automatically as needed to
perform recovery.

However, you can also restore archived redo logs manually if you wish, in order to
save the time needed to restoroe these files later during the RECOVER command, or if
you want to store the restored archived redo log files in some new location.

By default, RMAN restores archived redo logs with names constructed using the LOG_
ARCHIVE_FORMAT and the LOG_ARCHIVE_DEST_1 parameters of the target database.
These parameters are combined in a platform-specific fashion to form the name of the
restored archived log.

RMAN RESTORE: Restoring Lost Database Files from Backup

6-20 Backup and Recovery Basics

Restoring Archived Redo Logs to a New Location
You can override the default location for restored archived redo logs with the SET
ARCHIVELOG DESTINATION command. This command manually stages archived logs
to different locations while a database restore is occurring. During recovery, RMAN
knows where to find the newly restored archived logs; it does not require them to be in
the location specified in the initialization parameter file.

To restore archived redo logs to a new location:

1. After connecting to the target database, make sure the database is mounted or
open.

2. Perform the following operations within a RUN block, as shown in the following
example script:

a. Specify the new location for the restored archived redo logs using SET
ARCHIVELOG DESTINATION.

b. Restore the archived redo logs.

This example restores all backup archived logs to a new location:

RUN
{
 SET ARCHIVELOG DESTINATION TO '/oracle/temp_restore';
 RESTORE ARCHIVELOG ALL;
 # restore and recover datafiles as needed
 .
 .
 .
}

Restoring Archived Redo Logs to Multiple Locations
You can specify restore destinations for archived logs multiple times in one RUN
block, in order to distribute restored logs among several destinations. (You cannot,
however specify multiple destinations simultaneously to produce multiple copies of
the same log during the restore operation.) You can use this feature to manage disk
space used to contain the restored logs.

This example restores 300 archived redo logs from backup, distributing them across
the directories /fs1/tmp, /fs2/tmp, and /fs3/tmp:

RUN
{
 # Set a new location for logs 1 through 100.
 SET ARCHIVELOG DESTINATION TO '/fs1/tmp';
 RESTORE ARCHIVELOG FROM SEQUENCE 1 UNTIL SEQUENCE 100;
 # Set a new location for logs 101 through 200.
 SET ARCHIVELOG DESTINATION TO '/fs2/tmp';
 RESTORE ARCHIVELOG FROM SEQUENCE 101 UNTIL SEQUENCE 200;
 # Set a new location for logs 201 through 300.
 SET ARCHIVELOG DESTINATION TO '/fs3/tmp';
 RESTORE ARCHIVELOG FROM SEQUENCE 201 UNTIL SEQUENCE 300;
 # restore and recover datafiles as needed
 .
 .
 .
}

RMAN RESTORE: Restoring Lost Database Files from Backup

Performing Complete Restore and Recovery of Databases 6-21

When you issue a RECOVER command, RMAN finds the needed restored archived logs
automatically across the destinations to which they were restored, and applies them to
the datafiles.

RMAN RESTORE: Restoring Lost Database Files from Backup

6-22 Backup and Recovery Basics

Performing Flashback and Database Point-in-Time Recovery 7-1

7
Performing Flashback and Database

Point-in-Time Recovery

It it sometimes necessary to return some objects in your database or the entire database
to a previous state, following the effects of a mistaken database update. For example, a
user or DBA might erroneously delete or update the contents of one or more tables,
drop database objects that are still needed for a risky operation such as an update to an
application or a large batch update might fail.

In addition to point-in-time restore and recovery of the entire database, Oracle
provides a group of features known as Oracle Flashback Technology, that are often
faster than point-in-time recovery, and less disruptive to database availability.

This chapter presents a guide to investigating unwanted database changes, and
selecting and carrying out an appropriate recovery strategy based upon Oracle
Flashback Technology and database backups. It includes the following topics:

■ About Point-in-Time Recovery and Flashback Features

■ Oracle Flashback Query: Recovering at the Row Level

■ Oracle Flashback Table: Returning Individual Tables to Past States

■ Oracle Flashback Drop: Undo a DROP TABLE Operation

■ Reversing Database Changes with Flashback Database

■ Performing Database Point-In-Time Recovery

About Point-in-Time Recovery and Flashback Features
The most basic solution after unwanted database changes is database point-in-time
recovery, in which you restore the database from backup and then apply redo logs to
recreate all changes up to a point in time before the unwanted change.

Oracle Flashback Technology provides several alternatives to a set of features that
support viewing past states of data, and winding data back and forth in time, without
requiring the restore of the database from backup. Depending upon the changes to
your database, Flashback Technology can often reverse the unwanted changes more
quickly and with less impact on the availability of the rest of your database.

About Database Point-in-Time Recovery
Database point-in-time recovery (DBPITR) is a process that works at the physical level
to return the datafiles to their state at a desired target time in the past. In an RMAN
DBPITR operation, you specify a target point in time, and RMAN restores the database
from backups prior to that time, and then applies incremental backups and performs

About Point-in-Time Recovery and Flashback Features

7-2 Backup and Recovery Basics

media recovery to recreate all changes between the time of the datafile backups and
the target time. If your backup strategy is properly designed and your database is
running in ARCHIVELOG mode then DBPITR is an option in nearly all circumstances.

RMAN simplifies DBPITR greatly compared to user-managed DBPITR. Given a target
SCN, datafiles are restored from backup and recovered efficiently using incremental
backups and archived logs available on disk or tape, with no intervention from the
user. However, there are some disadvantages to point-in-time recovery:

■ You cannot return only selected objects to their earlier state, only the entire
database.

■ Your entire database is unavailable during the database point-in-time recovery
process.

■ Point-in-time recovery can be time-consuming, because all datafiles must be
restored, and redo logs and incremental backups must be restored from backup
and used to recover the datafiles. If needed backups are on tape, this process can
take even longer.

Oracle Flashback Technology:Alternatives to Point-in-Time Recovery
The flashback features of Oracle are more efficient than media recovery in most
circumstances in which they are available. They can also be used to investigate past
states of Most Flashback Technology features operate at the logical level, viewing and
manipulating database objects, as follows:

■ Oracle Flashback Query lets you specify a target time and then run queries
against your database, viewing results as they would have appeared at that time.
To recover from an unwanted change like an erroneous update to a table, a user
could choose a target time before the error and run a query to retrieve the contents
of the lost rows.

■ Oracle Flashback Version Query lets you view all the versions of all the rows that
ever existed in one or more tables in a specified time interval. You can also retrieve
metadata about the differing versions of the rows, including start time, end time,
operation, and transaction ID of the transaction that created the version. This
feature can be used both to recover lost data values and to audit changes to the
tables queried.

■ Oracle Flashback Transaction Query lets you view changes made by a single
transaction, or by all the transactions during a period of time.

■ Oracle Flashback Table returns a table to its state at a previous point in time. You
can restore table data while the database is online, undoing changes only to the
specified table.

■ Oracle Flashback Drop reverses the effects of a DROP TABLE statement.

Flashback Table, Flashback Query, Flashback Transaction Query and Flashback Version
Query all rely on undo data, records of the effects of each update to an Oracle database

Note: If you know that unwanted database changes are extensive
but confined to certain tablespaces in your database, tablespace
point-in-time recovery (TSPITR) can return a subset of your
tablespaces to an earlier SCN while the unaffected tablespaces of
your database continue to be available. TSPITR is an advanced
technique described in Oracle Database Backup and Recovery
Advanced User's Guide.

Oracle Flashback Query: Recovering at the Row Level

Performing Flashback and Database Point-in-Time Recovery 7-3

and values overwritten in the update. Used primarily for such purposes as providing
read consistency for SQL queries and rolling back transactions, these undo records
contain the information required to reconstruct data as it stood at a past time and
examine the record of changes since that past time.

Flashback Drop is built around a mechanism called the Recycle Bin, which Oracle
uses to manage dropped database objects until the space they occupied is needed to
store new data.

Oracle Flashback Database provides a more efficient direct alternative to database
point-in-time recovery. It is unlike the other flashback features in that it operates at a
physical level. When you use Flashback Database, your current datafiles revert to their
contents at a past time. The end product is much like the result of a database
point-in-time recovery, but can be much faster because it does not require you to
restore datafiles from backup, and requires only limited application of redo compared
to media recovery.

Flashback Database uses flashback logs to access past versions of data blocks, as well
as some information from the archived redo log. To have the option of using Flashback
Database to repair your database, you must either configure your database to generate
flashback logs, or use the related capability of guaranteed restore points to protect the
contents of your database at a fixed point in time, such as immediately before a risky
database change.

Oracle Flashback Query: Recovering at the Row Level
In a data recovery context, it is useful to be able to query the state of a table at a
previous time. If, for instance, you discover that at 12:30 PM, an employee 'JOHN'
had been deleted from your EMP table, and you know that at 9:30AM that employee's
data was correctly stored in the database, you could query the contents of the table as
of a time before the deletion to find out what data had been lost, and, if appropriate,
re-insert the lost data in the database.

Querying the past state of the table is achieved using the AS OF clause of the SELECT
statement. For example, the following query retrieves the state of the employee record
for 'JOHN' at 9:30AM, April 4, 2005:

SELECT * FROM EMP AS OF TIMESTAMP
 TO_TIMESTAMP('2005-04-04 09:30:00', 'YYYY-MM-DD HH:MI:SS')
 WHERE name = 'JOHN';

Restoring John's information to the table EMP requires the following update:

INSERT INTO EMP
 (SELECT * FROM EMP AS OF TIMESTAMP
 TO_TIMESTAMP('2005-04-04 09:30:00', 'YYYY-MM-DD HH:MI:SS')

See Also:

■ Oracle Database Concepts and Oracle Database Administrator's
Guide for more information on undo data and automatic undo
management

■ Oracle Database Application Developer's Guide - Fundamentals for
more information on Flashback Query, Flashback Transaction
Query and Flashback Version Query

■ "Data Protection with Restore Points and Flashback Database"
for more information on setting up your database to use
Flashback Database, and on the related Restore Points feature

Oracle Flashback Table: Returning Individual Tables to Past States

7-4 Backup and Recovery Basics

 WHERE name = 'JOHN');

The missing row is re-created with its previous contents, with minimal impact to the
running database.

Oracle Flashback Table: Returning Individual Tables to Past States
Oracle Flashback Table provides the DBA the ability to recover a table or set of tables
to a specified point in time in the past very quickly, easily, and without taking any part
of the database offline. In many cases, Flashback Table eliminates the need to perform
more complicated point-in-time recovery operations. Flashback Table restores tables
while automatically maintaining associated attributes such as current indexes, triggers
and constraints, and not requiring the DBA to find and restore application-specific
properties. Using Flashback Table causes the contents of one or more individual tables
to revert to their state at some past SCN or time.

Flashback Table uses information in the undo tablespace to restore the table. You do
not have to restore any data from backups, and the rest of your database remains
available while the Flashback Table operation is being performed.

For more information on Automatic Undo Management, see Oracle Database
Administrator's Guide.

Prerequisites for Using Flashback Table
The prerequisites for performing a FLASHBACK TABLE operation are as follows:

■ You must have been granted the FLASHBACK ANY TABLE system privilege or
you must have the FLASHBACK object privilege on the table.

■ You must have SELECT, INSERT, DELETE, and ALTER privileges on the table.

■ Undo information retained in the undo tablespace must go far enough back in
time to satisfy the specified target point in time or SCN for the FLASHBACK
TABLE operation.

■ Row movement must be enabled on the table for which you are issuing the
FLASHBACK TABLE statement. You can enable row movement with the following
SQL statement:

ALTER TABLE table ENABLE ROW MOVEMENT;

Performing Flashback Table
The following SQL*Plus statement performs a FLASHBACK TABLE operation on the
table EMP:

FLASHBACK TABLE EMP TO TIMESTAMP
 TO_TIMESTAMP('2005-04-04 09:30:00', 'YYYY-MM-DD HH:MI:SS')

The EMP table is restored to its state when the database was at the time specified by the
timestamp.

See Also:

■ Oracle Database Application Developer's Guide - Fundamentals for
a more extensive discussion of the use of the SELECT... AS OF
SQL statement and extensive examples of its use.

■ Oracle Database SQL Reference for more details on the syntax of
the SELECT... AS OF form of the SELECT statement.

Oracle Flashback Drop: Undo a DROP TABLE Operation

Performing Flashback and Database Point-in-Time Recovery 7-5

You can also specify the target point in time for the FLASHBACK TABLE operation
using an SCN:

FLASHBACK TABLE EMP TO SCN 123456;

By default, the database disables triggers on the affected table before performing
aFLASHBACK TABLE operation, and after the operation returns them to the state they
were in before the operation (enabled or disabled). If you wish for triggers on a table
to apply during FLASHBACK TABLE, then add an ENABLE TRIGGERS clause to the
FLASHBACK TABLE statement:

FLASHBACK TABLE table_name
 TO TIMESTAMP timestamp ENABLE TRIGGERS;

The following scenario is typical of the kind of logical corruption where Flashback
Table could be used:

At 17:00 an HR administrator discovers that an employee JOHN is missing from the
EMP table. This employee was included in the table at 14:00, the last time the report
was run. Therefore, someone accidentally deleted the record for JOHN between 14:00
and the present time. She uses Flashback Table to return the table to its state at 14:00,
respecting any triggers set on the EMP table, using the SQL statement shown in this
example:

FLASHBACK TABLE EMP
 TO TIMESTAMP TO_TIMESTAMP('2005-03-03 14:00:00') ENABLE TRIGGERS;

Oracle Flashback Drop: Undo a DROP TABLE Operation
Oracle Flashback Drop reverses the effects of a DROP TABLE operation. It can be used
to recover after the accidental drop of a table. Flashback Drop is substantially faster
than other recovery mechanisms that can be used in this situation, such as
point-in-time recovery, and does not lead to any loss of recent transactions or
downtime.

When you drop a table, the database does not immediately remove the space
associated with the table. Instead, the table is renamed and, along with any associated
objects, it is placed in the Recycle Bin of the database. The Flashback Drop operation
recovers the table from the recycle bin.

To understand how to use Oracle Flashback Drop, you must also understand how the
recycle bin works, and how to access and manage its contents.

This section covers the following topics:

■ What is the Recycle Bin?

■ How Tables and Other Objects Are Placed in the Recycle Bin

■ Naming Convention for Objects in the Recycle Bin

■ Viewing and Querying Objects in the Recycle Bin

■ Recycle Bin Capacity and Space Pressure

■ Purging Objects from the Recycle Bin

See Also: Oracle Database SQL Reference for a simple Flashback
Table scenario

Oracle Flashback Drop: Undo a DROP TABLE Operation

7-6 Backup and Recovery Basics

What is the Recycle Bin?
The recycle bin is a logical container for all dropped tables and their dependent
objects. When a table is dropped, the database will store the table, along with its
dependent objects in the recycle bin so that they can be recovered later. Dependent
objects which are stored in the recycle bin include indexes, constraints, triggers, nested
tables, LOB segments and LOB index segments.

How Tables and Other Objects Are Placed in the Recycle Bin
Tables are placed in the recycle bin along with their dependent objects whenever a
DROP TABLE statement is executed. For example, this statement places the EMPLOYEE_
DEMO table, along with any indexes, constraints, or other dependent objects listed
previously, in the recycle bin:

SQL> DROP TABLE EMPLOYEE_DEMO;
Table Dropped

The table and its dependent objects will remain in the recycle bin until they are purged
from the recycle bin. You can explicitly purge a table or other object from the recycle
bin with the SQL*Plus PURGE statement, as described in "Purging Objects from the
Recycle Bin" on page 7-10. If you are sure that you will not want to recover a table
later, you can drop it immediately and permanently, instead of placing it in the recycle
bin, by using the PURGE option of the DROP TABLE statement, as shown in this
example:

DROP TABLE employee_demo PURGE;

Even if you do not purge objects from the recycle bin, the database purges objects from
the recycle bin to meet tablespace space constraints. See "Recycle Bin Capacity and
Space Pressure" on page 7-8 for more details.

Recycle bin objects are not counted as used space. If you query the space views to
obtain the amount of free space in the database, objects in the recycle bin are counted
as free space.

Dropped objects still appear in the views USER_TABLES, ALL_TABLES, DBA_TABLES,
USER_INDEX, ALL_INDEX and DBA_INDEX. A new column, DROPPED, is set to YES
for these objects. You can use the DROPPED column in queries against these views to
view only objects that are not dropped.

To view only objects in the recycle bin, use the USER_RECYCLEBIN and DBA_
RECYCLEBIN views, described later in this chapter.

Naming Convention for Objects in the Recycle Bin
When a table and its dependent objects are moved to the recycle bin, they are assigned
unique names, to avoid name conflicts that may arise in the following circumstances:

■ A user drops a table, creates another with the same name, then drops the second
table.

■ Two users have tables with the same name, and both users drop their tables.

The assigned names are globally unique and are used to identify the objects while they
are in the recycle bin. Object names are formed as follows:

BIN$$globalUID$version

where:

Oracle Flashback Drop: Undo a DROP TABLE Operation

Performing Flashback and Database Point-in-Time Recovery 7-7

■ globalUID is a globally unique, 24 character long identifier generated for the
object.

■ version is a version number assigned by the database

The recycle bin name of an object is always 30 characters long.

Note that the globalUID used in the recycle bin name is not readily correlated with
any externally visible piece of information about the object or the database.

Enabling and Disabling the Recycle Bin
The recycle bin is enabled by default. The initialization parameter RECYCLEBIN can be
used to explicitly enable or disable the recycle bin.

To enable the recycle bin , set the value of RECYCLEBIN to ON.To disable the recycle
bin, set the value of RECYCLEBIN to OFF.

If you use a parameter file (PFILE) with your database, you can specify the value of
RECYCLEBIN in the parameter file, as in this example:

turn off recycle bin
RECYCLEBIN=OFF

This value applies to all database sessions.

To specify recycle bin behavior for your own database session, you can use an ALTER
SESSION statement in SQL*Plus to change the value of the RECYCLEBIN parameter
for your sessions. For example, this command disables the recycle bin for your
database session:

ALTER SESSION SET RECYCLEBIN=OFF;

Objects you drop during this session are no longer placed in the recycle bin, until you
re-enable the recycle bin using ALTER SESSION SET RECYCLEBIN=ON. However,
other users continue to be protected by the recycle bin, and in future sessions the value
reverts to the current default for the entire database.

You can also use an ALTER SYSTEM statement in SQL*Plus to change the value of the
RECYCLEBIN parameter for the entire database. For example:

ALTER SYSTEM SET RECYCLEBIN=OFF;

This disables the recycle bin for all sessions, unless a user specifically enables the
recycle bin for their session using ALTER SESSION SET RECYCLEBIN=ON.

Viewing and Querying Objects in the Recycle Bin
To view the contents of the recycle bin, use the SQL*Plus command SHOW
RECYCLEBIN.

SQL> show recyclebin;
ORIGINAL NAME RECYCLEBIN NAME TYPE DROP TIME
---------------- --------------------------------- ------------ -------------------
EMPLOYEE_DEMO BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0 TABLE 2005-04-11:17:08:54

Note: Objects already in the recycle bin are not affected by enabling
or disabling the recycle bin using ALTER SYSTEM or ALTER SESSION.

Oracle Flashback Drop: Undo a DROP TABLE Operation

7-8 Backup and Recovery Basics

The ORIGINAL NAME column shows the orignal name of the object, while the
RECYCLEBIN NAME column shows the name of the object as it exists in the recycle bin.
Use the RECYCLEBIN NAME when issuing queries against tables in the recycle bin.

The database also provices two views for obtaining information about objects in the
recycle bin:

This example uses the views to determine the original names of dropped objects:

SQL> SELECT object_name as recycle_name, original_name, type
 FROM recyclebin;

RECYCLE_NAME ORIGINAL_NAME TYPE
-------------------------------- --------------------- ----------
BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0 EMPLOYEE_DEMO TABLE
BIN$JKS983293M1dsab4gsz/I249==$0 I_EMP_DEMO INDEX
BIN$NR72JJN38KM1dsaM4gI348as==$0 LOB_EMP_DEMO LOB
BIN$JKJ399SLKnaslkJSLK330SIK==$0 LOB_I_EMP_DEMO LOB INDEX

You can query objects that are in the recycle bin, just as you can query other objects, if
these three conditions are met:

■ You must have the FLASHBACK privilege.

■ You must have the privileges that were required to perform queries against the
object before it was placed in the recycle bin.

■ You must use the recycle bin name of the object in your query, rather than the
object's original name.

This example shows the required syntax:

SQL> SELECT * FROM "BIN$KSD8DB9L345KLA==$0";

(Note the use of quotes due to the special characters in the recycle bin name.)

You can also use Oracle Flashback Query on tables in the recycle bin (again, assuming
that you have the privileges described previously).

Recycle Bin Capacity and Space Pressure
There is no fixed amount of space preallocated for the recycle bin. Therefore, there is
no guaranteed minimum amount of time during which a dropped object will remain
in the recycle bin.

The rules that govern how long an object is retained in the recycle bin and how and
when space is reclaimed are explained in this section.

Understanding Space Pressure
Dropped objects are kept in the recycle bin until such time as no new extents can be
allocated in the tablespace to which the objects belong without growing the tablespace.
This condition is referred to as space pressure. Space pressure can also arise due to
user quotas defined for a particular tablespace. A tablespace may have free space, but
the user may have exhausted his or her quota on it.

View Description

USER_RECYCLEBIN Lets users see their own dropped objects in the recycle bin. It
has a synonym RECYCLEBIN, for ease of use.

DBA_RECYCLEBIN Lets administrators see all dropped objects in the recycle bin

Oracle Flashback Drop: Undo a DROP TABLE Operation

Performing Flashback and Database Point-in-Time Recovery 7-9

Oracle never automatically reclaims space or overwrites objects in the recycle bin
unless forced to do so in response to space pressure.

How the Database Responds to Space Pressure
When space pressure arises, the database selects objects for automatic purging from
the recycle bin. Objects are selected for purging on a first-in, first-out basis, that is, the
first objects dropped are the first selected for purging.

Actual purging of objects is done only as needed to meet ongoing space pressure, that
is, the databases purges the minimum possible number of objects selected for purging
to meet immediate needs for space. This policy serves two purposes:

■ It minimizes the performance penalty on transactions that encounter space
pressure, by not performing more purge operations than are required;

■ It maximizes the length of time objects remain in the recycle bin, by leaving them
there until space is needed.

Dependent objects such as indexes on a table are selected for purging before the
associated table (or other required segment).

If space pressure is due to an individual user's quota on a tablespace being exhausted,
the recycle bin purges objects belonging to the tablespace which count against that
user's space quotas.

For AUTO EXTEND-able tablespaces, objects are purged from the recycle bin to
reclaim space before datafiles are extended.

Recycle Bin Objects and Segments
The recycle bin operates at the object level, in terms of tables, indexes, and so on. An
object may have multiple segments associated with it, such as partitioned tables,
partitioned indexes, lob segments, nested tables, and so on. Because the database
reclaims only the segments needed to immediately satisfy space pressure, it can
happen that some but not all segments of an object are reclaimed. When this happens,
any segments of the object not reclaimed immediately are marked as temporary
segments. These temporary segments are the first candidates to be reclaimed the next
time space pressure arises.

In such a case, the partially-reclaimed object can no longer be removed from the
recycle bin with Flashback Drop. (For example, if one partition of a partitioned table is
reclaimed, the table can no longer be the object of a Flashback Drop.)

Performing Flashback Drop on Tables in the Recycle Bin
Use the FLASHBACK TABLE ... TO BEFORE DROP statement to recover objects from the
recycle bin. You can specify either the name of the table in the recycle bin or the
original table name. This can be obtained from either the DBA_RECYCLEBIN or USER_
RECYCLEBIN view as shown in "Viewing and Querying Objects in the Recycle Bin" on
page 7-7. To use the FLASHBACK TABLE ... TO BEFORE DROP statement, you need the
same privileges you need to drop the table.

