
Oracle Dynamic Services

User’s and Administrator’s Guide

Release 9.0.1

June 2001

Part No. A88783-01

Oracle Dynamic Services is a Java-based programmatic framework for
incorporating, managing, and deploying Internet services. Oracle Dynamic
Services makes it easy for application developers to rapidly incorporate existing
services residing in Web sites, local databases, or proprietary systems into their
own applications.

Oracle Dynamic Services User’s and Administrator’s Guide, Release 9.0.1

Part No. A88783-01

Copyright © 2000, 2001, Oracle Corporation. All rights reserved.

Primary Authors: Alok Srivastava, Marco Carrer, Paul Lin, Wei Qian, Sam Lee, Kan Deng, Cheng Han,
Alan Wu, Rod Ward

Contributing Authors: Timothy Chien, Michael Sekurski, Christine Chan, Joseph Meeks, Bill
Beauregard, Katherine Oakey, Larry Guros, Yoko Mizuno, Susan Shepard

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle and SQL*Plus are registered trademarks, and Oracle9i is a trademark of Oracle Corporation.
Other names may be trademarks of their respective owners.

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments .. xiii

Preface... xv

Audience .. xv
Organization.. xv
Related Documents.. xvi
Conventions... xvii
Documentation Accessibility .. xvii

1 Introduction

1.1 Application Scenarios ... 1-2
1.1.1 Business Problems or Technical Challenges .. 1-2
1.1.2 Oracle Dynamic Services Solutions ... 1-3
1.1.2.1 Wireless Service Developers ... 1-4
1.1.2.2 Portal Service Developers .. 1-5
1.1.2.3 e-Business Service Application Developers .. 1-5
1.2 Overview of Concepts .. 1-5
1.2.1 Service Provider ... 1-9
1.2.2 Service Registry .. 1-10
1.2.3 Application Profile Registry ... 1-10
1.2.4 Service Administrator.. 1-10
1.2.5 Service Consumer Application .. 1-10
1.2.6 Dynamic Services Engine.. 1-11
 iii

1.2.7 Services as Application Components .. 1-11
1.2.8 Communication Between the Service Consumer Application and the Dynamic

Services Engine .. 1-12
1.2.9 Communication Between the Service Administrator and the Dynamic Services

Engine .. 1-12
1.3 Dynamic Services Implementation Overview... 1-12
1.3.1 Java Deployment View.. 1-14
1.3.2 PL/SQL Deployment View... 1-16
1.3.3 Java (HTTP/Java Messaging Services (JMS)) Deployment View 1-17
1.4 Using Multiple Dynamic Services Engines.. 1-19
1.5 How to Get Started with Oracle Dynamic Services.. 1-20

2 Installation

2.1 System Requirements.. 2-1
2.2 Dynamic Services Distribution.. 2-2
2.3 Installing the DSSYS Schema ... 2-3
2.4 Dynamic Services Configuration... 2-5

3 Configuration

3.1 Configuring and Running the DSAdmin Utility .. 3-1
3.1.1 Configuring Dynamic Services Proxy Settings .. 3-2
3.1.2 Configuring the DSAdmin Utility ... 3-2
3.1.3 Running the DSAdmin Utility.. 3-4
3.2 Registering a New Service.. 3-5
3.2.1 Creating a New Service Package Category .. 3-7
3.2.2 Registering a Service Package .. 3-9
3.3 Browsing Registered Services .. 3-9
3.4 Executing a Registered Service.. 3-11

4 Advanced Installation Options

4.1 Enabling PL/SQL Interfaces .. 4-1
4.2 Enabling Persistent Auditing or Event Monitor Services.. 4-3
4.2.1 Configuring Oracle Advanced Queuing... 4-3
4.2.2 Installing Monitor Services ... 4-3
iv

4.2.3 Using the Event Monitor Utility .. 4-4
4.2.4 Enabling Persistent Auditing ... 4-5
4.2.5 Starting and Stopping the Event Monitor .. 4-5
4.2.6 Using the Logger Monitor Service (Case Study) ... 4-6
4.3 Enabling HTTP Communications... 4-8
4.3.1 Configuring the Apache/Jserv Servlet Engine .. 4-8
4.3.2 Configuring the DSAdmin Utility to Use the HTTP Driver 4-11
4.4 Enabling Java Messaging Services (JMS) Communications.. 4-11
4.4.1 Configuring and Running the JMS Daemon.. 4-12
4.4.2 Configuring the DSAdmin Utility to Enable JMS Communications 4-13
4.5 Using Lightweight Directory Access Protocol (LDAP) as a Central Master Registry

..4-14
4.5.1 Setting Up LDAP with Oracle Internet Directory ... 4-14
4.5.1.1 Oracle Internet Directory ... 4-14
4.5.1.2 Dynamic Services LDAP Schema ... 4-15
4.5.2 Configuring Dynamic Services Registry to Use LDAP .. 4-16
4.6 Manual Fine-Tuning of Dynamic Services Properties ... 4-17

5 Service Consumer Interfaces

5.1 Java Interface for Service Consumers... 5-1
5.1.1 Setting the Classpath ... 5-2
5.1.2 Registering a Service Consumer Application in the Application Profile Registry 5-2
5.1.3 Opening a Connection to the Dynamic Services Engine.. 5-4
5.1.3.1 Available Connection Drivers... 5-4
5.1.4 Example: Executing the YahooPortfolio Service ... 5-5
5.1.5 Displaying Service Response.. 5-6
5.1.6 Service Consumer Application Sessions... 5-7
5.2 PL/SQL Interface for Service Consumers ... 5-7

6 Service Development Guide

6.1 Quick Start .. 6-2
6.1.1 Creating a Service Package ... 6-3
6.1.2 Service Provider -- Organization and Contacts XML Files 6-4
6.1.3 Service Classification XML File.. 6-5
6.1.4 Service Interface Specification -- Request Definition .. 6-6
 v

6.1.5 Service Interface Specification -- Response Definition.. 6-7
6.1.6 Editing the Service Descriptor.. 6-9
6.1.6.1 Service Header... 6-9
6.1.6.2 Service Body... 6-11
6.1.7 Testing the Execution of Your Service... 6-15
6.2 Creating Advanced Services -- Service Package ... 6-15
6.3 Creating Advanced Services -- Service Descriptor ... 6-16
6.3.1 Service Header Section .. 6-16
6.3.1.1 Naming Specification ... 6-17
6.3.1.2 Package Specification.. 6-17
6.3.1.3 Service Provider Specification -- Organization and Contacts......................... 6-18
6.3.1.4 Deployment Specification -- Classification and Caching 6-18
6.3.1.5 Service Interface Specification -- Request and Response Definitions............ 6-19
6.3.2 Service Body Section .. 6-20
6.3.2.1 Input Handling and Adaptor Specifications... 6-22
6.3.2.2 Protocol Adaptor Specification ... 6-25
6.3.2.3 Execution Adaptor Specification .. 6-26
6.3.2.4 Output Handling and Adaptor Specification ... 6-26
6.4 Creating Advanced Services -- Description of Supplied Adaptors.............................. 6-27
6.4.1 Input Adaptor ... 6-28
6.4.1.1 oracle.ds.engine.ioa.DSXSLTInputAdaptor .. 6-28
6.4.2 Protocol Adaptors .. 6-29
6.4.2.1 oracle.ds.engine.pa.http.DSHTTPProtocolAdaptor... 6-29
6.4.2.2 oracle.ds.engine.pa.http.DSHTTPSProtocolAdaptor....................................... 6-31
6.4.2.3 oracle.ds.engine.pa.jdbc.DSJDBCProtocolAdaptor.. 6-31
6.4.2.4 oracle.ds.engine.pa.smtp.DSSMTPProtocolAdaptor 6-33
6.4.3 Execution Adaptors.. 6-34
6.4.3.1 oracle.ds.engine.ea.DSFailOverExecutionAdaptor.. 6-35
6.4.3.2 oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor 6-35
6.4.3.3 oracle.ds.engine.ea.DSConditionalExecutionAdaptor 6-42
6.4.4 Output Adaptor.. 6-43
6.4.4.1 oracle.ds.engine.ioa.DSXSLTOutputAdaptor... 6-43
6.5 Creating Advanced Services -- Building Your Own Adaptors..................................... 6-44
6.5.1 Packaging Your Adaptor... 6-44
vi

7 Service Administration

7.1 Managing Consumer Applications... 7-1
7.2 Managing Services .. 7-2
7.3 Service Response Caching.. 7-3
7.4 Cache Cleanup... 7-4
7.5 Connecting Multiple Dynamic Services Engine Instances.. 7-4
7.6 Additional Operations of the DSAdmin Utility.. 7-5
7.6.1 Using Script Files with the DSAdmin Utility... 7-5

8 Known Issues and Problems

8.1 Communications ... 8-1
8.2 Service Execution... 8-1
8.3 Service Definitions and Creation .. 8-1
8.4 Other Problems and Issues .. 8-1

A Links

B Frequently Asked Questions

C Descriptive Matrix

C.1 Syntax of the Service Descriptor Schema... C-1
C.2 Syntax of the Parameters Section for the Packaged Adaptors.. C-9
C.2.1 oracle.ds.engine.ioa.DSXSLTInputAdaptor ... C-10
C.2.2 oracle.ds.engine.ioa.DSXSLTOutputAdaptor.. C-10
C.2.3 oracle.ds.engine.pa.DSHTTPProtocolAdaptor .. C-11
C.2.4 oracle.ds.engine.pa.DSJDBCProtocolAdaptor... C-12
C.2.5 oracle.ds.engine.pa.DSSMTPProtocolAdaptor.. C-13
C.2.6 oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor C-14
C.2.7 oracle.ds.engine.ea.DSConditionalExecutionAdaptor ... C-17
C.2.8 oracle.ds.engine.ea.DSFailOverExecutionAdaptor... C-18
 vii

D Sample Service Packages

E Error Messages

E.1 Execution Engine Errors ... E-1
E.2 Communication Errors ... E-2
E.3 DS Registry Errors ... E-5
E.4 DS Engine Errors ... E-10
E.5 DS Driver Errors .. E-18
E.6 DS Compound Execution Adaptor Module Errors .. E-18

Glossary

Index
viii

List of Examples

3–1 Configure the DSAdmin Utility .. 3-3
3–2 Run the DSAdmin Utility... 3-5
3–3 Create a Set of Categories Required by the Yahoo Service Package.............................. 3-8
3–4 Register a Service Package ... 3-9
3–5 Search a List of Registered Services by Category ... 3-10
3–6 Returning a List of Services Using the Wildcard "*" Search.. 3-10
3–7 Search a List of Registered Services by Interface.. 3-11
3–8 Execute a Registered Service ... 3-12
4–1 Set the aq_tm_process init.ora Parameter.. 4-3
4–2 Configure the MonitorInstall.dss File... 4-4
4–3 Usage Syntax for Running the Event Monitor Utility.. 4-5
4–4 Connect to the DSSYS Schema as DSSYS User ... 4-5
4–5 Start the Event Monitor .. 4-6
4–6 Stop the Event Monitor... 4-6
4–7 Define the Raw Log Object Table.. 4-6
4–8 Definition of the Raw Event Object Table.. 4-6
4–9 Make a SQL Query of the Logging Events .. 4-7
4–10 Run the ldapmodify Command to Create Default Entries for Dynamic Services..... 4-16
4–11 Configure the Dynamic Services Registry to Use the Master LDAP Server............... 4-17
5–1 Include These Dynamic Services Libraries in Your Classpath 5-2
5–2 Create a New Database User Using These SQL Statements ... 5-2
5–3 Register the Application as a New Dynamic Services Consumer.................................. 5-3
5–4 Connect to the Oracle Dynamic Services Engine as User serviceconsumer1 5-3
5–5 Specify a Driver and Open a Connection for a Service Consumer Application 5-4
5–6 Request a Service and the Service Execution Call .. 5-5
5–7 Request the YahooPortfolio Service.. 5-6
5–8 Display a Service Response.. 5-6
5–9 Use These Grant Statements to Access the PL/SQL DynamicServices Package 5-7
5–10 PL/SQL Interface for Dynamic Services.. 5-8
5–11 Sample Code to Use the Dynamic Services PL/SQL Interface Package 5-9
6–1 Create a Default Service Package.. 6-3
6–2 Update the MANIFEST File ... 6-4
6–3 Edit the YahooOrg.xml File ... 6-4
6–4 Edit the YahooContact.xml File... 6-5
6–5 Edit the ypflClass.xml File ... 6-5
6–6 Examine a Typical HTML Form.. 6-6
6–7 Generate an XML Schema File for the Service Request ... 6-6
6–8 Examine the Code and Note the Stock Symbol ORCL .. 6-7
6–9 Create an XML Schema File for the Service Response... 6-8
 ix

6–10 Examine the Beginning of the Service Descriptor .. 6-9
6–11 Modify the Service Header... 6-9
6–12 Look for the Beginning of the Service Body .. 6-11
6–13 Modify the Input Section of the Service Body... 6-11
6–14 Modify the Protocol Section of the Service Body.. 6-12
6–15 Modify the Output Section of the Service Body.. 6-13
6–16 Close the Service Body and Service Descriptor Elements ... 6-15
6–17 Sample Naming Specification.. 6-17
6–18 Sample Package Specification.. 6-17
6–19 Sample Service Provider Specification ... 6-18
6–20 Sample Deployment Specification .. 6-19
6–21 Sample Service Interface Specification ... 6-20
6–22 Sample Namespaces Specification .. 6-23
6–23 Sample Aliases Specification.. 6-23
6–24 Sample HTTPS Protocol Adaptor Specification.. 6-25
6–25 Sample XSL Stylesheet Information.. 6-28
6–26 Sample Aliases Defined as XSL Variables ... 6-28
6–27 Sample HTTP Protocol Adaptor Specification.. 6-29
6–28 Sample Login and Password Aliases in the Authorization Specification 6-30
6–29 Sample JDBC Protocol Adaptor Specification... 6-31
6–30 Sample SMTP Protocol Adaptor Specification.. 6-33
6–31 Sample Failover Adaptor Specification.. 6-35
6–32 Sample Compound Service Specification .. 6-35
6–33 Sample Service Execution Module with the executeSingleRequest Property 6-36
6–34 Sample Service Execution Module with the executeAllRequests Property................ 6-37
6–35 Sample MessageTransformer Module.. 6-37
6–36 Sample Message Section of the MessageSplitter Module.. 6-38
6–37 Sample MessageSplitter Module Using the SingleTransformation Option................ 6-38
6–38 Sample MessageSplitter Module Using the Multiple Transformation Option 6-39
6–39 Sample Messages Section of the MessageMerger Module .. 6-40
6–40 Sample MessageMerger Module... 6-40
6–41 Sample Dependency Matrix... 6-41
6–42 Sample DSConditionalExecutionAdaptor Execution Adaptor 6-42
7–1 Run the DSAdmin Utility Using the -i Option.. 7-6
x

 xi

List of Figures

1–1 Application Developers Aggregate Services for Customers... 1-4
1–2 Oracle Dynamic Services Architecture... 1-8
1–3 Roles in the Oracle Dynamic Services Framework... 1-9
1–4 Java Deployment View of the Oracle Dynamic Services Framework 1-15
1–5 PL/SQL Deployment View of the Oracle Dynamic Services Framework.................. 1-16
1–6 Java (HTTP/JMS) Deployment View of the Oracle Dynamic Services Framework . 1-18
1–7 Asynchronous Deployment Communication (JMS) .. 1-19
1–8 Using Multiple-Instance Deployment of Oracle Dynamic Services Engines 1-20
3–1 Contents of a Simple Service Package.. 3-6
6–1 Sample Service Execution Showing the Role of the Input, Protocol, and Output

Specifications as Specified Adaptors ..6-21
6–2 Sample Execution Adaptor .. 6-22
6–3 Parallel Execution of Services .. 6-41

xii

List of Tables

1–1 Summary of People or Organizations and Their Tasks or Roles in the Oracle Dynamic
Services Framework ... 1-2

1–2 Dynamic Services Components and Their Functions .. 1-6
2–1 Oracle Dynamic Services ds Directory Contents .. 2-2
3–1 DSAdmin Utility Configuration Elements... 3-3
3–2 DSAdmin Utility Command-Line Options.. 3-5
4–1 ldapmodify Command-Line Options for Installing Dynamic Services LDAP Schema.......

.. 4-15
4–2 Dynamic Services Properties ... 4-17
6–1 Adaptors Supplied by Oracle Dynamic Services.. 6-27
7–1 Possible Service Response Cases When Using a SESSION_PRIVATE Parameter Setting ..

.. 7-3
C–1 Descriptive Matrix of the Service Descriptor Schema.. C-1
C–2 Descriptive Matrix of the Classification Schema .. C-8
C–3 Descriptive Matrix of the Contact Schema .. C-9
C–4 Descriptive Matrix of the Organization Schema... C-9
C–5 Descriptive Matrix of the Input Adaptor Parameters ... C-10
C–6 Descriptive Matrix of the Output Adaptor Parameters .. C-11
C–7 Descriptive Matrix of the HTTP Protocol Adaptor Parameters C-11
C–8 Descriptive Matrix of the JDBC Protocol Adaptor Parameters C-13
C–9 Descriptive Matrix of the SMTP Protocol Adaptor Parameters C-13
C–10 Descriptive Matrix of the Compound Execution Adaptor Parameters C-15
C–11 Descriptive Matrix of the Conditional Execution Adaptor Parameters C-17
C–12 Descriptive Matrix of the Failover Execution Adaptor Parameters............................ C-18
D–1 CnnPortfolio Sample Service Package.. D-2
D–2 Currency Sample Service Package .. D-3
D–3 DBService Sample Service Package .. D-4
D–4 FailOverPortfolio Sample Service Package.. D-5
D–5 Ipfl Sample Service Package .. D-6
D–6 SampleService Sample Service Package... D-7
D–7 Ual Sample Service Package .. D-8
D–8 Yahoo Sample Service Package ... D-9
D–9 YahooPortfolioCustomAdaptor Sample Service Package.. D-10
D–10 YahooPortfolioCustomProperty Sample Service Packages.. D-11

Send Us Your Comments

Oracle Dynamic Services User’s and Administrator’s Guide, Release 9.0.1

Part No. A88783-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: nedc-doc_us@oracle.com
■ FAX: 603.897.3825 Attn: Oracle Dynamic Services Documentation
■ Postal service:

Oracle Corporation
Oracle Dynamic Services Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xiii

xiv

Preface

Oracle Dynamic Services is a Java-based programmatic framework for
incorporating, managing, and deploying Internet services. Oracle Dynamic Services
makes it easy for application developers to rapidly incorporate existing services
residing in Web sites, local databases, or proprietary systems into their own
applications.

Audience
This guide is for developers who want to easily and more quickly develop
customized, dynamic, Internet service offerings as business opportunities for their
customers. An understanding of Oracle9i, Java, and XML is required.

Organization
This guide contains the following chapters and appendixes:

Chapter 1 Introduces Oracle Dynamic Services; explains concepts.

Chapter 2 Describes the Oracle Dynamic Services installation.

Chapter 3 Describes Oracle Dynamic Services configuration and how to use Oracle Dynamic
Services.

Chapter 4 Describes advanced installation options.

Chapter 5 Describes the Java and PL/SQL Web application development interfaces for
accessing the Dynamic Services engine.

Chapter 6 Describes how to build a service.
xv

Related Documents

For more information, see the following manuals:

■ Oracle9i XML Reference

■ PL/SQL User’s Guide and Reference

■ Oracle Internet Directory Administrator’s Guide

Chapter 7 Describes service administration tasks.

Chapter 8 Describes known issues and problems with the current release of Oracle Dynamic
Services.

Appendix A Describes some helpful links to W3C specifications.

Appendix B Describes some frequently asked questions (FAQ).

Appendix C Describes the descriptive matrix of the schemas and adaptors supplied by Oracle
Dynamic Services.

Appendix D Describes the sample service packages.

Appendix E Describes Oracle Dynamic Services error messages.

Glossary Describes the Oracle Dynamic Services terms.

Note: For information added after the release of this guide, see the
online README.txt file in your ORACLE_HOME directory.
Depending on your operating system, this file may be in:

On UNIX systems:

ORACLE_HOME/ds/doc/README.txt

On Windows NT systems:

ORACLE_HOME\ds\doc\README.txt

See your operating-system specific installation guide for more
information.

For the latest documentation, see the Oracle Technology Network
Web site:

http://otn.oracle.com/
xvi

■ Oracle9i Java Developer’s Guide

■ Oracle9i Java Stored Procedures Developer’s Guide

■ Oracle9i Enterprise JavaBeans Developer’s Guide and Reference

■ Oracle9i JDBC Developer’s Guide and Reference

■ Oracle9i SQLJ Developer’s Guide and Reference

Conventions
In this guide, Oracle Dynamic Services is sometimes referred to as Dynamic
Services.

The following conventions are used in this guide:

Documentation Accessibility
Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface in text indicates a term defined in the text, the glossary, or in
both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.
xvii

http://www.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.
xviii

 Introd
1

Introduction

As a feature of Oracle9i, Oracle Dynamic Services is a Java-based programmatic
framework for incorporating, managing, and deploying Internet and Intranet
services. Using the Internet as the information source, Oracle Dynamic Services
makes it easy for application developers to rapidly incorporate valuable services
from Web sites, local databases, and proprietary systems into their applications.