The following example restores the BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0 table,
changes its name back to hr.int_admin_emp, and purges its entry from the recycle
bin:

FLASHBACK TABLE "BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0" TO BEFORE DROP;

Oracle Flashback Drop: Undo a DROP TABLE Operation

7-10 Backup and Recovery Basics

Note the use of quotes, due to the possibility of special characters appearing in the
recycle bin object names.You can also use the table's original name in the Flashback
Drop operation:

FLASHBACK TABLE HR.INT_ADMIN_EMP TO BEFORE DROP;

You can assign a new name to the restored table by specifying the RENAME TO clause.
For example:

FLASHBACK TABLE "BIN$KSD8DB9L345KLA==$0" TO BEFORE DROP
 RENAME TO hr.int2_admin_emp;

Flashback Drop of Multiple Objects With the Same Original Name
You can create, and then drop, several objects with the same original name, and they
will all be stored in the recycle bin. For example, consider these SQL statements:

CREATE TABLE EMP (...columns); # EMP version 1
DROP TABLE EMP;
CREATE TABLE EMP (...columns); # EMP version 2
DROP TABLE EMP;
CREATE TABLE EMP (...columns); # EMP version 3
DROP TABLE EMP;

In such a case, each table EMP is assigned a unique name in the recycle bin when it is
dropped. You can use a FLASHBACK TABLE... TO BEFORE DROP statement with
the original name of the table, as shown in this example:

FLASHBACK TABLE EMP TO BEFORE DROP;

The most recently dropped table with that original name is retrieved from the recycle
bin, with its original name. You can retrieve it and assign it a new name using a
RENAME TO clause. The following example shows the retrieval from the recycle bin of
all three dropped EMP tables from the previous example, with each assigned a new
name:

FLASHBACK TABLE EMP TO BEFORE DROP RENAME TO EMP_VERSION_3;
FLASHBACK TABLE EMP TO BEFORE DROP RENAME TO EMP_VERSION_2;
FLASHBACK TABLE EMP TO BEFORE DROP RENAME TO EMP_VERSION_1;

Because using the original name in FLASHBACK TABLE... TO BEFORE DROP refers to
the most recently dropped table with that name, the last table dropped is the first one
to be retrieved.

You can also retrieve any table you want from the recycle bin, regardless of any
collisions among original names, by using the table's unique recycle bin name.

Purging Objects from the Recycle Bin
The PURGE command is used to permanently purge objects from the recycle bin. Once
purged, objects can no longer be retrieved from the bin using Flashback Drop.

There are a number of forms of the PURGE statement, depending on exactly which
objects you want to purge from the recycle bin.

See Also: Oracle Database SQL Reference for more information on
the PURGE statement

Oracle Flashback Drop: Undo a DROP TABLE Operation

Performing Flashback and Database Point-in-Time Recovery 7-11

PURGE TABLE: Purging a Table and Dependent Objects
The PURGE TABLE command purges an individual table and all of its dependent
objects from the recycle bin. This example shows the syntax, using the table's original
name:

PURGE TABLE EMP;

You can also use the recycle bin name of an object with PURGE TABLE:

PURGE TABLE "BIN$KSD8DB9L345KLA==$0";

If you have created and dropped multiple tables with the same orignal name, then
when you use the PURGE TABLE statement the first table dropped will be the one to
be purged.

For example, consider the following series of CREATE TABLE and DROP TABLE
statements:

CREATE TABLE EMP; # version 1 of the table
DROP TABLE EMP; # version 1 dropped
CREATE TABLE EMP; # version 2 of the table
DROP TABLE EMP; # version 2 dropped
CREATE TABLE EMP; # version 3 of the table
DROP TABLE EMP; # version 3 dropped

There are now three EMP tables in the recycle bin. If you execute PURGE TABLE EMP
several times, the effect is as described here:

PURGE TABLE EMP; # version 1 of the table is purged
PURGE TABLE EMP; # version 2 of the table is purged
PURGE TABLE EMP; # version 3 of the table is purged

PURGE INDEX: Freeing Space in the Recycle Bin
You can use PURGE INDEX to purge just an index for a table, while keeping the base
table in the recycle bin. The syntax for purging an index is as follows:

PURGE INDEX "BIN$GTE72KJ22H9==$0";

By purging indexes from the recycle bin, you can reduce the chance of space pressure,
so that dropped tables can remain in the recycle bin longer. If you retrieve a table from
the recycle bin using Flashback Drop, you can rebuild the indexes after you retrieve
the table.

PURGE TABLESPACE: Purging All Dropped Objects from a Tablespace
You can use the PURGE TABLESPACE command to purge all dropped tables and other
dependent objects from a specific tablespace. The syntax is as follows:

PURGE TABLESPACE hr;

You can also purge only objects from a tablespace belonging to a specific user, using
the following form of the command:

Note: The behavior in this case is the opposite of the behavior of
FLASHBACK TABLE... TO BEFORE DROP, where using the original
name of the table retrieves the most recently dropped version from the
recycle bin.

Oracle Flashback Drop: Undo a DROP TABLE Operation

7-12 Backup and Recovery Basics

PURGE TABLESPACE hr USER scott;

PURGE RECYCLEBIN: Purging All Objects in a User's Recycle Bin
The PURGE RECYCLEBIN command purges the contents of the recycle bin for the
currently logged-in user.

PURGE RECYCLEBIN;

It purges all tables and their dependent objects for this user, along with any other
indexes owned by this user but not on tables owned by the user.

PURGE DBA_RECYCLEBIN: Purging All Recycle Bin Objects
If you have the SYSDBA privilege, then you can purge all objects from the recycle bin,
regardless of which user owns the objects, using this command:

PURGE DBA_RECYCLEBIN;

Dropping a Tablespace, Cluster, User or Type and the Recycle Bin
When a tablespace is dropped including its contents, the objects in the tablespace are
dropped immediately, and not placed in the recycle bin. Any objects in the recycle bin
from the dropped tablespace are purged from the recycle bin.

If all objects from a tablespace have been placed in the recycle bin, then dropping the
tablespace causes the objects to be purged, even if you do not use the INCLUDING
CONTENTS clause with DROP TABLESPACE.

When a user is dropped, any objects belonging to the user that are not in the recycle
bin are dropped immediately, not placed in the recycle bin. Any objects in the recycle
bin that belonged to the user are purged from the recycle bin.

When you drop a cluster, all tables in the cluster are purged. When you drop a
user-defined data type, all objects directly or indirectly dependent upon that type are
purged.

Privileges and Security for Flashback Drop
This section summariezes the system privileges required for the operations related to
Flashback Drop and the recycle bin.

■ DROP

Any user with drop privileges over the object can drop the object, placing it in the
recycle bin.

■ FLASHBACK TABLE... TO BEFORE DROP

Privileges are tied to the privileges for DROP. That is, any user who can drop an
object can perform Flashback Drop to retrieve the dropped object from the recycle
bin.

■ PURGE

Privileges are tied to the DROP privileges. Any user having DROP TABLE or DROP
ANY TABLE privileges can purge the objects from the recycle bin.

■ SELECT for objects in the Recycle Bin

Users must have SELECT and FLASHBACK privileges over an object in the recycle
bin to be able to query the object in the recycle bin. Any users who had the
SELECT privilege over an object before it was dropped continue to have the

Reversing Database Changes with Flashback Database

Performing Flashback and Database Point-in-Time Recovery 7-13

SELECT privilege over the object in the recycle bin.Users must have FLASHBACK
privilege to query any object in the recycle bin, because these are objects from a
past state of the database.

Limitations and Restrictions on Flashback Drop
■ The recycle bin functionality is only available for non-system, locally managed

tablespaces. If a table is in a non-system, locally managed tablespace, but one or
more of its dependent segments (objects) is in a dictionary-managed tablespace,
then these objects are protected by the recycle bin.

■ There is no fixed amount of space allocated to the recycle bin, and no guarantee as
to how long dropped objects remain in the recycle bin. Depending upon system
activity, a dropped object may remain in the recycle bin for seconds, or for months.

■ While Oracle permits queries against objects stored in the recycle bin, you cannot
use DML or DDL statements on objects in the recycle bin.

■ You can perform Flashback Query on tables in the recycle bin, but only by using
the recycle bin name. You cannot use the original name of the table.

■ A table and all of its dependent objects (indexes, LOB segments, nested tables,
triggers, constraints and so on) go into the recycle bin together, when you drop the
table. Likewise, when you perform Flashback Drop, the objects are generally all
retrieved together.

It is possible, however, that some dependent objects such as indexes may have
been reclaimed due to space pressure. In such cases, the reclaimed dependent
objects are not retrieved from the recycle bin.

■ Due to security concerns, tables which have Fine-Grained Auditing (FGA) and
Virtual Private Database (VPD) policies defined over them are not protected by the
recycle bin.

■ Partitioned index-organized tables are not protected by the recycle bin.

■ The recycle bin does not preserve referential constraints on a table (though other
constraints will be preserved if possible). If a table had referential constraints
before it was dropped (that is, placed in the recycle bin), then re-create any
referential constraints after you retrieve the table from the recycle bin with
Flashback Drop.

Reversing Database Changes with Flashback Database
If your database was previously configured for flashback logging as described in
"Setup and Maintenance for Oracle Flashback Database" on page 5-8, then you can use
the FLASHBACK DATABASE command to return your database contents to points in
time within the flashback window. You can also use FLASHBACK DATABASE to return
to any guaranteed restore point you previously defined using the commands in
"Creating Normal and Guaranteed Restore Points" on page 5-7.

This section explains the common scenarios for using Flashback Database to reverse
unwanted changes to your database. It contains the following topics:

■ Performing Flashback Database: Scenario

■ Performing Flashback Database to a Guaranteed Restore Point

■ Performing Flashback Database to Undo an OPEN RESETLOGS

Reversing Database Changes with Flashback Database

7-14 Backup and Recovery Basics

Performing Flashback Database: Scenario
This section presents a basic outline of the process for performing Flashback Database
in almost all cases, specifying the desired target point in time using a time expression,
the name of a normal or guaranteed restore point, or an SCN.

To perform a Flashback Database operation in RMAN, use the following steps:

1. Determine the desired SCN, restore point or point in time for the FLASHBACK
DATABASE command.

2. Start RMAN and connect to the target database. For example:

rman TARGET /

3. Shut down the database cleanly, and ensure that it is not opened by any instance.
Then mount it:

RMAN> SHUTDOWN IMMEDIATE;
RMAN> STARTUP MOUNT;

4. Repeat the query from"Determining the Current Window for Flashback Database"
on page 5-11. Some flashback logging data is generated when the database is shut
down. It is possible that your target SCN is no longer reachable, if some flashback
database logs were deleted due to space pressure in the flash recovery area in
response to that logging.

Note: If you do not have a guaranteed restore point defined, verify
that the target SCN is within the flashback window, the range of SCNs
for which you can use FLASHBACK DATABASE. See "Determining the
Current Window for Flashback Database" on page 5-11 for details on
determining the flashback window, and "Listing Restore Points" on
page 5-7 for details on determining whether there is a guaranteed
restore point you can use in recovery.

If the flashback window does not extend far enough back into the past
to reach the desired target time and you do not have a guaranteed
restore point at the desired time, you can achieve similar results by
using database point-in-time recovery, as described in "Performing
Database Point-In-Time Recovery" on page 7-19.

Note:

■ If you plan to specify the target using an SCN, and you want to
return the database to a state with changes that were abandoned
using a previous point-in-time recovery or Flashback Database
operation, then see "Flashback Database and Ambiguous SCNs
Across Incarnations" on page 7-16 for special considerations.

■ You can use the method in "Performing Flashback Database to a
Guaranteed Restore Point" on page 7-17if your goal is to flash
back to a guaranteed restore point.

■ If the goal is to return the database to the point in time
immediately before the most recent OPEN RESETLOGS operation,
use the steps in "Performing Flashback Database to Undo an
OPEN RESETLOGS" on page 7-17.

Reversing Database Changes with Flashback Database

Performing Flashback and Database Point-in-Time Recovery 7-15

5. During Flashback Database, RMAN may need to restore some archived redo logs
from backup. If the backups are on tape and you have not configured the
necessary channels to access the SBT device, then use a RUN block around the
FLASHBACK DATABASE command and issue ALLOCATE CHANNEL commands as
needed to allow RMAN to retrieve these logs from disk or tape.

6. Run the RMAN FLASHBACK DATABASE command, specifying the target time
using one of the forms of the command shown in the following examples:

RMAN> FLASHBACK DATABASE TO SCN 46963;

RMAN> FLASHBACK DATABASE
 TO RESTORE POINT BEFORE_CHANGES;

RMAN> FLASHBACK DATABASE TO TIME
 "TO_DATE('09/20/00','MM/DD/YY')";

When the FLASHBACK DATABASE command completes, the database is left mounted
and recovered to the specified point in time.

You can verify that you have returned the database to the desired state, by opening the
database read-only and performing some queries to inspect the database contents.

RMAN> SQL 'ALTER DATABASE OPEN READ ONLY';

Options After a Successful Flashback Database Operation
If you are satisfied with the state of the database after the Flashback Database
operation, you have two choices:

■ Make the database available for updates by performing an OPEN RESETLOGS
operation:

RMAN> ALTER DATABASE OPEN RESETLOGS;

■ Use Oracle export utilities (Original Export or Data Pump Export) to export the
objects whose state was corrupted. Then, recover the database to the present time:

RMAN> RECOVER DATABASE;

This step undoes the effect of the Flashback Database, by re-applying all changes
in the redo logs to the database, returning it to the most recent SCN.

Note: If you attempt FLASHBACK DATABASE and your target SCN is
now outside the flashback window, then FLASHBACK DATABASE will
fail with an ORA-38729 error. In such a case, however, your database
will not be changed.

Note: Once you perform this OPEN RESETLOGS operation, all
changes to the database after the target SCN for FLASHBACK
DATABASE are abandoned. However, you can use the method in
"Flashback Database To The Right of Open Resetlogs: Example" on
page 7-18 to return the database to that range of SCNs while they
remain in the flashback window.

Reversing Database Changes with Flashback Database

7-16 Backup and Recovery Basics

After re-opening the database read-write, you can import the exported objects
using the import utility corresponding to the export utility used earlier (Original
Import or Data Pump Import).

Options After Flashback Database to the Wrong Time
If, after investigating the state of your database, you find that you used the wrong
restore point, time or SCN for Flashback Database, then you have several options:

■ If your chosen target time was not far enough in the past, then you can use
another FLASHBACK DATABASE command to rewind the database further in time.

RMAN> FLASHBACK DATABASE TO SCN 42963; #earlier than current SCN

■ If you chose a target SCN that is too far in the past, then you can mount the
database and use RECOVER DATABASE UNTIL to wind the database forward in
time to the desired SCN:

RMAN> RECOVER DATABASE UNTIL SCN 56963; #later than current SCN

■ If you want to completely undo the effect of the FLASBACK DATABASE command,
you can perform complete recovery of the database by using the RECOVER
DATABASE command without an UNTIL clause or SET UNTIL command:

RMAN> RECOVER DATABASE;

This re-applies all changes to the database, returning it to the most recent SCN.

Flashback Database and Ambiguous SCNs Across Incarnations
In databases that have previously undergone point-in-time recovery or Flashback
Database, an SCN can be an ambiguous method of designating a point in time.

The effect of Flashback Database or DBPITR followed by an OPEN RESETLOGS is to
return the database to a previous SCN, and to abandon changes after that point.
Therefore, some SCNs after that point can refer either to changes that were abandoned
or changes in the current history of the database.

By default, an SCN used as an argument for the FLASHBACK DATABASE command is
assumed to refer to a point in time in the current incarnation path, that is, to an
incarnation that was not abandoned after some previous DBPITR or Flashback
Database. If this is the goal, then you can use the procedure in this section with an
SCN to specify the target for Flashback Database.

In cases when you want to use Flashback Database to reach a point in time
corresponding to changes that were abandoned after a previous Flashback Database or
DBPITR, you can use the method described in "Flashback Database To The Right of
Open Resetlogs: Example" on page 7-18.

Unlike SCNs, time expressions and restore points are not ambiguous. A time
expression is always associated with the incarnation that was current at that time. A
restore point is always associated with the current incarnation when it was created.
This is true even for times and restore points that correspond to abandoned database
incarnations. The database incarnation is automatically reset to the incarnation that
was current at the specified time or when the restore point was created.

See Also: "Point-in-Time Recovery and Database Incarnations:
Concepts" on page 7-19 for useful background information about
database incarnations, abandoned changes, and the effects of OPEN
RESETLOGS.

Reversing Database Changes with Flashback Database

Performing Flashback and Database Point-in-Time Recovery 7-17

Performing Flashback Database to a Guaranteed Restore Point
You can list the available guaranteed restore points using the V$RESTORE_POINT
view, as follows:

SQL> SELECT NAME, SCN, TIME, DATABASE_INCARNATION#,
 GUARANTEE_FLASHBACK_DATABASE
 FROM V$RESTORE_POINT
 WHERE GUARANTEE_FLASHBACK_DATABASE='YES';

NAME SCN TIME DATABASE_INCARNATION# GUA
--------------- ---------- --------------------- --------------------- ---
BEFORE_CHANGES 5753126 04-MAR-05 12.39.45 AM 2 YES

Having identified the restore point to use, mount the database and run the
FLASHBACK DATABASE command, using the restore point. For example:

RMAN> SHUTDOWN IMMEDIATE;
RMAN> STARTUP MOUNT;
RMAN> FLASHBACK DATABASE TO RESTORE POINT 'BEFORE_CHANGES';

When the command completes, you may open the database read-only and inspect the
effects of the operation, and if satisfied, open the database with the RESETLOGS
option.

Performing Flashback Database to Undo an OPEN RESETLOGS
The basic procedure for using Flashback Database to reverse an unwanted OPEN
RESETLOGS is very similar to the general case described in "Performing Flashback
Database: Scenario" on page 7-14.

However, rather than specifying a particular SCN or point in time for the FLASHBACK
DATABASE command, use FLASHBACK DATABASE TO BEFORE RESETLOGS, as in the
following example.

Before performing the flashback, verify that the beginning of the flashback window is
earlier than the time of the most recent OPEN RESETLOGS.

sql> select resetlogs_change# from v$database;
sql> select oldest_flashback_scn from v$flashback_database_log;

If V$DATABASE.RESETLOGS_CHANGE# is greater than V$FLASHBACK_DATABASE_
LOG.OLDEST_FLASHBACK_SCN, then you can use Flashback Database to reverse the
OPEN RESETLOGS.

Shut down the database, mount it, and re-check the flashback window. If the resetlogs
SCN is still within the flashback window, then use this form of the FLASHBACK
DATABASE command:

RMAN> FLASHBACK DATABASE TO BEFORE RESETLOGS;

As with other uses of FLASHBACK DATABASE, if the target SCN is prior to the
beginning of the flashback database window, an error is returned and the database is
not modified. If the command completes successfully, then the database is left
mounted and recovered to the last SCN before the OPEN RESETLOGS in the previous
incarnation.

You can open the database read-only and perform queries to make sure the data is in
the desired state. To make the database available for updates again, use ALTER
DATABASE OPEN RESETLOGS command.

Reversing Database Changes with Flashback Database

7-18 Backup and Recovery Basics

Flashback Database Across OPEN RESETLOGS With Standby Databases
Support for Flashback Database across OPEN RESETLOGS enables several applications
of Flashback Database with standby databases. These include:

■ Flashback to undo logical standby switchovers, in which the database reverts to
its role (primary or standby) at the target time for the Flashback Database
operation

■ Undo of a physical standby activation, so that you can temporarily activate a
physical standby database, use it for testing or reporting purposes, then use
Flashback Database to return it to its role as a physical standby

■ Ongoing use of a clone or standby database for testing, without requiring the use
of storage snapshots.

See Oracle Data Guard Concepts and Administration for details on these advanced
applications of Flashback Database with Data Guard.

Flashback Database To The Right of Open Resetlogs: Example
In some cases, you may need to return the database to a point in time in the parent
incarnation, later than the SCN of the OPEN RESETLOGS at which the current
incarnation path branched from the old incarnation. These points, which correspond to
abandoned changes in the parent incarnation, can be described as being "to the right"
of the last OPEN RESETLOGS, with reference to an incarnation diagram such as
Figure 7–1, "Database Incarnation History With Multiple Resetlogs" on page 7-20. For
example, in the diagram, the database might be in incarnation 3, and you might need
to return to the abandoned SCN 1500 in incarnation 1.

You can use the RMAN RESET DATABASE TO INCARNATION command to specify the
current incarnation referred to by the SCN to use with Flashback Datbase.

The process is as follows:

■ Verify that the flashback logs contain enough information to flash back to that
SCN:

sql> select oldest_flashback_scn from v$flashback_database_log;

■ Determine the target incarnation number for the flashback, that is, the incarnation
key for the parent incarnation:

SQL> select prior_incarnation# from v$database_incarnation where status =
'CURRENT';

■ In RMAN, shut down the database, then mount it:

RMAN> SHUTDOWN IMMEDIATE;
RMAN> STARTUP MOUNT;

■ Set the database incarnation to the parent incarnation:

RMAN> RESET DATABASE TO INCARNATION 1;

■ Run the FLASHBACK DATABASE command:

RMAN> FLASHBACK DATABASE TO SCN 1500;

Once the flashback is complete, you can verify the results, and if successful, open the
database with RESETLOGS.

Performing Database Point-In-Time Recovery

Performing Flashback and Database Point-in-Time Recovery 7-19

Performing Database Point-In-Time Recovery
Database point-in-time recovery (DBPITR) restores the database from backups prior
to the target time for recovery, then uses incremental backups and redo to roll the
database forward to the target time.

DBPITR is sometimes called incomplete recovery because it does not use all of the
available redo or completely recover all changes to your database.

The target SCN can be specified using a date and time, in which case the operation is
sometimes called time-based recovery.

Requirements for Database Point-in-Time Recovery
The requirements for database point-in-time recovery are as follows:

■ Your database must be running in ARCHIVELOG mode.

■ You must have backups of all datafiles from before the target SCN for DBPITR and
archived redo logs for the period between the SCN of the backups and the target
SCN.

Point-in-Time Recovery and Database Incarnations: Concepts
Understanding DBPITR requires background information on database incarnations
and how RMAN treats backups from times not in the current incarnation path. In
particular, there are special considerations if you are returning your database to a
point in time prior to the most recent OPEN RESETLOGS.

This section contains the following topics:

■ Understanding Parent, Ancestor and Sibling Database Incarnations

■ Incarnation History of a Database: Example

■ Database Incarnations and Orphaned Backups

Understanding Parent, Ancestor and Sibling Database Incarnations
A new incarnation of a database is created whenever each time the database is opened
with the RESETLOGS option. Performing an OPEN RESETLOGS archives the current
online redo logs, Incarnation resets the log sequence number to 1, and then gives the
online redo logs a new time stamp and SCN. It also increments the incarnation
number, which is used to uniquely tag and identify a stream of redo.

Incarnations can stand in several relations to each other:

■ The incarnation from which the current incarnation branched following an OPEN
RESETLOGS operation is called the parent incarnation of the current incarnation.

■ The parent incarnation and all of its parent incarnations are the ancestor
incarnations of the current incarnation.

■ Two incarnations that share a common ancestor are sibling incarnations if neither
one is an ancestor of the other.

Incarnation History of a Database: Example
Figure 7–1, "Database Incarnation History With Multiple Resetlogs" shows a database
that goes through several incarnations.

Performing Database Point-In-Time Recovery

7-20 Backup and Recovery Basics

Figure 7–1 Database Incarnation History With Multiple Resetlogs

Incarnation 1 of the database starts at SCN 1, and continues through SCN 1000 to SCN
2000. At SCN 2000 in incarnation 1, you perform a point-in-time recovery back to SCN
1000, and open the datbase with a RESETLOGS operation. This creates incarnation 2,
which begins at SCN 1000 and contines to SCN 3000. At SCN 3000 in incarnation 2,
you perform another point-in-time recovery and RESETLOGS operation. This creates
incarnation 3, starting at SCN 2000.

You can view the incarnation history of a database using the LIST INCARNATION
command. Output describing the incarnation history in the figure is:

LIST INCARNATION;

List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- -------- -------------- ------- ---------- ----------
1 1 TRGT 930791268 PARENT 1 23-APR-05
2 2 TRGT 930791268 PARENT 1000 23-APR-05
3 3 TRGT 930791268 CURRENT 2000 23-APR-05

The value in the Reset SCN column is the SCN at which the RESETLOGS was
performed. The Inc Key column is the incarnation key. RMAN uses the incarnation
key to identify the database incarnation in some commands, such as using RESET
DATABASE TO INCARNATION to change the current incarnation in some complex
recovery scenarios.

Sibling Incarnations, Ambiguous SCNs and RESET DATABASE INCARNATION When working
with a database where flashback or point-in-time recovery operations have produced
sibling incarnations, note that a given SCN value can refer to more than one point in
time, depending upon which incarnation has been set as the current incarnation. For
example, in the figure, SCN 1500 could refer to a point in incarnation 1 or 2.

See also: Oracle Database Backup and Recovery Reference for details
about the RESET DATABASE command

Incarnation 3

Incarnation 1
In

ca
rn

at
io

n
2

SCN 1 SCN 1000

SCN 2
00

0

SCN 3
00

0

SCN 3000

SCN 2000

Performing Database Point-In-Time Recovery

Performing Flashback and Database Point-in-Time Recovery 7-21

By default, when used with an RMAN command like FLASHBACK DATABASE or
RECOVER... UNTIL, an SCN is assumed to refer to the current incarnation path, rather
than sibling incarnations. However, you can use the RESET DATABASE TO
INCARNATION command to specify that SCNs are to be interpreted in the frame of
reference of another incarnation. For example, consider the following command used
in point-in-time recovery:

RMAN> RECOVER DATABASE TO SCN 1500;

If used in the database described in Figure 7–1, SCN 1500 refers to incarnation 2 by
default. If, however, you run the following sequence of commands:

RMAN> RESET DATABASE INCARNATION TO 1;
RMAN> RECOVER DATABASE TO SCN 1500;

SCN 1500 refers to the point in time during incarnation 1 when the SCN was 1500.

Database Incarnations and Orphaned Backups
When a database goes through multiple incarnations, some backups can become
orphaned. Orphaned backups are backups that are created during incarnations of the
database that are not ancestors of the current incarnation.

Given the database from the example in "Point-in-Time Recovery and Database
Incarnations: Concepts" on page 7-19, the following table explains which backups are
orphans, based upon which incarnation is current.

Uses of Orphaned Backups Orphaned backups are usable by RMAN in cases where you
wish to restore the database to a point in time not in the current incarnation path.
RMAN is able to restore backups from direct ancestor incarnations and recover to the
current time, even across OPEN RESETLOGS operations, as long as a continuous path
of archived logs exists from the earliest backups to the point to which you want to
recover. RMAN can also perform restore and recovery with orphaned backups, if you
restore a control file from an incarnation in which the changes represented in the
backups had not been abandoned.

Preparing for Database Point-in-Time Recovery
Take the following steps to prepare for DBPITR:

■ Determine the target time, SCN, restore point, or log sequence number that
should end recovery. The Flashback Query, Flashback Version Query and

Current
Incarnation Usable Backups (Nonorphaned) Orphaned Backups

Incarnation 1 All backups from incarnation 1 All backups from incarnations 2
and 3

Incarnation 2 ■ All backups from incarnation 1
prior to SCN 1000

■ All backups from incarnation 2

■ Backups from incarnation 1
after SCN 1000.

■ All backups from incarnation 3

Incarnation 3 ■ All backups from incarnation 1
prior to SCN 1000

■ All backups from incarnation 2
prior to SCN 2000

■ All backups from incarnation 3

■ All backups from incarnation 1
after SCN 1000

■ All backups from incarnation 2
after SCN 2000

Performing Database Point-In-Time Recovery

7-22 Backup and Recovery Basics

Flashback Transaction Query features can help you identify when the logical
corruption occured.

You can also examine the alert.log for information that may help you
determine the time of the event from which you need to recover.

Alternatively, you can determine the log sequence number that contains the target
SCN, and then recover through that log. For example, query V$LOG_HISTORY to
view the logs that have been archived.

RECID STAMP THREAD# SEQUENCE# FIRST_CHAN FIRST_TIM NEXT_CHANG
---------- ---------- ---------- ---------- ---------- --------- ----------
 1 344890611 1 1 20037 24-SEP-04 20043
 2 344890615 1 2 20043 24-SEP-04 20045
 3 344890618 1 3 20045 24-SEP-04 20046

If, for example, you discover that a user accidentally dropped a tablespace at 9:02
a.m., then you can recover to 9 a.m., just before the drop occurred. You will lose all
changes to the database made after that time.

■ If you are using a target time expression instead of a target SCN, then make sure
that the time format environment variables are set appropriately before invoking
RMAN. The following are sample Globalization Support settings:

NLS_LANG = american_america.us7ascii
NLS_DATE_FORMAT="Mon DD YYYY HH24:MI:SS"

Database Point-in-Time Recovery Within the Current Incarnation
DBPITR within the current incarnation is performed using the current control file.
When performing DBPITR, you can avoid errors by using the SET UNTIL command
to set the target time at the beginning of the process, rather than specifying the UNTIL
clause on the RESTORE and RECOVER commands individually. This ensures that the
datafiles restored from backup will have timestamps early enough to be used in the
subsequent RECOVER operation.

The steps required for DBPITR are as follows:

1. Connect RMAN to the target database and, if applicable, the recovery catalog
database. Bring the database to a MOUNT state:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;

2. Perform the following operations within a RUN block:

a. Use SET UNTIL to specify the target time, restore point, SCN, or log sequence
number for DBPITR. If specifying a time, then use the date format specified in
the NLS_LANG and NLS_DATE_FORMAT environment variables.

b. If automatic channels are not configured, then manually allocate disk and
tape channels as needed.

c. Restore and recover the database.

The following example performs DBPITR on the target database until SCN 1000:

RUN
{
 SET UNTIL SCN 1000;
 # Alternatives:
 # SET UNTIL TIME 'Nov 15 2004 09:00:00';

Performing Database Point-In-Time Recovery

Performing Flashback and Database Point-in-Time Recovery 7-23

 # SET UNTIL SEQUENCE 9923;
 RESTORE DATABASE;
 RECOVER DATABASE;
}

If the operation completes without errors, then your DBPITR has succeeded. You can
open the database read-only and perform queries as needed to ensure that the effects
of the logical corruption have been reversed. If not, you may have chosen the wrong
target SCN. In such a case, investigate the unwanted change further and determine a
new target SCN, then repeat the DBPITR process.

Using a Time Expression for Database Point-in-Time Recovery
You can use a time expression instead of the SCN in the SET UNTIL statement, as
shown in the preceding example. However, note that if you use SET UNTIL TIME to
specify the target time for point-in-time recovery, some times that you can specify may
not be in the current incarnation. The database may have been in an ancestor
incarnation, or even in a sibling incarnation, at the target time. If your target time is
not in the current incarnation, then see "Point-in-Time Recovery to an Ancestor
Incarnation" on page 7-24 for more information on DBPITR to ancestor incarnations,
and Oracle Database Backup and Recovery Advanced User's Guide for more information on
DBPITR to incarnations that are not ancestors of the current incarnation.

Options After Database Point-in-Time Recovery
After a successful DBPITR, your choices are:

■ Export one or more objects from your database using an Oracle export utility such
as Data Pump Export. You can then recover the database to the current point in
time and re-import the exported objects, as a way to return these objects to their
state prior to the unwanted change without abandoning all other changes.

■ Open your database for read-write, abandoning all changes after the target SCN.
In such a case, you must open the database with the RESETLOGS option, as shown
here:

RMAN> ALTER DATABASE OPEN RESETLOGS;

The current online redo logs are archived, the log sequence number is reset to 1,
and the online redo logs are given a new time stamp and SCN. Identifying redo
log files with a new log sequence number and incarnation eliminates the
possibility of corrupting datafiles by the application of obsolete archived redo
logs.

The OPEN RESETLOGS operation will fail if a datafile is off-line, unless the datafile
went offline normally or is read-only. You can bring files in read-only or offline
normal tablespaces online after the RESETLOGS because they do not need any
redo.

Note: You can also use time expressions, restore points, or log
sequence numbers to specify the SET UNTIL time:

 SET UNTIL TIME 'Nov 15 2004 09:00:00';
 SET UNTIL SEQUENCE 9923;
 SET UNTIL RESTORE POINT before_update;

Performing Database Point-In-Time Recovery

7-24 Backup and Recovery Basics

Point-in-Time Recovery to an Ancestor Incarnation
The main differences between DBPITR within the current incarnation and to an SCN
in an ancestor incarnation are that you must reset the incarnation of the database to the
incarnation that was current at the target SCN, and you must restore a control file from
the incarnation containing the target SCN.

Assume the following situation:

■ You run RMAN with a recovery catalog.

■ You have a backup of target database trgt from October 2, 2004.

■ DBPITR was performed on this database on October 10, 2004 to correct an earlier
error. The OPEN RESETLOGS operation at the end of that DBPITR started a new
incarnation.

On October 25, you discover that you need crucial data that was dropped from the
database at 8:00 a.m. on October 8, 2004. This time is prior to the beginning of the
current incarnation.

To perform point-in-time recovery to the older incarnation, use the following steps:

1. Determine which incarnation was current at the time of the backup of 2 October.
Use LISTINCARNATION to find the primary key of the incarnation that was
current at the target time:

LIST INCARNATION OF DATABASE trgt;

List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- ------- ------ ------- ---------- ----------
1 2 TRGT 1224038686 PARENT 1 02-OCT-04
1 582 TRGT 1224038686 CURRENT 59727 10-OCT-04

Look at the Reset SCN and Reset Time columns to identify the correct
incaration, and note the incarnation key in the Inc Key column. In this case, the
incarnation key value is 2.

2. Make sure the database is started but not mounted.

STARTUP FORCE NOMOUNT

3. Reset trgt to the incarnation that was current at the time of the backup of 2
October. Use the value from the Inc Key column to identify the incarnation.

reset database to old incarnation
RESET DATABASE TO INCARNATION 2;

4. Restore and recover the database, performing the following actions in the RUN
command:

■ Set the end time for recovery to the time just before the loss of the data.

■ Allocate any channels required that are not already configured.

■ Restore the control file from the October 2 backup and mount it.

■ Restore the datafiles and recover the database. Use the RECOVER DATABASE
... UNTIL command to perform point-in-time recovery, bringing the database
to the target time of 7:55 a.m. on October 8, just before the data was lost.

The following example shows all of the steps required in this case:

RUN

Performing Database Point-In-Time Recovery

Performing Flashback and Database Point-in-Time Recovery 7-25

{
 # set target time for all operations in the RUN block
 SET UNTIL TIME 'Oct 8 2004 07:55:00';
 RESTORE CONTROLFILE ;
without recovery catalog, use RESTORE CONTROLFILE FROM AUTOBACKUP
 ALTER DATABASE MOUNT;
 RESTORE DATABASE;
 RECOVER DATABASE;
}

ALTER DATABASE OPEN RESETLOGS;

Performing Database Point-In-Time Recovery

7-26 Backup and Recovery Basics

Recovery Manager Maintenance Tasks 8-1

8
Recovery Manager Maintenance Tasks

This chapter describes how to manage the RMAN repository and some maintenance
tasks related to the flash recovery area.

This chapter contains these topics:

■ Managing the RMAN Repository Using Only the Control File

■ Using CROSSCHECK to Update the RMAN Repository

■ Using Multiple RMAN Channels for Maintenance Operations

■ Changing the Status of a Backup Record

■ Cataloging Archived Logs and User-Managed Copies

■ Uncataloging RMAN Records

■ Flash Recovery Area Maintenance

Managing the RMAN Repository Using Only the Control File
The authoritative RMAN repository is always stored in the database control file.
RMAN repository data can also be stored in one or more recovery catalog databases,
as an adjunct to the information stored in the control file, and to provide a longer
history of backups.

While RMAN is designed to work without a recovery catalog, if you choose not to use
a recovery catalog, you must perform some additional administrative tasks.

Backing Up and Restoring the Control File
If you are not using a recovery catalog, the control file is the sole storage for the
RMAN repository, so it is doubly important that you protect it. Maintain alternate
control files through multiplexing or operating system mirroring, and back up the
control file frequently.

Configure CONTROLFILE AUTOBACKUP to ON to ensure extra protection for your
control file.

See Also: Oracle Database Backup and Recovery Advanced User's
Guide for details on managing the RMAN repository when using a
recovery catalog

See Also: Oracle Database Administrator's Guide for a conceptual
overview of the control file and more details about managing
control files.

Managing the RMAN Repository Using Only the Control File

8-2 Backup and Recovery Basics

So long as a control file autobackup is available, RMAN can restore the SPFILE and
backup control file, and mount the database. After the control file is mounted, you can
restore the remainder of the database.

Note that, if you restore a control file from autobackup, any persistent settings you set
with the CONFIGURE command will revert to the values they had at the time of the
control file autobackup. You should review the settings with the SHOW ALL command
after restoring the control file.

Monitoring the Overwriting of Control File Records
When you do not use a recovery catalog, the control file is the sole source of
information about RMAN backups. As you make backups, Oracle records these
backups in the control file. To prevent the control file from growing without bound to
hold RMAN repository data, records can be reused if they are older than a threshhold
you specify.

The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter determines the
minimum age in days of a record before it can be overwritten:

CONTROL_FILE_RECORD_KEEP_TIME = integer

For example, if the parameter value is 14, then any record aged 14 days and older is a
candidate for reuse. Information in an overwritten record is lost. The oldest record
available for reuse will be used first.

When Oracle needs to add new RMAN repository records to the control file, but no
record is older than the threshhold, Oracle attempts to expand the size of the control
file. If the underlying operating system prevents the expansion of the control file (due
to a disk full condition, for instance), Oracle overwrites the oldest record in the control
file and logs this action in the alert log.

The default value of CONTROL_FILE_RECORD_KEEP_TIME is 7 days. If you are not
using a recovery catalog, then set the CONTROL_FILE_RECORD_KEEP_TIME value to
slightly longer than the oldest file that you need to keep. For example, if you back up
the whole database once a week, then you need to keep every backup for at least seven
days. Set CONTROL_FILE_RECORD_KEEP_TIME to a value such as 10 or 14.

Managing the Overwriting of Control File Records
Assume the following scenario:

■ You do not use a recovery catalog.

■ CONTROL_FILE_RECORD_KEEP_TIME is set to 14.

■ All records currently in the control file are between 1 and 13 days old.

See Also:

■ "Backing Up Control Files with RMAN" to learn about manual
and automatic control file backups

■ Oracle Database Backup and Recovery Advanced User's Guide to
learn how to restore a database when the current control file
and recovery catalog are unavailable

Caution: Regardless of whether you use a recovery catalog,
never use RMAN when CONTROL_FILE_RECORD_KEEP_TIME is
set to 0. If you do, then you may lose backup records.

Managing the RMAN Repository Using Only the Control File

Recovery Manager Maintenance Tasks 8-3

■ The control file is at the maximum size permitted by the operating system.

You make a backup of the database. Because Oracle cannot expand the control file
beyond the operating system file size limit, it begins overwriting records in the control
file, starting with the oldest ones. For each record that it overwrites, it records an entry
in the alert.log similar to the one shown here:

kccwnc: following control file record written over:
RECID #72 Recno 72 Record timestamp
07/28/00 22:15:21
Thread=1 Seq#=3460
Backup set key: stamp=372031415, count=17
Low scn: 0x0000.3af33f36
07/27/00 21:00:08
Next scn: 0x0000.3af3871b
07/27/00 23:23:54
Resetlogs scn and time
scn: 0x0000.00000001
08/05/99 10:46:44
Block count=102400 Blocksize=512

The most certain way to avoid this situation is to use a recovery catalog. If you cannot
use a recovery catalog, then you can take the following measures to avoid problems
associated with overwriting control file records:

■ Store the control file in a file system rather than raw disk, so that it can expand as
needed.

■ Monitor the alert.log to make sure that Oracle is not overwriting control file
records.

Interaction of Flash Recovery Area and CONTROL_FILE_RECORD_KEEP_TIME
When a control file record containing information about a file created in the flash
recovery area is about to be reused (because the record is older than CONTROL_FILE_
RECORD_KEEP_TIME), if the file is eligible for deletion then the database attempts to
delete the file from the flash recovery area. Otherwise, the database expands the size of
the control file section containing the record for this file, logging the expansion in the
alert log with a message like this example:

kccwnc: trying to expand control file section nnnn for Oracle Managed Files

where nnnn is the number of the control file record type.

If the control file is at the maximum size supported under the host operating system,
then the database cannot expand the control file. In such a situation, this warning
appears in the alert log:

WARNING: Oracle Managed File filename is unknown to control file. This is the
result of limitation in control file size that could not keep all recovery area
files.

This means that the control file cannot hold a record of all flash recovery area files
needed to satisfy the configured retention policy.

There are several ways to avoid or alleviate this problem:

See Also: Oracle Database Backup and Recovery Advanced User's
Guide for a conceptual overview of control file records and how
they are reused

Using CROSSCHECK to Update the RMAN Repository

8-4 Backup and Recovery Basics

■ Use a control file of larger block size, preferably one with 32K block size. To
achieve this, you must set the SYSTEM tablespace block size to be greater than or
equal to the control file block size, and re-create the control file after changing DB_
BLOCK_SIZE.

■ Make the files in the flash recovery area eligible for deletion, by backing them up
to tertiary storage such as tape. For example, you can use the RMAN command
BACKUP RECOVERY AREA to specifically back up files in the flash recovery area to
your media manager.

■ Make more files in the flash recovery area eligible for deletion, by changing the
retention policy to a shorter recovery window or lower degree of redundancy.

Using CROSSCHECK to Update the RMAN Repository
To ensure that data about backups in the recovery catalog or control file is
synchronized with corresponding data on disk or in the media management catalog,
perform a crosscheck. The CROSSCHECK command operates only on files that are
recorded in the recovery catalog or the control file.

This section contains these topics:

■ About RMAN Crosschecks

■ Basic Use of CROSSCHECK with Backup Sets and Image Copies

■ Crosschecking Specific Backup Sets and Copies

■ Crosschecking Backups of Specific Database Files

About RMAN Crosschecks
Crosschecks update outdated RMAN repository information about backups whose
repository records do not match their physical status. For example, if a user removes
archived logs from disk with an operating system command, the repository still
indicates that the logs are on disk, when in fact they are not.

If the backup is on disk, then the CROSSCHECK command determines whether the
header of the file is valid. If the backup is on tape, then the command simply checks
that the backup exists. The possible status values for backups are AVAILABLE,
UNAVAILABLE, and EXPIRED.

You can view the status of backups using the RMAN LIST command, or by
queryingV$BACKUP_FILES or many of the recovery catalog views such as RC_
DATAFILE_COPY or RC_ARCHIVED_LOG. Running a crosscheck updaets the RMAN
repository so that all of these methods provide accurate information. For each backup
in the RMAN repository, if the backup is no longer available, then RMAN marks it as
EXPIRED. If it was EXPIRED and is now available, then RMAN marks it AVAILABLE.

Note: The CROSSCHECK command does not delete operating
system files, and it does not remove RMAN repository records of
backups that are not available at the time of the crosscheck. It only
updates the repository records with the status of the backups. Use
the DELETE command to remove records of expired backups from
the RMAN repository.

Using CROSSCHECK to Update the RMAN Repository

Recovery Manager Maintenance Tasks 8-5

Basic Use of CROSSCHECK with Backup Sets and Image Copies
After connecting to the target database and recovery catalog (if you use one), run
CROSSCHECK commands as needed to verify the status and availability of backups
known to RMAN.

If you have channnels configured for your tape or other media manager, you can
crosscheck all backups on all media with CROSSCHECK BACKUP as shown in this
example:

CROSSCHECK BACKUP;

If you do not have configured channels for your tape backups, you can allocate a
maintenance channel in a RUN block before running CROSSCHECK as in this example:

RUN {
 ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE sbt;
 CROSSCHECK BACKUP;
}

This example shows how to crosscheck disk image copies only:

CROSSCHECK COPY; # crosschecks only disk copies of
 # database files

This example shows how to crosscheck backup sets only:

CROSSCHECK BACKUPSET; # crosschecks backupsets on disk and SBT

Crosschecking Specific Backup Sets and Copies
You can use the LIST command to report your backups and then use the
CROSSCHECK command to check that specific backups described in the LIST output
still exist. The DELETE EXPIRED command deletes repository records for backups that
fail the crosscheck.

To crosscheck specified backups:

1. Identify the desired backups that you want to check by issuing a LIST command.
For example, issue:

LIST BACKUP; # lists all backup sets, proxy copies, and image copies

2. Check whether the specified backups still exist. For example, enter:

CROSSCHECK BACKUP; # checks backup sets, proxy copies, and image copies
CROSSCHECK COPY OF DATABASE;
CROSSCHECK BACKUPSET 1338, 1339, 1340;
CROSSCHECK BACKUPPIECE TAG = 'nightly_backup';
CROSSCHECK CONTROLFILECOPY '/tmp/control01.ctl';
CROSSCHECK DATAFILECOPY 113, 114, 115;
CROSSCHECK PROXY 789;

: ■ "Deleting Backups" on page 8-6 to learn how to delete
unwanted backups and update repository records

■ Oracle Database Backup and Recovery Reference for CROSSCHECK
command syntax and a description of the repository status
values

Deleting Backups

8-6 Backup and Recovery Basics

Crosschecking Backups of Specific Database Files
You can use options of the CROSSCHECK command to check only backups of a specific
database, tablespace, datafile, control file, or archived redo log. For example:

CROSSCHECK BACKUP OF DATAFILE "?/oradata/trgt/system01.dbf"
 COMPLETED AFTER 'SYSDATE-14';
CROSSCHECK BACKUP OF ARCHIVELOG ALL SPFILE;
You can check for backups of archived redo logs and SPFILE using this command:

CROSSCHECK BACKUP OF ARCHIVELOG ALL SPFILE;

Limiting RMAN CROSSCHECK to a Backups Since a Specific Time
You can add a COMPLETED AFTER clause to a CROSSCHECK command to restrict the
checking to backups created after a specified point in time. For example, this
command checks for backups of a datafile created in the last week:

CROSSCHECK BACKUP OF DATAFILE 4
 COMPLETED AFTER 'SYSDATE-14';

Deleting Backups
You can use RMAN to delete backups created with RMAN. Deleting backups using
RMAN both deletes the specified backups and updates the RMAN repository to reflect
the deletion.

This section contains these topics:

■ Deleting Specified Backups

■ Deleting Expired RMAN Backups after CROSSCHECK

■ Using DELETE FORCE With RMAN Backups

■ Deleting Obsolete RMAN Backups Based on Retention Policies

Deleting Specified Backups
In general, use the DELETE command to remove backups that you do not want to
retain. DELETE removes the physical files from the backup media, deletes the record of
the backup from the recovery catalog (if RMAN is connected to a recovery catalog),
and updates the records of these backups in the control file to status DELETED.

The DELETE command supports deleting several types of backups, including:

See Also: Oracle Database Backup and Recovery Reference for more
details on using CROSSCHECK to check backups of specific database
files

Note: Backups with DELETED status do not appear in the LIST
command output. You can, however, query V$ control file views to
get information about deleted backups.

See Also:

■ Oracle Database Backup and Recovery Reference for DELETE syntax

■ Oracle Database Backup and Recovery Reference for descriptions of
the recovery catalog views

Deleting Backups

Recovery Manager Maintenance Tasks 8-7

DELETE BACKUP (which deletes backup sets, proxy copies, and image copies), DELETE
COPY (which deletes only image copies), or DELETE ARCHIVELOG as in these
examples:

The DELETE command supports a wide range of options to identify backups to delete.
For complete information about these options, see Oracle Database Backup and Recovery
Reference. The following examples show many of the common ways to specify backups
and archived logs to delete using theDELETE command:

■ Deleting backups using primary keys from LIST output:

DELETE BACKUPPIECE 101;

■ Deleting backups by filename on disk:

DELETE CONTROLFILECOPY '/tmp/control01.ctl';

■ Deleting archived redo logs from disk:

DELETE NOPROMPT ARCHIVELOG UNTIL SEQUENCE = 300;

■ Deleting backups based on tags:

DELETE BACKUP TAG='before_upgrade';

■ Delete backups based on the objects backed up and the media or disk location
where the backup is stored:

DELETE BACKUP OF TABLESPACE users DEVICE TYPE sbt; # delete only from tape
DELETE COPY OF CONTROLFILE LIKE '/tmp/%'; #

■ Delete all backups for this database recorded in the RMAN repository:

DELETE BACKUP;

■ Delete backups and archived redo logs from disk based on whether they are
backed up on tape:

DELETE ARCHIVELOG ALL
 BACKED UP 3 TIMES TO sbt;

If you run RMAN interactively, then RMAN asks for confirmation before deleting any
files. You can suppress these confirmations by using the NOPROMPT keyword with
any form of the BACKUP command:

DELETE NOPROMPT ARCHIVELOG ALL;

Deleting Expired RMAN Backups after CROSSCHECK
When the CROSSCHECK command is used to determine whether backups recorded in
the repository still exist on disk or tape, if RMAN cannot locate the backups, then it
updates their records in the RMAN repository to EXPIRED status. You can then use
the DELETE EXPIRED command to remove records of expired backups from the
RMAN repository. If the expired files still exist, then the DELETE EXPIRED command
terminates with an error.