For example, an online financial portfolio can use Oracle Dynamic Services to
integrate Internet financial services, such as stock quotes and exchange rates, from
different resource providers to calculate the current value of a portfolio in foreign
currency. Oracle Dynamic Services is designed to handle dynamic business models
with no degradation in the quality of service. Business opportunities can be
maximized because this framework permits customized service delivery for flexible
application development.

Using the simple, yet flexible framework of Oracle Dynamic Services, application
developers can significantly shorten the development cycle for developing
applications and increase quality of service by selecting the very best sources. With
the Internet becoming the source of choice to compose, deploy, access, and manage
business information through service offerings, Oracle Dynamic Services provides
the best framework to dynamically manage and customize these Internet services.

Table 1–1 summarizes the tasks or roles of people or organizations in the Dynamic
Services framework; the roles of these people and organizations are described later
in this section.
uction 1-1

Application Scenarios
1.1 Application Scenarios
Businesses and application developers face a host of business problems and
technical challenges in providing information and integrating it into dynamic
applications for the Internet or for corporate Intranets.

1.1.1 Business Problems or Technical Challenges
To integrate Internet services or Intranet services into dynamic applications,
businesses must be able to:

■ Access sources using protocols or APIs

■ Manage sources that have different types of sessions with different protocols,
have multiple content formats, and do not have guaranteed access

■ Deliver specially formatted content to both Web and wireless devices

To access a variety of information sources, businesses must do the following:

■ Develop custom code to manage data transformations among different
protocols

Table 1–1 Summary of People or Organizations and Their Tasks or Roles in the
Oracle Dynamic Services Framework

People or Organizations Tasks or Roles

Service provider (business
partner and application
developer)

Owns business information content or services to offer

Provides the specification for accessing services

Provides the content for a service

Designs the service package

Registers the service package

Service consumer application Incorporates services into applications in order to deploy
them as useful, customized services

Designs the flow of the services

Service administrator Grants service access to service consumer applications

Registers the service package

Manages the Oracle Dynamic Services registry

Manages service consumer applications

Performs tuning of the Oracle Dynamic Services engine
1-2 Oracle Dynamic Services User’s and Administrator’s Guide

Application Scenarios
■ Develop custom servers to use these resources

■ Implement security, scalability, and performance with every server and then
manage them all

In addition, due to the extensive code customization required, businesses rarely can
reuse these custom servers.

To manage these information resources, businesses must manage sessions
differently for different protocols such as cookies for HTTP. They must be able to
handle various content structures, such as DB result sets, XML, Java objects, and so
forth; and, they must develop custom solutions for failover service aggregation,
caching, and so forth.

To deliver content, businesses must render application results into multiple formats,
such as HTML, XML, and so forth. Due to the difficulty involved, they often must
utilize consultants to integrate their applications. They must continually change
code to adapt to any changes because nothing is configurable; and they face great
challenges in being able to scale their applications as their customer base expands.

In summary, it is currently very expensive and an extremely complex operation to
develop applications for customers because of the extraordinary number and
variety of technical issues involved.

1.1.2 Oracle Dynamic Services Solutions
Application developers who develop e-business, wireless, or portal applications
must be able to easily and rapidly aggregate service offerings from business
partners and application developers (often referred to as service providers) and
provide a single service visible to customers (see Figure 1–1). Application
developers, who build their service offerings upon a sound architecture, can quickly
develop a collection of services that are easily maintained and managed, and
rapidly deployed to meet changing business needs.

Application developers can use Oracle Dynamic Services to create customized
delivery of services with the following benefits:

■ Separating of application logic from service access for improved application
development and easier maintenance

■ Modifying available services to solve business problems, thereby reducing the
cost and time needed to develop a new application

■ Making development of value-added services or applications easier and faster
by using services from multiple resource providers
Introduction 1-3

Application Scenarios
■ Enabling improvement of the incorporated services without affecting existing
applications

Service consumers, such as an application developer for an e-business, wireless, or
portal service provider, provides one aggregate set of services to customers as
shown in Figure 1–1, based on specifications provided by the service providers.

Figure 1–1 Application Developers Aggregate Services for Customers

Oracle Dynamic Services can be used in a number of scenarios including wireless,
portal, and e-business applications, where services are integrated with little
incremental development cost.

1.1.2.1 Wireless Service Developers
Wireless service developers can use Oracle Dynamic Services to incorporate various
useful services. Applications can be built for wireless (handheld) devices to prompt
messages, advertisements, or special services based on the geographical location of
the user with the handheld device. For example, as a user enters a particular
geographic area, an application can prompt specific information to the user’s
device, highlighting specific local business offerings, such as store sales promotions,
1-4 Oracle Dynamic Services User’s and Administrator’s Guide

Overview of Concepts
a significant weather event, local entertainment, and so forth. Using Oracle
Dynamic Services, application developers can aggregate multiple services into a
single service, and provide a great breadth of information to customers.

1.1.2.2 Portal Service Developers
Portal service developers, who can deliver a richer, broader, and more dynamic
array of information and services to users for specific geographical areas, become
more powerful in attracting users to their service offerings. Using Oracle Dynamic
Services, portal developers can build applications that contain services to perform
specific tasks for the user. These applications can, for example, send confirmation
notices when each task is completed. Using a portal search engine, local restaurants
of interest can be listed, a reservation made, and a confirmation notice returned
along with directions to the restaurant from a specific point of interest. As the
success of these kinds of services grows, so does the use of the portal by its
customers.

1.1.2.3 e-Business Service Application Developers
As e-businesses grow, application developers can use Oracle Dynamic Services to
integrate different services to help its customers through a series of related
transactions, such as buying a house. Using an online real estate service, a
prospective buyer can locate houses of interest, visit each house through a virtual
tour, ask questions, and decide upon a small set of those houses to visit in person.
This same buyer can also locate several mortgage lenders, fill out an online
mortgage loan application, schedule home inspections, loan closures, movers, and
so forth. Every possible real estate service can be used as needed to make the
house-buying experience as enjoyable and easy as possible for the home buyer.

Using the service triggering capability of Oracle Dynamic Services, as one task is
completed, the next set of related tasks is scheduled, so in turn, each task leads
directly to additional related tasks. Application developers for the online real estate
broker can write an entire e-business application using Oracle Dynamic Services.
The real estate broker needs only to cultivate and manage the relationships among
the various service providers.

1.2 Overview of Concepts
Table 1–2 describes the primary components that comprise Oracle Dynamic
Services.
Introduction 1-5

Overview of Concepts
Table 1–2 Dynamic Services Components and Their Functions

Components Functions

Service consumer
application

Acts as a client of the Dynamic Service engine, writes
applications using this framework.

Dynamic Services client
library

Handles communication between the service consumer
application and the Dynamic Services engine.

Connects an application with the Dynamic Services engine by
opening a connection to it, in a fashion similar to opening a
JDBC connection. There are multiple connection drivers
available with Dynamic Services that allow different
connection paths from applications to the Dynamic Services
engine. Applications must register the desired driver and then
operate with the returned connection. (See Section 5.1.3 for
more information.)

Service package Contains the information necessary to model a resource as a
service component deployable in the Oracle Dynamic Services
framework.

Contains, in its simplest form, a bundle of files modeled as a
local directory.

Contains, in its compound form, an additional file, a jar file,
containing all Java classes and stylesheets needed by the
compound service.

Service registry Maintains the service package information of registered
services that enables Dynamic Services engines to set up and
execute a service, and access distributed sources from service
providers.

Application profile
registry

Maintains service consumer application information about the
identity of service consumer applications and their properties.
A service consumer application must be registered in the
application profile registry.
1-6 Oracle Dynamic Services User’s and Administrator’s Guide

Overview of Concepts
Figure 1–2 shows the Oracle Dynamic Services architecture. Service providers
(business partners and application developers) provide services that service
administrators register in the service registry using the DSAdmin utility.
Application developers create applications using application profiles that service
administrators register in the application profile registry. The registry is an Oracle
Internet Directory (OID) Lightweight Directory Access Protocol (LDAP) server
whose contents are also mirrored in the Oracle9i database for performance
optimization. The Dynamic Services Java engine, depending upon the
configuration, can reside either inside or outside Oracle9i. Dynamic Services does
the following:

■ Exposes PL/SQL interfaces to run the Oracle Dynamic Services engine within
Oracle9i JVM (see Figure 1–5)

■ Exposes Java interfaces when it runs on a local machine hosting the application
(thick client library) (see Figure 1–4)

Dynamic Services engine Accepts service requests from client applications and does the
following tasks:

■ Performs post-processing of service requests to produce
the input required by the service (input adaptor)

■ Determines how the service needs to be executed and sets
up the service execution environment (execution adaptor)

■ Issues service execution requests to the service providers
by transforming the standard service request to the input
needed by the service following the underlying protocol
(protocol adaptor)

Receives the service response from the service providers and
does the following task:

■ Transforms the service response for the client and returns
it to the caller (output adaptor)

Can execute services in synchronous as well as asynchronous
mode, depending upon the client application setup.

Service administrator Uses an extended version of the Dynamic Services client
library for communicating with the Dynamic Services engine.

Includes an administration shell (DSAdmin utility) and a
Web-based administration utility that are both part of the
Dynamic Services engine to manage that engine and all its
components.

Table 1–2 Dynamic Services Components and Their Functions (Cont.)

Components Functions
Introduction 1-7

Overview of Concepts
■ Acts as a middle-tier Java engine behind a Java servlet with the application
using a Dynamic Services thin client library (see Figure 1–6)

Figure 1–2 Oracle Dynamic Services Architecture

Figure 1–3 shows the major components of Oracle Dynamic Services and the roles
of people and organizations in the Dynamic Services framework. These major
components and roles begin with the definition of a service package. Both service
providers and service consumer applications can define the service package
depending on their business relationship. The service administrator takes the
service package and registers it in the Dynamic Services engine. Registered services
and applications are managed by the Dynamic Services engine. Next, application
logic within an application invokes a registered service. Upon the service invocation
request, the Dynamic Services engine then contacts the service provider for the
specific request.
1-8 Oracle Dynamic Services User’s and Administrator’s Guide

Overview of Concepts
Figure 1–3 Roles in the Oracle Dynamic Services Framework

1.2.1 Service Provider
Service providers provide the content and transformations for a service. Service
developers and service administrators define the service and load it into the service
registry so that the service becomes available to service consumer applications.
Service consumer applications can combine many of these services to create
value-added services or applications. Service developers need to know the
requirements of the service providers for access and authentication in order to
create a service in the Dynamic Services framework. Service developers can also
specify caching policy, failover, and so forth, to further improve scalability and
Introduction 1-9

Overview of Concepts
reliability. The Dynamic Services engine contacts the service providers during
service execution according to the specification provided in the registered service
package.

1.2.2 Service Registry
The service registry is the storage place for the service package. A service package
enables Dynamic Services engines to set up and execute a service, and access
distributed information sources from service providers. Service consumer
applications can use the client library to perform lookup operations on the service
registry. Service administrators can perform updates on the registry without
affecting client applications. This feature simplifies the client applications.

1.2.3 Application Profile Registry
The application profile registry is the storage place for the service consumer
application attributes. It holds information about the identity of service consumer
applications and their properties. A service consumer application must be
registered to the Oracle Dynamic Services engine. Before a service consumer
application is registered, it must be associated with a database user who has been
granted the connect privilege and been granted the DSUSER_ROLE privilege. Then,
the named service consumer application must be granted service execution
privileges for a service before it can access the named service.

1.2.4 Service Administrator
The service administrator is responsible for managing the Dynamic Services engine
and all of its components. The service administrator monitors service failover,
manages caching policy, schedules services, and also registers and unregisters
services and service consumer applications. The service administrator can listen to
the events raised within the Dynamic Services engine to monitor, trace, profile, view
service execution, and view service session data. The service administrator also
specifies deployment options for services and controls service access to the service
consumer applications. The service administrator performs engine performance
monitoring, service log reviewing, and so forth.

1.2.5 Service Consumer Application
A service consumer application acts as a client of the Dynamic Service engine.
Through the Dynamic Services client API, service consumer applications acquire
handles on the services it wants to execute, submits service execution requests, and
1-10 Oracle Dynamic Services User’s and Administrator’s Guide

Overview of Concepts
collects the responses. Service consumer applications need not be aware of the
communication protocol used by the Dynamic Services client library and the
Dynamic Services engine. The communication protocol is abstracted by the
Dynamic Services framework. Service administrators are also unaware of the
service providers and other management infrastructure supporting the service
execution. This abstraction has been built into the Dynamic Services framework to
keep the client applications simple and less vulnerable to the changing business
conditions and the changing technical environment that supports their applications.

1.2.6 Dynamic Services Engine
The core of the Dynamic Services framework is the Dynamic Services engine. The
Dynamic Services engine is a multithreaded Java engine, which accepts requests
from the client applications. The Dynamic Services engine can execute services in
synchronous as well as asynchronous modes, depending upon the client application
setup. Once a request is received by the engine, the engine determines how the
service needs to be executed, sets up the execution environment, and issues
execution requests to the service providers. Upon receiving the response from the
service providers, the engine transforms the response for the client and returns it to
the caller.

1.2.7 Services as Application Components
One of the premier advantages of using Oracle Dynamic Services is the ability to
use services as application components. Service administrators can easily change a
service provider, because as a service, their access to service consumer applications
is easily managed. Application components can be easily aggregated to offer a
service composed of many services. For example, an application can offer failover
service aggregation among a group of related services should a specific service
become unavailable. An application can offer a specific set of services based on
certain business conditions, and so forth. Furthermore, specific application
components can be easily tailored to deliver content in a format suitable for the
device an end user is using. Because these options are available as application
components, applications can be rapidly developed and deployed as well as
modified to fit changing business needs. The ability to easily build, maintain, and
manage a collection of application components for rapid deployment is what Oracle
Dynamic Services offers to application developers.
Introduction 1-11

Dynamic Services Implementation Overview
1.2.8 Communication Between the Service Consumer Application and the Dynamic
Services Engine

The client library is responsible for handling the communication between the
service consumer application and the Dynamic Services engine. The communication
is performed as synchronous or asynchronous messages between the client library
and the Dynamic Services engine. Service consumer applications can communicate
with any available Dynamic Services engine provided they are authorized to use
that particular instance. Once connected, service consumer applications have the
access and privileges that service administrators assign to them. These features
allow distributed client access to a large number of Dynamic Services engines, and
can be used to implement client failovers or load balancing.

1.2.9 Communication Between the Service Administrator and the Dynamic Services
Engine

The service administrator interfaces with the Dynamic Services engine through the
administrator tools. The administrator tools use an extended version of the client
library to communicate with the Dynamic Services engine. The Oracle Dynamic
Services administrative shell, shipped with the Dynamic Services engine, is an
example of these tools. This is an interactive, scriptable, easy-to-use command-line
shell that includes online help. Some of the features of the shell are also available
from a Web-based administration utility, which is shipped with the Dynamic
Services engine.

1.3 Dynamic Services Implementation Overview
Oracle Dynamic Services has three possible deployment modes:

■ Java deployment view (see Section 1.3.1)

■ PL/SQL deployment view (see Section 1.3.2)

■ Java (HTTP/Java Messaging Services (JMS)) Deployment view (see
Section 1.3.3)

The following is a brief description of the underlying technologies of the high-level
components for each implementation.

Dynamic Services Engine
The Dynamic Services engine can be deployed as any of the following three engine
types:
1-12 Oracle Dynamic Services User’s and Administrator’s Guide

Dynamic Services Implementation Overview
■ A Java engine running on the machine hosting the application (thick client
library) (see Figure 1–4)

■ A middle-tier Java engine behind a Java servlet (see Figure 1–6)

■ A Java engine running within Oracle9i JVM (see Figure 1–5)

Different options can be selected by service consumer applications based upon their
application needs. A unique feature of the Dynamic Services framework is that
service consumer applications can switch from one environment to another without
recompiling or even restarting their applications. This gives the service consumer
application added flexibility to try out various options, to see which best fit their
applications.

Dynamic Services Service and Application Profile Registries
The service registry and application profile registry are deployed as directories in
the Oracle Internet Directory (OID) server. The access control list of OID is used for
access control, allowing service administrators to choose the services visible to a
particular service consumer application. Managing services and service consumer
applications in OID allows multiple instances of Dynamic Services engines to work
in a synchronized fashion, giving an open, scalable option to service consumer
applications. For performance reasons, the registry data is cached in an Oracle9i
instance accessed by the Oracle Dynamic Services engine at service execution time.
This cache can be synchronized automatically at the start of the Dynamic Services
engine, or service administrators can synchronize it through their console, as
required.

Communication Between Service Consumer Applications and the
Dynamic Services Engine
The communication between the Dynamic Services engine and the service
consumer applications is abstracted by the Dynamic Services client library. By
registering a Dynamic Services driver, a service consumer application can
dynamically change the underlying communication protocol used by the client
library to communicate with the Dynamic Services engine. Supported
communication protocols include HTTP (see Figure 1–6), AQ/JMS (see Figure 1–6),
and direct Java access (see Figure 1–4). Service consumer applications have
complete control over the drivers they choose within their programming
framework, and they can switch to any driver. Service consumer applications can
use multiple drivers to talk to multiple Dynamic Services engines, at the same time,
if required.
Introduction 1-13

Dynamic Services Implementation Overview
Service consumer applications can access services through different paths
depending upon their Dynamic Services engine deployment. The Dynamic Services
engine allows access to the services in PL/SQL and Java for programming
purposes.

1.3.1 Java Deployment View
Figure 1–4 shows a basic Java deployment view of the Oracle Dynamic Services
framework. The Oracle9i database serves as a registry cache, communicating with
the OID Lightweight Directory Access Protocol (LDAP) server hosting the
registries. The service consumer application contains application logic that uses the
services through direct Java calls.

In this case, the service consumer application uses the Dynamic Services thick Java
client library, which contains the Dynamic Services execution engine. Service
providers run in their own servers.
1-14 Oracle Dynamic Services User’s and Administrator’s Guide

Dynamic Services Implementation Overview
Figure 1–4 Java Deployment View of the Oracle Dynamic Services Framework
Introduction 1-15

Dynamic Services Implementation Overview
1.3.2 PL/SQL Deployment View
Figure 1–5 shows a PL/SQL deployment view of the Oracle Dynamic Services
framework. The Dynamic Services engine runs in the Oracle9i JVM, with its
functions exposed as a set of Java stored procedures. The Oracle9i database serves
as a registry cache, communicating with the Oracle Internet Directory LDAP server
hosting the registries. The service consumer application contains application logic,
which makes use of the services through PL/SQL calls. Service providers run in
their own servers.

Figure 1–5 PL/SQL Deployment View of the Oracle Dynamic Services Framework
1-16 Oracle Dynamic Services User’s and Administrator’s Guide

Dynamic Services Implementation Overview
1.3.3 Java (HTTP/Java Messaging Services (JMS)) Deployment View
Figure 1–6 shows a Java (HTTP/JMS) deployment view of the Oracle Dynamic
Services framework. The Dynamic Services engine runs in a Dynamic Services
gateway (middle tier) that supports HTTP, HTTPS, and JMS as communication
protocols. The Oracle9i database serves as a registry cache, communicating with the
Oracle Internet Directory LDAP server hosting the registries. The service consumer
application contains application logic, which makes use of the services through the
Dynamic Services thin Java client library, and can execute services remotely in other
systems.

In this case, service execution requests are forwarded to the Dynamic Services
gateway, which executes the service and returns the response. The communication
between the service consumer application and the gateway is handled by the
Dynamic Services thin Java client library.
Introduction 1-17

Dynamic Services Implementation Overview
Figure 1–6 Java (HTTP/JMS) Deployment View of the Oracle Dynamic Services
Framework

Figure 1–7 shows the asynchronous deployment communication (JMS) that occurs
when the DSJMSDriver allows for asynchronous access to services using a Dynamic
Services gateway in the form of a JMS daemon. The mode of operations with this
1-18 Oracle Dynamic Services User’s and Administrator’s Guide

Using Multiple Dynamic Services Engines
driver lets it submit requests asynchronously to an AQ/JMS queue in a remote
database. The driver assumes the existence of this JMS daemon that listens
asynchronously to the same queue where requests are being submitted. The
daemon takes on the role of the Dynamic Services engine and processes the request,
generates a response, and submits that response into another queue that the
DSJMSDriver listens to asynchronously. On the service consumer application side,
therefore, listeners can be registered to be informed when the response is returned.

Figure 1–7 Asynchronous Deployment Communication (JMS)

1.4 Using Multiple Dynamic Services Engines
To increase scalability, you can install multiple Dynamic Services engines that
communicate with a central master Lightweight Directory Access Protocol (LDAP)
Introduction 1-19

How to Get Started with Oracle Dynamic Services
registry (see Figure 1–8). See Section 4.5 for installation and configuration
information for setting up LDAP with OID and configuring the Dynamic Services
registry to use LDAP.

The basic steps for using LDAP as a central master registry are as follows:

1. The service administrator registers a service through one Dynamic Services
engine.

2. This Dynamic Services engine updates the central registry, then broadcasts a
synchronize message to all other instances of the Dynamic Services engines.