To delete expired repository records:

1. If you have not performed a crosscheck recently, then issue a CROSSCHECK
command. For example, issue:

CROSSCHECK BACKUP; # checks backup sets and copies on configured channels

Deleting Backups

8-8 Backup and Recovery Basics

2. Delete the expired backups. For example, issue:

DELETE EXPIRED BACKUP;

Using DELETE FORCE With RMAN Backups
It is possible for the RMAN repository to indicate that an object has one status while
the actual status of the object on the media is different. For example, the RMAN
repository says that a backup set is AVAILABLE when it is in fact no longer present on
disk or tape (or missing from the media manager's catalog of the contents of tapes or
other backup media). If you attempt to delete the object, then you receive a warning
such as the following:

RMAN-06207: WARNING: 1 objects could not be deleted for DISK channel(s) due
RMAN-06208: to mismatched status. Use CROSSCHECK command to fix status
List of Mismatched objects
==========================
 Object Type Filename/Handle
--------------- ---
Backup Piece 0id270ud_1_1

If you use the DELETE command with the optional FORCE keyword, RMAN deletes
the specified backups, but ignores any I/O errors, including those that occur when a
backup is missing from disk or tape. It then updates the RMAN repository to reflect
the fact that the backup is deleted, regardless of whether RMAN was able to delete the
file or whether the file was already missing. For example:

DELETE FORCE NOPROMPT BACKUPSET TAG 'weekly_bkup';

Deleting Obsolete RMAN Backups Based on Retention Policies
The RMAN DELETE command supports an OBSOLETE option, which deletes backups
that are obsolete, that is, no longer needed to satisfy specified recoverability
requirements. You can delete files obsolete according to the configured default
retention policy, or another retention policy that you specify as an option to the
DELETE OBSOLETE command. As with other forms of the DELETE command, the files
deleted are removed from backup media, deleted from the recovery catalog, and
marked as DELETED in the control file.

Note: The DELETE EXPIRED command issues warnings if any
objects marked as EXPIRED actually exist. In rare cases, the
repository can mark an object as EXPIRED even though the object
exists. For example, a directory containing an object is corrupted at
the time of the crosscheck, but is later repaired, or the media
manager was not configured properly and reported some backups
as not existing when they really existed.

See Also:

■ Oracle Database Backup and Recovery Advanced User's Guide to
learn about DELETE behavior when the backup media and
repository are not synchronized

■ Oracle Database Backup and Recovery Reference for DELETE
command syntax

Using Multiple RMAN Channels for Maintenance Operations

Recovery Manager Maintenance Tasks 8-9

If you specify the DELETE OBSOLETE command with no arguments, then RMAN
deletes all obsolete backups defined by the currently configured retention policy For
example:

DELETE OBSOLETE;

You can also use the REDUNDANCY or RECOVERY WINDOW clauses with DELETE to
delete backups obsolete under a specific retention policy instead of the configured
default:

DELETE OBSOLETE REDUNDANCY = 3;
DELETE OBSOLETE RECOVERY WINDOW OF 7 DAYS;

DELETE OBSOLETE Behavior When KEEP UNTIL Time Expires
DELETE OBSOLETE does not delete backups required to satisfy the specified retention
policy, even if some backups have KEEP UNTIL times set which have passed to
override the retention policy.

The KEEP UNTIL clause never causes RMAN to consider a backup obsolete, if the
backup is still required to satisfy the retention policy. KEEP UNTIL can cause backups
to be kept longer than the retention policy requires, but never causes a backup to
become obsolete sooner than the retention policy requires.

Backups are never obsolete if they are still needed to meet the retention policy,
regardless of any KEEP UNTIL time. With a recovery window-based retention policy,
even if the specified KEEP UNTIL time has expired, the backup is retained if the
backup is needed to satisfy the recovery window. With a redundancy-based retention
policy, even if the specified KEEP UNTIL time has expired, the backup is retained as
long as it is required to satisfy the redundancy requirement.

Using Multiple RMAN Channels for Maintenance Operations
This section contains these topics:

■ About Allocating Multiple RMAN Channels for Maintenance Commands

■ How RMAN Crosschecks and Deletes on Multiple Channels

■ Crosschecking Disk and Tape Channels with One Command: Example

■ Crosschecking on Multiple Oracle Real Application Cluster Nodes: Example

■ Deleting on Disk and Tape Channels with One DELETE Command: Example

■ Releasing Multiple Channels: Example

About Allocating Multiple RMAN Channels for Maintenance Commands
You can configure or manually allocate multiple channels before issuing CROSSCHECK
or DELETE commands. RMAN searches for each backup on all channels that have the
same device type as the channel used to create the backup. The multichannel feature is
primarily intended for use when crosschecking or deleting backups on both disk and
tape within a single command.

How RMAN Crosschecks and Deletes on Multiple Channels
When you configure or manually allocate multiple channels and run a CROSSCHECK
or DELETE command, RMAN performs the crosscheck or delete on all channels that
have the appropriate device type.

Using Multiple RMAN Channels for Maintenance Operations

8-10 Backup and Recovery Basics

For example, assume that you prefer to manually allocate channels rather than use
configured channels. You have a media manager configured, but have never made
backups to tape. You have created only one backup of a database to disk, as follows:

RUN
{
 ALLOCATE CHANNEL ch1 DEVICE TYPE DISK CONNECT 'SYS/sys_pwd@node2';
 BACKUP DATABASE;
}

Assume that you issue the following series of commands at the RMAN prompt:

ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE DISK CONNECT 'SYS/oracle@node1';
AlLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE DISK CONNECT 'SYS/oracle@node2';
ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE sbt;
CROSSCHECK BACKUP OF DATABASE;

Because the RMAN repository has a record of the database backup to disk, it
crosschecks backups accessible on the two disk channels (and finds the backup on the
second channel). Because the RMAN repository has no record of any sbt backups, the
CROSSCHECK command does not access the allocated SBT channel.

Crosschecking Disk and Tape Channels with One Command: Example
If you have multiple configured channels for disk and tape, RMAN uses all configured
channels to perform crosschecks on both backup destinations simultaneously.

For example, assume that you have an sbt channel configured as follows:

CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
CONFIGURE DEFAULT DEVICE TYPE sbt;

In this case you can run the following command to perform a crosscheck on both DISK
and sbt:

CROSSCHECK BACKUP OF DATABASE;

RMAN uses both the sbt channel and the preconfigured DISK channel to perform the
crosscheck. Sample output follows:

allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: sid=12 devtype=SBT_TAPE
channel ORA_SBT_TAPE_1: WARNING: Oracle Test Disk API
using channel ORA_DISK_1
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=/oracle/dbs/16c5esv4_1_1 recid=36 stamp=408384484
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=/oracle/dbs/c-674966176-20000915-01 recid=37 stamp=408384496
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=12c5erb2_1_1 recid=32 stamp=408382820
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=13c5erba_1_1 recid=33 stamp=408382829
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=14c5erce_1_1 recid=34 stamp=408382863
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=c-674966176-20000915-00 recid=35 stamp=408382869

If you do not have an automatic sbt channel configured, then can also manually
allocate maintenance channels on disk and tape as in the following example:

RUN {
 ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE sbt;

Using Multiple RMAN Channels for Maintenance Operations

Recovery Manager Maintenance Tasks 8-11

 CROSSCHECK BACKUP OF DATABASE;
}

Note that you do not have to manually allocate a disk channel because RMAN uses
the preconfigured disk channel.

Crosschecking on Multiple Oracle Real Application Cluster Nodes: Example
When crosschecking on multiple nodes (and when operating RMAN in general),
configure the cluster so that all backups can be accessed by every node, regardless of
which node created the backup. When the cluster is configured this way, you can
allocate channels at any node in the cluster during restore or crosscheck operations.

If you cannot configure the cluster so that each node can access all backups, then
during restore and crosscheck operations, you must allocate channels on multiple
nodes by providing the CONNECT option to the CONFIGURE CHANNEL command, so
that every backup can be accessed by at least one node. If some backups are not
accessible during crosscheck because no channel was configured on the node that can
access those backups, then those backups are marked EXPIRED in the RMAN
repository after the crosscheck.

For example, you can use CONFIGURE CHANNEL... CONNECT... in an Oracle Real
Application Cluster (RAC) configuration in which tape backups are created on various
nodes in the cluster and each backup is only accessible on the node on which it is
created.

In this example, assume a RAC cluster with two nodes, each one of which requires a
channel to access some backups for the crosscheck. You configure the channels as
shown here:

CONFIGURE DEVICE TYPE DISK PARALLELISM 2;
CONFIGURE CHANNEL 1 DEVICE TYPE DISK CONNECT 'SYS/oracle@node_1';
CONFIGURE CHANNEL 2 DEVICE TYPE DISK CONNECT 'SYS/oracle@node_2';

Then, crosscheck the cluster nodes with the following command:

CROSSCHECK BACKUP;

Deleting on Disk and Tape Channels with One DELETE Command: Example
You can also perform deletions on all allocated channels. In the following example,
you configure an sbt channel:

CONFIGURE DEVICE TYPE sbt PARALLELISM 1;
CONFIGURE DEFAULT DEVICE TYPE TO sbt;

Then, you run a command to delete all backup sets from disk and tape:

DELETE BACKUPSET;

RMAN uses both the configured sbt channel and the preconfigured DISK channel
when deleting. In the following sample output, note that RMAN prompts you for
confirmation before deleting any files:

using channel ORA_SBT_TAPE_1
using channel ORA_DISK_1

List of Backup Pieces
BP Key BS Key Pc# Cp# Status Device Type Piece Name
------- ------- --- --- ----------- ----------- ----------
388 387 1 1 AVAILABLE SBT_TAPE 12c5erb2_1_1

Deleting a Database with RMAN

8-12 Backup and Recovery Basics

397 396 1 1 UNAVAILABLE SBT_TAPE 13c5erba_1_1
424 423 1 1 AVAILABLE SBT_TAPE 14c5erce_1_1
428 427 1 1 AVAILABLE SBT_TAPE c-674966176-20000915-00
433 432 1 1 AVAILABLE DISK /oracle/dbs/16c5esv4_1_1
437 436 1 1 AVAILABLE DISK /oracle/dbs/c-674966176-20000915-01

Do you really want to delete the above objects (enter YES or NO)? y
deleted backup piece
backup piece handle=/oracle/dbs/16c5esv4_1_1 recid=36 stamp=408384484
deleted backup piece
backup piece handle=/oracle/dbs/c-674966176-20000915-01 recid=37 stamp=408384496
deleted backup piece
backup piece handle=12c5erb2_1_1 recid=32 stamp=408382820
deleted backup piece
backup piece handle=13c5erba_1_1 recid=33 stamp=408382829
deleted backup piece
backup piece handle=14c5erce_1_1 recid=34 stamp=408382863
deleted backup piece
backup piece handle=c-674966176-20000915-00 recid=35 stamp=408382869

The following example manually allocates DISK and sbt maintenance channels and
then deletes specific backup sets from both disk and tape:

RUN {
 ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE DISK;
 ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE sbt;
 DELETE BACKUPSET 1,2,3,4,5;
}

RMAN looks for the specified backup sets on the channels and deletes any it finds. If
RMAN does not find a backup on any channel, then RMAN marks the object as
deleted in the control file and deletes the recovery catalog record (if you use a recovery
catalog).

Releasing Multiple Channels: Example
You can release all allocated maintenance channels by running this command:

RELEASE CHANNEL;

Deleting a Database with RMAN
You may need to remove a database from the operating system. For example, you
create a test database and then no longer have a use for it. In such a situation, use the
DROP DATABASE command from within RMAN, or the DROP DATABASE statement in
SQL*Plus.

DROP DATABASE requires that RMAN be connected to the target database, and that the
target database be mounted. The command does not require connection to the
recovery catalog. If RMAN is connected to the recovery catalog, and if you specify the
option INCLUDE COPIES AND BACKUPS, then RMAN also unregisters the database.

To drop a database:

1. Connect RMAN to the target database and (optionally) recovery catalog. For
example:

See Also: Oracle Database Backup and Recovery Advanced User's
Guide to learn how to use the SQL*Plus DROP DATABASE command

Changing the Status of a Backup Record

Recovery Manager Maintenance Tasks 8-13

rman TARGET / CATALOG rman/rman@catdb

2. Catalog all backups that are associated with the database. For example, the
following commands catalogs files in the flash recovery area, and then in a
secondary archiving destination:

RMAN> CATALOG START WITH '+disk1'; # all files from flash recovery area
 # (stored on ASM disk)
RMAN> CATALOG START WITH '/arch_dest2'; # all files from second arch dest

3. Delete all backups and copies associated with the database. For example:

RMAN> DELETE BACKUPSET; # deletes all backups
RMAN> DELETE COPY; # delete all image copies (including archived logs)

4. Remove the database from the operating system (and automatically unregister it
from the recovery catalog if you are connected to the catalog). For example:

DROP DATABASE; # delete all database files and unregister the database

Changing the Status of a Backup Record
This section contains the following sections:

■ Marking a Backup AVAILABLE or UNAVAILABLE

■ Exempting a Long-Term Backup from the Retention Policy

Marking a Backup AVAILABLE or UNAVAILABLE
Run the CHANGE ... UNAVAILABLE command when a backup cannot be found or has
migrated offsite. RMAN does not use files marked UNAVAILABLE in RESTOREor
RECOVER commands. If the file is later found or returns to the main site, then you can
mark it available again by issuing CHANGE ... AVAILABLE.

Note that files in the flash recovery area cannot be marked as UNAVAILABLE.

To mark a file's status in the repository as UNAVAILABLE or AVAILABLE:

1. Issue a LIST command to determine the availability status of RMAN backups. For
example, issue:

LIST BACKUP;

2. Run CHANGE with the UNAVAILABLE or AVAILABLE keyword to update its status
in the RMAN repository. For example, enter:

CHANGE DATAFILECOPY '/tmp/control01.ctl' UNAVAILABLE;
CHANGE COPY OF ARCHIVELOG SEQUENCE BETWEEN 1000 AND 1012 UNAVAILABLE;
CHANGE BACKUPSET 12 UNAVAILABLE;
CHANGE BACKUP OF SPFILE TAG "TAG20020208T154556" UNAVAILABLE;
CHANGE DATAFILECOPY '/tmp/system01.dbf' AVAILABLE;
CHANGE BACKUPSET 12 AVAILABLE;
CHANGE BACKUP OF SPFILE TAG "TAG20020208T154556" AVAILABLE;

Exempting a Long-Term Backup from the Retention Policy
The BACKUP ... KEEP command can create a backup that is retained for a different
period of time from that specified by the configured retention policy. The backup is

See Also: Oracle Database Backup and Recovery Reference for
CHANGE command syntax

Cataloging Archived Logs and User-Managed Copies

8-14 Backup and Recovery Basics

still a fully valid backup, however, and can be restored just as any other RMAN
backup. This type of backup is called a long-term backup.

Specify KEEP ... LOGS to save archived logs for a possible incomplete recovery and
KEEP ... NOLOGS not to save archived logs for a possible incomplete recovery. Note
that NOLOGS is not valid with an inconsistent backup.

Use the CHANGE command to alter the KEEP status of a backup that already exists. For
example, you may decide that you no longer want to keep a long-term backup. The
same options available for BACKUP ... KEEP are available with CHANGE ... KEEP.

Note that you cannot set KEEP attributes on files stored in the flash recovery area.

To alter the KEEP status of a backup:

Issue CHANGE ... KEEP to define a different retention period for this backup, or
CHANGE ... NOKEEP to let the retention policy apply to this file.

This example allows a backup set to be marked obsolete by the retention policy:

CHANGE BACKUPSET 231 NOKEEP;

This example makes a datafile copy exempt from the retention policy for 180 days (6
months):

CHANGE DATAFILECOPY '/tmp/system01.dbf' KEEP UNTIL 'SYSDATE+180';

Cataloging Archived Logs and User-Managed Copies
You can make RMAN aware of the existence of archived logs that are not recorded in
the repository as well as file and backup piece copies that are created through means
other than RMAN. This section contains the following topics:

■ About Cataloging Archived Logs and User-Managed Copies

■ Cataloging User-Managed Datafile Copies

■ Cataloging Backup Pieces

■ Cataloging All Files in a Disk Location

About Cataloging Archived Logs and User-Managed Copies
The target database control file keeps records of all archived logs generated by the
target database as well as all RMAN backups. The purpose of the CATALOG command
is to add metadata to the repository when it does not have a record of files that you
want RMAN to know about.

Note: The KEEP FOREVER clause requires the use of a recovery
catalog, because the control file cannot contain an infinitely large
set of RMAN repository data.

Note: If you use KEEP UNTIL to specify a minimum time to keep a
backup, the backup can be kept longer than the time specified if it is
needed to satisfy the retention policy. RMAN's DELETE OBSOLETE
command does not delete backups needed to satisfy the retention
policy, even if KEEP UNTIL has been used to set a minimum length of
time for the backup to be kept.

Cataloging Archived Logs and User-Managed Copies

Recovery Manager Maintenance Tasks 8-15

Run the RMAN CATALOG command when:

■ You use an operating system utility to make copies of datafiles, archived logs, or
backup pieces. In the case, the repository has no record of them.

■ You perform recovery with a backup control file and you change the archiving
destination or format during recovery. In this situation, the repository will not
have information about archived logs needed for recovery. Hence, you must
catalog these logs.

■ You want to catalog datafile copy as a level 0 backup, thus enabling you to
perform an incremental backup later by using the datafile copy as the base of an
incremental backup strategy

■ You want to catalog user-managed copies of Oracle7 database files created before
you migrated to a higher release, or of Oracle8 and higher database files created
before you started to use RMAN. These datafile copies enable you to recover the
database if it crashes after migration but before you have a chance to take a
backup of the migrated database.

Whenever you make a user-managed copy, for example, by using the UNIX cp
command to copy a datafile, make sure to catalog it. When making user-managed
copies, you can use the ALTER TABLESPACE ... BEGIN/END BACKUP statement to
make datafile copies off an online tablespace. Although RMAN does not create such
datafile copies, you can use the CATALOG command to add them to the recovery
catalog so that RMAN is aware of them.

For a user-managed copy to be cataloged, it must be:

■ Accessible on disk

■ A complete image copy of a single file

■ Either a datafile copy, control file copy, archived redo log copy, or backup piece
copy

For example, if you store datafiles on mirrored disk drives, then you can create a
user-managed copy by breaking the mirror. In this scenario, use the CATALOG
command to notify RMAN of the existence of the user-managed copy after breaking
the mirror. Before reforming the mirror, run a CHANGE ... UNCATALOG command to
notify RMAN that the file copy no longer exists.

Cataloging User-Managed Datafile Copies
Use the CATALOG command to propagate information about user-managed copies to
the RMAN repository. After the files are cataloged, you can run LIST or query
V$BACKUP_FILES to confirm.

To create and catalog a user-managed copy of a datafile:

1. Make a datafile copy with an operating system utility. ALTER TABLESPACE
BEGIN/END BACKUP is necessary if the database is open and the datafiles are
online while the backup is in progress. This example backs up an online datafile.

SQL> ALTER TABLESPACE users BEGIN BACKUP;
% cp $ORACLE_HOME/oradata/trgt/users01.dbf /tmp/users01.dbf;
SQL> ALTER TABLESPACE users END BACKUP;

2. After connecting to the target database and, if desired, the recovery catalog, run
the CATALOG command. For example, enter:

CATALOG DATAFILECOPY '/tmp/users01.dbf';

Cataloging Archived Logs and User-Managed Copies

8-16 Backup and Recovery Basics

If you try to catalog a datafile copy from a database other than the connected
target database, then RMAN issues an error such as the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03009: failure of catalog command on default channel at 08/29/2001
14:44:34
ORA-19563: datafile copy header validation failed for file /tmp/tools01.dbf

Cataloging Backup Pieces
You can catalog backup pieces on disk. This technique is useful if you use an operating
system utility to copy backup pieces from location to another on the same host, or
from one host to another. You can even catalog a backup piece from a prior incarnation
of the database. RMAN can determine whether that backup piece can be used during a
subsequent restore and recovery operation.

To catalog a backup piece:

1. After connecting RMAN to the target database, catalog the filenames of the
backup pieces. For example:

CATALOG BACKUPPIECE '/disk2/09dtq55d_1_2', '/disk2/0bdtqdou_1_1';

After a backup piece is cataloged, you can display its metadata by querying
V$BACKUP_PIECE, V$BACKUP_SET, V$BACKUP_DATAFILE, V$BACKUP_
REDOLOG, and V$BACKUP_SPFILE.

2. You can query V$ views to verify your changes. For example:

SELECT HANDLE FROM V$BACKUP_PIECE;

Cataloging All Files in a Disk Location
If you use Automatic Storage Management (ASM), an Oracle Managed Files
framework, or the flash recovery area, then you may need a way to recatalog files that
are known to the disk management system but are no longer listed in the RMAN
repository. This situation can occur when the intended mechanisms for tracking
filenames fails due to media failure, software bug, or user error.

See Also: Oracle Database Backup and Recovery Reference for
CATALOG command syntax

Note: If you are cataloging backup pieces from a release earlier
than Oracle9i, you can achieve significant performance gains by
cataloging the highest copy numbers first. Otherwise, RMAN must
examine all pieces to determine the correct order. For example,
catalog copy 3 of a piece before copy 2:

CATALOG BACKUPPIECE '/disk2/09dtq55d_1_3',
'/disk2/09dtq55d_1_2';

Backup pieces from Oracle Database Release 10g are not affected by
this issue and can be cataloged in any order.

See Also: Oracle Database Backup and Recovery Reference for
CATALOG BACKUPPIECE restrictions

Uncataloging RMAN Records

Recovery Manager Maintenance Tasks 8-17

The CATALOG START WITH command enables you to search through all files in an
ASM disk group, Oracle Managed Files location, or traditional file system directory
and investigate those that are not recorded in the RMAN repository. If the command
can catalog a file, then it will; if it cannot catalog it, then it makes its best guess about
the contents of the skipped file.

To catalog all files in a disk location:

After connecting RMAN to the target database, specify the disk location whose files
you want to catalog. For example:

RMAN> CATALOG START WITH '+disk'; # catalog all files from an ASM disk group
RMAN> CATALOG START WITH '/fs1/datafiles/'; # catalog all files in directory

Cataloging Flash Recovery Area Contents
The CATALOG RECOVERY AREA command will catalog all files in the flash recovery
area. During this operation, any files in the recovery area that are not listed in the
RMAN repository are added to the RMAN repository. For example:

CATALOG RECOVERY AREA;

Uncataloging RMAN Records
This section contains the following topics:

■ About Uncataloging RMAN Records

■ Removing Records for Files Deleted with Operating System Utilities

About Uncataloging RMAN Records
Run the CHANGE ... UNCATALOG command to perform the following actions on
RMAN repository records:

■ Update a backup record in the control file repository to status DELETED

■ Delete a specific backup record from the recovery catalog (if you use one)

RMAN does not touch the specified physical files: it only alters the repository records
for these files.

You can use this command when you have deleted a backup through a means other
than RMAN. For example, if you delete archived redo logs with an operating system
utility, then remove the record for this log from the repository by issuing CHANGE
ARCHIVELOG ... UNCATALOG.

Removing Records for Files Deleted with Operating System Utilities
To remove catalog records for files deleted with operating system utilities, run the
CHANGE ... UNCATALOG command.

To remove the catalog record for a backup deleted with an operating system utility:

Note: Wildcard characters are not legal in the START WITH
clause.

Flash Recovery Area Maintenance

8-18 Backup and Recovery Basics

1. Run a CHANGE ... UNCATALOG command for the backups that you deleted from
the operating system with operating system commands. This example deletes
repository references to disk copies of the control file and datafile 1:

CHANGE CONTROLFILECOPY '/tmp/control01.ctl' UNCATALOG;
CHANGE DATAFILECOPY '/tmp/system01.dbf' UNCATALOG;

2. Optionally, view the relevant recovery catalog view, for example, RC_DATAFILE_
COPY or RC_CONTROLFILE_COPY, to confirm that a given record was removed.
For example, this query confirms that the record of copy 4833 was removed:

SELECT CDF_KEY, STATUS
FROM RC_DATAFILE_COPY
WHERE CDF_KEY = 4833;

CDF_KEY STATUS
---------- ------
0 rows selected.

Flash Recovery Area Maintenance
While the flash recovery area is largely self-managing, there are some situations in
which DBA intervention may be required.

Resolving a Full Flash Recovery Area
You have a number of choices on how to resolve a full flash recovery area when there
are no files eligible for deletion:

■ Make more disk space available, and increase DB_RECOVERY_FILE_DEST_SIZE
to reflect the new space.

■ Move backups from the flash recovery area to a tertiary device such as tape. One
convenient way to back up all of your flash recovery area files to tape at once is the
BACKUP RECOVERY AREA command.

After you transfer backups from the flash recovery area to tape, you can resolve
the full recovery area condition by deleting files from the flash recovery area,
using forms of the RMAN DELETE command.

■ Delete unnecessary files from the flash recovery area using the RMAN DELETE
command. (Note that if you use host operating system commands to delete files,
then the database will not be aware of the resulting free space. You can run the
RMAN CROSSCHECK command to have RMAN re-check the contents of the flash
recovery area and identify expired files, and then use the DELETE EXPIRED
command to remove missing files from the RMAN repository.)

Note: Flashback logs, by design, cannot be backed up outside the
flash recovery area. Therefore, in a BACKUP RECOVERY AREA
operation the flashback logs are not backed up to tape.

Flashback logs are deleted automatically to satisfy the need for space
for other files in the flash recovery area. However, a guaranteed
restore point can force the retention of flashback logs required to
perform Flashback Database to the restore point SCN. See

Flash Recovery Area Maintenance

Recovery Manager Maintenance Tasks 8-19

You may also need to consider changing your backup retention policy and, if using
Data Guard, consider changing your archivelog deletion policy.

Changing the Flash Recovery Area to a New Location
If you need to move the flash recovery area of your database to a new location, you
can follow this procedure:

1. Invoke SQL*Plus to change the DB_RECOVERY_FILE_DEST initialization
parameter. For example:

ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='+disk1' SCOPE=BOTH SID='*';

After you change this parameter, all new flash recovery area files will be created in
the new location.

2. The permanent files (control files and online redo log files), flashback logs and
transient files can be left in the old flash recovery area location. The database will
delete the transient files from the old flash recovery area location as they become
eligible for deletion.

If you need to actually move your current permanent files, transient files, or
flashback logs to the new flash recovery area, see Oracle Database Backup and
Recovery Advanced User's Guide . The process outlined there for moving database
files into and out of an ASM disk group with RMAN will also work when moving
files into and out of a flash recovery area location.

Oracle will clean up transient files remaining in the old flash recovery area location as
they become eligible for deletion.

Flash Recovery Area Behavior When Instance Crashes During File Creation
As a rule, the flash recovery area is self-maintaing, but when an instance crashes
during the creation of a file in the flash recovery area, Oracle may leave the file in the
flash recovery area. When this occurs, you will see the following error in the alert log:

ORA-19816: WARNING: Files may exist in location that are not known to database.

where location is the location of the flash recovery area.

In such a situation, you should use the RMAN command CATALOG RECOVERY AREA
to re-catalog any such files so that they appear in the RMAN repository. If the file
header of the file in question is corrupted, then you will have to delete the file
manually using an operating system-level utility.

See Also: Chapter 4, "Backing Up Databases Using RMAN" for
more on how to decide on a retention policy, and Oracle Data Guard
Concepts and Administration for more on archivelog deletion policy
with Data Guard

See Also: "Backing Up to the Flash Recovery Area and to Tape:
Basic Scenarios" on page A-7

Flash Recovery Area Maintenance

8-20 Backup and Recovery Basics

RMAN-Based Disk and Tape Backup Strategies: Scenarios A-1

A
RMAN-Based Disk and Tape Backup

Strategies: Scenarios

This chapter presents in detail several disk-only and disk-and-tape-based backup
strategies that make effective use of RMAN, incrementally updated backups, and the
flash recovery area.

This chapter contains the following sections:

■ Backing Up to the Flash Recovery Area: Basic Scenarios

■ Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios

Backing Up to the Flash Recovery Area: Basic Scenarios
For all of the following scenarios, assume that the RMAN environment and flash
recovery area are configured as shown in "Configure Flash Recovery Area for
Disk-Based Backups: Example" on page 3-21.

Scripting Disk-Only Backups
The details of your backup script depend on the database load and the amount of disk
space allocated. The following scripts are categorized based on different patterns of
database updates and the minimum amount of disk space allocated for the flash
recovery area required to achieve the recovery window on disk.

If few database blocks change, then the incremental backup size will be significantly
less than the size of the database, and the best practice is to take incremental backups,
to make efficient use of disk space and other resources.

If most or all database blocks change frequently, then the size of incremental backup
will be roughly as large as the size of the database, and the best practice is to
periodically make a complete image copy of the database.

In the following scenarios, you do not need to back up archived logs because Oracle
archives the logs to the flash recovery area. They will remain in the flash recovery area
for as long as they are required by the retention policy. All database backups are also
all directed to the flash recovery area.

This section contains the following topics:

■ Backup Scripts When Few Data Blocks Change

■ Backup Scripts When Blocks Change Frequently

■ Backup Scripts When a Moderate Number of Blocks Change Weekly

Backing Up to the Flash Recovery Area: Basic Scenarios

A-2 Backup and Recovery Basics

Backup Scripts When Few Data Blocks Change
If most data blocks do not change each day, incremental backups will be small and you
can plan your strategy around daily incremental backups.

Initial Setup The minimum recommended flash recovery area size on disk is dependent
on the how frequent the backups are taken and retention policy used.

If your configured retention policy is REDUNDANCY X and you plan to take a backup
every Y days, then the formula for the recommended flash recovery area disk quota is:

Disk Quota =
Size of X copies of database +
Size of one copy of incremental backups +
Size of (Y+1) days of archived logs

If you configure your retention policy to a recovery window of X days and execute
your backup script once in Y days then you can calculate your required disk quota by
one of two formulas. If X>=Y then the formula for the recommended flash recovery
area disk quota is:

Disk Quota =
Size of one copy of database +
Size of (floor(X/Y) + 1) copies of incremental backups +
Size of (X * ceil(X/Y) +1) days of archived logs

where ceil(X/Y) is the smallest integer greater than or equal to X/Y and
floor(X/Y) is the largest integer less than or equal to X/Y.

If X <Y then the recommended formula is:

Disk Quota =
Size of one copy of database +
Size of 2 copies of incremental backups +
Size of (Y +1) days of archived logs

Size your flash recovery area according to the applicable formula.

For this example, assume that the retention policy is REDUNDANCY 1:

RMAN> CONFIGURE RETENTION POLICY TO REDUNDANCY 1;

Also assume that backups will be performed daily.

Daily Script The daily backup script would look like this:

RMAN> RECOVER COPY OF DATABASE WITH TAG "whole_db_cpy";
Make an incremental backup of the database to the flash recovery area.
RMAN> BACKUP INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY WITH TAG "whole_db_copy"
 DATABASE;

Assume that there are no backups tagged "whole_db_copy" as of the first day of this
backup scheme. The results of running this script daily are as follows:

■ On the first day, the RECOVER statement would have no effect, and the
BACKUP... FOR RECOVER OF COPY would create the initial level 0 database
copy.

■ On the second day, the RECOVER statement still has no effect, as there is no level 1
incremental backup to be applied to the level 0 incremental database copy. The
BACKUP command creates the first incremental level 1 backup.

Backing Up to the Flash Recovery Area: Basic Scenarios

RMAN-Based Disk and Tape Backup Strategies: Scenarios A-3

■ Each day after that, the incremental level 1 from the previous day is applied over
the level 0 database copy, rolling it forward to the time of the incremental level 1 of
the previous day, and a new incremental level 1 is created, containing all changes
since the level 1 incremental backup of the previous day.

Assuming that this backup strategy is put into effect on February 1, the following table
shows how the flash recovery area contents change over time as a result of the
strategy. (Note that the flash recovery area may contain other files based on other
backup activities; this table only represents files related to this strategy.)

To alter the example slightly: if you can size the flash recovery area to hold n days
worth of archived logs and incremental backups (where n > 1), then you can alter the
RECOVER line to RECOVER COPY UNTIL TIME 'SYSDATE-n'. For example, if the flash
recovery area is large enough to hold three days of incremental backups, then you can
change the script as follows:

RECOVER COPY OF DATABASE TAG "whole_db_copy" UNTIL TIME 'SYSDATE-3';
Make an incremental backup of the database to the flash recovery area.
BACKUP INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY WITH TAG "whole_db_copy"
 DATABASE;

Every day that you run the script, RMAN rolls forward the whole database copy to an
SCN three days before the current time. Hence, the disk quota rules will preserve
archived logs and incremental backups created after SYSDATE-3 (because they are
needed to recover the database to an SCN within the last three days.

The following table lists the set of files expected to be in the flash recovery area each
day after the daily script for this strategy is run.

Table A–1 Backup Timeline for Scenario When Few Blocks Change: Version 1

Day Script Effects Flash Recovery Area Contents After Script

Sun Feb 1 1. Attempt incremental
update, which has no
effect because there is no
level 0 backup.

2. Create level 0 backup.

Level 0 incremental image copy backup, with
SCN as of Sun Feb 1

Mon Feb 2 1. Attempt incremental
update, which has no
effect because there is no
level 1 incremental.

2. Back up level 1
incremental.

Level 0 incremental image copy backup with
SCN as of Sun Feb 1, level 1 incremental
backup containing changes from Feb 1
through Feb. 2, archived logs from Feb 1
through today

Feb 3 and
after

1. Perform incremental
update of level 0, rolling
it forward to the
prcvious day.

2. Back up level 1
incremental.

Level 0 incremental image copy backup rolled
forward to previous day's level 1 SCN, level 1
incremental backup with changes for previous
24 hours, archived logs from February 1
through today.

Old incremental backups and archived logs
not useful for recovery of the rolled-forward
level 0 backup are automatically deleted when
more free space is needed in the flash recovery
area.

Backing Up to the Flash Recovery Area: Basic Scenarios

A-4 Backup and Recovery Basics

Table A–2 Backup Timeline, Scenario When Few Blocks Change: Three Days of
Backups

Day Script Effects Contents of Flash Recovery Area

Sun Feb 1 1. Attempt incremental
update of level 0
backup, which has no
effect because there is
no level 0 backup old
enough to roll forward
to "SYSDATE-3"

2. Create level 0 backup

Level 0 backup from Feb 1

Mon Feb 2 1. Attempt incremental
update of level 0
backup, which has no
effect because there is
no level 0 backup old
enough to roll forward
to "SYSDATE-3"

2. Create level 1
incremental backup for
Feb 2 changes

Level 0 backup from Feb 1, level 1 backup
with changes from Feb 2, archived logs from
Feb 1 through today

Tue Feb 3 1. Attempt incremental
update of level 0
backup, which has no
effect because there is
no level 0 backup old
enough to roll forward
to "SYSDATE-3"

2. Create level 1
incremental backup for
Feb 3 changes

Level 0 backup, level 1 incremental backups
from Feb 2 through Feb 3, archived logs from
Feb 1 through Feb 3

Wed Feb 4 1. Attempt incremental
update of level 0
backup, which has no
effect because there is
no level 0 backup old
enough to roll forward
to "SYSDATE-3"

2. Create level 1
incrememtal backup for
Feb 4 changes

Level 0 backup, level 1 backups from Feb 2
through today, archived logs from Feb 1
through today

Thur Feb 5 1. Attempt incremental
update of level 0
backup, which rolls
level 0 backup forward
to Feb 2

2. Create level 1
incrememtal backup for
Feb 5 changes.

Level 0 backup rolled forward to Feb 2, level
1 backups from Feb 3 through today,
archived logs from Feb 2 through today

After Feb 5 1. Attempt incremental
update of level 0
backup, which rolls
level 0 backup to Feb 3

2. Create level 1
incrememtal backup for
the changes for that day

Level 0 backup rolled forward to level 1
backups for the last three days, archived logs
from Feb 1 through today.

Old incremental backups and archived logs
not useful for recovery of the rolled-forward
level 0 backup are automatically deleted
when more space is needed in the flash
recovery area.

Backing Up to the Flash Recovery Area: Basic Scenarios

RMAN-Based Disk and Tape Backup Strategies: Scenarios A-5

Backup Scripts When Blocks Change Frequently
In this scenario, typical of a CRM environment, many or most of the data blocks are
updated over the course of a week.

If you use a retention policy of redundancy X, and a backup script executed once each
Y days, the minimum disk quota required is determined by the following formula:

Disk Quota = Size of X copies of the database +
 size of Y days of archived redo logs

If you use a retention policy of a recovery window of X days, and the backup script is
executed once each Y days, then if X>=Y, then disk quota is determined by the
following formula:

Disk Quota = Size of 1 copy of the database +
 size of ((X * ceil(X/Y)) +1) days of archived redo logs

where ceil(X/Y) is the smallest integer greater than or equal to X/Y.

If X<Y, the disk quota is the same as when X=Y, that is,

Disk Quota = Size of 1 copy of the database +
 size of (Y +1) days of archived redo logs

For this example, assume that the retention policy is REDUNDANCY 1, and you are
executing the backup script once each week. The minimum disk quota required for
this scenario is as follows:

Disk Quota = Size of 1 copy of the database +
 size of 8 days of archived logs

This scenario requires no initial setup script. The weekly backup script is shown here:

Execute once a week
Make a full backup of the database to the flash recovery area.
BACKUP DATABASE TAG "weekly_full_bkup";

As shown in the following table, the disk quota needs only to keep one level 0 copy of
the database and one week's worth of archived logs.

Backup Scripts When a Moderate Number of Blocks Change Weekly
Use this strategy when roughly half the data blocks change weekly, or when the
number of data blocks that change varies widely from week to week. The scripts in
this strategy are "all purpose" scripts that use incrementally updated backups, starting
with an image copy of the database, taking incremental level 1 backups at regular
intervals, and rolling forward the existing level 0 copy.

Table A–3 Backup Timeline for Scenario When Most Blocks Change

Day Action Contents of Flash Recovery Area

Sun Feb 1 Back up level 0. Full backup

Sun Feb 8 Back up level 0. Full backup from today, archived logs from Feb 1 through
Feb 8

Each
subsequent
Sunday

Back up level 0. Full backup from this Sunday, archived logs from the
previous Sunday through this Sunday

Backing Up to the Flash Recovery Area: Basic Scenarios

A-6 Backup and Recovery Basics

The formula for determining space required for the flash recovery area depends upon
the retention policy. For a retention policy of REDUNDANCY X and a backup script that
runs once every Y days, the disk space required is:

Disk Quota = Size of X copies of the database +
 Size of 1 incremental backup +
 Size of Y+1 days of archived redo logs

For a recovery window of X days and a backup script executed once each Y days, if
X>=Y then the space required is:

Disk Quota = Size of 1 copy of the database +
 Size of floor(X/Y)+1 incremental backups +
 Size of (X * ceil(X/Y)) + 1 days of archived logs

where ceil(X/Y) is the smallest integer greater than or equal to X/Y and
floor(X/Y) is the largest integer less than or equal to X/Y.

If X< Y then the space required is the same as when X=Y:

Disk Quota = Size of 1 copy of the database +
 Size of 2 incremental backups +
 Size of Y+1 days of archived logs

For the example that follows, assume that the retention policy is REDUNDANCY 1 and
the backup script is run once each week.

Initial Setup The minimum disk quota for such a scenario is

Disk Quota = Size of 1 copy of the database +
 Size of 1 incremental backup +
 Size of 8 days of archived logs

The first week, the BACKUP... FOR RECOVER OF COPY command makes a level 0
incremental backup of the database to the flash recovery area. This backup will be the
basis for the weekly strategy. Each subsequent week, this copy is rolled forward to the
last incremental backup checkpoint time. In this way, you create an on-disk recovery
window of one week.

Weekly Script After the initial setup, the weekly backup script (which, for example, you
could run every Sunday night) should look like the following:

Execute once a week
Roll forward the whole copy of the database to last incremental backup SCN
RECOVER COPY OF DATABASE TAG "whole_db_cpy";
Make an incremental backup of the database to the flash recovery area.
BACKUP INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY WITH TAG "whole_db_copy"
 DATABASE;

The following table illustrates how the contents of the flash recovery area change with
each run of the backup script, always keeping enough archived logs and backups on
hand to maintain the seven day recovery window.

Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios

RMAN-Based Disk and Tape Backup Strategies: Scenarios A-7

Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios
This scenario describes how to use RMAN to make backups to the flash recovery area
and then later move them to tape.

The scripts in this section use the flash recovery area as the log archiving destination
and the destination for all disk backups. Therefore, whenever there is no space to
create archived logs or backups in the flash recovery area, Oracle automatically deletes
archived logs and backups that are obsolete or that have been moved to tape.

By moving backup files and archived redo logs to tape, more space becomes available
in the flash recovery area for new files. The formulas for the flash recovery area disk
quota are suggested minimums, and depend upon the availability of space on tape to
satisfy the retention policy. You can, however, increase your on-disk recovery window
and reduce the need to restore archived redo logs and backups from tape during a
database restore-and-recovery scenario, by allocating a larger flash recovery area disk
quota than these formulas specify.

Table A–4 Backup Timeline for Scenario When Moderate Number of Blocks Change

Day Action Contents of Flash Recovery Area After Run

Sun Feb 1 1. Attempt roll-forward of
incremental level 0 copy
of database with tag
"whole_db_copy". Fail,
because there is no level
0 copy.

2. Create level 0
incremental backup.

Level 0 backup

Sun Feb 8 1. Attempt roll-forward of
incremental level 0 copy
of database with tag
"whole_db_copy" using
previous week's
incremental level 1
backup. Fail, because
there is no level 1
backup from the
previous week.

2. Create level 1
incremental backup.

Level 0 backup from Sunday Feb 1 (not rolled
forward because no level 1 exists), archived
logs from Feb 1 through Feb 8

All future
Sundays

1. Roll forward level 0
copy of database to
SCN of most recent
incremental level 1
backup.

2. Create incremental level
1 backup with changes
since last incremental
level 1 backup SCN.

Level 0 backup rolled forward to SCN of
previous Sunday's incremental level 1,
archived logs from previous Sunday through
today.

Archived logs from prior to previous Sunday
and the previous week's incremental level 1
backup are obsolete after the roll-forward of
the level 0 backup, because there is no other
backup to which they could be applied.

Obsolete files may remain in the flash recovery
area until the need for disk space causes the
database to delete them or until the DELETE
OBSOLETE command is used.

Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios

A-8 Backup and Recovery Basics

Configuring the RMAN Environment for Disk and Tape Backups
Use RMAN to configure the retention policy, backup optimization, and the control file
autobackup. For example:

CONNECT TARGET SYS/orace@trgt;
Recovery window of 15 days ensures that the database is recoverable within 7
days using backups on disk and tape
CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 15 DAYS;
CONFIGURE BACKUP OPTIMIZATION ON;
Because you do not use a recovery catalog, enable the autobackup feature
CONFIGURE CONTROLFILE AUTOBACKUP ON;
CONFIGURE DEVICE TYPE sbt PARMS='...' PARALLELISM 1; # PARMS are vendor-specific

Writing Backup Scripts for Disk and Tape Scenarios
As in the disk-only scenarios, the backup scripts in this section are categorized based
on database workload.

Backup Scripts When Few Data Blocks Change
In this scenario, relatively few data blocks change frequently, so daily level 1
incremental backups will typically be small. The goal is to keep one level 0 incremental
backup on disk, incrementally updated each day using a level 1 incremental backup,
and then move all other files onto tape. This keeps flash recovery area usage to a
minimum.

Initial Setup The only required setup is to create a flash recovery area with the required
disk quota, and set the flash recovery area as a redo log archiving destination.

The formula for determining your disk quota depends upon the backup retenion
policy. It is the same, however, whether your retention policy is based on redundancy
or recovery window. Use the following formula:

Disk Quota = Size of 1 copy of the database
 + size of 1 day's level 1 incremental backup
 + size of (Y+1) days of archived logs

where Y is the number of days that elapse between execution of BACKUP RECOVERY
AREA in your backup scripts.

For this example, there is one backup script, executed every day, which creates a new
incremental level 1 backup with that day's changes, rolls forward the level 0 backup
using the level 1 backup from the previous day, and backs up all flash recovery area
files to tape. Since the script backs up the flash recovery area to tape daily, the flash
recovery area must be large enough to hold a copy of the database, the daily level 1
incremental backup, and two days' worth of archived redo logs.

The on-disk recovery window is one day. To recover to a point farther back than one
day, RMAN must restore backups from tape.

Daily Script After the initial setup, a typical daily RMAN backup script would look like
the following:

Execute each day of the week
Roll forward the copy to most recent incremental backup SCN, which will
be yesterday's incremental level 1 backup
RECOVER COPY OF DATABASE WITH TAG "daily_backup";
Take incremental backups to flash recovery area (using default disk channel)
BACKUP INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG "daily_backup" DATABASE;
Back up flash recovery area to tape

Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios

RMAN-Based Disk and Tape Backup Strategies: Scenarios A-9

BACKUP RECOVERY AREA;
delete obsolete backups on tape
DELETE OBSOLETE DEVICE TYPE sbt;

The following table describes how the contents of the flash recovery area and tape
change as this script is run each day. The script rolls forward the level 0 database copy
tagged as daily_backup to the SCN of the preceding day's incremental level 1
backup, then creates a new level 1 incremental backup with the previous day's
changes. For example, when you run the script on Thursday, RMAN rolls forward the
level 0 backup to the SCN of the incremental backup on Wednesday.

Backup Scripts When Many Blocks Change
In this scenario, many or most of the data blocks are updated over the course of a
week, as in a CRM environment. A strategy using daily incremental backups would
not be recommended because the size of the incremental backups could be quite large
and is hard to predict.

A better strategy in this case is to back up the database to tape weekly and the
archived logs to tape every day, and to use a recovery window-based retention policy.

The elements of the strategy are as follows:

■ Redo log files are archived in the flash recovery area.

■ A full backup of the database is taken to the flash recovery area once each week.

■ Once each day, any backup files (including archived redo logs) in the flash
recovery area that is not currently stored on tape is backed up to tape using the

Table A–5 Backup Timeline for Scenario When Few Blocks Change

Day Action
Contents of Flash Recovery Area and
SBT

Sun Feb 1 1. Attempt roll-forward of
level 0 backup; fail because
there is no level 0 backup
yet.

2. Create level 0 incremental
backup to be rolled forward
on future days.

Level 0 incremental backup.

Any other flash recovery area files such
as archived redo logs are copied to tape
and may be deleted from flash recovery
area when space is needed.

Mon Feb 2 1. Attempt roll-forward of
level 0 backup; fail because
there is no level 1 backup
yet.

2. Create level 1 incremental
backup, containing changes
during Feb 2.

3. Back up flash recovery area
to sbt.

Level 0 backup from Feb 1, level 1
incremental backup containing changes
from Feb 2.

Any other flash recovery area files such
as archived redo logs are copied to tape
and may be deleted from flash recovery
area when space is needed.

Any obsolete files stored on tape are
deleted.

All future
days

1. Roll forward incremental
level 0 backup to SCN of
previous level 1 incremental
backup.

2. Create level 1 incremental
backup containing changes
from previous day.

3. Back up flash recovery area
to sbt.

Level 0 backup rolled forward to
previous day, level 1 incremental backup
containing changes from this day

Any other flash recovery area files such
as archived redo logs are copied to tape
and may be deleted from flash recovery
area when space is needed.

Any obsolete files stored on tape are
deleted.

Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios

A-10 Backup and Recovery Basics

BACKUP RECOVERY AREA command, and any obsolete backups on tape are
deleted.

If you use a recovery window-based retention policy, all backups required to perform
point-in-time recovery within the window are retained as long as they are needed.
This provides the necessary protection for your data, even with limited use of disk
space.

Initial Setup Create your flash recovery area with the required disk quota and set up the
flash recovery area as a redo log archiving destination. The formula for determining
your disk quota depends upon the frequency of backups of the flash recovery area to
tape, as follows:

Disk Quota = Size of 1 copies of the database
 + size of (Y+1) days of archived logs

where Y is the number of days that elapse between execution of BACKUP RECOVERY
AREA in your backup scripts.

For this example, assume that you take a full database backup once each week, and
back up the flash recovery area to tape on all seven days of the week.

There are two scripts in this strategy. Use the first script at the beginning of each week
(say, on Sunday) to create a full database backup, and the other script on the remaining
days of the week (Monday through Saturday) to back up the flash recovery area
contents (the archived redo logs for the day) to tape.