3. All other instances of Dynamic Services engines synchronize their registry
cache with the central registry.

Figure 1–8 Using Multiple-Instance Deployment of Oracle Dynamic Services Engines

1.5 How to Get Started with Oracle Dynamic Services
The remaining chapters in this guide begin by guiding you through a basic
installation and configuration of Oracle Dynamic Services (Chapter 2), then
1-20 Oracle Dynamic Services User’s and Administrator’s Guide

How to Get Started with Oracle Dynamic Services
showing you how to get started by configuring and running the DSAdmin utility
and registering a new service, browsing registered services, and executing a
registered service (Chapter 3).

Advanced topics are discussed in the remaining chapters, guiding you through
advanced installation and configuration options (Chapter 4), describing how to use
the Java and PL/SQL Web application development interfaces (Chapter 5), showing
you the process of service development (Chapter 6), and finally describing service
administration tasks (Chapter 7).
Introduction 1-21

How to Get Started with Oracle Dynamic Services
1-22 Oracle Dynamic Services User’s and Administrator’s Guide

Insta
2

Installation

This chapter describes the basic installation and configuration of Oracle Dynamic
Services, which is the Java deployment view described in Section 1.3.1.

The installation requires that the person installing this software have sysadmin
privileges, is a database administrator, and has application development skills.

After you have completed the installation steps described in this chapter, you will
have an understanding of the system requirements needed to install Dynamic
Services and will have installed the DSSYS schema. You must continue to Chapter 3
to configure the DSAdmin utility, and use this utility to register and execute a
service to ensure that Dynamic Services is properly installed and running.

To configure and use other deployment views of Dynamic Services, such as
HTTP/HTTPS, PL/SQL, or HTTP/Java Messaging Services (JMS), or to set up
LDAP as a central master registry, see the appropriate sections described in
Chapter 4. Chapter 4 also describes other advanced features such as enabling
persistent auditing, manually fine-tuning Dynamic Services properties, and
installing the management console.

2.1 System Requirements
The following are the system requirements:

■ Oracle release: Oracle9i Standard Edition or Enterprise Edition Release 1 (9.0.1)
is required to install and use Oracle Dynamic Services.

Note: The version requirements for Oracle9i Standard Edition or
Enterprise Edition refer to Release 1 (9.0.1).
llation 2-1

Dynamic Services Distribution
■ Oracle Dynamic Services supports Oracle9i Standard Edition and Enterprise
Edition running JDK 1.2.2.

■ Java version: JDK 1.2.2 or later (Java2) distribution.

Ensure you have a full installation of Oracle9i Release 1 (9.0.1) (a full installation in
this case includes a typical Oracle9i Release 1 (9.0.1) installation. Follow Oracle9i
installation instructions to complete a full installation.

2.2 Dynamic Services Distribution
For release 9.0.1, Oracle Dynamic Services is installed using the Oracle Universal
Installer into the ds directory within your <ORACLE_HOME> directory. The
distribution contains the subdirectories shown in Table 2–1.

Note: <ORACLE_HOME> is referred to as the installation
directory of the Oracle9i Release 1 (9.0.1) distribution.

Note: <JAVA2_HOME> is the installation directory of the JDK
1.2.2 or later distribution.

Important: In Section 2.2, directory paths often show only the
UNIX path "/" specification. If you are installing on a Windows NT
system, the path specification is "\" and you must make this
change, as needed, for the installation to be successful.

Table 2–1 Oracle Dynamic Services ds Directory Contents

Subdirectories Description

bin Contains the DSAdmin command-line utility for registering or
unregistering a service, and running the test service
executions.

demo/consumer Contains the sample client code for the service consumer.

demo/dsadmin Contains the sample Oracle Dynamic Services script files.

demo/services Contains the sample service packages.
2-2 Oracle Dynamic Services User’s and Administrator’s Guide

Installing the DSSYS Schema
2.3 Installing the DSSYS Schema
The DSSYS schema SQL scripts do the following:

■ Create the tablespaces for the DSSYS schema.

■ Connect to the schema as DSSYS/<DSSYS-password>.

■ Create all object and table definitions.

■ Install the Dynamic Services registry.

■ Initialize the user profile registry.

■ Create a table for caching service responses.

■ Install the Dynamic Services cache manager package.

■ Create the Dynamic Services properties table.

doc Contains the documentation about Dynamic Services
including the README.txt file, the Oracle Dynamic Services
FAQ file (dsfaq.txt), and the JavaDoc API (apidoc.zip), which
contains those classes that are necessary for service consumers
and service developers to build and run services.

etc Contains miscellaneous configuration files.

etc/Apache_JServ Contains a sample servlet zone configuration file.

etc/dsadmin Contains a collection of system scripts and a properties file.

etc/services Contains the service packages needed for the monitor services.

etc/xsd Contains the XML schema for the service descriptor and
supplied adaptors.

jsp/management Contains the Management Console application.

ldif Contains the Lightweight Directory Access Protocol (LDAP)
schema definitions for the Oracle Internet Directory (OID)
registry.

lib Contains the jar file of the Dynamic Services code.

sql Contains SQL scripts for installing in Oracle9i the support
necessary for Oracle Dynamic Services.

logs Contains log files used by JMS daemon.

Table 2–1 Oracle Dynamic Services ds Directory Contents (Cont.)

Subdirectories Description
Installation 2-3

Installing the DSSYS Schema
■ Load the Dynamic Services properties package.

■ Initialize queues and events.

■ Create the Dynamic Services user roles.

To install the DSSYS schema, perform the following tasks:

1. Using a command-line shell, change the current directory to the directory where
the DSSYS schema installation script is located, shown as follows:

On UNIX systems:

cd <ORACLE_HOME>/ds/sql

On Windows NT systems:

cd <ORACLE_HOME>\ds\sql

2. Connect as SYS to the Oracle9i 9.0.1 instance using SQL*Plus as follows:

sqlplus sys/<sys-password>

The DSSYS schema installation script assumes the connected SYS user has the
required privileges to create users.

3. Run the dsinstall.sql script by issuing the following command in SQL*Plus:

SQL> @dsinstall.sql

The install script creates a log file of its execution so that it can be checked for
errors. The log file is created within the same directory and is named
dsinstall.log. To check if the installation had errors, run the following file at the
UNIX prompt:<ORACLE_HOME>bin/showerrors (showerrors.bat on
Windows NT) as follows:

On UNIX systems:

<ORACLE_HOME>/ds/bin/showerrors

Note: The dsinstall.sql script invokes a dssys_ts_init.sql script
responsible for the creation of tablespaces that are needed by the
DSSYS schema. Review the dssys_ts_init.sql script and customize it
before running the dsinstall.sql script. For example, you may want
to store these tablespaces on another disk.
2-4 Oracle Dynamic Services User’s and Administrator’s Guide

Dynamic Services Configuration
On Windows NT systems:

<ORACLE_HOME>\ds\bin\showerrors.bat

The showerrors command only reports failure errors or installation errors. If
there are none shown, then there are no errors to report.

4. To verify the installation of the schema, exit SQL*Plus and try to reconnect to
the database as the DSSYS user by issuing the following command:

sqlplus dssys/<dssys-password>

2.4 Dynamic Services Configuration
After the installation is complete, you must first configure and run the DSAdmin
utility before you can register and execute services, which is the test that your
Dynamic Services installation and DSAdmin utility configuration is working
properly. To configure the DSAdmin utility and register and execute a service, you
must continue to Chapter 3.

Note: The bin/showerrors directory path on UNIX systems or
the bin\showerrors directory path on Windows NT systems is
relative to the Oracle Dynamic Services installation home. On UNIX
systems, you must edit the bin/showerrors file, or on Windows
NT, you must edit the bin\showerrors.bat file and enter the
correct location for your <ORACLE_HOME> location.

Note: The default password for user DSSYS after installation is
DSSYS. For security reasons, you should change the default
password and modify the appropriate files in the installation.

Important: You cannot run any Dynamic Services service
registration scripts until you first configure and run the DSAdmin
utility described in Section 3.1.2 and Section 3.1.3. Then, to test the
DSAdmin configuration, follow the steps described in Section 3.2,
Section 3.3, and Section 3.4.
Installation 2-5

Dynamic Services Configuration
2-6 Oracle Dynamic Services User’s and Administrator’s Guide

Configu
3

Configuration

To get started with Oracle Dynamic Services, you must first configure and run the
DSAdmin utility. Then you can use the DSAdmin utility to register a new service,
browse through your list of registered services, and finally, execute a registered
service. This chapter describes each of these topics.

3.1 Configuring and Running the DSAdmin Utility
To verify a successful installation, use the DSAdmin command-line utility
(dsadmin on UNIX systems or dsadmin.bat on Windows NT).

The DSAdmin utility allows command-line interactions with the Oracle Dynamic
Services engine and lets you perform common operations, such as service
registration, service unregistration, and service execution testing.

Note: For UNIX and Windows NT, you must first edit the
dsadmin or dsadmin.bat file to specify the correct <ORACLE_
HOME> before using the DSAdmin utility. On UNIX systems, the
dsadmin file is located in the following directory:

<ORACLE_HOME>/ds/bin/

On Windows NT systems, the dsadmin.bat file is located in the
following directory:

<ORACLE_HOME>\ds\bin\
ration 3-1

Configuring and Running the DSAdmin Utility
3.1.1 Configuring Dynamic Services Proxy Settings
In order to connect to services located outside of a firewall for testing the sample
service, you must first configure the Dynamic Services proxy settings. To do this,
you must run SQL*Plus and connect as dssys user and enter your
<dssys-password> and execute three procedures as follows:

sqlplus dssys/<dssys-password>
set serveroutput on
exec ds_properties.show()
exec ds_properties.setProperty(’proxyHost’,’<www-your complete proxy name>’)
exec ds_properties.setProperty(’proxySet’,’true’)

For more information about setting these Dynamic Services properties, see
Section 4.6.

3.1.2 Configuring the DSAdmin Utility
Before you run the DSAdmin utility, you must configure its configuration XML file,
DSAdminConfig.xml, located in the following directory:

On UNIX systems:

$<ORACLE_HOME>/ds/etc/dsadmin/

On Windows NT systems:

$<ORACLE_HOME>\ds\etc\dsadmin\

Note that this is the default path where the DSAdmin utility expects to find its
configuration file.

1. Open the DSAdminConfig.xml file in an editor.

With the basic Dynamic Services installation, only connections using the
DSDirectDriver driver can be used. Therefore, the only element you need to
change is DS_URL for connections that use the Direct driver.

2. Change the DS_URL element to point to your database instance that hosts
Oracle Dynamic Services for the connection descriptor with the name "Direct,"
shown as follows:

<DS_CONNECTION_DESCRIPTOR name="Direct">
 <annotation>
 -| For Nickname "Direct":
 | These are specifications of the Direct Driver class
 +| that will be used as well as the URL to be used with it
 </annotation>
3-2 Oracle Dynamic Services User’s and Administrator’s Guide

Configuring and Running the DSAdmin Utility
 <DS_DRIVER>oracle.ds.driver.DSDirectDriver</DS_DRIVER>
 <DS_URL>jdbc:oracle:thin:@<your-host-name>:<your-port-number>:<your-SID></DS_URL>
</DS_CONNECTION_DESCRIPTOR>

You can also have your own configuration file and point to it by running the
command shown in Example 3–1 (the -c option and additional options are
described later in this section).

Example 3–1 Configure the DSAdmin Utility

On UNIX systems:
<ORACLE_HOME>/ds/bin/dsadmin -c <your config file>

On Windows NT systems:
<ORACLE_HOME>\ds\bin\dsadmin.bat -c <your config file>

The configuration file conforms to the specifications of an XML document
containing elements and values. The specific elements that you can configure in the
file are described in Table 3–1.

Table 3–1 DSAdmin Utility Configuration Elements

Element Description

DS_ADMIN_CONFIG The root element of the DSAdmin utility configuration
document.

DS_CONNECTION_
DESCRIPTORS

The connection descriptor section. Contains descriptions of the
connection nickname, driver class specification, and associated
URL.

DS_CONNECTION_
DESCRIPTOR

The connection descriptor. Contains the name attribute
describing the nickname for the connection that is used to
open Dynamic Services connections to be used throughout the
lifetime of the DSAdmin utility.

DS_DRIVER The driver class name. This driver class will be loaded to set
up a Dynamic Services connection to be used throughout the
lifetime of the DSAdmin utility. The name depends on the
nickname specified in DS_CONNECTION_DESCRIPTOR.
Configuration 3-3

Configuring and Running the DSAdmin Utility
In order to use the other drivers, such as HTTP, HTTPS, and JMS, you must
complete the advanced installation options (see Chapter 4 for more information).
When the Servlet driver is used, requests are sent using HTTP to a Java servlet that
directly interacts with a Dynamic Services engine in the same way the Direct driver
does. This means that the two drivers may not necessarily share the same execution
engine. See Section 1.3.1 through Section 1.3.3 for more information.

3.1.3 Running the DSAdmin Utility
Run the DSAdmin utility by executing the command shown in Example 3–2.

DS_URL The name of the URL. This URL is used by the specified driver
class to open a Dynamic Services connection. The value
depends on the nickname specified in DS_CONNECTION_
DESCRIPTOR. For each driver class name, there must be a
corresponding URL, (for example, jdbc:oracle:oci8:@db
for a Direct driver class name;
http://host-name:8888/ds/DSServlet for a Servlet
driver class name).

DEFAULT_SERVICE_
REQUESTS

The default service requests section. Contains descriptions of
the service ID and the default path to the XML request file
used for a service in the DSAdmin utility.

DEFAULT_SERVICE_
REQUEST

The default service request. Contains the service ID attribute
describing the service ID.

DEF_XML The default path to the XML request file that is used for a
specific service corresponding to the given service ID.

Note: Users of the DSAdmin utility should be concerned only
about modifying the DEF_XML elements and changing the URL of
the predefined driver nicknames so that it points to their database
instances, or to the appropriate servlet URL or zones.

Note: The paths specified are relative; thus, you should always
execute the DSAdmin utility from the Dynamic Services installation
directory.

Table 3–1 DSAdmin Utility Configuration Elements (Cont.)

Element Description
3-4 Oracle Dynamic Services User’s and Administrator’s Guide

Registering a New Service
Example 3–2 Run the DSAdmin Utility

On UNIX systems:
<ORACLE_HOME>/ds/bin/dsadmin

On Windows NT systems:
<ORACLE_HOME>\ds\bin\dsadmin

Following each prompt, enter the user name DSSYS, <DSSYS-password> (default
is DSSYS), and 1 to select the DSConnection nickname named Direct.

The command-line options for running the DSAdmin utility are described in
Table 3–2.

3.2 Registering a New Service
A Dynamic Services simple service package consists of the group of files shown in
Figure 3–1, and is located in a local directory structure on your system.

Table 3–2 DSAdmin Utility Command-Line Options

Option Description

-c <config file> Allows the DSAdmin utility to load
configuration files from any location.

-d Checks whether all required jars (and
appropriate version) are in the CLASSPATH.

-h Displays help. Lists the DSAdmin utility
command-line options.

-i <script file> Allows actions to be scripted through this
option. The DSAdmin utility interprets each
command separately and displays the result
in standard output.

-s Executes the DSAdmin utility in silent mode.
This option is used only in conjunction with a
script file.

-u <username>/<password>@<nickname> Allows a user name, password, and
DSConnection nickname to be specified upon
invoking the DSAdmin utility.
Configuration 3-5

Registering a New Service
Figure 3–1 Contents of a Simple Service Package

The MANIFEST file contains a pointer to the service descriptor file. The service
descriptor file contains pointers within the appropriate XML tag definitions
pointing to the following:

■ Classification descriptor file

■ Organization descriptor file

■ One or more contact descriptor files

■ Service request definition file

■ Service response definition file

In addition, the service descriptor file specifies the service adaptors to be used (see
Chapter 6 for more information about each of these files).

A compound service package invokes one or more other services and typically
includes one additional file, a jar file, which contains all Java classes and property
files needed by the compound service at execution time.

Simple and compound service packages to be used by Dynamic Services must be
registered in the registry.

Registration is a two-step process:

1. Classify a service under the LDAP category specified in its descriptor.
3-6 Oracle Dynamic Services User’s and Administrator’s Guide

Registering a New Service
2. Register the new service package.

The location of this information is in the service. Categories are organized into a
Lightweight Directory Access Protocol (LDAP) hierarchical tree, and are therefore
defined by a Distinguished Name (DN). Before registering a service package, you
must be sure the category that it belongs to exists. If the category does not exist, it
must be created.

The entire process of registering the sample service package, YahooPortfolio, is
described, starting from category creation (see Section 3.2.1), to registering the
service (see Section 3.2.2). You must complete instructions described in these two
sections, then browse registered services described in Section 3.3, and finally
execute a registered service Section 3.4. Successfully completing these sections is the
test that your Dynamic Services installation and DSAdmin utility configuration is
working properly.

See Section 3.2.1 and Section 3.2.2 for more detailed information on what these
scripts do in creating a service package category and registering a service package.

3.2.1 Creating a New Service Package Category
Using a regular text editor, open the service descriptor file of the YahooPortfolio
sample service package. The service package is stored in the following directory:

On UNIX systems:
<ORACLE_HOME>/ds/demo/services/YahooPortfolio

Note: On UNIX systems, you can use the file <ORACLE_
HOME>/ds/demo/services/install_examples.dss to install
a set of sample service packages by entering the following
command from your <ORACLE_HOME>/ds directory:

bin/dsadmin -u dssys/<dssys-password>@Direct -i
demo/services/install_examples.dss

On Windows NT systems, you can use the file <ORACLE_
HOME>\ds\demo\services\install_examples.dss to install
a set of sample service packages by entering the following
command from your <ORACLE_HOME>/ds directory:

bin/dsadmin -u dssys/<dssys-password>@Direct -i
demo\services\install_examples.dss
Configuration 3-7

Registering a New Service
On Windows NT systems:
<ORACLE_HOME>\ds/demo\services\YahooPortfolio

As specified in the MANIFEST file, the location of the service descriptor file is
relative to the service package in the following file:

On UNIX systems:
/www.yahoo.com/dServices/sd/portfolio/yahoo_pfl.xml

On Windows NT systems:
\www.yahoo.com\dServices\sd\portfolio\yahoo_pfl.xml

In the service descriptor file header, it is specified that the service category
(classification) information is available in an additional XML file stored in the same
directory under the file name of yahoo_pfl_classification.xml. When
viewing this file, note that the following category information is specified for the
YahooPortfolio service package:

cn=portfolio, cn=finance, cn=business

Defined as a DN, this category information must be read in the following way:
business is the parent category of finance, which is the parent category of portfolio.
To create the needed category in the Dynamic Services engine, start the DSAdmin
utility and navigate with the following steps:

1. Start the DSAdmin utility using the following command on UNIX:

bin/dsadmin -u dssys/<dssys-password>@Direct

Use the following command on Windows NT:

bin\dsadmin -u dssys/<dssys-password>@Direct

(The Direct driver is the only driver that allows registry manipulation.)

2. Enter Reg or R to enter the registry subshell (where registry-related operations
are performed).

3. Enter Service or S to enter the service management subshell.

To create the set of categories required by the YahooPortfolio service package, issue
the commands shown in Example 3–3.

Example 3–3 Create a Set of Categories Required by the Yahoo Service Package

AddCat cn=business
AddCat "cn=finance,cn=business"
3-8 Oracle Dynamic Services User’s and Administrator’s Guide

Browsing Registered Services
AddCat "cn=portfolio, cn=finance, cn=business"

3.2.2 Registering a Service Package
Once the service package categories have been created, you can register a new
service package from the same DSAdmin utility menu by issuing the command in
the same subshell, as shown in Example 3–4.

Example 3–4 Register a Service Package

On UNIX systems:
Register <ORACLE_HOME>/ds/demo/services/YahooPortfolio

On Windows NT systems:
Register <ORACLE_HOME>\ds\demo\services\YahooPortfolio

The service package directory is specified as a parameter.

The service package can also be presented in a zip archive file and you would then
enter the path to that file instead.

3.3 Browsing Registered Services
Once a service has been registered, you can browse the list of service IDs in the
same registry subshell by entering Search (S) under the Registry Service menu
using the DSAdmin utility. You then need to specify the way in which you want to
search the services, by category, by keywords, or by interface. Then, you must
specify the matching search pattern. Category-based searches require exact pattern
matches because the supplied matching pattern must exist; otherwise, nothing is
returned. Example 3–5 shows how to search a list of registered services by category

Note: The quotation marks are important in order to treat the
entire series of entries as one parameter.

Note: Information presented in Example 3–4 is case-sensitive.

Note: Anytime you make a change to any service-related file, you
must reregister that service package using the DSAdmin utility
Reregister command.
Configuration 3-9

Browsing Registered Services
where the matching pattern includes the service ID of the YahooPortfolio service
package.

Example 3–5 Search a List of Registered Services by Category

Search CATEGORY "cn=portfolio, cn=finance, cn=business"

If a category that contains subcategories is specified, a list of the subcategories is
also listed. For example, if the category on which to search is "cn=finance,
cn=business", then a subcategory of "cn=portfolio, cn=finance, cn=business" is
included in the result list. For example:

cn=business
 |
 cn=finance
 |
 cn=portfolio
 |
 urn:com.yahoo:

Keyword searches are based on keywords that are supplied in the service descriptor
file. Wildcards are allowed. Thus, a keyword search with the pattern "*" returns a
list of all the service IDs registered in the Dynamic Services engine as the following
steps show.