Note that both of the scripts in this strategy include the BACKUP RECOVERY AREA
command, so that command is executed every day. For this example, Y=1, so the disk
quota is the size of one copy of the database plus two days of archived redo logs.

Weekly Scripts This RMAN backup script is executed once each week, on Sunday:

Execute only once a week
Take copy of database to flash recovery area
BACKUP AS COPY DATABASE;
Take backup of flash recovery area to tape
BACKUP RECOVERY AREA;
Delete obsolete backups on tape
DELETE OBSOLETE DEVICE TYPE sbt;
EXIT;

Daily Script The RMAN script to be executed each day (Monday through Saturday)
would look like the following:

Execute 6 days/wk
Take backup of flash recovery area to tape
BACKUP RECOVERY AREA;
delete obsolete backups on tape
DELETE OBSOLETE DEVICE TPE sbt;

Because the entire flash recovery area is backed up to tape every day, the database may
delete backups and archived redo log files from the flash recovery area whenever
space is needed for new files. Between backups it may be difficult to predict exactly
which files will still be in the flash recovery area, because files are deleted whenever
space is needed.

Backup Scripts When Blocks Change Moderately
The following strategy is based on full database backups taken at regular intervals. It
is useful when about half of the data blocks change during the interval between full

Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios

RMAN-Based Disk and Tape Backup Strategies: Scenarios A-11

database backups, or when the number of changed data blocks varies widely between
full database backups.

The strategy is based on an incrementally updated backups-based full backup of the
database, rolled forward once each week. This requires a level 0 disk copy incremental
backup of the database, and a level 1 incremental created each Sunday with the
previous seven days of datafile changes. After the roll-forward, the contents of the
flash recovery area are backed up to tape, so the incremental level 0 copy of the
database and the level 1 weekly incremental backup are available both on disk and
tape.

Each day, archived redo log files accumulate in the flash recovery area. Each time the
daily script runs, those redo log files are backed up to tape. After that, they may be
deleted from disk if space is needed in the flash recovery area.

Initial Setup The minimum flash recovery area disk quota for this scenario is calculated
with the following formula:

Disk Quota = Size of 1 copy of the database
 + Size of 1 level 1 incremental backup with Y days of changes
 + Size of (Y+1) days of archived redo logs

where Y is the number of days between backing up the flash recovery area to tape.

For this example, Y=7, so the disk quota must be at least the size of one copy of the
database, one seven-day level 1 incremental backup, and eight days' worth of archived
redo logs.

Weekly Script The script that implement the Sunday backup for this strategy weekly
parts of the backup is as follows:

Execute once a week
Roll forward the whole copy of the database to last incremental backup SCN
RECOVER COPY OF DATABASE WITH TAG "whole_db_cpy";
Make an incremental backup of the database to the flash recovery area.
BACKUP DEVICE TYPE DISK INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY WITH TAG "whole_db_copy"
 DATABASE;
Back up flash recovery area to tape
BACKUP RECOVERY AREA;
delete obsolete backups on tape
DELETE OBSOLETE DEVICE TYPE sbt;

Daily Script The daily script for this strategy is shown here:

Execute 6 days/wk
Back up flash recovery area to tape
BACKUP RECOVERY AREA;
delete obsolete backups on tape
DELETE OBSOLETE DEVICE TYPE sbt;

The following table llustrates how the scripts maintain the recovery window. Assume
for the purposes of this example that the week begins on Sunday.

Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios

A-12 Backup and Recovery Basics

Table A–6 Backup Timeline for Scenario When Moderate Number of Blocks Change

Day Script Action
Contents of Flash Recovery
Area and Tape After Script

Week 1,
Sunday

Weekly 1. Attempt RECOVER COPY OF
DATABASE command. This
command has no effect,
because there is no level 0
backup of the database yet.

2. Create level 0 backup as result
of the BACKUP... FOR
RECOVER OF COPY
command.

3. Back up all files in the flash
recovery area to tape.

4. Delete obsolete backups from
tape.

Flash recovery area contains
the level 0 incremental backup
of the database, to be rolled
forward each week.

Tape contains a backup of the
level 0 incremental backup of
the database.

Week 1,
Monday-
Saturday

Daily 1. Back up flash recovery area to
tape.

2. Delete obsolete backups from
tape.

Flash recovery area contains
archived redo logs for the
previous day, and the
incremental level 0 database
backup.

Tape contains a backup of the
level 0 incremental backup,
and all redo logs for all days
since Sunday of week 1.

No backups are obsolete.

Week 2,
Sunday

Weekly 1. Attempt RECOVER COPY OF
DATABASE level 0 to most
recent incremental SCN. This
command has no effect,
because there is no level 1
incremental backup to use in
roll-forward.

2. Perform level 1 incremental
backup. A level 1 incremental
backup is created, including
changes from week 1.

3. Back up flash recovery area to
tape.

4. Delete obsolete backups from
tape.

Flash recovery area contains
incremental level 0 database
backup at SCN of Sunday of
week 1, level 1 incremental
backup with changes from
week 1.

Tape contains level 0
incremental backup from
Sunday of week 1, level 1
incremental backup with all
changes from week 1,
archived redo logs from week
1.

No backups are obsolete.

Week 2,
Monday-
Saturday

Daily 1. Back up flash recovery area to
tape.

2. Delete obsolete backups from
tape.

Flash recovery area contains
archived redo logs for the
previous day, and the
incremental level 0 database
backup. May also contain
other archived redo logs.

Tape contains a backup of the
level 0 incremental backup,
and all redo logs for all days
since Sunday of week 1.

Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios

RMAN-Based Disk and Tape Backup Strategies: Scenarios A-13

Backup Scripts When Not Enough Disk Space for a Database Backup
If the disk quota is not sufficient to keep a copy of database, then the flash recovery
area should be used only as an archived log destination. The disk quota rules will
automatically delete these logs from the flash recovery area when they are no longer
needed (because they are obsolete or because they have been backed up to tape). Back
up the archived logs to tape daily, to ensure that they can be deleted from the flash
recovery area when space is needed there for other files.

For this strategy, the flash recovery area should be sized large enough to hold at least
two days' worth of archived redo logs, plus one day's worth of incremental backup.

This strategy is based on level 0 and level 1 incremental backups (though it does not
use incrementally updated backups). This strategy uses two scripts: one to be executed
once a week (for example, on Sunday), and the other to be executed every day except
for the day that the first script is executed (Monday through Saturday).

The script that runs once each week creates a level 0 incremental backup on tape,
containing the full contents of the database.

The script that runs each day except the first day creates level 1 incremental backups
containing the changes to the database each day.

Weekly Script Here is the script to run once at the beginning of each week

Execute only once a week
backup database to tape
BACKUP DEVICE TYPE sbt INCREMENTAL LEVEL 0 DATABASE;
delete obsolete backups on tape
DELETE OBSOLETE DEVICE TYPE sbt;
backup recovery file destination to tape
BACKUP RECOVERY AREA;

Daily Script This script executes each day of the week except for the first day, for
example, Monday through Saturday:

backup recovery file destination to tape
BACKUP RECOVERY AREA;
Take incremental backups to flash recovery area

Week 3,
Sunday

Weekly 1. Perform RECOVER COPY OF
DATABASE level 0 to most
recent incremental SCN. The
level 0 incremental backup is
rolled forward to the
beginning of week 2.

2. Perform level 1 incremental
backup. A level 1 incremental
backup is created including
changes from week 2.

3. Back up flash recovery area to
tape.

4. Delete obsolete backups from
tape.

Flash recovery area contains
incremental level 0 database
backup at SCN of Sunday
from week 2, level 1
incremental backup with
changes from week 2.

Tape contains level 0
incremental backup rolled
forward to SCN of Sunday of
week 2, level 1 incremental
backup with all changes from
week 2, archived redo logs
from week 2.

Obsolete backups deleted
from tape include archived
redo logs from week 1, tape
backup of level 0 incremental
database backup from week 1.

Table A–6 (Cont.) Backup Timeline for Scenario When Moderate Number of Blocks

Day Script Action
Contents of Flash Recovery
Area and Tape After Script

Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios

A-14 Backup and Recovery Basics

BACKUP DEVICE TYPE DISK INCREMENTAL LEVEL 1 DATABASE;

The following table illustrates how the scripts maintain the RMAN retention policy
recovery window and how the disk quota is maintained. The recovery files that exist
after the execution of the script each day also exist on tape, so Oracle can delete files
from the flash recovery area as needed.

Table A–7 Backup Timeline for Limited Disk Space Scenario

Day Script Action Contents of Tape After Script

Sun Feb 1 Once-a-
week

1. Back up level 0 to tape.

2. Delete obsolete from tape.

3. Back up flash recovery
area to tape.

Tape contains a level 0 backup of
the whole database from
February 1, and any archived
redo logs.

Mon Feb 2 -
Sat Feb 7

Daily 1. Back up flash recovery
area to tape.

2. Back up level 1 to disk.

Tape contains a level 0 backup of
the whole database from
February 1, incremental level 1
backups for each day from
Monday through the present day,
and any archived redo logs for
the whole week.

Sun Feb 8 Once-a-
week

1. Back up level 0 to tape.

2. Delete obsolete from tape.

3. Back up flash recovery
area to tape.

Tape contains a level 0 backup of
the whole database from
February 1, incremental level 1
backups for each day from
Monday through the present day,
and any archived redo logs for
the whole week.

Glossary-1

Glossary

archived redo log

A copy of one of the filled members of an online redo log group made when the
database is in ARCHIVELOG mode. After the LGWR process fills each online redo log
with redo records, the archiver process copies the log to one or more redo log
archiving destinations. This copy is the archived redo log. Note that RMAN does not
distinguish between an original archived redo log and an image copy of an archived
redo log; both are considered image copies.

ARCHIVELOG mode

The mode of the database in which Oracle copies filled online redo logs to disk.
Specify the mode at database creation or with the ALTER DATABASE ARCHIVELOG
statement.

See Also: archived redo log, NOARCHIVELOG mode

archiving

The operation in which a filled online redo log file is copied to an offline log archiving
destination. An offline copy of an online redo logs is called an archived redo log. You
must run the database in ARCHIVELOG mode to archive redo logs.

automatic channel allocation

The ability of RMAN to perform backup and restore tasks without requiring the use of
the ALLOCATE CHANNNEL command. You can use the CONFIGURE command to
specify disk and tape channels. Then, you can issue commands such as BACKUP and
RESTORE at the RMAN command prompt without manually allocating channels.
RMAN uses whatever configured channels that it needs in order to execute the
commands.

automatic undo management mode

A mode of the database in which undo data is stored in a dedicated undo tablespace.
The only undo management that you must perform is the creation of the undo
tablespace. All other undo management is performed automatically.

auxiliary database

(1) A database created from target database backups with the RMAN DUPLICATE
command.

(2) A temporary database that is restored to a new location and then started up with a
new instance name during tablespace point-in-time recovery (TSPITR). A TSPITR
auxiliary database contains the recovery set and auxiliary set.

See Also: recovery set, auxiliary set, tablespace point-in-time recovery (TSPITR)

Glossary-2

auxiliary set

In TSPITR, the set of files that is not in the recovery set but which must be restored in
the auxiliary database for the TSPITR operation to be successful.

See Also: auxiliary database, recovery set

backup

(1) A backup copy of data, that is, a database, tablespace, table, datafile, control file, or
archived redo log. Backups can be physical (at the database file level) or logical (at the
database object level). Physical backups can be created by using RMAN to back up one
or more datafiles, control files or archived redo log files. Logical backups can be
created using one of the Oracle export utilities (Data Pump Export or Original Export).

(2) An RMAN command that creates a backup set, proxy copy, or disk-based image
copy.

See Also: copy, backup set, multiplexing, RMAN

backup, whole database

See whole database backup

backup and recovery

The set of concepts, procedures, and strategies involved in protecting the database
against data loss due to media failure or users errors.

backup control file

A backup of the control file. You can back up the control file with the RMAN backup
command or with the SQL statement ALTER DATABASE BACKUP CONTROLFILE TO
'filename'.

backup mode

The database mode (also called hot backup mode) initiated when you issue the ALTER
TABLESPACE ... BEGIN BACKUP or ALTER DATABASE BEGIN BACKUP command
before taking an online backup. You take a tablespace out of backup mode when you
issue the ALTER TABLESPACE ... END BACKUP or ALTER DATABASE END BACKUP
command.

You must use this command when you make a user-managed backup of datafiles in an
online tablespace. RMAN does not require you to put the database in backup mode. In
backup mode, updates to the database create more than the usual amount of redo.
Each time a block in the buffer cache becomes dirty, Oracle must write an image of the
changed block to the redo log file, in addition to recording the changes to the data.

See Also: corrupt block, online backup

backup piece

The physical file format used to store RMAN backup sets.

See Also: backup, backup set, RMAN

backup retention policy

See retention policy

backup set

A backup of one or more datafiles, control files, SPFILEs and archived redo log files.
Each backup set consists of one or more binary files called backup pieces. Backup

Glossary-3

pieces are written in a proprietary format that can only be created or restored by
RMAN.

Backup sets are produced by the RMAN BACKUP command. A backup set usually
consists of only one backup piece. RMAN divides the contents of a backup set among
multiple backup pieces only if you limit the backup piece size using the
MAXPIECESIZE option of the ALLOCATE CHANNEL or CONFIGURE CHANNEL
command.

See Also: backup piece, unused block compression, multiplexing, RMAN

binary compression

A technique whereby RMAN applies a compression algorithm to data being backed
up to backup sets.

block change tracking

A database option that causes Oracle to track datafile blocks affected by each database
update. The tracking information is stored in a new type of file called the change
tracking file. When block change tracking is enabled, RMAN uses the record of
changed blocks from the change tracking file to improve incremental backup
performance by only reading those blocks known to have changed, instead of reading
datafiles in their entirety.

block media recovery

The recovery of specified blocks within a datafile with the Recovery Manager
BLOCKRECOVER command. Block media recovery leaves the affected datafiles online
and restores and recovers only the damaged or corrupted blocks.

channel

A connection between RMAN and the target database. Each allocated channel starts a
new Oracle server session; the session then performs backup, restore, and recovery
operations. A channel can either be a DISK channnel (used to perform disk I/O) or an
sbt channel (used to perform I/O through a third-party media manager).

See Also: media manager, target database

checkpoint

A data structure that defines an SCN in the redo thread of a database. Checkpoints are
recorded in the control file and each datafile header, and are a crucial element of
recovery.

circular reuse records

Control file records containing information used by RMAN for backups and recovery
operations. These records are arranged in a logical ring. When all available record slots
are full, Oracle either expands the control file to make room for a new records or
overwrites the oldest record. The CONTROL_FILE_RECORD_KEEP_TIME initialization
parameter controls how many days records must be kept before they can be
overwritten. The default for CONTROL_FILE_RECORD_KEEP_TIME is 7 days.

See Also: noncircular reuse records

closed backup

A backup of one or more database files taken while the database is closed. Typically,
closed backups are whole database backups. If you closed the database cleanly, then all
the files in the backup are consistent. Otherwise, the backups are inconsistent.

See Also: consistent shutdown, consistent backup

Glossary-4

cold backup

See closed backup

complete recovery

Recovery of one or more datafiles that applies all redo generated after the restored
backup. Typically, you perform complete recovery when media failure damages one or
more datafiles or control files. You fully recover the damaged files using all redo
generated since the restored backup was taken.

See Also: incomplete recovery, media recovery

consistent backup

A whole database backup that you can open with the RESETLOGS option without
performing media recovery. In other words, you do not need to apply redo to this
backup for it to be consistent. (Note, however, that unless you apply the redo
generated since the consistent backup was created, you lose all transactions since the
time of the consistent backup.)

You can only take consistent backups after you have performed a consistent
shutdown of the database. The database must not be re-opened until the backup has
completed.

See Also: fuzzy file, inconsistent backup

consistent shutdown

A database shut down with the IMMEDIATE, TRASACTIONAL or NORMAL options
of the statement. A database shut down cleanly does not require recovery; it is already
in a consistent state.

crash recovery

The automatic application of online redo records to a database after either a
single-instance database crashes or all instances of an Oracle Real Applications Cluster
configuration crash. Crash recovery only requires redo from the online logs: archived
redo logs are not required.

See Also: recover

control file autobackup

The automatic backup of the current control file that RMAN makes in the situations:

■ After every BACKUP command run at the RMAN prompt

■ After a BACKUP command within a RUN block that is not followed by another
BACKUP command

The control file autobackup has a default filename that allows RMAN to restore it even
if the control file and recovery catalog are lost. You can override the default filename if
desired.

copy

To back up a bit-for-bit image of an Oracle file (Oracle datafiles, control files, and
archived redo logs) onto disk. You can copy in two ways:

■ Using operating system utilities (for example, the UNIX cp or dd)

■ Using the RMAN BACKUP AS COPY command

See Also: backup

Glossary-5

corrupt block

An Oracle block that is not in a recognized Oracle format, or whose contents are not
internally consistent. Typically, corruptions are caused by faulty hardware or operating
system problems. Oracle identifies corrupt blocks as either logically corrupt (an Oracle
internal error) or media corrupt (the block format is not correct).

You can repair a media corrupt block by recovering the block, or dropping the
database object that contains the corrupt block so that its blocks are reused for another
object. If media corruption is due to faulty hardware, neither solution will work until
the hardware fault is corrected.

See Also: block media recovery

crosscheck

A check to determine whether files on disk or in the media management catalog
correspond to the data in the repository and the control file. Because the media
manager can mark tapes as expired or unusable, and because files can be deleted from
disk or otherwise become corrupted, the RMAN repository can contain outdated
information about backups. Run the CROSSCHECK command to perform a crosscheck.
To determine whether you can restore a file, run VALIDATE BACKUPSET or RESTORE
... VALIDATE.

See Also: validation

cumulative incremental backup

An incremental backup that backs up all the blocks changed since the most recent
backup at level 0. When recovering with cumulative incremental backups, only the
most recent cumulative incremental backup needs to be applied.

See Also: differential incremental backup, incremental backup

current online redo log

The online redo log file in which the LGWR background process is currently logging
redo records.

See Also: redo log, redo log group

database checkpoint

The thread checkpoint that has the lowest SCN. All changes in all enabled threads
prior to the database checkpoint are guaranteed to have been written to disk.

See Also: checkpoint

database identifier

See DBID

database point-in-time recovery (DBPITR)

The recovery of an entire database to a specified past target time, SCN, or log sequence
number.

See Also: incomplete recovery, tablespace point-in-time recovery (TSPITR)

datafile media recovery

The application of redo records to a restored datafile in order to roll it forward to a
more current time. Unless you are doing block media recovery, the datafile must be
offline while being recovery.

Glossary-6

DBID

An internal, uniquely generated number that differentiates databases. Oracle creates
this number automatically when you create the database.

differential incremental backup

A type of incremental backup that backs up all blocks that have changed since the
most recent backup at level 1 or level 0. For example, in a differential level 1 backup
RMAN determines which level 1 or level 0 backup is most recent and then backs up all
blocks changed since that backup. Differential backups are the default type of
incremental backup. When recovering using differential incremental backups, RMAN
must apply all differential incremental level 1 backups since the restored datafile
backup.

See Also: cumulative incremental backup, incremental backup

disk controller

A hardware component that is responsible for controlling one or more disk drives.

disk quota

A user-specified limit to the size of the flash recovery area. When the disk quota is
reached, Oracle automatically deletes files that are no longer needed.

duplicate database

A database created from target database backups using the RMAN duplicate
command.

See Also: auxiliary database

export

The extraction of logical data (that is, not physical files) from a database into a binary
file using one of the Oracle export utilities, such as Data Pump Export. You can then
use a corresponding Oracle import utility to import the data into a database.

See Also: logical backup

flash recovery area

An optional disk location that you can use to store recovery-related files such as
control file and online redo log copies, archived logs, flashback logs, and RMAN
backups. Oracle and RMAN manage the files in the flash recovery area automatically.
You can specify the disk quota, which is the maximum size of the flash recovery area.

flashback logs

Oracle-generated logs used to perform flashback database operations. Oracle can only
write flashback logs to the flash recovery area. They cannot be backed up to disk.

full backup

A non-incremental RMAN backup. Note that "full" does not refer to how much of the
database is backed up, but to the fact that the backup is not incremental. Consequently,
you can make a full backup of one datafile.

full resynchronization

An RMAN operation that updates the recovery catalog with all changed metadata in
the database's control file. You can initiate a full catalog resynchronization by issuing
the RMAN command RESYNC CATALOG. (Note that it is rarely necessary to use

Glossary-7

RESYNC CATALOG because RMAN automatically performs resynchronizations when
needed.)

fuzzy file

A datafile that contains at least one block with an SCN greater than or equal to the
checkpoint SCN in its header. For example, this situation occurs when Oracle updates
a datafile that is in backup mode. A fuzzy file that is restored always requires
recovery.

hot backup

See online backup

hot backup mode

See backup mode

image copy

A bit-for-bit copy of a single datafile, archived redo log file, or control file that is:

■ Usable as-is to perform recovery (unlike a backup set, which uses unused block
compression and is in an RMAN-specific format)

■ Generated with the RMAN BACKUP AS COPY command, an operating system
command such as the UNIX cp, or by the Oracle archiver process

incarnation

A separate version of a database. The incarnation of the database changes when you
open it with the RESETLOGS option, but you can recover backups from a prior
incarnation so long as the necessary redo is available.

incomplete recovery

A synonym for database point-in-time recovery (DBPITR).

See Also: complete recovery, media recovery, recover

inconsistent backup

A backup in which some of the files in the backup contain changes that were made
after the files were checkpointed. This type of backup needs recovery before it can be
made consistent. Inconsistent backups are usually created by taking online database
backups. You can also make an inconsistent backup by backing up datafiles while a
database is closed, either:

■ Immediately after the crash of an Oracle instance (or, in a RAC configuration, all
instances)

■ After shutting down the database using SHUTDOWN ABORT

Inconsistent backups are only useful if the database is in ARCHIVELOG mode and all
archived redo logs created since the backup are available.

See Also: consistent backup, online backup, system change number (SCN), whole
database backup

incremental backup

An RMAN backup in which only modified blocks are backed up. Incremental backups
are classified by level. An incremental level 0 backup performs the same function as a
full backup in that they both back up all blocks that have ever been used. The
difference is that a full backup will not affect blocks backed up by subsequent

Glossary-8

incremental backups, whereas an incremental backup will affect blocks backed up by
subsequent incremental backups.

Incremental backups at level 1 back up only blocks that have changed since previous
incremental backups. Blocks that have not changed are not backed up. An incremental
backup can be either a differential incremental backup or a cumulative incremental
backup. A cumulative incremental backup backs up all blocks changed since the last
level 1 incremental backup. A differential incremental backup backs up all blocks
changed since the last level 0 or level 1 incremental backup.

instance failure

The termination of an Oracle instance due to a hardware failure, Oracle internal error,
or SHUTDOWN ABORT statement. Crash or instance recovery is always required after an
instance failure.

instance recovery

In a RAC configuration, the application of redo data to an open database by an
instance when this instance discovers that another instance has crashed.

See Also: recoverLogMiner

LogMiner

A utility that enables log files to be read, analyzed, and interpreted by means of SQL
statements

See Also: archived redo log

log sequence number

A number that uniquely identifies a set of redo records in a redo log file. When Oracle
fills one online redo log file and switches to a different one, Oracle automatically
assigns the new file a log sequence number.

See Also: log switch, redo log

log switch

The point at which LGWR stops writing to the active redo log file and switches to the
next available redo log file. LGWR switches when either the active log file is filled with
redo records or you force a switch manually.

See Also: redo log

logical backup

A backup of database schema objects, such as tables. Logical backups are created and
restored with the Oracle Data Pump Export utility or Original Export utility. You can
restore objects from logical backups using the Oracle import utility that corresponds to
the utility used to create the backup.

long-term backup

A backup that you want to exclude from a backup retention policy, but want to record
in the recovery catalog. Typically, long-term backups are snapshots of the database
that you may want to use in the future for report generation.

Mean Time To Recover (MTTR)

The time required to perform crash or media recovery on the database. A variety of
factors influence MTTR for media recovery, including the speed of detection, the
method used to perform media recovery, and the size of the database.

Glossary-9

media failure

Damage to the disks containing any of the files used by Oracle, such as the datafiles,
logfiles, or control file. When Oracle detects media failure, it takes the affected files
offline.