1. Start the DSAdmin utility using the following command on UNIX:

bin/dsadmin -u dssys/<dssys-password>@Direct

Use the following command on Windows NT:

bin\dsadmin -u dssys/<dssys-password>@Direct

2. Enter S to enter the Search subshell (where search-related operations are
performed).

3. Enter 2 to select the keyword classification scheme.

4. Enter the wildcard character * (the asterisk) and press Return to begin the
search, as Example 3–6 shows.

Example 3–6 Returning a List of Services Using the Wildcard "*" Search

 Search for services where KEYWORD="*"...DSREG.search: 2 - *...
DSREG.search: 2 - *... Done

 Search Result:
3-10 Oracle Dynamic Services User’s and Administrator’s Guide

Executing a Registered Service
 Service IDs:

 urn:com.cnnfn:finance.portfolio03
 urn:com.dsFailOver:finance.portfolio03
 urn:com.oanda:conversion.currency03
 urn:com.ual:travel.mileage
 urn:com.yahoo:finance.ipfl04
 urn:com.yahoo:finance.portfolio03

 SubCategories:

Done

Finally, searches based on the service interface finds matches with services using the
same named request and response schema as those delineated by the interface. The
interface name is case-sensitive. For example, if you are searching among all
registered services only for those that use the "PortfolioService" interface name, you
would enter that search string as shown in Example 3–7.

Example 3–7 Search a List of Registered Services by Interface

 Search for services where INTERFACE="PortfolioService"...DSREG.search: 3
 - PortfolioService...
DSREG.search: 3 - PortfolioService... Done

 Search Result:

 Service IDs:

 urn:com.cnnfn:finance.portfolio03
 urn:com.dsFailOver:finance.portfolio03
 urn:com.yahoo:finance.portfolio03

 SubCategories:

Done

3.4 Executing a Registered Service
Once the service has been registered, you can execute it with the following
commands:
Configuration 3-11

Executing a Registered Service
■ Enter Exit or X twice to return to the top-level shell. If you are starting the shell
from the beginning, you can skip this step.

■ Enter Exec or E to enter the Execution shell.

■ Enter Synch or S to perform synchronous execution of a service.

The shell prompts you to choose a service ID from a list that was generated with a
keyword search using "*" as the matching pattern. For synchronous execution, the
final step is to choose the XML file that contains the request for that service as
shown in Example 3–8. The shell waits until the service execution is complete and
then, produces the response message.

Example 3–8 Execute a Registered Service

On UNIX systems:
Exec Synch urn:com.yahoo:finance.portfolio03 <ORACLE_
HOME>/ds/demo/services/YahooPortfolio/pfl_req_ex.xml

On Windows NT systems:
Exec Synch urn:com.yahoo:finance.portfolio03 <ORACLE_
HOME>\ds\demo\services\YahooPortfolio\pfl_req_ex.xml

- Sample Output -
.
.
.
EM.execute service: urn:com.yahoo:finance.portfolio03... Done.
Writing synchronous Response
<PortfolioResp xmlns="http://www.portfolio.org/Portfolio/Response" xmlns:xhtml="
http://www.w3.org/1999/xhtml">
 <Quote>
 <Symbol>ORCL</Symbol>
 <Time>1:53PM</Time>
 <Price>13.61</Price>
 <Change>-11.16%</Change>
 <Volume>48,135,000</Volume>
 </Quote>
 <Quote>

Note: If you are running within an Intranet, you must set proxy
information. If you have already completed the instructions
described in Section 3.1.1, then you can execute the
YahooPortfolio service.
3-12 Oracle Dynamic Services User’s and Administrator’s Guide

Executing a Registered Service
 <Symbol>AAPL</Symbol>
 <Time>1:53PM</Time>
 <Price>20.82</Price>
 <Change>-3.57%</Change>
 <Volume>4,500,100</Volume>
 </Quote>
</PortfolioResp>

DSAdminShell.Execution>

After successfully executing the YahooPortfolio service, you can begin
developing your own services. See Chapter 6 for information about how to build a
service.

To configure and use other deployment views of Dynamic Services, such as
HTTP/HTTPS, PL/SQL, or HTTP/Java Messaging Services (JMS), or to set up
LDAP as a central master registry, see the appropriate sections in Chapter 4.
Chapter 4 also describes other advanced features, such as enabling persistent
auditing, manually fine-tuning Dynamic Services properties, and installing the
management console.
Configuration 3-13

Executing a Registered Service
3-14 Oracle Dynamic Services User’s and Administrator’s Guide

Advanced Installation O
4

Advanced Installation Options

After the dsinstall.sql script has been run, a package named DS_Properties is
created as a result of installing the DSSYS schema. Through this package, you can
call a setProperty procedure to change system properties of your current Dynamic
Services instance. The advanced installation options include the following:

■ Enabling PL/SQL interfaces (see Section 4.1)

■ Enabling persistent auditing or event monitor services (see Section 4.2)

■ Enabling HTTP communication (see Section 4.3)

■ Enabling Java Messaging Services (JMS) (see Section 4.4)

■ Using LDAP as a central master registry (see Section 4.5)

■ Manually fine-tuning Dynamic Services properties (see Section 4.6)

Section 4.1 through Section 4.6 describe these advanced installation options that are
provided in the installation package. These options can be invoked with the
individual scripts described in each section. Most of these scripts call the DS_
Properties.setProperty procedure.

4.1 Enabling PL/SQL Interfaces
This installation option coincides with the PL/SQL deployment view described in
Section 1.3.2.

Important: In part of Section 4.3.1, directory paths often show
only the UNIX path "/" specification. If you are installing on a
Windows NT system, the path specification is "\" and you must
make this change, as needed, for the installation to be successful.
ptions 4-1

Enabling PL/SQL Interfaces
1. Run the provided SQL script named dssys_plsql_init.sql that is
provided to grant the necessary permissions to user DSSYS.

a. Go to the directory location (ds/sql on UNIX systems or ds\sql on
Windows NT systems) of the ds_plsql_init.sql file.

b. Log in to SQL*Plus as user SYS, as follows:

sqlplus SYS/<SYS-password>

c. Run the dssys_plsql_init.sql script as follows:

SQL> @dssys_plsql_init.sql

Running this script grants the necessary permissions to user DSSYS.

2. Next, run the SQL script named ds_plsql.sql that is provided to install the
PL/SQL interface.

a. Go to the directory location on UNIX systems (ds/sql) or on Windows NT
systems (ds\sql) of the ds_plsql.sql file.

b. Log in to SQL*Plus as user DSSYS as follows:

sqlplus DSSYS/<DSSYS-password>

c. Run the ds_plsql.sql script as follows:

SQL> @ds_plsql.sql

The following happens upon running this ds_plsql.sql script:

■ At the beginning of the script, another script is invoked to load the
Dynamic Services library into Oracle JVM, along with its dependent
libraries.

■ Next, a subsequent script makes declarations of a PL/SQL package called
DynamicServices, mapped to the Java Stored Procedures exposed by the
library.

■ The ds_plsql.log file is checked to verify the installation of the package.

■ Then, the script is completed.

Describe the DynamicServices package by issuing the following command at a
SQL*Plus prompt.

SQL> desc DynamicServices
4-2 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling Persistent Auditing or Event Monitor Services
A sample, anonymous PL/SQL block is run to test the functions, having
already registered the YahooPortfolio service as described in Section 3.2. A
sample PL/SQL script demo/consumer/sample.sql on UNIX systems or
demo\consumer\sample.sql on Windows NT systems, found in the
Dynamic Services installation directory, tests the DynamicServices package that
was just installed.

Refer to Section 5.2 for a more detailed description of how you can use the PL/SQL
interface.

4.2 Enabling Persistent Auditing or Event Monitor Services
Dynamic Services offers a persistent auditing feature in which events that can be
thrown during execution, can be monitored. The monitoring process involves
triggering of services to be executed upon receipt of a certain event. These services
that get triggered are called monitor services. A standalone monitor utility enables
the process of auditing these events. Persistent auditing performs among other
tasks, service execution logging and event failure notification. See Section 4.2.6 for
an example of using the logger monitor service.

4.2.1 Configuring Oracle Advanced Queuing
Because Dynamic Services makes use of Oracle Advanced Queuing for delivering
event messages, you must also set the dynamic init.ora parameter aq_tm_
processes for your database instance to a non-zero value (for example, set it to 1)
as shown in Example 4–1.

Example 4–1 Set the aq_tm_process init.ora Parameter

aq_tm_processes = 1

Refer to Oracle Advanced Queuing documentation for more information. Restart
the database instance after you modify the init.ora file.

4.2.2 Installing Monitor Services
By default, monitor services (which are mostly JDBC services), insert entries into
tables under the DSSYS schema. If you changed the password for DSSYS, modify
the default DSSYS password in the MonitorInstall.dss file to reflect that
change.
Advanced Installation Options 4-3

Enabling Persistent Auditing or Event Monitor Services
Before installing the event monitor services, you must first configure the
MonitorInstall.dss file in the etc/dsadmin directory on UNIX systems or
etc\dsadmin directory on Windows NT systems to point to the database where
the monitor services will write information. (Most of these monitor services are
database services that just load some processed information into tables.) Make this
the same database as the one used for the Dynamic Services engine instance shown
in Example 4–2. To make use of the of the notifier service, which is an SMTP service,
you must also configure the SMTP mail related properties in the
MonitorInstall.dss file.

Example 4–2 Configure the MonitorInstall.dss File

On UNIX systems:
bin/dsadmin -i etc/dsadmin/MonitorInstall.dss

On Wimdows NT systems:
bin\dsadmin -i etc\dsadmin\MonitorInstall.dss

Then, run the dsmoninstall.sql script in the ds/sql directory on UNIX
systems or ds\sql directory on Windows NT systems. Running this SQL script
will install the tables required by the monitor services.

1. Go to the directory location (ds/sql on UNIX systems or ds\sql on Windows
NT systems) of the dsmoninstall.sql file.

2. Log in to SQL*Plus as user DSSYS as follows:

sqlplus DSSYS/<DSSYS-password>

3. Run the dsmoninstall.sql script as follows:

SQL> @dsmoninstall.sql

A set of default services is installed from the etc/services directory on UNIX
systems or etc\services directory on Windows NT systems, using the DSAdmin
command-line utility with some scripts. These services are invoked by the event
monitor utility that is described in Section 4.2.3. It is important to note that none of
the monitor services throws events. This prevents an infinite loop from happening
where the same monitor services are invoked for the event that they throw.

4.2.3 Using the Event Monitor Utility
In addition to the DSAdmin command-line utility, there is also an event monitor
command-line tool called dsmon on UNIX systems (dsmon.bat on Windows NT
4-4 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling Persistent Auditing or Event Monitor Services
systems). This tool lets you start and stop the event monitor, which executes
monitor services upon receipt of events published by the Dynamic Services engine.
Monitor services are services that are associated with a monitor and conform to a
service interface called EventHandlerTemplate. These services are located in the
etc/services directory on UNIX systems or etc\services directory on
Windows NT systems. The correct syntax for running this utility is shown in
Example 4–3.

Example 4–3 Usage Syntax for Running the Event Monitor Utility

dsmon -u dssys/<dssys-password>@Direct -e start

Using the event monitor utility, you can connect to a Dynamic Services engine; start
or stop the monitor; and have control over the output level of the messages during
the execution of the monitor services.

4.2.4 Enabling Persistent Auditing
The next step is to enable persistent auditing. With the default installation in
dsinstall.sql, event messages are disabled in the properties table. Example 4–4
shows the setProperty PL/SQL procedure calls that enable event logging for the
logging and warning event types.

Example 4–4 Connect to the DSSYS Schema as DSSYS User

connect dssys/<dssys-password>;
SQL> exec DS_Properties.setProperty(’DS_EV_LOGGING_enabled’, ’true’);
SQL> commit;

Configure persistent auditing to enable event messages only for the event types you
want.

4.2.5 Starting and Stopping the Event Monitor
Start the event monitor using the command shown in Example 4–5.

Note: On Windows NT, you must customize the SET ORACLE_
HOME line in dsmon.bat to point to your <ORACLE_HOME>.

Note: Information presented in Example 4–3 is case-sensitive.
Advanced Installation Options 4-5

Enabling Persistent Auditing or Event Monitor Services
Example 4–5 Start the Event Monitor

dsmon -u dssys/<dssys-password>@Direct -e start

Stop the event monitor using the command shown in Example 4–6.

Example 4–6 Stop the Event Monitor

dsmon -u dssys/<dssys-password>@Direct -e stop

When you issue this stop event monitor command, you post a stop request in the
queue and the event monitor stops.

4.2.6 Using the Logger Monitor Service (Case Study)
One of the monitor services that is used is called the logger monitor service. It loads
a logging event message into a raw log table in the database. The log table is an
object table with the object definition as shown in Example 4–7.

Example 4–7 Define the Raw Log Object Table

CREATE OR REPLACE TYPE raw_logging_typ AS OBJECT
(
 base raw_event_typ, -- Raw event type (base)
 operation VARCHAR2(512), -- Oper: connect, lookup, execute, session
 status VARCHAR2(512), -- Status of the operation: open, fail, close
 comm_msg VARCHAR2(4000) -- Communication Message
);
/

The dependent object raw_event_typ has a definition as shown in Example 4–8.

Example 4–8 Definition of the Raw Event Object Table

CREATE OR REPLACE TYPE raw_event_typ AS OBJECT
(
 time_stamp DATE, -- Time stamp of the event
 service_id VARCHAR2(512), -- Maximum length of a service ID string
 connection_id VARCHAR2(256), -- Maximum DSConnection ID for a DSE user

Note: After starting the event monitor on Windows NT systems,
the DOS prompt does not display again. You must use another DOS
window to issue the stop command shown in Example 4–6.
4-6 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling Persistent Auditing or Event Monitor Services
 request_id VARCHAR2(256), -- Maximum request ID for a DSE user
 consumer_id VARCHAR2(256), -- Maximum length of a DB user
 engine_id VARCHAR2(128) -- Engine identifier (instance of DSE)
);
/

With an object table created based on the raw_logging_typ object, you can then
make SQL queries to give a good view of the logging events that are thrown during
service execution, as shown in Example 4–9.

Example 4–9 Make a SQL Query of the Logging Events

column timestamp format a14
column service format a37
column consumer format a8
column operation format a8
column status format a6

select TO_CHAR(t.base.time_stamp, ’MM/DD@HH24:MI:SS’) as timestamp,
 t.base.consumer_id as consumer,
 t.operation as operation,
 t.base.service_id as service,
 t.status as status
from raw_logging_table t
order by t.base.time_stamp asc;

-- The following is a sample of some logging event information that
-- might display from running the SQL query.

TIMESTAMP CONSUMER OPERATIO SERVICE STATUS
-------------- -------- -------- ------------------------------------- ------
12/07@12:05:20 DSSYS CONNECT OPEN
12/07@12:05:33 DSSYS LOOKUP OPEN
12/07@12:05:33 DSSYS LOOKUP CLOSE
12/07@12:05:36 DSSYS EXECUTE urn:com.cnnfn:finance.portfolio03 OPEN
12/07@12:05:53 DSSYS EXECUTE urn:com.cnnfn:finance.portfolio03 CLOSE
12/07@12:06:23 DSSYS CONNECT CLOSE

6 rows selected.

There are certain service properties used by the logger monitor service that are set
when the logger monitor service is installed. These service properties involve the
database URL as well as the schema in the database that contains the raw log tables,
Advanced Installation Options 4-7

Enabling HTTP Communications
and are therefore necessary for the logging monitor service to function properly.
These service properties are described in the script files mentioned in Section 4.2.2.

4.3 Enabling HTTP Communications
This installation option coincides with the HTTP deployment view described in
Section 1.3.3.

Dynamic Services can make use of the Apache servlet engine for handling remote
HTTP communication between its service consumers and the Dynamic Services
engine. To enable HTTP communications, first you must configure the
Apache/Jserv servlet engine (see Section 4.3.1), and then configure the DSAdmin
utility to use the Dynamic Services HTTP driver, DSHTTPDriver (see Section 4.3.2).

4.3.1 Configuring the Apache/Jserv Servlet Engine
The following instructions assume that you have Apache/JServ installed. Any Web
server with a servlet container will work, provided that the changes are done
correctly to the correct files. In this step, it is required that you configure your
installation of Apache/Jserv to install a new Dynamic Services zone. The following
is the list of tasks you must perform (refer to JServ documentation for more
information on how to create new zones):

1. Edit the jserv.conf file.

This file is usually found within the Jserv/etc directory on UNIX systems or
Jserv\etc directory on Windows NT systems under your Apache installation.

Configure a new ds mount point by adding the new lines shown as follows:

Oracle Dynamic Services Zone
ApJServMount /ds /ds

2. Edit the jserv.properties file.

This file is found in the same directory as the jserv.conf file. Make the
following modifications:

Note: For an Oracle9i Release 1 (9.0.1) installation, the
jserv.conf file is located in <ORACLE_
HOME>/Apache/Jserv/etc directory on UNIX and ORACLE_
HOME>\Apache\Jserv\etc on Windows NT.
4-8 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling HTTP Communications
a. Ensure Jserv is running on Java2.

Modify the wrapper.bin line to show<JAVA2_HOME> shown as follows.
<JAVA2_HOME> is your Java 2 SDK installation directory.

wrapper.bin=<JAVA2_HOME>/bin/java

b. Create a new ds zone.

Append to the zones line, the ds zone as follows:

zones = <existing zones>, ds

c. Add a pointer to the ds zone properties as follows:

ds.properties=ORACLE_HOME/ds/etc/Apache_JServ/zones/ds/ds.properties

d. Update the Jserv classpaths.

Add all the necessary libraries needed by Dynamic Services as shown in the
following list of necessary modifications.

--
XML / XSD Parser from Oracle
--
wrapper.classpath=ORACLE_HOME/lib/xmlparserv2.jar
wrapper.classpath=ORACLE_HOME/lib/xschema.jar
--
Oracle JDBC Driver (Compliant with JDK 1.2)
--
wrapper.classpath=ORACLE_HOME/jdbc/lib/classes12.zip

JMS / AQ Stuff

wrapper.classpath=ORACLE_HOME/rdbms/jlib/jmscommon.jar
wrapper.classpath=ORACLE_HOME/rdbms/jlib/aqapi.jar

JNDI /LDAP Stuff

wrapper.classpath=ORACLE_HOME/jlib/providerutil.jar
wrapper.classpath=ORACLE_HOME/jlib/ldap.jar
wrapper.classpath=ORACLE_HOME/jlib/jndi.jar
--
JSSE
--
wrapper.classpath=ORACLE_HOME/ds/lib/jsse.jar
wrapper.classpath=ORACLE_HOME/ds/lib/jnet.jar
Advanced Installation Options 4-9

Enabling HTTP Communications
wrapper.classpath=ORACLE_HOME/ds/lib/jcert.jar

XMLSQL and XSQL

wrapper.classpath=ORACLE_HOME/rdbms/jlib/xsu12.jar
wrapper.classpath=ORACLE_HOME/lib/oraclexsql.jar

Oracle Dynamic Service Engine

wrapper.classpath=ORACLE_HOME/ds/lib/ds.jar

e. Set the environment variables.

Ensure that <ORACLE_HOME> and <LD_LIBRARY_PATH> environment
variables are properly set on UNIX and that the <ORACLE_HOME> and
<PATH> environment variables are properly set on Windows NT as follows:

On UNIX, set:

wrapper.env=ORACLE_HOME=<your_oracle_home>
wrapper.env=LD_LIBRARY_PATH=<your_oracle_home>/lib

On Windows NT, set:

wrapper.env=ORACLE_HOME=<your_oracle_home>
wrapper.env=PATH=<your_oracle_home>\bin

3. Edit the file <ORACLE_HOME>/ds/etc/Apache_
JServ/zones/ds/ds.properties on UNIX systems or <ORACLE_
HOME>\ds\etc\Apache_JServ\zones\ds\ds.properties on Windows
NT systems and make the following modifications:

a. Update the repository location for the Dynamic Services zone.

Change the location of the Dynamic Services jar file as follows:

repositories=ORACLE_HOME/ds/lib/ds.jar

b. Update Oracle Driver information for DSServlet.

Change the driver to be used by the DSServlet as a servlet property by
using the appropriate connection string for your database instance as
follows:

servlets.default.initArgs=DS_ORCL_URL=jdbc:oracle:thin:@<your-host>:<your-port:<your-SID>

4. Restart Apache.
4-10 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling Java Messaging Services (JMS) Communications
To restart Apache on UNIX, execute the following commands:

cd <Apache installation directory>
On UNIX systems:
bin/apachectl restart

On Windows NT systems:
bin\apachectl restart

On Windows NT, restart the Apache server from the Start bar. For Oracle9i
Release 1 (9.0.1), start from your Oracle home, select Oracle HTTP Server, then
Start HTTP Server powered by Apache.

4.3.2 Configuring the DSAdmin Utility to Use the HTTP Driver
After the Apache/JServ installation is completed, you can use the DSHTTPDriver
with the DSAdmin utility after you perform the following tasks:

1. Navigate to the etc/dsadmin/DSAdminConfig.xml file on UNIX systems or
etc\dsadmin\DSAdminConfig.xml file on Windows NT systems.

2. Enable the HTTP driver by following the comments for the DS_DRIVERS
property. Update the URL used by the DSHTTPDriver by finding the DS_
CONNECTION_DESCRIPTOR name = HTTP element and within this element,
the element that begins with DS_URL. Change the value to point to the servlet
that you just installed.

4.4 Enabling Java Messaging Services (JMS) Communications
This installation option coincides with the JMS deployment view described in
Section 1.3.3.

A SQL script named dsjms_aqinit.sql is provided to install the JMS option.

Note: The URL used by the HTTP driver is an HTTP URL, while
the URL used by the Direct driver is a JDBC URL. The rationale is
that when the HTTP driver is used, requests are sent using HTTP to
the previously described installed Java servlet. This Java servlet
directly interacts with a Dynamic Services engine in the same way
that the Direct driver does. This means that the two drivers may not
necessarily share the same engine.
Advanced Installation Options 4-11

Enabling Java Messaging Services (JMS) Communications
1. Go to the directory location (ds/sql) on UNIX systems or (ds\sql) on
Windows NT systems of the dsjms_aqinit.sql file.

2. Log in to SQL*Plus as user DSSYS as follows:

sqlplus DSSYS/<DSSYS-password>

3. Run the dsjms_aqinit.sql script as follows:

SQL> @dsjms_aqinit.sql

Running the dsjms_aqinit.sql script in a SQL*Plus session as the DSSYS
user, creates all the tables and queues necessary for JMS communications.

4.4.1 Configuring and Running the JMS Daemon
To configure and run the JMS daemon, perform the following tasks:

1. Edit the etc/dsadmin/DSAdminConfig.xml configuration file on UNIX
systems or the etc\dsadmin\DSAdminConfig.xml configuration file on
Windows NT systems that is used to run the daemon. The following code
example shows the specific parameters that you must configure in this
configuration file.

.

.

.
<DS_CONNECTION_DESCRIPTOR name="JMSDAEMON">
 <annotation>
 -| For Nickname "JMSDAEMON":
 | These are specifications of the JMS driver class
 +| that will be used as well as the URL to be used with it
 </annotation>
 <DS_DRIVER>oracle.ds.driver.DSDirectDriver</DS_DRIVER>
 <DS_URL>jdbc:oracle:thin:@your-host:your-port:your-sid</DS_URL>
 <JMSD_LOG_FILE>logs/jmsd.log</JMSD_LOG_FILE>
 <JMSD_NUM_THREADS>10</JMSD_NUM_THREADS>
</DS_CONNECTION_DESCRIPTOR>
.
.
.

4-12 Oracle Dynamic Services User’s and Administrator’s Guide

Enabling Java Messaging Services (JMS) Communications
2. Run the following program to start the daemon that listens to all asynchronous
requests.

On UNIX systems:
bin/dsjmsd -u dssys/dssys@JMSDAEMON -c etc/dsadmin/DSAdminConfig.xml -e start

On Windows NT systems:
bin\dsjmsd -u dssys/dssys@JMSDAEMON -c etc\dsadmin\DSAdminConfig.xml -e start

Also, in your DSAdminConfig.xml file, uncomment the DS_CONNECTION_
DESCRIPTOR element for the JMSDAEMON nickname.

For future reference, the following code example shows how to stop the JMS
daemon.

On UNIX systems:
bin/dsjmsd -u dssys/dssys@JMSDAEMON -c etc/dsadmin/DSAdminConfig.xml -e stop

On Windows NT systems:
bin\dsjmsd -u dssys/dssys@JMSDAEMON -c etc\dsadmin\DSAdminConfig.xml -e stop

4.4.2 Configuring the DSAdmin Utility to Enable JMS Communications
Before configuring the DSAdmin utility to enable JMS communications, you must
note that for all service consumer applications that want to use the JMS
communication path, the database users that represent them must be granted the
AQ_Administrator_Role privilege. The client library needs to register itself as an
asynchronous subscriber to the response queue for asynchronous executions. Note
that DSSYS is already granted that role. To configure the DSAdmin utility to enable
JMS communications, perform the following tasks:

Note: There is only a single URL for the database. This is the
database that is used to host the request/response queues, as well
as the database for the Dynamic Services engine. It must be the
same database where the DSSYS schema was installed.

Note: Before running the dsjmsd.bat file on Windows NT,
check and change the SET ORACLE_HOME line to point to your
Oracle home.
Advanced Installation Options 4-13

Using Lightweight Directory Access Protocol (LDAP) as a Central Master Registry
1. Navigate to the etc/dsadmin/DSAdminConfig.xml configuration file on
UNIX systems or the etc\dsadmin\DSAdminConfig.xml configuration file
on Windows NT systems.

2. Edit the etc/dsadmin/DSAdminConfig.xml file on UNIX systems or the
etc\dsadmin\DSAdminConfig.xml file on Windows systems and update
the URL used by the DSJMSDriver by finding the DS_CONNECTION_
DESCRIPTOR name = JMS element, and within this element, the element that
begins with DS_URL. Change the value to point to the URL of the database that
is hosting the queues. Also, uncomment this JMS nickname DS_
CONNECTION_ DESCRIPTOR element.

During runtime, requests are sent to the request queue in this database. The
requests are picked up by the daemon that is communicating with this same
database, and used in a service execution that returns a response. That response is
submitted to a response queue in the same database, to be picked up
asynchronously by the initial request submitter.

4.5 Using Lightweight Directory Access Protocol (LDAP) as a Central
Master Registry

As installed in the dsinstall.sql script, the instance of the Dynamic Services
engine is a standalone instance with its own storage for the registry. To increase
scalability, you may want to install multiple Dynamic Services engines
communicating with a central master Lightweight Directory Access Protocol
(LDAP) registry (see Figure 1–8). First, you must successfully install the Oracle
Internet Directory (OID) LDAP server with all the appropriate schemas.

4.5.1 Setting Up LDAP with Oracle Internet Directory
To set up LDAP with OID, you must install OID (see Section 4.5.1.1), and then
install the Dynamic Services LDAP schema (see Section 4.5.1.2).

4.5.1.1 Oracle Internet Directory
To install Oracle Internet Directory, run the Oracle Installer of your Oracle9i Release
1 (9.0.1) distribution and choose the Oracle9i Management and Integration option.
Then, select Oracle Internet Directory from the list of displayed products. For more
information, refer to Oracle installation instructions.
4-14 Oracle Dynamic Services User’s and Administrator’s Guide

Using Lightweight Directory Access Protocol (LDAP) as a Central Master Registry
4.5.1.2 Dynamic Services LDAP Schema
Before proceeding in the installation, verify the following:

■ Ensure the oidmon instance is running. If not, run the following command to
start it.

oidmon connect=OIDDB1 sleep=10 start

OIDDB1 is the system identifier (SID) of the database instance created by the
OID installer.

■ Ensure the oidldapd server is running. If not, run the following command to
start an instance of the OID LDAP server.

oidctl connect=OIDDB1 server=oidldapd instance=1 start

Then, proceed with the installation of the Dynamic Services LDAP schema and
issue the following command from a command-line shell:

On UNIX systems:
ldapmodify -h oracledev1-sun.us.oracle.com -p 389 -D "cn=orcladmin" -w "welcome"
-v -c -f $<ORACLE_HOME>/ds/ldif/oiddsschema.ldif

On Windows systems:
ldapmodify -h oracledev1-sun.us.oracle.com -p 389 -D "cn=orcladmin" -w "welcome"
-v -c -f $<ORACLE_HOME>\ds\ldif\oiddsschema.ldif

Table 4–1 describes the ldapmodify command-line options that can be used for
installing the Dynamic Services LDAP schema.

Table 4–1 ldapmodify Command-Line Options for Installing Dynamic Services LDAP
Schema

Options Description

h Specifies the host machine where OID is running.

p Specifies the port number to which OID is listening. By default, the port
number is 389.

D Specifies the user name (in Distinguished Name (DN) format defined by
LDAP). By default, the admin for OID is "cn=orcladmin".

w Specifies the password for the user claimed in option "-D". By default, the
password for admin is "welcome".

v Specifies verbose mode.
Advanced Installation Options 4-15

Using Lightweight Directory Access Protocol (LDAP) as a Central Master Registry
The oiddsschema.ldif file includes all the necessary steps for the installation of
the Dynamic Services schema into OID. These steps are:

1. Create unique attributes used by Oracle Dynamic Services.

2. Create an index on those attributes.

3. Create the object classes.

After successfully installing the Dynamic Services LDAP schema, the next step is to
create default entries for Dynamic Services, such as the release number of the
product and the root of the User Profile Subtree. Issue the command shown in
Example 4–10 to do this.

Example 4–10 Run the ldapmodify Command to Create Default Entries for Dynamic
Services

On UNIX systems:
ldapmodify -h oracledev1-sun.us.oracle.com -p 389 -D "cn=orcladmin" -w "welcome"
-v -c -f <ORACLE_HOME>/ds/ldif/oiddsdit.ldif

On Windows NT systems:
ldapmodify -h oracledev1-sun.us.oracle.com -p 389 -D "cn=orcladmin" -w "welcome"
-v -c -f <ORACLE_HOME>\ds\ldif\oiddsdit.ldif

4.5.2 Configuring Dynamic Services Registry to Use LDAP
In order to change this instance of the Dynamic Services engine into one that
communicates with the master LDAP server, you must change some properties in
the properties table. This is done by executing the two setProperty PL/SQL
procedure calls shown in Example 4–11.

c Specifies that all warning or error messages during the installation are delayed
from being viewed until the end.

f Specifies the location of the schema file to be uploaded to OID. In this example,
<ORACLE_HOME> refers to your Oracle9i installation.

Note: In this release, the oiddsdit.ldif file assumes the DN of
OracleContext to be "cn=OracleContext, C=US". Change the DN to
one of your choice, if needed.

Table 4–1 ldapmodify Command-Line Options for Installing Dynamic Services LDAP
Schema
4-16 Oracle Dynamic Services User’s and Administrator’s Guide

Manual Fine-Tuning of Dynamic Services Properties
Example 4–11 Configure the Dynamic Services Registry to Use the Master LDAP
Server

exec DS_Properties.setProperty(’oracle.ds.registry.defaultRegistry’,
 ’oracle.ds.registry.DSMasterMirrorRegistry’);
exec DS_Properties.setProperty(’oracle.ds.registry.ldap.providerUrl’,
 ’ldap://your.ldap.server:389’);

The first call instructs the instance to go to a master LDAP server for the central
master registry rather than to itself (the default value that was set during
installation is ’oracle.ds.registry.DSSimpleRegistry’). The second call points your
instance to the correct LDAP server for its registry communications.

You must change your.ldap.server to the host name of the machine that is
running Oracle Internet Directory.

After you complete the preceding step, perform the following tasks:

1. Run the DSAdmin utility again and go to the
DSAdminShell.Registry.Engine subshell to register your engine with the
central master registry; however, this step is optional and needed only for
management purposes.

2. Browse the DSAdminShell.Registry.Engine subshell to see the directives
available to manage the list of engines that communicate with the central
master registry.

4.6 Manual Fine-Tuning of Dynamic Services Properties
Table 4–2 describes the Dynamic Services properties that you can change after
installing Dynamic Services.

Table 4–2 Dynamic Services Properties

Property Description

proxySet Controls usage of proxy server for HTTP access;
(true | false)

proxyHost Proxy server host name

proxyPort Proxy server port number

oracle.ds.registry.ldap.providerUrl URL of the LDAP server to be used as central
master registry

oracle.ds.registry.ldap.principal User name to be used to connect to LDAP server
Advanced Installation Options 4-17

Manual Fine-Tuning of Dynamic Services Properties
The properties are stored in the installed DSSYS schema. To set a property:

1. Connect to the Oracle database as DSSYS using SQL*Plus as follows:

sqlplus DSSYS/<DSSYS-password>

2. Run the setProperty PL/SQL procedure by issuing the following SQL
statement:

SQL> EXECUTE DS_PROPERTIES.setProperty(’<property name>’, ’<property
value>’);

3. Display a list of current properties by issuing the following SQL statements:

SQL> SET SERVEROUTPUT ON;
SQL> EXECUTE DS_Properties.show;

oracle.ds.registry.ldap.credential Password to be used to connect to LDAP server

oracle.ds.registry.ldap.rootdn DN of the root of the Dynamic Services tree in
LDAP(cn=OracleDynamicService, cn=Products,
<DN of OracleContext>)

cacheSet Enables or disables service response caching;
(true | false)

debugLevel Controls debug output level;
(TERSE | VERBOSE | TRACE)

Note: Both property name and property values are case-sensitive.

Table 4–2 Dynamic Services Properties
4-18 Oracle Dynamic Services User’s and Administrator’s Guide

Service Consumer Inter
5

Service Consumer Interfaces

This chapter describes how to use the Java and PL/SQL Web application
development interfaces.

5.1 Java Interface for Service Consumers
The client library provides service consumers (application developers) with a Java
application programming interface (API) that can be used to access the functions of
the Dynamic Services engine. This section illustrates some examples for writing
client Java code to create a service request for some of the sample services supplied
with Oracle Dynamic Services, and executing them. Before proceeding, make sure
the Dynamic Services engine is properly installed, and that you can register and
execute services as described in Chapter 3. Also, using the DSAdmin utility, make
sure the YahooPortfolio service is registered, because it is used in these examples.

For more information, refer to the supplied sample code in the <ORACLE_
HOME>/ds/demo/consumer directory on UNIX systems or <ORACLE_
HOME>\ds\demo\consumer directory on Windows NT systems and to the
supplied Javadoc API (apidoc.zip file) in the <ORACLE_HOME>/ds/doc
directory on UNIX systems or in the <ORACLE_HOME>\ds\doc directory on
Windows NT systems.

Important: In Section 5.1.1, directory paths often show only the
UNIX path "/" specification. If you are running a Windows NT
system, the path specification is "\" and you must make this
change, as needed, for configurations to be successful.
faces 5-1

Java Interface for Service Consumers
5.1.1 Setting the Classpath
Make sure your classpath includes all the necessary libraries shown in Example 5–1
(that is, concatenate these paths together with a colon (:) in your classpath, (a
semicolon (;) on Windows NT)):

Example 5–1 Include These Dynamic Services Libraries in Your Classpath

<ORACLE_HOME>/ds/lib/ds.jar
<ORACLE_HOME>/lib/xmlparserv2.jar
<ORACLE_HOME>/lib/xschema.jar
<ORACLE_HOME>/ds/jlib/providerutil.jar
<ORACLE_HOME>/ds/jlib/ldap.jar
<ORACLE_HOME>/ds/jlib/jndi.jar
<ORACLE_HOME>/rdbms/jlib/xsu12.jar
<ORACLE_HOME>/lib/oraclexsql.jar
<ORACLE_HOME>/ds/lib/jcert.jar
<ORACLE_HOME>/ds/lib/jnet.jar
<ORACLE_HOME>/ds/lib/jsse.jar
<ORACLE_HOME>/jdbc/lib/classes12.zip
<ORACLE_HOME>/rdbms/jlib/jmscommon.jar
<ORACLE_HOME>/rdbms/jlib/aqapi.jar

5.1.2 Registering a Service Consumer Application in the Application Profile Registry
Registering an service consumer application in the Dynamic Services application
profile registry is a two-step process.

Step 1: Create a new database user in the database instance where the DSSYS
schema was installed during the installation process. Example 5–2 shows how a
new database user can be created by issuing SQL statements.

Example 5–2 Create a New Database User Using These SQL Statements

CONNECT SYSTEM/<system-password>;
CREATE USER serviceconsumer1 IDENTIFIED BY serviceconsumer1;
GRANT CONNECT TO serviceconsumer1;
GRANT DSUSER_ROLE to serviceconsumer1;

The third SQL statement lets the service consumer application named
serviceconsumer1 start using Dynamic Services.

Step 2: Using the DSAdmin utility, register the user identity as a new Dynamic
Services service consumer application with the following commands:
5-2 Oracle Dynamic Services User’s and Administrator’s Guide

Java Interface for Service Consumers
1. Enter dsadmin -u DSSYS/<DSSYS-password>@Direct

2. Enter Reg or R to enter the registry subshell.

3. Enter Consumer or C to enter the consumer application profile registry
subshell.

4. Enter Add or A to add a new service consumer application, followed by
entering a name of a previously defined database user.

The following code example shows how to add a service consumer application
named serviceconsumer1 associated with the database user created
previously.

Add serviceconsumer1

5. Enter Grant or G to grant a user privileges to execute services or administer the
engine.

6. Enter Service or 1 to grant service privileges, followed by the user name to
receive the grant, and then select the desired service ID from a list of service
IDs. Following the same example, execute the following line to grant the
YahooPortfolio service to the service consumer application identified by the
name, serviceconsumer1.

Example 5–3 Register the Application as a New Dynamic Services Consumer

Grant serviceconsumer1 Service urn:com.yahoo:finance.portfolio03

In Example 5–3, urn:com.yahoo:finance.portfolio03 is the service ID
of the YahooPortfolio service that is granted to the new user named
serviceconsumer1 that was created in Step 1.

You can try to connect to the Oracle Dynamic Services engine as the new user,
serviceconsumer1, by executing the command shown in Example 5–4.

Example 5–4 Connect to the Oracle Dynamic Services Engine as User
serviceconsumer1

dsadmin -u serviceconsumer1/serviceconsumer1@Direct

You can display a list of service IDs in the same registry subshell by entering
Search or S. See Section 3.3 for more information.
Service Consumer Interfaces 5-3

Java Interface for Service Consumers
5.1.3 Opening a Connection to the Dynamic Services Engine
The first step that a service consumer application must perform to work with the
Dynamic Services engine is to open a connection to it. This is similar to opening a
JDBC connection. There are multiple connection drivers available with Dynamic
Services that allow different connection paths from service consumer applications to
the engine. Service consumer applications must specify the desired driver, and then
operate with the returned connection. The communication protocol used in the
driver implementation is completely hidden from service consumer application
developers, who will be always writing code using the same API. Some drivers
allow asynchronous service requests. Example 5–5 shows how to specify a driver
and open a connection for a service consumer application.

Example 5–5 Specify a Driver and Open a Connection for a Service Consumer
Application

// First open the connection with the Direct driver
DSDriverManager.registerDriver("oracle.ds.driver.DSDirectDriver");
DSConnection dsconn =
DSDriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:ORCL");
dsconn.connect("ServiceConsumer1", "ServiceConsumer1");

5.1.3.1 Available Connection Drivers
The following drivers are supplied by Dynamic Services:

■ oracle.ds.driver.DSDirectDriver for synchronous access to services and service
lookup operations

■ oracle.ds.driver.DSHTTPDriver and oracle.ds.driver.DSHTTPSDriver for remote
synchronous access to services

■ oracle.ds.driver.DSJMSDriver for remote synchronous and asynchronous access
to services

The following sections describe some important function differences of which
service consumer application developers must be aware when using these drivers.

5.1.3.1.1 oracle.ds.driver.DSDirectDriver Use of the Direct driver means the service
consumer application assumes the Dynamic Services engine is available in its own
classpath, and therefore accessible through direct Java method calls. Through the
DSConnection acquired using the Direct driver, service consumer applications can
perform service lookup operations as well as synchronous service executions. The
URL specified in the getConnection call has to be a valid Oracle JDBC connection
string, pointing to the database instance where the DSSYS schema is installed.
5-4 Oracle Dynamic Services User’s and Administrator’s Guide

Java Interface for Service Consumers
5.1.3.1.2 oracle.ds.driver.DSHTTPDriver DSHTTPDriver permits submission of service
requests to a remote Dynamic Services engine using HTTP as a communication
protocol. DSHTTPDriver assumes the existence of a gateway in the form of a Web
server with an installed servlet that can accept service requests. The servlet is
installed using the oracle.ds.comm.protocol.http.DSServlet class. See Section 4.3 for
more information.

5.1.3.1.3 oracle.ds.driver.DSHTTPSDriver DSHTTPSDriver is similar to DSHTTPDriver
except that it goes through a secure HTTP (HTTPS) channel when communicating
with the remote Dynamic Services engine. In addition, it assumes that the Web
server hosting the oracle.ds.comm.protocol.http.DSServlet servlet has the HTTPS
option enabled.

5.1.3.1.4 oracle.ds.driver.DSJMSDriver DSJMSDriver permits remote synchronous and
asynchronous access to services using a Dynamic Services gateway in the form of a
JMS daemon. The mode of operation with this driver lets it submit requests
asynchronously to an AQ/JMS queue in a remote database. The driver assumes the
existence of this JMS daemon and it listens asynchronously to the same queue
where requests are submitted. The daemon takes on the role of the Dynamic
Services engine and processes the request, generates a response, and submits that
response to another queue to which the DSJMSDriver asynchronously listens. On
the service consumer application side, therefore, listeners can be registered to be
informed when the response is returned.

5.1.4 Example: Executing the YahooPortfolio Service
The steps required to execute any service involve:

1. Creating a service request context and the request

2. Making the execution call

Example 5–6 illustrates these steps.