See Also: media recovery

media manager

A third-party networked backup system that can be integrated with Recovery
Manager so that database backups can be written directly to tertiary storage.

media recovery

The application of redo or incremental backups to a restored backup datafile or
individual data block.

When performing media recovery, you can recover a database, tablespace, datafile, or
set of blocks within a datafile. Media recovery can be either complete recovery (in
which all changes in the redo logs are applied) or incomplete recovery (in which only
changes up to a specified point in time are applied). Media recovery is only possible
when the database is in ARCHIVELOG mode.

See Also: block media recovery, recover

mirroring

Maintaining identical copies of data on one or more disks. Typically, mirroring is
performed on duplicate hard disks at the operating system level, so that if one of the
disks becomes unavailable, the other disk can continue to service requests without
interruptions. When mirroring files, Oracle writes once while the operating system
writes to multiple disks; when multiplexing files, Oracle writes the same data to
multiple files.

multiplexing

■ online redo logs

The automated maintenance of more than one identical copy of the online redo
log.

■ control file

The automated maintenance of more than one identical copy of a database's
control file.

■ backup set

The RMAN technique of reading database files simultaneously from the disks and
then writing the blocks to the same backup piece.

■ archived redo logs

The Oracle archiver process is able to archive multiple copies of a redo log.

See Also: mirroring

NOARCHIVELOG mode

The mode of the database in which Oracle does not require filled online redo logs to be
archived before they can be overwritten. Specify the mode at database creation or
change it with the ALTER DATABASE NOARCHIVELOG command.

Note that running in NOARCHIVELOG mode severely limits the possibilities for
recovery of lost or damaged data.

Glossary-10

See Also: archived redo log, ARCHIVELOG mode

noncircular reuse records

Control file records containing critical information needed by the Oracle database.
These records are never automatically overwritten. Some examples of information in
non-circular reuse records include the locations of datafiles and online redo logs.

See Also: circular reuse records

offline normal

When a tablespace is taken offline normal, it is taken offline using the ALTER
TABLESPACE ... OFFLINE NORMAL statement. The datafiles in the tablespace are
checkpointed and do not require recovery before being brought online. If a tablespace
is not taken offline normal, then its datafiles must be recovered before being brought
online.

online backup

A backup of one or more datafiles taken while a database is open and the datafiles are
online. When you make a user-managed backup while the database is open, you must
put the tablespaces in backup mode by issuing an ALTER TABLESPACE BEGIN
BACKUP command. (You can also use ALTER DATABASE BEGIN BACKUP to put all
tablespaces in your database into backup mode in one step.)

Note that you should not put tablespaces in backup mode when performing backups
with RMAN.

online redo log

The online redo log is a set of two or more files that record all changes made to the
database. Whenever a change is made to the database, Oracle generates a redo record
in the redo buffer. The LGWR process flushes the contents of the redo buffer into the
online redo log.

The current online redo log is the one being written to by LGWR. When LGWR gets to
the end of the file, it performs a log switch and begins writing to a new log file. If you
run the database in ARCHIVELOG mode, then each filled online redo log file must be
copied to one or more archiving locations before LGWR can overwrite them.

See Also: archived redo log

online redo log group

The Oracle online redo log consists of two or more online redo log groups. Each group
contains one or more identical online redo log members. An online redo log member
is a physical file containing the redo records.

online redo log member

A physical online redo log file within an online redo log group. Each log group must
have one or more members. Each member of a group is identical.

operating system backup

See user-managed backup

operating system backup and recovery

See user-managed backup and recovery

Glossary-11

Oracle Flashback Database

The return of the whole database to a prior consistent SCN by means of the RMAN
FLASHBACK command or SQL*Plus FLASHBACK statement. A database flashback is
different from traditional media recovery because it does not involve the restore of
physical files, instead restoring your current datafiles to past states using saved images
of changed data blocks. The flashback database process uses flashback logs and
archived redo logs.

Oracle-managed file

A database file managed by the Oracle Managed Files feature.

Oracle Managed Files (OMF)

A feature of the Oracle database which manages the creation, naming and deletion of
Oracle database files within dedicated areas of disk, to minimize the need for DBAs to
concern themselves with such specifics.

orphaned backups

Backups that belong to incarnations of the database that are not direct ancestors of the
current incarnation, or that were created after the SCN where the ancestor incarnation
branched toward the current incarnation. Such backups cannot be used in the current
incarnation.

parallel recovery

A form of recovery in which several processes simultaneously apply changes from
redo log files. Instance and media recovery can be parallelized automatically with the
RECOVERY_PARALLELISM initialization parameter or options to the SQL*Plus
RECOVER command.

parallelization

Allocating multiple channels for RMAN backup and recovery operations.

partial resynchronization

A type of resynchronization in which RMAN transfers data about archived logs,
backup sets, and datafile copies from the target control file to the recovery catalog.

password file

A file created by the ORAPWD command, and required if you wish to connect using the
SYSDBA or SYSOPER roles over a network. For details on password files, see the Oracle
Database Administrator's Guide.

physical schema

The datafiles, control files, and redo logs in a database at a given time. Issue the
RMAN REPORT SCHEMA command to obtain a list of tablespaces and datafiles.

point-in-time recovery

The incomplete recovery of database files to a noncurrent time. Time-based recovery is
also known as incomplete recovery andtime-based recovery .

See Also: incomplete recovery, incomplete recovery, media recovery, recover

proxy copy

A backup in which the media manager manages the transfer of data between the
media storage device and disk during RMAN backup and restore operations.

Glossary-12

recover

To recover a database file or a database is typically to perform media recovery, crash
recovery or instance recovery. Can also be used generically, as in "recover your data,"
to refer to reconstructing or re-creating lost data by any means.

See Also: complete recovery, incomplete recovery, instance recovery, crash recovery,
media recovery.

recovery

When used to refer to a database file or a database, the application of redo data or
incremental backups to database files in order to reconstruct lost changes. The three
types of recovery are instance recovery, crash recovery, and media recovery. Oracle
performs the first two types of recovery automatically using online redo records; only
media recovery requires you to restore a backup and issue commands.

See Also: complete recovery, incomplete recovery

recovery catalog

A set of Oracle tables and views used by RMAN to store RMAN repository
information about one or more Oracle databases. RMAN uses this data to manage the
backup, restore, and recovery of Oracle databases.

Use of a recovery catalog is optional. The primary storage for RMAN repository
information for a database is always in the control file of the target database. A
recovery catalog is periodically updated with RMAN repository data from the control
file. In the event of the loss of your control file, the recovery catalog can provide most
or all of the lost information required for restore and recovery of your database. The
recovery catalog can also store records of long-term backups and RMAN stored scripts
for use with target databases.

See Also: recovery catalog database

recovery catalog database

An Oracle database that contains a recovery catalog schema. You should not store the
recovery catalog in the target database.

Recovery Manager (RMAN)

The primary utility for physical backup and recovery of Oracle databases. RMAN
keeps records of Oracle databases in its own structure called an RMAN repository,
manages storage of backups, validates backups. You can use it with or without the
central information repository called a recovery catalog. If you do not use a recovery
catalog, RMAN uses the database's control file to store information necessary for
backup and recovery operations. You can use RMAN in conjunction with third-party
media management software to back up files to tertiary storage.

See Also: backup piece, backup set, copy, media manager, recovery catalog

recovery set

One or more tablespaces that are being recovered to an earlier point in time during
tablespace point-in-time recovery (TSPITR). After TSPITR, all database objects in the
recovery set have been recovered to the same point in time.

See Also: auxiliary set

recovery window

A recovery window is one type of RMAN backup retention policy, in which the DBA
specifies a period of time and RMAN ensures retention of backups and archived redo

Glossary-13

logs required for point-in-time recovery to any time during the recovery window. The
interval always ends with the current time and extends back in time for the number of
days specified by the user.

For example, if the retention policy is set for a recovery window of seven days, and the
current time is 11:00 AM on Tuesday, RMAN retains the backups required to allow
point-in-time recovery back to 11:00 AM on the previous Tuesday.

See Also: retention policy

redo log

A redo log can be either an online redo log or an archived redo log. The online redo
log is a set of two or more redo log groups that records all changes made to Oracle
datafiles and control files. An archived redo log is a copy of an online redo log that has
been written to an offline destination.

See Also: archived redo log, online redo log

redo log group

Each online redo log member (which corresponds to an online redo log file) belongs to
a redo log group. Redo log groups contain one or more members. A redo log group
with more than one member is called a multiplexed redo log group. The contents of all
members of a redo log group are identical.

redo thread

The redo generated by an instance. If the database runs in a single instance
configuration, then the database has only one thread of redo.

redundancy set

A set of backups enabling you to recover from the failure or loss of any Oracle
database file.

registration

In RMAN, the execution of a REGISTER DATABASE command in order to record the
existence of a target database in the recovery catalog. A target database is uniquely
identified in the catalog by its DBID. You can register more than one database in the
same catalog, and also register the same database in multiple catalogs.

See Also: DBID

RMAN repository

The record of RMAN metadata about backup and recovery operations on the target
database. The authoritative copy of the RMAN repository is always stored in the
control file of the target database. A recovery catalog can also be used for longer-term
storage of the RMAN repository, and can serve as an alternate source of RMAN
repository data if the control file of your database is lost.

See Also: recovery catalog, recovery catalog database, resynchronization

RESETLOGS

A method for opening a database that archives any current online redo logs (if using
ARCHIVELOG mode), resets the log sequence number to 1, and clears the online redo
logs. An OPEN RESETLOGS operation begins a new database incarnation. The
starting SCN for the new incarnation, sometimes called the RESETLOGS SCN, is the
incomplete recovery SCN of the media recovery preceding the OPEN RESETLOGS,
plus one.

Glossary-14

An OPEN RESETLOGS operation is required after incomplete recovery or recovery
with a backup control file.

An OPEN RESETLOGS operation does not affect the recoverability of the database.
Backups from before the OPEN RESETLOGS operation remain valid and can be used
along with backups taken after the OPEN RESETLOGS operation to repair any damage
to the database.

restore

The replacement of a lost or damaged file with a backup. You can restore files either
with commands such as UNIX cp or the RMAN RESTORE command.

resynchronization

The operation that updates the recovery catalog with current information from the
target database control file. You can initiate a full resynchronization of the catalog by
issuing a RESYNC CATALOG command. A partial resynchronization transfers
information to the recovery catalog about archived redo logs, backup sets and datafile
copies. RMAN performs resynchronizations automatically when needed.

retention policy

A user-defined policy for determining how long backups and archived logs need to be
retained for media recovery. You can define a retention policy in terms of backup
redundancy or a recovery window. RMAN retains the datafile backups required to
satisfy the current retention policy, and any archived redo logs required for complete
recovery of those datafile backups.

There should be a glossary entry for REDUNDANNCY.

RMAN

See Recovery Manager (RMAN)

rollback segments

Database segments that record the before-images of changes to the database.

rolling back

 The use of rollback segments to undo uncommitted changes applied to the database
during the rolling forward stage of recover.

rolling forward

 The application of redo records or incremental backups to datafiles and control files in
order to recover changes to those files.

See Also: recover, rolling back

SBT

System Backup to Tape. Most commonly used to specify a destination for RMAN
commands used to back up to tape, such as "BACKUP DEVICE TYPE sbt
DATABASE".

snapshot control file

A copy of a database's control file created in an operating system specific location by
Recovery Manager. RMAN creates the snapshot control file so that it has a consistent
version of a control file to use when either resynchronizing the recovery catalog or
backing up the control file.

Glossary-15

standby database

A copy of a production database that you can use for disaster protection.

stored script

A sequence of RMAN commands stored in the recovery catalog.

system change number (SCN)

A stamp that defines a committed version of a database at a point in time. Oracle
assigns every committed transaction a unique SCN.

SYSTEM tablespace

The tablespace that contains the Oracle data dictionary for a database, which is the
metadata that describes the complete contnents of the database. The SYSTEM
tablespace is unlike other tablespaces in that all datafiles contained in the tablespace
must be online for Oracle to function. If a media failure affects one of the datafiles in
SYSTEM, then you must mount the database and recover.

tablespace point-in-time recovery (TSPITR)

The recovery of one or more non-SYSTEM tablespaces to a noncurrent time. You can
use either RMAN or user-managed methods to perform TSPITR.

target database

In RMAN, the database that you are backing up or restoring.

tempfile

A file that belongs to a temporary tablespace, and is created with the TEMPFILE
option. Temporary tablespaces cannot contain permanent database objects such as
tables, and are typically used for sorting. Because tempfiles cannot contain permanent
objects, RMAN does not back them up. However, RMAN does keep track of the
locations of tempfiles in the control file, and during recovery the tempfiles will be
re-created as needed at those locations.

transportable tablespace

A feature that transports a set of tablespaces from one database to another, or from one
database to itself. Transporting a tablespace into a database is like creating a tablespace
with preloaded data.

undo tablespace

A dedicated tablespace that stores only undo information when the database is run in
automatic undo management mode.

unused block compression

A method by which RMAN reduces the size of backup sets containing datafile
backups by skipping some datafile blocks that are not currently in use. More details
about when blocks can be skipped are in Oracle Database Backup and Recovery
Reference.

user-managed backup

A backups made using a non-RMAN method, for example, using an operating system
utility. For example, you can make a user-managed backup by running the cp
command on UNIX or the copy command on Windows. A user-managed backup is
also called an operating system backup.

Glossary-16

user-managed backup and recovery

A backup and recovery strategy for an Oracle database that does not use RMAN. This
term is equivalent to operating system backup and recovery. You can back up and
restore database files using operating system utilities (for example, the cp command in
UNIX), and recover using the SQL*Plus RECOVER command.

validation

A test that checks whether a backup can be restored. RMAN scans the backups and
looks at the checksum to verify that the contents can be successfully restored.

See Also: crosscheck, media manager, recovery catalog

whole database backup

A backup of the control file and all datafiles that belong to a database.

See Also: backup

Index-1

Index

A
alert log

control file record messages, 8-2
monitoring overwriting of control file

records, 8-3
ALTER DATABASE statement

RENAME FILE clause, 6-18
archived log files

backing up, 4-10
deleting after backup, 4-11
with other backups, 4-11

archived redo logs
backing up

using RMAN, 4-10, 4-11
cataloging, 8-14
generated during backups, 4-10
restoring using RMAN, 6-19

archiving modes, 2-7
autobackups

generating, 4-9
availability

of RMAN backups, 8-13
AVAILABLE option

of CHANGE, 8-13
avoiding dangerous backup techniques, 2-12

B
BACKUP

ARCHIVELOG, 4-10
DELETE ALL, 4-11
DELETE INPUT, 4-11

FOR RECOVER OF COPY WITH TAG, 4-16
PLUS ARCHIVELOG, 4-11

backup and recovery
definition, 1-1

BACKUP command, 4-1
CURRENT CONTROLFILE option, 4-9
DELETE ALL INPUT option, 4-11
DELETE INPUT option, 4-11

backup methods, 1-15
comparison, 1-15
feature comparison, 1-15

backup pieces
definition, 4-3

backup scenarios
disk-and-tape, A-7
disk-only, A-1

backup sets
testing restore of, 6-11
unused space compression, 4-3

backups
after structural changes to database, 2-11
archived redo logs

using RMAN, 4-10, 4-11
automatic log switch during, 4-10
availability, 8-13
consistent

making using RMAN, 4-7
control file

using RMAN, 4-9, 4-10
control file autobackups, 4-9
crosschecking, 8-4
cumulative incremental, 4-14
Data Pump Export utility, 2-12
datafile

using RMAN, 4-8
Date Pump Export utility, 2-12
definition, 1-1
exempt from retention policy, 8-13
expired

deleting, 8-7
frequency, 2-10
generating reports for, 4-21, 4-28
guidelines, 2-5 to 2-13

Data Pump Export utility, 2-12
frequency, 2-10
often-used tablespaces, 2-11
storing old backups, 2-10
structural changes, 2-11
unrecoverable objects, 2-11

inconsistent
making using RMAN, 4-7

incremental, 4-12
differential, 4-13

logical
definition, 1-1

methods
feature comparison, 1-15

noncumulative incremental, 4-14
offline, 2-10

Index-2

online, 2-10
online redo logs, 2-12
physical

definition, 1-1
planning before database creation, 2-5
records of, 2-12
recovering pre-RESETLOGS, 7-24
Recovery Manager, 4-1
reporting objects needing backups, 4-28
server parameter files, 4-10
storing, 2-10
tablespace, 2-11

using RMAN, 4-8
techniques to avoid, 2-12
testing RMAN, 4-21
validating, 4-21
whole database

using RMAN, 4-7
backupsets

compressed, 4-6
block change tracking, 4-19

enabling and disabling, 4-19
block corruptions

stored in V$DATABASE_BLOCK_
CORRUPTION, 4-21

C
CATALOG command, 8-14
CHANGE command, 8-4

AVAILABLE option, 8-13
UNAVAILABLE option, 8-13
UNCATALOG option, 8-17

CHANGE... KEEP
with DELETE OBSOLETE, 8-9, 8-14

change tracking, 4-19
disk space used for, 4-20
enabling and disabling, 4-19
moving the change tracking file, 4-20

channels
multiple

crosschecking and deleting, 8-9
character sets

setting for use with RMAN, 3-2
commands, Recovery Manager

BACKUP CURRENT CONTROLFILE, 4-9
CATALOG, 8-14
CHANGE, 8-4
CROSSCHECK, 8-4
DELETE, 8-15
LIST, 4-22
REPORT, 4-28

NEED BACKUP option, 4-28
RESTORE, 6-6

compressed backupsets, 4-6
configuring

Recovery Manager
autobackups, 3-11
backup retention policies, 3-19

consistent backups

using RMAN, 4-7
control file autobackups

after structural changes to database, 3-11
configuring, 3-11

control file copies
backing up, 4-10

control file records
overwriting, 8-2

control files
automatic backups

configuring, 3-11
backing up

using RMAN, 4-10
backups

including within database backup, 4-9
using RMAN, 4-9

copies
backing up, 4-10

overview, 1-4
overwriting records, 8-2
restoring, 6-15

CONTROL_FILE_RECORD_KEEP_TIME
initialization parameter, 8-2

preventing overwrite of RMAN records, 8-2
CONTROL_FILES initialization parameter, 6-15
copies

crosschecking, 8-4
crash recovery, 1-8

after instance failure, 1-8
instance failure, 1-8
overview, 1-8
read-only tablespaces, 6-8

CROSSCHECK command, 8-4
crosschecking, 8-4

backups and copies, 8-4
on multiple channels, 8-9

cumulative incremental backups, 4-14

D
Data Pump Export utility

backups, 2-12
data structures

involved in recovery, 1-3
database connections

Recovery Manager
without a catalog, 3-5

SYSDBA required for RMAN, 3-6
types in RMAN, 3-6

database point-in-time recovery, 7-19
time-based recovery, 7-19

database point-in-time recovery (DBPITR)
definition, 7-1

database schema
generating reports, 4-31

database writer process (DBWn)
media failure, 1-14

databases
modes of archiving, 2-7

datafile copies

Index-3

backing up using RMAN, 4-8
datafiles

backing up
using Recovery Manager, 4-8

read-only
recovery, 6-8

DBPITR, 7-19
DELETE command, 8-7, 8-15

EXPIRED option, 8-7
DELETE OBSOLETE

with CHANGE... KEEP, 8-9, 8-14
deleting

backups, 8-6, 8-7
on multiple channels, 8-9

copies, 8-6
differential incremental backups, 4-13
disconnecting

from Recovery Manager, 3-2
disk failures, 1-2, 1-13
disk usage

monitoring, 3-18

E
environment variables

NLS_DATE_FORMAT, 3-2
NLS_LANG, 3-2

EXIT command, 3-2
exiting RMAN, 3-2
expired backups

deleting, 8-7
EXPIRED option

of DELETE, 8-7

F
failures

described, 1-2, 1-13
instance

recovery from, 1-8
media, 1-2, 1-13
safeguards provided, 1-3
See also recovery

flash recovery area
backup scenarios using, A-1
backup scenarios using with tape, A-7
monitoring disk usage with V$RECOVERY_FILE_

DEST and V$FLASH_RECOVERY_AREA_
USAGE, 3-18

Flashback Database
and flashback logs, 1-12
overview, 1-12

flashback database
determining the flashback database

window, 5-11
enabling, 5-9
logs

rules for retention and deletion, 5-11
performance tuning, 5-12
requirements, 5-9

space management, 5-11
estimating disk space requirement, 5-10

Flashback Drop, 7-5
and recycle bin, 1-12
overview, 1-12
recycle bin, 7-6

flashback drop
enabling and disabling, 7-7

Flashback Query
overview, 1-11

Flashback Table
overview, 1-12

flashback table
using, 7-4

FLASHBACK TABLE statement, 7-4
Flashback Transaction Query

overview, 1-12
flashback transaction query, 7-3
flashback undrop

object names when in recycle bin, 7-6
querying recycle bin, 7-8
restoring objects, 7-9

Flashback Version Query
overview, 1-11

FORCE option
DELETE command, 8-8

G
guaranteed restore point, 5-4

compared to storage snapshots, 5-4
requirements, 5-6

guaranteed restore points
space usage in flash recovery area, 5-7

guidelines
backups

Data Pump Export utility, 2-12
frequency, 2-10
often-used tablespaces, 2-11
storing old backups, 2-10
structural changes, 2-11
unrecoverable operations, 2-11

H
hardware configuration

keeping records of, 2-12

I
image copies

testing restore of, 6-11
INCLUDE CURRENT CONTROLFILE option

BACKUP command, 4-9
incomplete recovery

defined, 7-19
inconsistent backups

using RMAN, 4-7
incremental backups, 4-12

and block change tracking, 4-19
differential, 4-13

Index-4

incrementally updated, 4-16
incrementally updated backups, 4-16
initialization parameters

CONTROL_FILE_RECORD_KEEP_TIME, 8-2
CONTROL_FILES, 6-15

instance recovery, 1-8
definition, 1-8
instance failure, 1-8
overview, 1-8
read-only tablespaces, 6-8

instances
recovery of, 1-8

I/O errors
ignoring during deletions, 8-8

K
KEEP option

of BACKUP, 8-13

L
level 0 incremental backups, 4-13
LIST command, 4-21, 4-22
lists

backups and copies, 4-27
log switches

recovery catalog records, 8-14
logical backups, 1-1

M
managing RMAN metadata, 8-1
media failures

overview, 1-2, 1-13
media recovery

overview, 1-6
metadata

managing RMAN, 8-1
modes

archive log, 2-7
multiplexing

recovery and, 1-13

N
NLS_DATE_FORMAT environment variable, 3-2
NLS_LANG environment variable, 3-2
noncumulative incremental backups, 4-14

O
offline backups, 2-10
online backups, 2-10
online redo logs

backing up, 2-12
media failure, 1-13
multiplexed, 1-13

Oracle Flashback Database
overview, 1-12

Oracle Flashback Drop

overview, 1-12
Oracle Flashback Query

overview, 1-11
Oracle Flashback Table

overview, 1-12
Oracle Flashback Transaction Query

overview, 1-12
Oracle Flashback Version Query

overview, 1-11
overwriting control file records, 8-2

P
performing backups after unrecoverable

operations, 2-11
physical backups, 1-1
point-in-time recovery

performing
with current control file, 7-22

Q
QUIT command, 3-2
quitting RMAN, 3-2

R
recovery

crash, 1-8
crash recovery, 1-8

read-only tablespaces, 6-8
data structures used in, 1-3
database point-in-time, 7-19
failures requiring, 1-2, 1-13
generic procedures, 6-6
instance, 1-8
instance recovery, 1-8

instance failure, 1-8
read-only tablespaces, 6-8

media, 1-6
media recovery

enabled or disabled, 2-7
point-in-time

time-based, 7-19
preparing for, 6-6
tablespace, 6-5

recovery catalog
cataloging

O/S backups, 8-14
deleting backups, 8-6
deleting records, 8-7
log switch record, 8-14
updating

after operating system deletions, 8-17
Recovery Manager

archived redo logs
backups, 4-10

backups, 4-1
archived redo logs, 4-10, 4-11
control file, 4-10
control file copies, 4-10