Example 5–6 Request a Service and the Service Execution Call

// Create a request with a default request context from the DSConnection.
// Alternatively, the user can create a default request context himself
// and redirect the debugger to somewhere else.

Note: It is important to note that alternating between the supplied
drivers requires no modifications in the service consumer
application code other than the registration of the driver itself.
Service Consumer Interfaces 5-5

Java Interface for Service Consumers
DSRequest dsReq = dsconn.createDSRequest(myServiceID,
 new FileReader(myReqFile));

// Execute synchronously, get the response and print it.
DSResponse dsResp = dsconn.executeSynch(dsReq);

In Example 5–6, the service request is read from a file. Any java.io.Reader can
be used to supply the XML request document.

Example 5–7 describes the example request of the YahooPortfolio service in the
pfl_req_ex.xml file in the ds/demo/services/YahooPortfolio directory
on UNIX systems or in the ds\demo\services\YahooPortfolio directory on
Windows NT systems.

Example 5–7 Request the YahooPortfolio Service

<?xml version="1.0"?>
<!-- Example request of the YahooPortfolio service -->
<PortfolioReq xmlns="http://www.portfolio.org/Portfolio/Request"
 xmlns:xsi = "http://www.w3.org/1999/XMLSchema/instance"
 xsi:schemaLocation = "http://www.portfolio.org/Portfolio/Request
 http://www.portfolio.org/Portfolio/Request pfl_req.xsd">
 <Symbol>ORCL</Symbol>
 <Symbol>AAPL</Symbol>
</PortfolioReq>

The supplied XML request document has to comply with request syntax defined for
the YahooPortfolio service.

5.1.5 Displaying Service Response
Once a service response has been obtained, its content can be parsed by the Oracle
XML parser and printed as shown in Example 5–8.

Example 5–8 Display a Service Response

StringWriter sw = new StringWriter();
dsResp.writeResponse(sw);

DOMParser xmlp = new DOMParser();
xmlp.parse(new StringReader(sw.toString()));

XMLDocument xmldoc = xmlp.getDocument();
xmldoc.print(new PrintWriter(System.err));
5-6 Oracle Dynamic Services User’s and Administrator’s Guide

PL/SQL Interface for Service Consumers
5.1.6 Service Consumer Application Sessions
Within the life cycle of a Dynamic Services connection, service consumer
applications can execute multiple services. Each of these services can actually create
a session with the remote service provider. For example, a service connecting to a
Web site can receive as part of the response an HTTP cookie that has to be supplied
with every request that follows.

Before executing a set of services, Dynamic Services allows service consumer
applications to create a session and execute a set of services within the session so
that all the session context (for example, HTTP cookies or database connections) are
preserved for that session only. By calling the DSConnection.openSession() method,
service consumer applications obtain an opaque session identifier. To continue the
session, service consumer applications must set the session identifier in the header
of those service requests that are to be executed within the session. Corresponding
DSResponses contain header information about the session to which they belong.
To close a session, service consumer applications can use the
DSConnection.closeSession() method, which releases all the resources related to the
specified session. Refer to the sample Java code for details.

The information stored for the session (for example, HTTP cookies and database
connections) is not persistent across startup and shutdown of the Dynamic Services
engine. This information is stored in memory and it persists only through the life
cycle of the host JVM where the Dynamic Services engine is running.

It is the responsibility of the service consumer (application) to close any session that
it created so the associated resources are released. Closing a Dynamic Services
connection does not close the service consumer sessions and release their resources.

5.2 PL/SQL Interface for Service Consumers
The PL/SQL DynamicServices package defines the PL/SQL interface for service
execution. The PL/SQL DynamicServices package is defined with invoker’s
privileges; therefore, to access it in a PL/SQL block that is defined with definer’s
privileges, the package and related types must be explicitly granted to service
consumers as shown in Example 5–9.

Example 5–9 Use These Grant Statements to Access the PL/SQL DynamicServices
Package

GRANT EXECUTE ON DSSYS.DYNAMICSERVICES TO serviceconsumer1;
GRANT EXECUTE ON DSSYS.XML_ELEM_NAMES TO serviceconsumer1;
GRANT EXECUTE ON DSSYS.XML_ELEM_VALS TO serviceconsumer1;
Service Consumer Interfaces 5-7

PL/SQL Interface for Service Consumers
To easily create a service consumer application that uses Dynamic Services, you can
inspect the createPLSQLConsumer.sql file in the demo/consumer directory.
For more details about users and the database, refer to Oracle9i documentation.

As described in Section 1.3.2, in a PL/SQL deployment of Dynamic Services, the
Dynamic Services engine runs in the Oracle9i JVM, and its functions are exposed as
a set of Java stored procedures through a PL/SQL interface (see Example 5–10). A
service consumer application makes use of the services through PL/SQL calls to
these procedures and functions shown in Example 5–10.

Example 5–10 PL/SQL Interface for Dynamic Services

 -- This procedure initializes the Dynamic Services engine within JServer
 -- and opens a Dynamic Services connection. It is a prerequisite before any
 -- kind of execution is done.
 PROCEDURE open;

 -- This closes the Dynamic Services connection opened by the open function.
 -- If no connection is opened, this will throw a TearDownException error.
 PROCEDURE close;

 -- This function executes a service with a given service identifier and
 -- a request in the form of an XML document.
 -- It synchronously executes the service and
 -- returns the response in the form of an XML document as a VARCHAR2 type.
 FUNCTION execute(service_id VARCHAR2, request VARCHAR2) RETURN VARCHAR2;

 -- This executes a service with a given service identifier and
 -- two CLOB locators. It reads in the request CLOB and starts
 -- a synchronous execution. Upon finishing, it writes the result
 -- into the response CLOB locator that is passed in.
 PROCEDURE execute(service_id VARCHAR2, request CLOB, response CLOB);

 -- Utility method: The supplied string has to be an XML element.
 -- It will take the XML document and traverse down an entry
 -- in the supplied arrays for each element in the document.
 -- In the keys array, it will store the path of the element where the slash
 -- (/) is used to separate the child files. The corresponding entry
 -- in the VALS array will have the value of the element.
 PROCEDURE flatXML(szXML VARCHAR2,
 keys IN OUT DSSYS.XML_ELEM_NAMES,
 vals IN OUT DSSYS.XML_ELEM_VALS);

 -- Utility method to handle the array returned by flat XML.
5-8 Oracle Dynamic Services User’s and Administrator’s Guide

PL/SQL Interface for Service Consumers
 -- It will take the supplied key, iterate over the
 -- keys arrays, and if it finds a match, return the
 -- corresponding value from the VALS array.
 FUNCTION getXMLValue(key VARCHAR2,
 keys IN DSSYS.XML_ELEM_NAMES,
 vals IN DSSYS.XML_ELEM_VALS)
 RETURN VARCHAR2;

Example 5–11 shows some PL/SQL sample code from the sample.sql file in the
demo/consumer directory that illustrates a typical scenario where the PL/SQL
DynamicServices package can be used.

Example 5–11 Sample Code to Use the Dynamic Services PL/SQL Interface Package

-- Some output specifications
SET SERVEROUTPUT ON SIZE 20000;
CALL DBMS_JAVA.SET_OUTPUT(20000);

-- Anonymous block
DECLARE

 -- Service Execution
 ds_req VARCHAR2(512); -- A request in the form of an XML document.
 ds_resp VARCHAR2(4000); -- A response in the form of an XML document.
 ds_svcid VARCHAR2(128); -- A string that tells which service to execute.

 -- For response processing
 ds_elem_names DSSYS.XML_ELEM_NAMES; -- Element Names VARRAY
 ds_elem_vals DSSYS.XML_ELEM_VALS; -- Element Values VARRAY

BEGIN

 -- First connect; must do this before any execution
 DSSYS.DynamicServices.open();

 -- Set up the service ID
 ds_svcid := ’urn:com.yahoo:finance.portfolio03’;

 -- Set up the service request
 ds_req :=
 ’<PortfolioReq xmlns="http://www.portfolio.org/Portfolio/Request">’||
 ’ <Symbol>ORCL</Symbol>’||
 ’</PortfolioReq>’;

 -- Execute the service
Service Consumer Interfaces 5-9

PL/SQL Interface for Service Consumers
 ds_resp := DSSYS.DynamicServices.execute(ds_svcid, ds_req);

 -- Close connection
 DSSYS.DynamicServices.close();

 -- Print the response (Banner)
 DBMS_OUTPUT.PUT_LINE(’-------------------------’);
 DBMS_OUTPUT.PUT_LINE(’Dynamic Services Response’);
 DBMS_OUTPUT.PUT_LINE(’-------------------------’);

 -- First flatten out the XML
 DSSYS.DynamicServices.flatXML(ds_resp, ds_elem_names, ds_elem_vals);

 -- Which symbol did we try to check?
 DBMS_OUTPUT.PUT_LINE(’Value of "/PortfolioResp/Quote/Symbol" is ’||
 DSSYS.DynamicServices.getXMLValue(’/PortfolioResp/Quote/Symbol’,
 ds_elem_names, ds_elem_vals));

 -- What’s its price?
 DBMS_OUTPUT.PUT_LINE(’Value of "/PortfolioResp/Quote/Price" is ’||
 DSSYS.DynamicServices.getXMLValue(’/PortfolioResp/Quote/Price’,
 ds_elem_names, ds_elem_vals));

END;
/

The connected database user is the service consumer application connecting to the
service engine. Refer to Section 5.1.2 on how to register a service consumer
application with the Dynamic Services application profile registry.

For a more extensive sample that makes use of the currency service, refer to the
demo/consumer/currency.sql file on UNIX systems or to the
demo\consumer\currency.sql file on Windows NT systems.
5-10 Oracle Dynamic Services User’s and Administrator’s Guide

Service Development
6

Service Development Guide

In this chapter, the process of service development is described as well as how you
can test a service after you build one.

A service is a component within the Internet computing model that delivers a
specialized value-added function. A service is bundled into a simple service
package (see Figure 3–1) and structured as a local directory containing at least:

■ A MANIFEST file that points to the service descriptor XML file

■ A service descriptor XML file that is the key XML document that describes the
service and points to the following descriptor .xml files and .xsd files within its
service header section:

– One classification descriptor .xml file containing suggested classification
information from the service provider

– One organization descriptor .xml file containing company information
about the service provider

– One or more contact descriptor .xml files containing contact information
from the service provider

– One request definition (.xsd) file for the service interface specification

– One response definition (.xsd) file for the service interface specification

The service descriptor file also describes in its service body section how the four
types of service adaptors are to be used to do any of the following:

■ Handle the submitted service request (input adaptor).

■ Adapt the XML service request to the communication protocol used by the
remote service provider (protocol adaptor).

■ Determine execution flow (if desired) of a service (execution adaptor).
Guide 6-1

Quick Start
■ Transform the raw response returned by the remote service provider into a
service XML response (output adaptor).

A compound service package invokes one or more other services and has
everything a simple service package has plus it typically includes a jar file
containing all Java classes and property files needed by the compound service.

The MANIFEST file is expected to be found in the root directory of the simple or
compound service package and with the name MANIFEST (uppercase,
case-sensitive on Solaris systems; initial capitalization, non case-sensitive on
Windows NT systems). The MANIFEST file is a text file where the first non-empty
line should specify a URL link to the service descriptor XML file. If a link starts with
a slash (/), it indicates the link is an absolute link with respect to the root directory
of the current service package. The root directory is interpreted to be the root of the
directory structure for the service package.

6.1 Quick Start
You can quickly start developing your own service by following the steps described
in this section. These steps are necessary to build a simple HTTP service. Later, you
can enhance your service after reading about some more advanced concepts in
other sections of this chapter. The service that you will build is a simple HTTP
service that gets stock quotes from Yahoo.com.

The tasks to complete this quick-start service development tutorial are as follows:

1. Create a service package (see Section 6.1.1).

2. Edit the service provider organization and contact XML files (see Section 6.1.2).

3. Edit the service provider classification XML file (see Section 6.1.3).

4. Create your XML schema file for the service request definition (see
Section 6.1.4).

5. Create your XML schema file for the service response definition (see
Section 6.1.5).

6. Edit the service descriptor file, including both the service header and the service
body sections (see Section 6.1.6).

7. Test the execution of your service (see Section 6.1.7).
6-2 Oracle Dynamic Services User’s and Administrator’s Guide

Quick Start
6.1.1 Creating a Service Package
Perform the following steps to create your service package:

1. Copy the entire demo/services/SampleService directory on UNIX
systems or the demo\services\SampleService directory on Windows NT
systems into a new directory using your name, for example,
demo/services/myService on UNIX systems or
demo\services\myService on Windows NT systems.

This step creates a default service package. You can modify the name of the
subdirectories to reflect the nature of the service you want to build. In this
tutorial, you will make the following changes shown in Example 6–1.

For UNIX Systems:

Example 6–1 Create a Default Service Package

cp -r demo/services/SampleService demo/services/myService
cd demo/services/myService
mv SampleProvider www.yahoo.com

cd www.yahoo.com/dServices
mv SampleService portfolio
mv SampleOrg.xml YahooOrg.xml
mv SampleContact.xml YahooContact.xml

cd portfolio
mv SampleService.xml ypfl.xml
mv SampleServiceClassification.xml ypflClass.xml

For NT Systems:
a. Copy the entire demo\services\SampleService directory into a new

directory using your name, for example, demo\services\myService.

Note: The <ORACLE_HOME>/ds/etc/xsd directory on UNIX
systems or the <ORACLE_HOME>\ds\etc\xsd directory on
Windows NT systems contains the XML schema files for the service
descriptor and supplied adaptors. Refer to the files in this directory
for more information.
Service Development Guide 6-3

Quick Start
b. Navigate to the demo\services\myService directory and rename
SampleProvider to www.yahoo.com.

c. Navigate to the www.yahoo.com\dServices directory and rename
SampleService to portfolio, SampleOrg.xml to YahooOrg.xml,
and SampleContact.xml to YahooContact.xml.

d. Navigate to the portfolio subdirectory and rename
SampleService.xml to ypfl.xml and
SampleServiceClassification.xml to ypflClass.xml.

2. Update the MANIFEST file in the demo/services/myServices directory on
UNIX systems or the demo\services\myServices directory on Windows
NT systems to contain the line shown in Example 6–2.

Example 6–2 Update the MANIFEST File

On UNIX systems:
/www.yahoo.com/dServices/portfolio/ypfl.xml

On Windows NT systems:
\www.yahoo.com\dServices\portfolio\ypfl.xml

Step 2 lets the service package point to the correct service descriptor file that
you will edit soon. Notice that all paths used in this quick-start document are
relative to the demo/services/myService directory on UNIX systems or the
demo\services\myService directory on Windows NT systems.

6.1.2 Service Provider -- Organization and Contacts XML Files
Recall that the YahooOrg.xml file and the YahooContact.xml file described in
Section 6.1.1, reside in the directory /www.yahoo.com/dServices on UNIX
systems or \www.yahoo.com\dServices on Windows NT systems. These files
contain service provider information about the organization and contacts for this
particular service.

■ Edit the YahooOrg.xml file to appear as shown in Example 6–3.

Example 6–3 Edit the YahooOrg.xml File

<?xml version="1.0"?>
<!-- Fully scope information for good practice -->
<dsOrg:ORGANIZATION
 xmlns:dsOrg="http://www.oracle.com/ds/2000/SERVICE_DESCRIPTOR/ORGANIZATION">
 <dsOrg:NAME>Yahoo!</dsOrg:NAME>
6-4 Oracle Dynamic Services User’s and Administrator’s Guide

Quick Start
 <dsOrg:COPYRIGHT>(c) Yahoo!, 2000</dsOrg:COPYRIGHT>
 <dsOrg:URL>http://www.yahoo.com</dsOrg:URL>
 <dsOrg:LOGOURL>http://us.yimg.com/i/fi/main4.gif</dsOrg:LOGOURL>
</dsOrg:ORGANIZATION>

■ Edit the YahooContact.xml file to appear as shown in Example 6–4.

Example 6–4 Edit the YahooContact.xml File

<?xml version="1.0"?>
<!-- Fully scope information for good practice -->
<dsCt:CONTACT
 xmlns:dsCt="http://www.oracle.com/ds/2000/SERVICE_DESCRIPTOR/CONTACT">
 <dsCt:NAME>bar1</dsCt:NAME>
 <dsCt:EMAIL>bar1@yahoo.com</dsCt:EMAIL>
 <dsCt:PHONE>(000)000-0000</dsCt:PHONE>
 <dsCt:FAX>(000)000-0000</dsCt:FAX>
 <dsCt:PAGER>(000)000-0000</dsCt:PAGER>
 <dsCt:MOBILE>(000)000-0000</dsCt:MOBILE>
</dsCt:CONTACT>

6.1.3 Service Classification XML File
The ypflClass.xml file described in Section 6.1.1 resides in the directory
/www.yahoo.com/dServices/portfolio/ on UNIX systems or
\www.yahoo.com\dServices\portfolio\ on Windows NT systems. This file
should contain classification information of your service.

Edit the ypflClass.xml file to appear as shown in Example 6–5.

Example 6–5 Edit the ypflClass.xml File

<?xml version="1.0"?>
<!-- Fully scope information for good practice -->
<dsCls:CLASSIFICATION
 xmlns:dsCls="http://www.oracle.com/ds/2000/SERVICE_DESCRIPTOR/CLASSIFICATION">
 <dsCls:CATEGORY>cn=portfolio, cn=finance, cn=business</dsCls:CATEGORY>
 <dsCls:KEYWORDS>portfolio,stocks,finance</dsCls:KEYWORDS>
</dsCls:CLASSIFICATION>
Service Development Guide 6-5

Quick Start
6.1.4 Service Interface Specification -- Request Definition
Before editing the service descriptor, you must understand how requests are
defined.

■ Start by looking at a typical HTML form. Example 6–6 shows a portion of an
HTML form that you can find on the Yahoo Web site accessed from
http://quote.yahoo.com.

Example 6–6 Examine a Typical HTML Form

<form method=get action="/q"><nobr>
 <input type=text size=25 name=SymbolList>
 <input type=submit value="Get Quotes">
 ...
</form>

The form takes one input called SymbolList and an HTTP GET request is made
to http://quote.yahoo.com/q when you click Submit. An HTML page
returns the stock quotes of the symbols that are specified in the input called
SymbolList.

■ Make the HTTP form into a service in the Dynamic Services framework.

The form takes one input called SymbolList. From there, you can expect the
service consumer application to pass in only one argument, and generate an
XML schema file for your request, such as shown in Example 6–7.

Example 6–7 Generate an XML Schema File for the Service Request

<?xml version ="1.0"?>
<!-- Input schema of the currency service -->
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
 targetNamespace = "http://www.portfolio.org/Portfolio/Request"
 xmlns:pflReq = "http://www.portfolio.org/Portfolio/Request">

 <element name = "PortfolioReq">
 <complexType content = "elementOnly">
 <sequence>

Note: The category section follows the Lightweight Directory
Access Protocol (LDAP) Distinguished Name (DN) (backwards
tree) convention. The category specified must exist in the registry
before you can register the service.
6-6 Oracle Dynamic Services User’s and Administrator’s Guide

Quick Start
 <!-- Use a more user-friendly name as a symbol and an augmented
 string type called Ticker to restrict its format. Have a
 default as well because XML Schema allows for it. Also,
 restrict it so there are 1 or more symbols at least. -->
 <element
 name = "Symbol" type="pflReq:Ticker"
 default="ORCL" minOccurs="1" maxOccurs="*"/>
 </sequence>
 </complexType>
 </element>

 <simpleType name = "Ticker" base = "string">
 <pattern value="[̂ \s]+" />
 </simpleType>
</schema>

In the use of the service, an XML request must conform to this schema to be
used correctly.

■ Create your request XML file and place it in the directory
/www.yahoo.com/dServices/portfolio/ on UNIX systems or
\www.yahoo.com\dServices\portfolio\ on Windows NT systems and
name it ypfl_req.xsd.

6.1.5 Service Interface Specification -- Response Definition
When the HTTP GET request is made, the HTML page shown contains the actual
stock quote that you want.

■ Examine the code that contains the price for the stock symbol ORCL in
Example 6–8.

Example 6–8 Examine the Code and Note the Stock Symbol ORCL

<tr align=right>
 <!-- "Symbol" -->
 <td nowrap align=left>ORCL</td>
 <!-- "Time" -->
 <td nowrap align=center>12:14PM</td>
 <!-- "Price" -->
 <td nowrap>82 ¹⁵/₁₆</td>
 <!-- "Change" -->
 <td nowrap>+1 ³/₄</td>
 <td nowrap>+2.16%</td>
 <!-- "Volume" -->
Service Development Guide 6-7

Quick Start
 <td nowrap>6,218,900</td>
 <td nowrap align=center><small>

■ Transform the HTML into an XML document that a service consumer
application can use. Determine what useful information should be extracted.

■ Create another XML schema file, this time for the service response, as shown in
Example 6–9.