Index-5

control files, 4-9
datafile, 4-8
incremental, 4-12
tablespace, 4-8
testing, 4-21
validating, 4-21
whole database, 4-7

commands
CATALOG, 8-14
CHANGE, 8-4
DELETE, 8-15
REPORT, 4-28
RESTORE, 6-6

database character set, 3-2
database connections, 3-6

SYSDBA required for target, 3-6
without a catalog, 3-5

datafile copies
backing up, 4-8

disconnecting from, 3-2
incremental backups

cumulative, 4-14
differential, 4-13
level 0, 4-13

lists, 4-22
metadata, 8-1
reports, 4-28

database schema, 4-31
objects needing a backup, 4-28
obsolete backups, 4-30

restoring
archived redo logs, 6-19

retention policies
configuring, 3-19

setting time parameters, 3-2
RECOVERY WINDOW parameter

CONFIGURE command, 3-19
recovery windows

configuring for retention policy, 3-19
Recycle Bin

and Flashback Drop, 1-12, 7-6
recycle bin

enabling and disabling, 7-7
renamed objects, 7-6
restoring objects from, 7-9
viewing, 7-8

redo logs
archiving modes, 2-7

RENAME DATABASE clause
ALTER DATABASE statement, 6-18

REPORT command, 4-21, 4-28
NEED BACKUP option, 4-28

reports, 4-21, 4-28
database schema, 4-31
objects needing a backup, 4-28
obsolete backups, 4-30
unrecoverable backups, 4-30

RESTORE command, 6-6
restore point

guaranteed, 5-4

compared to storage snapshots, 5-4
normal, 5-3
requirements, 5-6

restore points
using, 5-6

restore validation, 6-11
restoring

control files, 6-15
server parameter files, 6-15
testing, 6-11

retention policies
configuring, 3-19
configuring for redundancy, 3-19
disabling, 3-20
making backups exempt, 8-13
recovery windows, 3-19

rollback segments, 1-5

S
scenarios, Recovery Manager

recovering pre-resetlogs backup, 7-24
server parameter files

backups, 4-10
configuring autobackups, 3-11
restoring, 6-15

software configuration
keeping records of, 2-12

SYSDBA option
implicitly assumed for RMAN connect to

target, 3-6

T
tables

FLASHBACK TABLE statement, 7-4
flashback transaction query, 7-3

tablespace backups
using RMAN, 4-8

tablespaces
backing up, 2-11

frequency, 2-11
backups using RMAN, 4-8
recovering accessible

when database is open, 6-5
testing RMAN

backups, 4-21
time parameters

setting for Recovery Manager use, 3-2
time-based recovery, 7-19

U
UNAVAILABLE option

of CHANGE, 8-13
UNCATALOG option

deleting repository records, 8-17
of CHANGE, 8-17

undo blocks, 1-5
undo tablespaces, 1-5
unrecoverable operations

Index-6

performing backups after, 2-11
unused block compression, 4-3
unused space compression, 4-3
user errors, 1-14

V
V$DATABASE_BLOCK_CORRUPTION view, 4-21
V$FLASH_RECOVERY_AREA_USAGE, 3-18
V$RECOVERY_FILE_DEST, 3-18
validating

backups, 4-21
validation of restore, 6-11

W
whole database backups

using RMAN, 4-7

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Chapter 1, "Backup and Recovery Overview"
	Chapter 2, "Backup and Recovery Strategies"
	Chapter 3, "Setting Up and Configuring Backup and Recovery"
	Chapter 4, "Backing Up Databases Using RMAN"
	Chapter 5, "Data Protection with Restore Points and Flashback Database"
	Chapter 6, "Performing Complete Restore and Recovery of Databases"
	Chapter 7, "Performing Flashback and Database Point-in-Time Recovery"
	Chapter 8, "Recovery Manager Maintenance Tasks"
	Appendix A, "RMAN-Based Disk and Tape Backup Strategies: Scenarios"
	"Glossary"

	Related Documentation
	Conventions
	Conventions in Text
	Conventions in Code Examples

	Documentation Accessibility
	Accessibility of Code Examples in Documentation
	Accessibility of Links to External Web Sites in Documentation
	TTY Access to Oracle Support Services

	1 Backup and Recovery Overview
	What is Backup and Recovery?
	Physical Backups and Logical Backups
	Errors and Failures Requiring Recovery from Backup
	User Error
	Media Failure

	Oracle Backup and Recovery Solutions: RMAN and User-Managed Backup

	Backup and Recovery: Basic Concepts
	Physical Database Structures Used in Recovering Data
	Datafiles and Data Blocks
	Redo Logs
	Control Files
	Undo Segments

	The Database Recovery Process: Basic Concepts
	Forms of Data Recovery
	Datafile Media Recovery: Restore Datafiles, Apply Redo
	Complete, Incomplete and Point-In-Time Recovery
	Automatic Recovery After Instance Failure: Crash Recovery

	Backup and Recovery with RMAN
	Files That RMAN Can Back Up
	RMAN Backup Destinations: Disk and Media Managers
	Types of Oracle Database Backup under RMAN
	About Consistent and Inconsistent Backups
	About Full and Incremental Backups
	About Image Copies, Backup Sets and Backup Pieces

	Automatic Disk-Based Backup and Recovery: The Flash Recovery Area
	Oracle Flashback Technology:Alternatives to Point-in-Time Recovery
	About Restore Points

	Matching Failures to Backup and Recovery Techniques
	Media Failure
	User Error

	System Requirements for Backup and Recovery Methods
	Feature Comparison of Backup Methods

	2 Backup and Recovery Strategies
	Data Recovery Strategy Determines Backup Strategy
	Planning Data Recovery Strategy
	Planning Responses to User Error: Point-in-Time Recovery and Flashback Features
	Flashback Database
	Creating Normal and Guaranteed Restore Points
	Database Point-in-Time Recovery
	Importing Lost Objects from Logical Backup

	Planning a Response to Media Failure: Restore and Media Recovery
	Example: Online Redo Log Recovery

	Planning a Response to Datafile Block Corruption: Block Media Recovery

	Planning Backup Strategy
	Protecting Your Redundancy Set
	Deciding Whether to Use a Flash Recovery Area
	Deciding Between ARCHIVELOG and NOARCHIVELOG Mode
	Implications of Running in NOARCHIVELOG Mode
	Implications of Running in ARCHIVELOG Mode

	Deciding Whether to Use Oracle Flashback Features and Restore Points
	Choosing a Backup Retention Policy
	Implementing Backup Retention Policy with RMAN
	Recovery Window-Based Backup Retention Policy
	Redundancy-Based Backup Retention Policy

	Archiving Older Backups
	Determining Backup Frequency
	Performing Backups Before and After You Make Structural Changes
	Scheduling Backups for Frequently-Updated Tablespaces
	Backing Up after NOLOGGING Operations
	Exporting Data for Added Protection and Flexibility
	Preventing the Backup of Online Redo Logs
	Keeping Records of the Hardware and Software Configuration of the Server

	Validating Your Data Recovery Strategy
	Using BACKUP... VALIDATE
	Validating RMAN Backups: VALIDATE and RESTORE VALIDATE
	Testing Your Database Restore and Recovery Procedures

	3 Setting Up and Configuring Backup and Recovery
	Overview of Interacting With the RMAN Client
	Starting and Exiting RMAN
	Setting Globalization Support Environment Variables for RMAN
	Entering RMAN Commands at the Command Prompt
	Using Command Files with RMAN
	Checking Syntax of RMAN Commands and Command Files: CHECKSYNTAX
	Checking RMAN Syntax at the Command Line: Example
	Checking RMAN Syntax in Command Files: Example

	Using RMAN to Start Up and Shut Down Databases
	Connecting the RMAN Client to Databases
	Types of Database Connections Used with RMAN
	Authentication for Database Connections
	Connecting to the Target Database from the Command Line
	Connecting to the Target Database from the RMAN Prompt

	Setting Up a Database for RMAN Backup
	Persistent Configuration Settings: Controlling RMAN Behavior
	Displaying Current RMAN Configuration Settings: SHOW
	Restoring Default RMAN Configuration Settings: CONFIGURE... CLEAR

	Configuring the Default Device Type for Backups
	Configuring the Default Backup Type for Disk Backups
	Configuring Compressed Backupsets as Default for Tape or Disk
	Configuring Disk Devices and Channels
	Configuring Tape Devices and Channels
	Configuring Control File and Server Parameter File Autobackup
	Configuring the Control File Autobackup Format
	Overriding the Configured Control File Autobackup Format

	Setting Up a Flash Recovery Area for RMAN
	Choosing a Location for the Flash Recovery Area
	Flash Recovery Area, Automatic Storage Management, and Oracle Managed Files

	Files That Can Be Stored in the Flash Recovery Area
	Planning the Size of the Flash Recovery Area
	Setting Initialization Parameters for Size and Location of the Flash Recovery Area
	Flash Recovery Area Size: DB_RECOVERY_FILE_DEST_SIZE
	Flash Recovery Area Location: Initialization Parameter DB_RECOVERY_FILE_DEST
	Sharing a Flash Recovery Area Among Multiple Databases
	Restrictions on Initialization Parameters When Using Flash Recovery Area
	Adding a Flash Recovery Area to an Existing Database
	Using V$RECOVERY_FILE_DEST and V$FLASH_RECOVERY_AREA_USAGE
	Disabling the Flash Recovery Area

	Configuring the Backup Retention Policy
	Configuring a Recovery Window-Based Retention Policy
	Configuring a Redundancy-Based Retention Policy
	Showing the Current Retention Policy
	Disabling the Retention Policy

	How Oracle Manages Disk Space in the Flash Recovery Area
	When Files are Eligible for Deletion from the Flash Recovery Area
	When Space is Not Available in the Flash Recovery Area

	Configure Flash Recovery Area for Disk-Based Backups: Example
	Create a Database with Multiplexed Files in the Flash Recovery Area: Scenario
	Creating a Database with Only Archived Logs in the Flash Recovery Area: Scenario

	4 Backing Up Databases Using RMAN
	Overview of RMAN Backups
	Files That RMAN Can Back Up
	About RMAN Backup Formats: Image Copies and Backup Sets
	About Image Copies
	About Backup Sets

	About RMAN Full and Incremental Datafile Backups

	Specifying Options Affecting Output of the RMAN BACKUP Command
	Specifying Output Device Type for RMAN BACKUP
	Specifying Image Copy or Backup Set Output for RMAN BACKUP to Disk
	Specifying Output File Locations for RMAN BACKUP
	Specifying Tags for RMAN BACKUP
	Using Compressed Backupsets for RMAN Backup

	Backing Up Database Files and Archived Logs with RMAN
	Making Consistent and Inconsistent Backups with RMAN
	Making Whole Database Backups with RMAN
	Backing Up Individual Tablespaces with RMAN
	Backing Up Individual Datafiles and Datafile Copies with RMAN
	Backing Up Datafiles
	Backing Up Datafile Copies

	Backing Up Control Files with RMAN
	Including the Current Control File in a Backup of Other Files
	Backing Up the Current Control File Manually
	Backing Up a Control File Copy

	Backing Up Server Parameter Files with RMAN
	Backing Up Archived Redo Logs with RMAN
	Backing Up Archived Redo Log Files with BACKUP ARCHIVELOG
	Automatic Online Redo Log Switches During Backups of Archived Logs
	Using BACKUP ARCHIVELOG with DELETE INPUT or DELETE ALL INPUT

	Backing Up Logs with BACKUP ... PLUS ARCHIVELOG

	RMAN Incremental Backups
	Incremental Backup Algorithm
	Level 0 and Level 1 Incremental Backups
	Differential Incremental Backups
	Cumulative Incremental Backups
	Basic Incremental Backup Strategy

	Making Incremental Backups: BACKUP INCREMENTAL
	Incrementally Updated Backups: Rolling Forward Image Copy Backups
	Incrementally Updated Backups: A Basic Example
	Incrementally Updated Backups: A One Week Example

	Improving Incremental Backup Performance: Change Tracking
	Enabling and Disabling Change Tracking
	Checking Whether Change Tracking is Enabled
	Moving the Change Tracking File
	Estimating Size of the Change Tracking File on Disk

	Using RMAN to Validate Database Files
	Overview of Reporting on Backups and the RMAN Repository
	Listing RMAN Backups, Archived Logs, and Database Incarnations
	About RMAN Reports Generated by the LIST Command
	Listing Backups
	Listing Backups by Backup
	Listing Backups by File

	Listing Backups in Summary Mode
	Listing Selected Backups
	Listing Database Incarnations

	Reporting on Backups and Database Schema
	About Reports of RMAN Backups
	Reporting on Files Needing a Backup Under a Retention Policy
	Using RMAN REPORT NEED BACKUP with Different Retention Policies
	Using RMAN REPORT NEED BACKUP with Tablespaces and Datafiles
	Using REPORT NEED BACKUP with Backups onTape or Disk Only

	Reporting on Datafiles Affected by Unrecoverable Operations
	Reporting Obsolete Backups
	Reporting on the Database Schema

	5 Data Protection with Restore Points and Flashback Database
	Restore Points and Flashback Database: Concepts
	About Flashback Database
	About the Flashback Database Window

	About Normal Restore Points
	Commands Supporting the Use of Restore Points

	About Guaranteed Restore Points
	Using Guaranteed Restore Points Instead of Storage Snapshots

	About Logging for Flashback Database and Guaranteed Restore Points
	Guaranteed Restore Points and Flash Recovery Area Space Usage
	Logging for Guaranteed Restore Points With Flashback Logging Disabled
	Logging for Flashback Database With Guaranteed Restore Points Defined

	Using Normal and Guaranteed Restore Points
	Requirements for Using Guaranteed Restore Points
	Creating Normal and Guaranteed Restore Points
	Listing Restore Points
	Dropping Restore Points
	Monitoring Space Usage For Guaranteed Restore Points

	Setup and Maintenance for Oracle Flashback Database
	Limitations of Flashback Database
	Requirements for Enabling Flashback Database
	Enabling Logging for Flashback Database
	Sizing the Flash Recovery Area to Include Flashback Logs
	Estimating Disk Space Requirements for Flashback Database Logs

	Managing Space For Flashback Logs in the Flash Recovery Area
	Rules for Retention and Deletion of Flashback Logs

	Determining the Current Window for Flashback Database
	Performance Tuning for Flashback Database
	Monitoring Flashback Database Performance Impact
	Flashback Writer (RVWR) Behavior With I/O Errors

	6 Performing Complete Restore and Recovery of Databases
	Database Restore and Recovery with RMAN: Overview
	Scope and Limitations of this Chapter
	Restore and Recovery with Enterprise Manager

	Basic Database Restore and Recovery Scenarios
	Restore and Recovery of a Whole Database: Scenario
	Recovery of Databases with Read-Only Tablespaces
	Re-Creation of Temporary Tablespaces in Whole Database Restore and Recovery

	Restore and Complete Recovery of Individual Tablespaces or Datafiles: Scenario

	Preparing and Planning Database Restore and Recovery
	Database Restore and Recovery Procedure: Outline
	Determining Which Database Files to Restore or Recover
	Recognizing a Lost Control File
	Identifying Datafiles Requiring Media Recovery
	Recovery of Read-Only Tablespaces

	Determining your DBID
	Previewing Backups Used in Restore Operations: RESTORE PREVIEW
	Using RESTORE... PREVIEW
	Using RESTORE... PREVIEW SUMMARY
	Using RESTORE... PREVIEW RECALL

	Validating the Restore of Backups: RESTORE VALIDATE and VALIDATE BACKUPSET
	Validating Restore from Backup with RESTORE ... VALIDATE
	Validating Backup Sets with VALIDATE BACKUPSET

	RMAN RESTORE: Restoring Lost Database Files from Backup
	Restoring the Control File from Backup
	Default Destination for Restore of the Control File
	Restore of the Control File from Control File Autobackup
	Restore of the Control File When Using a Flash Recovery Area
	Restoring a Control File When Using a Recovery Catalog
	Restore of the Control File From a Known Location
	Restore of the Control File to a New Location
	Limitations When Using a Backup Control File

	Restoring the Server Parameter File (SPFILE) from Backup
	Restore of the SPFILE from the Control File Autobackup
	Creating a Client-Side Initialization Parameter File (PFILE) with RMAN

	Restoring and Recovering Datafiles and Tablespaces
	Restoring Datafiles from Backup to a New Location
	Performing Media Recovery of a Restored Database, Tablespace or Datafile
	Restore and Recover of a Single Datafile to a New Location:Example

	Restoring Archived Redo Logs from Backup
	Restoring Archived Redo Logs to a New Location
	Restoring Archived Redo Logs to Multiple Locations

	7 Performing Flashback and Database Point-in-Time Recovery
	About Point-in-Time Recovery and Flashback Features
	About Database Point-in-Time Recovery
	Oracle Flashback Technology:Alternatives to Point-in-Time Recovery

	Oracle Flashback Query: Recovering at the Row Level
	Oracle Flashback Table: Returning Individual Tables to Past States
	Prerequisites for Using Flashback Table
	Performing Flashback Table

	Oracle Flashback Drop: Undo a DROP TABLE Operation
	What is the Recycle Bin?
	How Tables and Other Objects Are Placed in the Recycle Bin
	Naming Convention for Objects in the Recycle Bin
	Enabling and Disabling the Recycle Bin
	Viewing and Querying Objects in the Recycle Bin
	Recycle Bin Capacity and Space Pressure
	Understanding Space Pressure
	How the Database Responds to Space Pressure
	Recycle Bin Objects and Segments

	Performing Flashback Drop on Tables in the Recycle Bin
	Flashback Drop of Multiple Objects With the Same Original Name

	Purging Objects from the Recycle Bin
	PURGE TABLE: Purging a Table and Dependent Objects
	PURGE INDEX: Freeing Space in the Recycle Bin
	PURGE TABLESPACE: Purging All Dropped Objects from a Tablespace
	PURGE RECYCLEBIN: Purging All Objects in a User's Recycle Bin
	PURGE DBA_RECYCLEBIN: Purging All Recycle Bin Objects
	Dropping a Tablespace, Cluster, User or Type and the Recycle Bin

	Privileges and Security for Flashback Drop
	Limitations and Restrictions on Flashback Drop

	Reversing Database Changes with Flashback Database
	Performing Flashback Database: Scenario
	Options After a Successful Flashback Database Operation
	Options After Flashback Database to the Wrong Time
	Flashback Database and Ambiguous SCNs Across Incarnations

	Performing Flashback Database to a Guaranteed Restore Point
	Performing Flashback Database to Undo an OPEN RESETLOGS
	Flashback Database Across OPEN RESETLOGS With Standby Databases

	Flashback Database To The Right of Open Resetlogs: Example

	Performing Database Point-In-Time Recovery
	Requirements for Database Point-in-Time Recovery
	Point-in-Time Recovery and Database Incarnations: Concepts
	Understanding Parent, Ancestor and Sibling Database Incarnations
	Incarnation History of a Database: Example
	Sibling Incarnations, Ambiguous SCNs and RESET DATABASE INCARNATION

	Database Incarnations and Orphaned Backups
	Uses of Orphaned Backups

	Preparing for Database Point-in-Time Recovery
	Database Point-in-Time Recovery Within the Current Incarnation
	Using a Time Expression for Database Point-in-Time Recovery

	Options After Database Point-in-Time Recovery
	Point-in-Time Recovery to an Ancestor Incarnation

	8 Recovery Manager Maintenance Tasks
	Managing the RMAN Repository Using Only the Control File
	Backing Up and Restoring the Control File
	Monitoring the Overwriting of Control File Records
	Managing the Overwriting of Control File Records
	Interaction of Flash Recovery Area and CONTROL_FILE_RECORD_KEEP_TIME

	Using CROSSCHECK to Update the RMAN Repository
	About RMAN Crosschecks
	Basic Use of CROSSCHECK with Backup Sets and Image Copies
	Crosschecking Specific Backup Sets and Copies
	Crosschecking Backups of Specific Database Files
	Limiting RMAN CROSSCHECK to a Backups Since a Specific Time

	Deleting Backups
	Deleting Specified Backups
	Deleting Expired RMAN Backups after CROSSCHECK
	Using DELETE FORCE With RMAN Backups
	Deleting Obsolete RMAN Backups Based on Retention Policies
	DELETE OBSOLETE Behavior When KEEP UNTIL Time Expires

	Using Multiple RMAN Channels for Maintenance Operations
	About Allocating Multiple RMAN Channels for Maintenance Commands
	How RMAN Crosschecks and Deletes on Multiple Channels
	Crosschecking Disk and Tape Channels with One Command: Example
	Crosschecking on Multiple Oracle Real Application Cluster Nodes: Example
	Deleting on Disk and Tape Channels with One DELETE Command: Example
	Releasing Multiple Channels: Example

	Deleting a Database with RMAN
	Changing the Status of a Backup Record
	Marking a Backup AVAILABLE or UNAVAILABLE
	Exempting a Long-Term Backup from the Retention Policy

	Cataloging Archived Logs and User-Managed Copies
	About Cataloging Archived Logs and User-Managed Copies
	Cataloging User-Managed Datafile Copies
	Cataloging Backup Pieces
	Cataloging All Files in a Disk Location
	Cataloging Flash Recovery Area Contents

	Uncataloging RMAN Records
	About Uncataloging RMAN Records
	Removing Records for Files Deleted with Operating System Utilities

	Flash Recovery Area Maintenance
	Resolving a Full Flash Recovery Area
	Changing the Flash Recovery Area to a New Location
	Flash Recovery Area Behavior When Instance Crashes During File Creation

	A RMAN-Based Disk and Tape Backup Strategies: Scenarios
	Backing Up to the Flash Recovery Area: Basic Scenarios
	Scripting Disk-Only Backups
	Backup Scripts When Few Data Blocks Change
	Initial Setup
	Daily Script

	Backup Scripts When Blocks Change Frequently
	Backup Scripts When a Moderate Number of Blocks Change Weekly
	Initial Setup
	Weekly Script

	Backing Up to the Flash Recovery Area and to Tape: Basic Scenarios
	Configuring the RMAN Environment for Disk and Tape Backups
	Writing Backup Scripts for Disk and Tape Scenarios
	Backup Scripts When Few Data Blocks Change
	Initial Setup
	Daily Script

	Backup Scripts When Many Blocks Change
	Initial Setup
	Weekly Scripts
	Daily Script

	Backup Scripts When Blocks Change Moderately
	Initial Setup
	Weekly Script
	Daily Script

	Backup Scripts When Not Enough Disk Space for a Database Backup
	Weekly Script
	Daily Script

	Glossary
	archived redo log
	ARCHIVELOG mode
	archiving
	automatic channel allocation
	automatic undo management mode
	auxiliary database
	auxiliary set
	backup
	backup, whole database
	backup and recovery
	backup control file
	backup mode
	backup piece
	backup retention policy
	backup set
	binary compression
	block change tracking
	block media recovery
	channel
	checkpoint
	circular reuse records
	closed backup
	cold backup
	complete recovery
	consistent backup
	consistent shutdown
	crash recovery
	control file autobackup
	copy
	corrupt block
	crosscheck
	cumulative incremental backup
	current online redo log
	database checkpoint
	database identifier
	database point-in-time recovery (DBPITR)
	datafile media recovery
	DBID
	differential incremental backup
	disk controller
	disk quota
	duplicate database
	export
	flash recovery area
	flashback logs
	full backup
	full resynchronization
	fuzzy file
	hot backup
	hot backup mode
	image copy
	incarnation
	incomplete recovery
	inconsistent backup
	incremental backup
	instance failure
	instance recovery
	LogMiner
	log sequence number
	log switch
	logical backup
	long-term backup
	Mean Time To Recover (MTTR)
	media failure
	media manager
	media recovery
	mirroring
	multiplexing
	NOARCHIVELOG mode
	noncircular reuse records
	offline normal
	online backup
	online redo log
	online redo log group
	online redo log member
	operating system backup
	operating system backup and recovery
	Oracle Flashback Database
	Oracle-managed file
	Oracle Managed Files (OMF)
	orphaned backups
	parallel recovery
	parallelization
	partial resynchronization
	password file
	physical schema
	point-in-time recovery
	proxy copy
	recover
	recovery
	recovery catalog
	recovery catalog database
	Recovery Manager (RMAN)
	recovery set
	recovery window
	redo log
	redo log group
	redo thread
	redundancy set
	registration
	RMAN repository
	RESETLOGS
	restore
	resynchronization
	retention policy
	RMAN
	rollback segments
	rolling back
	rolling forward
	SBT
	snapshot control file
	standby database
	stored script
	system change number (SCN)
	SYSTEM tablespace
	tablespace point-in-time recovery (TSPITR)
	target database
	tempfile
	transportable tablespace
	undo tablespace
	unused block compression
	user-managed backup
	user-managed backup and recovery
	validation
	whole database backup

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 70
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