Example 6–9 Create an XML Schema File for the Service Response

<?xml version ="1.0"?>
<!-- Input schema of the currency service -->
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
 targetNamespace = "http://www.portfolio.org/Portfolio/Response"
 xmlns:pflResp = "http://www.portfolio.org/Portfolio/Response">
 <!-- This is the input value in which the input should be specified. -->
 <element name = "PortfolioResp">
 <complexType content = "elementOnly">
 <element name = "Quote" minOccurs="1" maxOccurs="*">
 <complexType content = "elementOnly">
 <sequence>
 <element name = "Symbol" type="pflResp:Ticker" />
 <element name = "Time" type="string" />
 <element name = "Price" type="string" />
 <element name = "Change" type="string" />
 <element name = "Volume" type="string" />
 </sequence>
 </complexType>
 </element>
 </complexType>
 </element>

 <simpleType name = "Ticker" base = "string" >
 <pattern value="[̂ \s]+" />
 </simpleType>
</schema>

You have decided that the symbol, time, price, change of last trade, and the
volume are all useful pieces of information that you can gather from the HTML
page. Consequently, you model your response using the previous schema.

■ Create your response XML file and place it in the
/www.yahoo.com/dServices/portfolio/ directory on UNIX systems or
6-8 Oracle Dynamic Services User’s and Administrator’s Guide

Quick Start
\www.yahoo.com\dServices\portfolio\ directory on Windows NT
systems and name it ypfl_resp.xsd.

6.1.6 Editing the Service Descriptor
Next, the steps to modify the service descriptor ypfl.xml file in the directory
/www.yahoo.com/dServices/portfolio/ on UNIX systems or
\www.yahoo.com\dServices\portfolio\ on Windows NT systems are
described. The beginning of the service descriptor, with namespaces sd for all
service descriptor tags and xlink for all your document links that use XLink
attributes, is shown in Example 6–10.

Example 6–10 Examine the Beginning of the Service Descriptor

<sd:SERVICE_DESCRIPTOR
 xmlns:sd="http://www.oracle.com/ds/2000/SERVICE_DESCRIPTOR"
 xmlns:xlink="http://www.w3.org/1999/xlink">

6.1.6.1 Service Header
Modify your service header as shown in Example 6–11, and read the comments that
tell you what must be changed when you build the YahooPortfolio service.

Example 6–11 Modify the Service Header

<sd:SERVICE_HEADER>
<!-- In the NAMING section, the only thing you really need to modify is
 the ID field. It has to uniquely identify your service and must be a
 universal resource name (URN). But modify the rest as you see fit. -->
<sd:NAMING>
 <sd:ID>urn:com.yahoo:finance.portfolio03</sd:ID>
 <sd:NAME>Yahoo Portfolio service</sd:NAME>
 <sd:DESCRIPTION>Find current prices for stocks</sd:DESCRIPTION>
</sd:NAMING>

<sd:PACKAGE>
 <sd:VERSION>1.0</sd:VERSION>
 <sd:RELEASEDATE>05-MAY-2000</sd:RELEASEDATE>

Note: Oracle Corporation recommends that you fully qualify the
elements in the service descriptor document using the sd prefix
and referring to the following namespace:

http://www.oracle.com/ds/2000/SERVICE_DESCRIPTOR
Service Development Guide 6-9

Quick Start
 <sd:UPDATEURL>http://www.yahoo.com/dServices/pfl.zip</sd:UPDATEURL>
</sd:PACKAGE>
<sd:DEPLOYMENT>
 <!-- Point the classification file to the file that you edited previously in
 Section 6.1.3 and note that the path starts from the directory of the
 service package. -->
 <sd:CLASSIFICATION
 xlink:href="/www.yahoo.com/dServices/portfolio/ypflClass.xml"/>

 <!-- Also, change the caching parameters to set cache expiration in
 seconds, or to specify that the cache has session knowledge. -->
 <sd:CACHING>
 <!-- Expiration in seconds. -->
 <sd:MAX_AGE>60</sd:MAX_AGE>
 <!-- Will the cache be session-aware? -->
 <sd:SESSION_PRIVATE>true</sd:SESSION_PRIVATE>
 <!-- This Boolean field tells the engine to allow the expiration of
 the cache to be controlled by the underlying protocol. Specifying
 a value of true would make the engine ignore the MAX_AGE tag. -->
 <sd:USE_PROTOCOL>false</sd:USE_PROTOCOL>
 </sd:CACHING>

</sd:DEPLOYMENT>
<sd:PROVIDER>
 <!-- This is mandatory and should point to the organization file
 that you edited previously in Section 6.1.2. -->
 <sd:ORGANIZATION xlink:href="/www.yahoo.com/dServices/YahooOrg.xml"/>

 <!-- This is mandatory (at least one contact element in the contacts
 section), and should point to the contact file that you
 edited previously in Section 6.1.2. -->
 <sd:CONTACTS>
 <sd:CONTACT xlink:href="/www.yahoo.com/dServices/YahooContact.xml"/>
 </sd:CONTACTS>
</sd:PROVIDER>
<sd:INTERFACE>
 <!-- Change this to your own service interface (made up of a request/
 response schema specification pair). We will not put Yahoo here
 because maybe other organizations can have the same kind of service,
 which can be used in a failover scenario. -->
 <sd:NAME>PortfolioService</sd:NAME>
 <!-- This is mandatory; point this to the XML schema file that you
 created previously in Section 6.1.4. -->
 <sd:INPUT_SCHEMA
 xlink:href="/www.yahoo.com/dServices/portfolio/pfl_req.xsd"/>
6-10 Oracle Dynamic Services User’s and Administrator’s Guide

Quick Start
 <!-- This is mandatory; point this to the XML schema file that you
 created previously in Section 6.1.5. -->
 <sd:OUTPUT_SCHEMA
 xlink:href="/www.yahoo.com/dServices/portfolio/pfl_resp.xsd"/>
</sd:INTERFACE>
</sd:SERVICE_HEADER>

6.1.6.2 Service Body
This section describes the service body from the same YahooPortfolio service. The
fields that you must change to modify your own service are described in this
section, starting from the service body as shown in Example 6–12.

Example 6–12 Look for the Beginning of the Service Body

<sd:SERVICE_BODY>

6.1.6.2.1 Input Handling and Input Adaptor Specification

This section describes the input section of the service body.

Modify the input section of the service body of your descriptor to appear as shown
in Example 6–13.

Example 6–13 Modify the Input Section of the Service Body

 <sd:INPUT>
 <!-- Aliases are what map the XML requests that the service consumer
 will supply when using the service, to the parameters on
 the HTML form of our Web service. -->
 <sd:ALIASES>
 <sd:ALIAS>
 <!-- This name is just a variable name; all references to it in
 the service descriptor will access the same value. -->
 <sd:NAME>SymbolList</sd:NAME>
 <!-- No namespace prefix is needed, as the request transformed by
 inputadaptor has no namespace. -->
 <sd:VALUE>{@xpath:value=/PortfolioReq/SymbolList}</sd:VALUE>
 </sd:ALIAS>
 </sd:ALIASES>
 <sd:ADAPTOR>
 <sd:NAME>oracle.ds.engine.ioa.DSXSLTInputAdaptor</sd:NAME>
 <sd:PARAMETERS>
 <xiaParams:XSLT_IA_PARAMS
 xmlns:xiaParams="http://www.oracle.com/ds/2000/XSLT_IA_PARAMS">
 <xiaParams:XSLT>
Service Development Guide 6-11

Quick Start
 <xsl:stylesheet
 version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xhtml="http://www.w3.org/1999/xhtml"
 xmlns:pflreq="http://www.portfolio.org/Portfolio/Request">
 <xsl:template match="/">
 <pflreq:PortfolioReq>
 <xsl:apply-templates select="pflreq:PortfolioReq"/>
 </pflreq:PortfolioReq>
 </xsl:template>
 <xsl:template match="pflreq:PortfolioReq">
 <pflreq:SymbolList>
 <xsl:for-each select="pflreq:Symbol">
 <xsl:value-of select="concat(text(), ’,’)"/>
 </xsl:for-each>
 </pflreq:SymbolList>
 </xsl:template>
 </xsl:stylesheet>
 </xiaParams:XSLT>
 </xiaParams:XSLT_IA_PARAMS>
 </sd:PARAMETERS>
 </sd:ADAPTOR>
</sd:INPUT>

6.1.6.2.2 Protocol Adaptor Specifications The protocol adaptor specifications contain
information on how to map the aliases defined in Example 6–13 with the actual
HTTP GET request.

Modify the protocol section of the service body of your service descriptor as shown
in Example 6–14.

Example 6–14 Modify the Protocol Section of the Service Body

<sd:PROTOCOL>
 <sd:ADAPTOR>
 <sd:NAME>oracle.ds.engine.pa.http.DSHTTPProtocolAdaptor</sd:NAME>
 <sd:DRIVER>java.net.URLConnection</sd:DRIVER>
 <sd:PARAMETERS>
 <hpParams:HTTP_PA_PARAMS
 xmlns:hpParams="http://www.oracle.com/ds/2000/HTTP_PA_PARAMS">
 <hpParams:Method>GET</hpParams:Method>
 <hpParams:URL>quote.yahoo.com/query</hpParams:URL>
 <hpParams:QueryStringParameters>
 <hpParams:QueryStringParameter
 name="SymbolList">{@SymbolList}</hpParams:QueryStringParameter>
6-12 Oracle Dynamic Services User’s and Administrator’s Guide

Quick Start
 </hpParams:QueryStringParameters>
 </hpParams:HTTP_PA_PARAMS>
 </sd:PARAMETERS>
 </sd:ADAPTOR>
</sd:PROTOCOL>

In the QueryStringParameters and QueryStringParameter sections, the HTTP GET
parameter SymbolList is mapped to your alias (which is conveniently also called
SymbolList). For more detailed descriptions of the protocol adaptor section, see
Section 6.3.2.

6.1.6.2.3 Execution Adaptor Specifications There are no special execution adaptors that
you will use in this service, so none is specified. For more detailed descriptions of
the execution adaptor section, see Section 6.3.2.

6.1.6.2.4 Output Adaptor Specifications The output adaptor specifications contain
information on how the raw output from the Web service (HTML) is to be
transformed into the structured XML format that is described with your response
XML Schema file described previously.

Modify your service descriptor to contain what is shown in Example 6–15.

Example 6–15 Modify the Output Section of the Service Body

<sd:OUTPUT>
 <sd:ADAPTOR>
 <sd:NAME>oracle.ds.engine.ioa.DSXSLTOutputAdaptor</sd:NAME>
 <sd:PARAMETERS>
 <xoParams:XSLT_OA_PARAMS
 xmlns:xoParams="http://www.oracle.com/ds/2000/XSLT_OA_PARAMS">
 <xoParams:XSLT>
 <xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:pflResp="http://www.portfolio.org/Portfolio/Response"
 xmlns:xhtml="http://www.w3.org/1999/xhtml">

 <xsl:template match="/">
 <pflResp:PortfolioResp>
 <xsl:apply-templates

Note: If the raw response is an XML document and if no
stylesheet is supplied, the service will return the raw response
without any processing.
Service Development Guide 6-13

Quick Start
 xmlns="http://www.w3.org/1999/xhtml"
 select="html/body/center/table[5]/tr[1]/td/table"/>
 </pflResp:PortfolioResp>
 </xsl:template>
 <xsl:template match="xhtml:table">
 <xsl:for-each select="xhtml:tr">
 <xsl:if test="position()!=1">
 <!-- Fully scope quote with the response XML schema file -->
 <pflResp:Quote>
 <!-- Fully scope symbol also -->
 <pflResp:Symbol>
 <xsl:value-of select="xhtml:td[1]/xhtml:a"/>
 </pflResp:Symbol>
 <pflResp:Time>
 <xsl:value-of select="xhtml:td[2]"/>
 </pflResp:Time>
 <pflResp:Price>
 <xsl:value-of select="xhtml:td[3]/xhtml:b"/>
 </pflResp:Price>
 <pflResp:Change>
 <xsl:value-of select="xhtml:td[5]"/>
 </pflResp:Change>
 <pflResp:Volume>
 <xsl:value-of select="xhtml:td[6]"/>
 </pflResp:Volume>
 </pflResp:Quote>
 </xsl:if>
 </xsl:for-each>
 </xsl:template>
 </xsl:stylesheet>
 </xoParams:XSLT>
 </xoParams:XSLT_OA_PARAMS>
 </sd:PARAMETERS>
 </sd:ADAPTOR>
</sd:OUTPUT>

The DSXSLTOutputAdaptor specified first, converts the returned HTML into a
more XML-compliant XHTML format. It then applies the supplied XSL stylesheet to
that XHTML document to form an XML document that conforms to the response
XML schema file that you previously defined in Section 6.1.5.

Close the service body and the service descriptor elements as shown in
Example 6–16.
6-14 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Service Package
Example 6–16 Close the Service Body and Service Descriptor Elements

 </sd:SERVICE_BODY>
</sd:SERVICE_DESCRIPTOR>

6.1.7 Testing the Execution of Your Service
After constructing the service package and editing the service descriptor, do the
following to test the execution of your service:

1. Run the DSAdmin utility. Use the DSAdmin utility to:

a. Add the categories by following the instructions in Section 3.2.1.

b. Register the service by pointing to the demo/services/myService
directory on UNIX systems or demo\services\myService directory on
Windows NT systems as described in Section 3.2.2.

2. Build a sample service request definition and a sample service response
definition following the examples described in Example 6–7 and Example 6–9.

3. Use the DSAdmin utility to execute the service. See Section 3.4 for more
information.

You can turn the execution output level to trace by selecting Prop (P) at the top-level
menu, and then selecting Change (C) to change the debug output levels. Finally,
select TRACE (3) to turn it to the trace level, so you can see every step of the
execution flow.

This completes the description of the steps needed to create, register, and test a
simple HTTP service.

To create more advanced services, see Section 6.2 through Section 6.5.

6.2 Creating Advanced Services -- Service Package
The service package is structured as a local directory containing a set of files with
the following structures:

■ A MANIFEST file pointing to the service descriptor

Note: Anytime you make a change to any service related file, you
must reregister that service package using the DSAdmin utility
Reregister command.
Service Development Guide 6-15

Creating Advanced Services -- Service Descriptor
■ The service descriptor XML file, and other XML files it points to, including
classification, provider information (organization and contacts), input or output
schemas, and so forth

■ A jar file containing all Java classes and stylesheets needed by the service

The MANIFEST file is expected to be found in the root directory of the package, and
with the name MANIFEST (uppercase, case-sensitive on Solaris systems; initial
uppercase, non case-sensitive on Windows NT systems). The MANIFEST file is a text
file where the first non-empty line should specify a URL link to the service
descriptor. If a link starts with a slash (/), it indicates the link is an absolute link
with respect to the root of the current service package. The root is interpreted to be
the root of the directory structure of the service package. The MANIFEST file must
end with a new line.

6.3 Creating Advanced Services -- Service Descriptor
A service package is modeled through an XML document called a service descriptor
that provides a centralized source of description for the service. A service is defined
by a multitude of logical components, all of which are specified in the service
descriptor or in other documents to which the descriptor refers. There are two
sections of the service descriptor:

■ Service header: Describes the high-level behavior of the service

■ Service body: Describes the implementation details of the service

These descriptor sections, described in Section 6.3.1 and Section 6.3.2 correspond to
XML elements with the same names in the service descriptor. For service descriptor
examples, refer to the supplied sample services under the <ORACLE_
HOME>/ds/demo/services directory on UNIX systems or the <ORACLE_
HOME>\ds\demo\services directory on Windows NT systems.

6.3.1 Service Header Section
The service header section contains high-level behavior descriptions of the service.
For the most part, information specified in the service header section is descriptive

Note: The <ORACLE_HOME>/ds/etc/xsd directory on UNIX
systems or the <ORACLE_HOME>\ds\etc\xsd directory on
Windows NT systems contains the XML schema for the service
descriptor and supplied adaptors. See the files in this directory for
more information.
6-16 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Service Descriptor
and non-interpretive and primarily for browsing and documentation purposes. The
exceptions are the service identifier specification described in Section 6.3.1.1 and the
service interface specification described in Section 6.3.1.5.

6.3.1.1 Naming Specification
The service header section has naming information that contains a globally unique
identifier for the services, as well as short and long descriptions of what the service
does. Each service has a unique name specified using the universal resource name
(URN) conventions. Example 6–17 shows a sample naming specification.

Example 6–17 Sample Naming Specification

<!-- Naming specification provides identification information about the
 service. Among the elements, ID is the important one, which
 serves as unique identification. It must be a URN. -->
<sd:NAMING>
 <sd:ID>urn:com.foobar:service_name</sd:ID>
 <sd:NAME>Put a human-readable name here.</sd:NAME>
 <sd:DESCRIPTION>Some description about the service.</sd:DESCRIPTION>
</sd:NAMING>

6.3.1.2 Package Specification
The service header section includes package information with version specifications
and pointers to how and where the service update is to be performed. Coupled with
support contacts from the service provider information section (see Section 6.3.1.3),
this information is critical for service maintenance. Example 6–18 shows a sample
package specification.

Example 6–18 Sample Package Specification

<!-- Package provides version information, update locations, and
 binary resource specifications. -->
<sd:PACKAGE>
 <sd:VERSION>1.0</sd:VERSION>
 <sd:RELEASEDATE>25-MAR-2000</sd:RELEASEDATE>
 <sd:UPDATEURL>http://www.foobar.com/dServices/svc.zip</sd:UPDATEURL>
 <sd:BINARY_RESOURCES>
 <!-- JAR_POINTER is used only in the special case that you
 have custom Java classes. Skip the whole JAR_POINTER
 section if no custom Java classes are needed. -->
 <sd:JAR_POINTER
 xlink:href="/www.foobar.com/dServices/dummy.jar" />
 <!-- EXCEPTIONS is the section where the resource bundle for
Service Development Guide 6-17

Creating Advanced Services -- Service Descriptor
 custom exceptions can be specified. If the exceptions
 do not rely on custom resource bundles, the whole EXCEPTIONS
 section can be skipped. -->
 <sd:EXCEPTIONS>
 <sd:EXCEPTION_MSG_BUNDLE>com.foobar.Bundle</sd:EXCEPTION_MSG_BUNDLE>
 </sd:EXCEPTIONS>
 </sd:BINARY_RESOURCES>
</sd:PACKAGE>

6.3.1.3 Service Provider Specification -- Organization and Contacts
This service header section includes high-level information about the service
provider, including the service provider’s company name, copyright information,
and company URL. Detailed information includes contacts for support and URLs
for logos. This information is provided in the form of an X-Link that points to
another XML document in the service package. Example 6–19 shows a sample
service provider specification.

Example 6–19 Sample Service Provider Specification

<sd:PROVIDER>
 <!-- The ORGANIZATION section is a mandatory document that gives information
 about the service provider. For a quick start, it can be filled
 with dummy data. -->
 <sd:ORGANIZATION
 xlink:href="/www.foobar.com/dServices/foobar_org.xml"/>
 <!-- Each ORGANIZATION section can be associated with zero or more
 contact documents.-->
 <sd:CONTACTS>
 <sd:CONTACT xlink:href="/www.foobar.com/dServices/contact.xml"/>
 </sd:CONTACTS>
</sd:PROVIDER>

6.3.1.4 Deployment Specification -- Classification and Caching
This service header section includes a set of deployment properties that includes
suggestions from the service provider to aid the service administrator during
registration time. These suggestions include classification guidelines with
hierarchical categories, as well as flat keywords and recommendations of caching
parameters. This information is also provided in the form of an X-Link that points
to another XML document specifying the classification schemes. The values
specified here are only suggestions to a service administrator during service
registration. The values stored in the service registry could be different from the
6-18 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Service Descriptor
values specified in the service descriptor. Example 6–20 shows a sample
deployment specification.

Example 6–20 Sample Deployment Specification

<sd:DEPLOYMENT>
 <!-- Follow the convention in path name within the zip file. -->
 <sd:CLASSIFICATION
 xlink:href="/www.oanda.com/dServices/currency/class.xml"/>
 <sd:CACHING>
 <sd:MAX_AGE>300</MAX_AGE>
 <sd:SESSION_PRIVATE>false</sd:SESSION_PRIVATE>
 <sd:USE_PROTOCOL>false</sd:USE_PROTOCOL>
 </sd:CACHING>
</sd:DEPLOYMENT>

See Section 7.3 for more information about service response caching.

6.3.1.5 Service Interface Specification -- Request and Response Definitions
The service header allows for the definition of an interface characterized by the
schema specifications of its input, output, and exceptions. The specifications are
dispersed in external XML schema documents. The location of the XML schema
document file is specified by URLs, when a relative URL is used, that is, relative to
the service package submitted by the service providers. By specifying these
schemas, the service provider enforces the syntax in which service consumer
applications send requests to it, as well as the way in which it provides the
responses. The validation will be done in the Dynamic Services engine when a
service consumer application sends a request, before the service provider is
contacted.

The service provider can also suggest a name for the interface, which is a
deployment option and can be overwritten by the service administrator. Any new
service that conforms to the same service interface must provide the same
input/output (not necessarily the exception) definition. The Dynamic Services
engine also exposes to service consumer applications the capability to search for
services by interface. Two services that conform to the same interface are considered
compatible services, a concept useful for failover.
Service Development Guide 6-19

Creating Advanced Services -- Service Descriptor
Example 6–21 shows a sample service interface specification.

Example 6–21 Sample Service Interface Specification

<sd:INTERFACE>
 <sd:NAME>FoobarTemplate</sd:NAME>
 <sd:INPUT_SCHEMA xlink:href="/www.foobar.com/dServices/fb_req.xsd"/>
 <sd:OUTPUT_SCHEMA xlink:href="/www.foobar.com/dServices/fb_resp.xsd"/>
</sd:INTERFACE>

6.3.2 Service Body Section
The service body section contains more detailed descriptions and information used
by the Dynamic Services engine at service execution time. Specifically, its sections
are specifications (including adaptors) on the input, protocol, execution, and output,
where:

■ Input deals with the handling of the submitted service request

■ Protocol adapts the XML service request to the communication protocol used by
the remote service provider

■ Execution determines the execution flow of a service

■ Output transforms the raw response returned by the remote service provider
into a service XML response

Figure 6–1 shows a sample service execution and the roles of the input, protocol,
and output adaptors, and the flow of information.

Note: To facilitate the development of code that works with
Dynamic Services, class generators can be used to create Java
classes that correspond to the request/response XML schema files.
6-20 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Service Descriptor
Figure 6–1 Sample Service Execution Showing the Role of the Input, Protocol, and
Output Specifications as Specified Adaptors

Figure 6–2 shows a sample execution adaptor and the role the execution adaptor
plays in identifying the way in which one or more sample services is to be executed.
In this case, an execution adaptor would specify in its execution flow logic how and
why a set of one or more sample services is to be executed. For example, a failover
execution adaptor would specify the preferred order of execution of the sample
services from its list of compatible services in the event that one or more services
failed to execute. In this figure, sample service 1 fails to execute, thus sample service
2 is executed; meanwhile sample service 3 is ready for execution in the event that
sample service 2 fails to execute.
Service Development Guide 6-21

Creating Advanced Services -- Service Descriptor
Figure 6–2 Sample Execution Adaptor

The service provider can specify the needed adaptor for each of these layers. A set
of pre-built, customizable adaptors is supplied by Oracle Dynamic Services. See
Section 6.4 for a description of these adaptors.

6.3.2.1 Input Handling and Adaptor Specifications
The service body section has input specifications that provide a list of necessary as
well as optional processing steps for the request that is submitted by the service
consumer application. This includes the following input specifications:

■ Namespaces

■ Alias directives

■ Input adaptor

■ Rendering directives

Section 6.3.2.1.1 through Section 6.3.2.1.4 describe each of these input specifications.

6.3.2.1.1 Input: Namespaces A list of namespaces with their prefixes can be specified
before specifying the aliases. The prefixes can be used in the aliases specification to
6-22 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Service Descriptor
build the XPaths pointing to where the data is. If no namespaces are needed, this
item can be skipped. Example 6–22 shows a sample namespaces specification.

Example 6–22 Sample Namespaces Specification

<sd:NAMESPACES>
 <sd:NAMESPACE>
 <sd:PREFIX>fb</sd:PREFIX>
 <sd:VALUE>http://www.foobar.com/foobar/Request</sd:VALUE>
 </sd:NAMESPACE>
</sd:NAMESPACES>

6.3.2.1.2 Input: Aliases Directives Service providers may specify alias directives.
Aliases are used to create a map that can translate the parameters embedded in the
XML service request document to actual parameters needed by the communication
protocol of the service. For example, for HTTP, a service provider can specify an
XPath for the request XML document addressing an element that represents one of
the HTTP request parameters to be sent to the HTTP server. There are currently two
possible ways of specifying an alias:

■ Supply an XPath, which at service execution time, is applied to the XML service
request file and used to extract either the value of the node pointed to by the
XPath, or the XML fragment for which this node is the root.

■ Supply a service consumer application profile property and optionally its
modifier. The corresponding value is fetched dynamically at execution time
according to the identity of the service consumer application. See Section 7.1 for
more information about how to manage properties.

Example 6–23 shows a sample aliases specification, the first using the XPath
approach for a value, using the namespace described previously; the second using
the XPath approach for a document fragment; and the last using the profile
property approach.

This sample uses the fb prefix and the namespace,
http://www.foobar.com/foobar/Request described in Section 6.3.2.1.1.

Example 6–23 Sample Aliases Specification

<sd:ALIASES>
 <sd:ALIAS>
 <sd:NAME>AccountNumber</sd:NAME>
 <!-- Indicates that the value is obtained dynamically from the user
 request following the namespace specifed by fb -->
 <sd:VALUE>{@xpath:value=/fb:foobarReq/fb:param1}</sd:VALUE>
Service Development Guide 6-23

Creating Advanced Services -- Service Descriptor
 </sd:ALIAS>
 <sd:ALIAS>
 <sd:NAME>SomeFragment</sd:NAME>
 <!-- Indicates that the value is obtained dynamically from the user
 request following the namespace specifed by fb -->
 <sd:VALUE>{@xpath:fragment=/fb:foobarReq/fb:frag1}</sd:VALUE>
 </sd:ALIAS>
 <sd:ALIAS>
 <sd:NAME>Password</sd:NAME>
 <!-- Indicates that the value of the alias should be retrieved as a
 property from the service consumer application profile registry
 and that the property name is foobarProp1. -->
 <sd:VALUE>{@dscr:property=foobarProp1}</sd:VALUE>
 </sd:ALIAS>
</sd:ALIASES>

6.3.2.1.3 Input: Adaptor Specification The input adaptor specification can optionally
specify an adaptor that further processes the service request before sending it to the
service provider. Examples of such processing include semantic or higher-level
validation of the request. This input adaptor specification is a fully qualified name
of the class implementing the oracle.ds.engine.InputAdaptor Java interface
that handles the processing. For the specified adaptor, the service provider has the
option of specifying some adaptor-specific parameters in the PARAMETERS
element under the adaptor specification that are validated at service registration
time, and interpreted at runtime by the adaptor. The parameters are opaque to the
service descriptor parser and service registry, and must be in XML syntax.

6.3.2.1.4 Input: Rendering Directives Under normal execution flow, the request XML
that the service consumer application submits or sends to the Dynamic Services
engine is validated with the input XML schema file that is specified previously in
the header. However, a service provider can optionally supply some form of schema
mapping specifications (for example, through an XSL transformation) that could
map this input XML schema file to a presentation form such as HTML or Wireless
Markup Language (WML). As a result, the service consumer application can easily
provide to its clients a way to submit service requests, for applications that have an
HTML or WML interface.

The Dynamic Services engine is not responsible for the rendering: all that the engine
is responsible for is the capabilities to store and retrieve the mapping. The Dynamic
Services engine provides only the mapping(s) of the transformation. The actual
transformation is done on the service consumer application side by the client
toolkit. If you map the schema to an HTML form, the service consumer applications
can use the mapping to render the input schema to an HTML form for their Web
6-24 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Service Descriptor
application. The service consumer application can then transform the HTTP
requests back to an XML document that conforms to the request XML schema file
specified by the service provider. Finally, the request XML schema file is sent to the
Dynamic Services engine formulating the service request.

6.3.2.2 Protocol Adaptor Specification
The protocol adaptor specification identifies the way that the Dynamic Services
engine accesses the underlying service. For example, a service may be accessed
through the HTTP protocol, while another service may be accessed through the
JDBC protocol. This protocol adaptor specification is a fully qualified name of the
class implementing the oracle.ds.engine.ProtocolAdaptor interface. The
interface handles the communication to the underlying service. This class name is
found either in the service package given by the service provider during
registration, or in the set of libraries that the Dynamic Services engine provides.

A driver specification can make sure that a certain class is in the classpath for the
adaptor to function properly.

Finally, for the identified adaptor, the service provider has the option of specifying
some adaptor-specific parameters in the PARAMETERS element in the adaptor
specification, which are validated at service registration time and interpreted at
runtime by the adaptor. For example, for HTTP, the adaptor may specify the HTTP
method used and the URL that does the actual servicing. These parameters are
opaque to the service descriptor parser and service registry, and must be in XML
syntax.

Example 6–24 shows a sample protocol adaptor specification using the HTTPS
protocol adaptor.

Example 6–24 Sample HTTPS Protocol Adaptor Specification

<sd:PROTOCOL>
 <sd:ADAPTOR>
 <sd:NAME>oracle.ds.engine.pa.http.DSHTTPSProtocolAdaptor</sd:NAME>
 <sd:DRIVER>com.sun.net.ssl.HttpsURLConnection</sd:DRIVER>
 <sd:PARAMETERS>
 <!-- Adaptor-specific parameters -->
 </sd:PARAMETERS>
 </sd:ADAPTOR>
</sd:PROTOCOL>
Service Development Guide 6-25

Creating Advanced Services -- Service Descriptor
6.3.2.3 Execution Adaptor Specification
The execution adaptor specification identifies the way in which the service has to be
executed. Its responsibility is to receive the request XML schema file and return the
response from the underlying service provider.

The default execution adaptor is a standard simple adaptor that follows the path
described previously. There can also be complex or compound execution adaptors
that aggregate several services, such as in the International Portfolio example.

This execution adaptor specification is a fully qualified class name of a class
implementing the oracle.ds.engine.ExecutionAdaptor interface, which
performs the execution. For the identified adaptor, the service provider has the
option of specifying some adaptor-specific parameters in the PARAMETERS
element in the adaptor specification, which are validated at service registration time
and interpreted at runtime by the adaptor.

The result of the execution adaptor is the response from the service. If the service is
a simple service, the response will be in the native format of the service provider.
For example, for a Web-based service, the response may be in HTML format. If the
service is a compound service, the response will be a structured service response.

Usually, if the service is a simple service, a service provider will use the default
prepackaged simple adaptor. For complex and compound service execution, the
service provider can use the supplied compound execution adaptor or
DSFailOverExecutionAdaptor or DSConditionalExecutionAdaptor to greater
advantage.

6.3.2.4 Output Handling and Adaptor Specification
The output specification specifies the list of necessary as well as optional processing
to produce the service response to the service consumer application. This includes
the following output specifications:

■ Output adaptor

■ Rendering directives

Section 6.3.2.4.1 and Section 6.3.2.4.2 describe each of these output sections.

6.3.2.4.1 Output: Adaptor Specification The output adaptor specification can specify
an output adaptor to be used to transform the output returned by the execution
adaptor. That output is transformed into an XML document compliant with the
output XML schema file specified in the service interface. This output adaptor
specification is a fully qualified name of the class implementing the
oracle.ds.engine.OutputAdaptor interface, which handles the
6-26 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Description of Supplied Adaptors
transformation. For the identified output adaptor, the service provider has the
option of specifying some adaptor-specific parameters in the PARAMETERS
element in the adaptor specification, which are validated at service registration time
and interpreted at runtime by the adaptor. These parameters are opaque to the
service descriptor parser and service registry, and must be in XML syntax.

Usually, for simple services, service providers will use either of the prepackaged
adaptors, such as the XSLT adaptor. For compound services, service providers can
use no adaptor because the response from the execution adaptor is often in the
proper format prescribed by the output XML schema file.

6.3.2.4.2 Output: Rendering Directives As far as the service execution flow is
concerned, the output specification is the final step. However, Dynamic Services
also provides additional mechanisms for the service provider to optionally specify
mappings (for example, in the form of XSL transforms) that map this response XML
file to other forms, such as HTML or WML. Service consumer applications, rather
than the Dynamic Services engine, are responsible for making use of the
transformation to produce the desired output. Dynamic Services merely provides a
means to store it and make it accessible from the service consumer application.

6.4 Creating Advanced Services -- Description of Supplied Adaptors
Table 6–1 describes the complete set of supplied adaptors provided by Oracle
Dynamic Services.

Table 6–1 Adaptors Supplied by Oracle Dynamic Services

Adaptor name Type

oracle.ds.engine.ioa.DSXSLTInputAdaptor Input

oracle.ds.engine.pa.http.DSHTTPProtocolAdaptor Protocol

oracle.ds.engine.pa.http.DSHTTPSProtocolAdaptor Protocol

oracle.ds.engine.pa.jdbc.DSJDBCProtocolAdaptor Protocol

oracle.ds.engine.pa.smtp.DSSMTPProtocolAdaptor Protocol

oracle.ds.engine.ea.DSFailOverExecutionAdaptor Execution

oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor Execution

oracle.ds.engine.ea.DSConditionalExecutionAdaptor Execution

oracle.ds.engine.ioa.DSXSLTOutputAdaptor Output
Service Development Guide 6-27

Creating Advanced Services -- Description of Supplied Adaptors
Section 6.4.1 through Section 6.4.4 offer a more detailed description of the adaptors
supplied by Oracle Dynamic Services.

6.4.1 Input Adaptor
Section 6.4.1.1 describes the input adaptor supplied by Oracle Dynamic Services.

6.4.1.1 oracle.ds.engine.ioa.DSXSLTInputAdaptor
DSXSLTInputAdaptor applies an XSLT transformation to the incoming requests and
returns the transformed request as a result. In order to use this adaptor, the
INPUT/ADAPTOR/NAME must be:
oracle.ds.engine.ioa.DSXSLTInputAdaptor

The INPUT/ADAPTOR/PARAMETERS element in the service descriptor must
contain what is shown in Example 6–25.

Example 6–25 Sample XSL Stylesheet Information

<xiParams:XSLT_IA_PARAMS
 xmlns:xiParams="http://www.oracle.com/ds/2000/XSLT_IA_PARAMS">
 <xiParams:XSLT>
 <!-- The XSL Stylesheet -->
 </xiParams:XSLT>
</xiParams:XSLT_IA_PARAMS>

The specified XSL stylesheet can use the aliases defined as xsl variables in the two
ways shown in Example 6–26.

Example 6–26 Sample Aliases Defined as XSL Variables

When the value of the alias is used as an XPath expression:

<xsl:variable name="myvar"select = "{@aliasName}"/>

Or, when the value of the alias is used as a string literal:

<xsl:variable name="myvar">{@aliasName}</xsl:variable>

In the DSXSLTInputAdaptor, there is an option of bringing in other service
descriptors before applying the stylesheet. This can be done using an attribute of
the xiParams:XSLT element called applyWithServiceDescriptor. Refer to the
notifier event monitor service that comes with the Oracle Dynamic Services
installation. For more examples of the input adaptor specification for
DSXSLTInputAdaptor, refer to the YahooPortfolio service.
6-28 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Description of Supplied Adaptors
6.4.2 Protocol Adaptors
Section 6.4.2.1 through Section 6.4.2.4 describe the protocol adaptors supplied by
Oracle Dynamic Services.

6.4.2.1 oracle.ds.engine.pa.http.DSHTTPProtocolAdaptor
DSHTTPProtocolAdaptor processes the HTTP/1.0 specification, sets up the
HTTP/1.0 connection, and returns a handler to process the raw output from the
service provider.

The parameters and other details needed to execute DSHTTPProtocolAdaptor are
defined in the service description, in the section SERVICE_
BODY/PROTOCOL/ADAPTOR as shown in Example 6–27.

Example 6–27 Sample HTTP Protocol Adaptor Specification

<sd:SERVICE_BODY>
...
 <sd:PROTOCOL>
 <sd:ADAPTOR>
 <sd:NAME>oracle.ds.engine.pa.http.DSHTTPProtocolAdaptor</sd:NAME>
 <sd:DRIVER>java.net.URLConnection</sd:DRIVER>
 <sd:PARAMETERS>
 <!-- Each protocol adaptor has a namespace where all the
 following elements and/or attributes are defined: -->
 <hpParams:HTTP_PA_PARAMS
 xmlns:hpParams="http://www.oracle.com/ds/2000/HTTP_PA_PARAMS">
 <hpParams:Method>GET</hpParams:Method>
 <hpParams:URL>www.oanda.com/converter/classic</hpParams:URL>
 <hpParams:QueryStringParameters>
 <hpParams:QueryStringParameter
 name= "pname1">{@pvalue1}</hpParams:QueryStringParameter>
 <hpParams:QueryStringParameter
 name= "pname2">{@pvalue2}</hpParams:QueryStringParameter>
 </hpParams:QueryStringParameters>
 <hpParams:RequestHeaders>
 <hpParams:RequestHeader name="hdr1">{@val1}</hpParams:RequestHeader>
 <hpParams:RequestHeader name="hdr2">{@val2}</hpParams:RequestHeader>
 </hpParams:RequestHeaders>
 </hpParams:HTTP_PA_PARAMS>
 </sd:PARAMETERS>
 </sd:ADAPTOR>
 </sd:PROTOCOL>
Service Development Guide 6-29

Creating Advanced Services -- Description of Supplied Adaptors
This specification consists of two parts. One is a generic part, the other is specific for
the given adaptor. The first part includes <NAME> and <DRIVER> elements,
which indicate the class names of the specific HTTP adaptor and the handler to
process the response from the HTTP resource. The second part, bounded by
<PARAMETERS>, is for the specific adaptor; in this case, it must fit the
requirements of DSHTTPProtocolAdaptor.

The DSHTTPProtocolAdaptor parameters consist of mandatory and optional
elements. The mandatory elements include <Method> and <URL>. <Method> must
be one of the three options: GET, POST, or HEAD. The optional elements are
<QueryString> and <Authorization>.

In some cases, there may be one or more parameters for the HTTP query string.
Each <QueryStringParameter> element within <QueryStringParameters> element
defines one parameter. The parameter name is specified as the "name" attribute of
the <QueryStringParameter> element, while the parameter value is the element
value of <QueryStringParameter>. The element value <QueryStringParameter>
may be an alias, which is resolved according to what has been defined in the section
SERVICE_BODY/INPUT /ALIASES.

The <RequestHeaders> element is optional in the specification; it is useful for
manually setting HTTP request headers in the request. In the example, the two
request headers that are set will be used every time an HTTP request is made. The
request header name is specified with the "name" attribute of <RequestHeader>,
while the request header value is the element value of <RequestHeader>.

Another optional element is <Authorization>, which is useful for some secured
Web sites that require the user’s login name and password. According to the
HTTP/1.0 specification, the content of <Authorization> can be defined in one of
two possible structures. The first one puts the login name and password as a single
string, while the second one separates them. In both cases, the login name and
password are encrypted in Base64. The login name and password can be aliases that
refer to other sources as shown in Example 6–28. For more information, refer to the
HTTP 1.0 specification Web site listed in Appendix A.

Example 6–28 Sample Login and Password Aliases in the Authorization Specification

<hpParams:Authorization>
 <hpParams:EncodedString>encodedloginpasswd</hpParams:EncodedString>
</hpParams:Authorization>

<hpParams:Authorization>
 <hpParams:Credential>
 <hpParams:Username>encodedusername</hpParams:Username>
6-30 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Description of Supplied Adaptors
 <hpParams:Password>encodedpassword</hpParams:Password>
 </hpParams:Credential>
</hpParams:Authorization>

DSHTTPProtocolAdaptor also supports cookies (see Section 5.1.6). The lifetime of
cookies lasts only as long as a service consumer application session.

6.4.2.2 oracle.ds.engine.pa.http.DSHTTPSProtocolAdaptor
This release also provides an HTTPS protocol adaptor. Syntactically it is identical to
DSHTTPProtocolAdaptor.

The implementation is based on Sun Microsystems JSSE 1.0.2 global reference
implementation.

6.4.2.3 oracle.ds.engine.pa.jdbc.DSJDBCProtocolAdaptor
DSJDBCProtocolAdaptor allows services to interface with an Oracle database by
creating a row response from the execution of a SQL statement or a PL/SQL stored
procedure. The DSJDBCProtocolAdaptor uses the Oracle XSQL pages technology to
express SQL or PL/SQL operations in XML. The parameters supplied in the
adaptor are used to define the database connections to be used as well as the XSQL
page to be executed. For more information about XSQL pages, see the Oracle XSQL
Servlet documentation available on Oracle Technology Network.

Example 6–29 shows the parameters and other details to execute
DSJDBCProtocolAdaptor as defined in the service descriptor, in the section
SERVICE_BODY/PROTOCOL/ADAPTOR.

Example 6–29 Sample JDBC Protocol Adaptor Specification

<sd:SERVICE_BODY>
...
 <sd:PROTOCOL>
 <sd:ADAPTOR>
 <sd:NAME>oracle.ds.engine.pa.jdbc.DSJDBCProtocolAdaptor</sd:NAME>
 <sd:DRIVER>oracle.jdbc.driver.OracleDriver</sd:DRIVER>
 <sd:PARAMETERS>
 <!-- Each protocol adaptor has a namespace where all the
 following elements and/or attributes are defined: -->
 <jpParams:JDBC_PA_PARAMS
 xmlns:jpParams="http://www.oracle.com/ds/2000/JDBC_PA_PARAMS"
 xmlns:xsql= "urn:oracle-xsql">

 <jpParams:connectiondefs>
Service Development Guide 6-31

Creating Advanced Services -- Description of Supplied Adaptors
 <jpParams:connection name="demo">
 <jpParams:username>{@username}</jpParams:username>
 <jpParams:password>{@password}</jpParams:password>
 <jpParams:dburl>jdbc:oracle:thin:@hostname:port:sid</jpParams:dburl>
 <jpParams:driver>oracle.jdbc.driver.OracleDriver</jpParams:driver>
 <jpParams:autocommit>true</jpParams:autocommit>
 </jpParams:connection>
 </jpParams:connectiondefs>

 <jpParams:page connection="demo">
 <xsql:query> select ename from emp </xsql:query>
 </jpParams:page>

 </jpParams:JDBC_PA_PARAMS>
 </sd:PARAMETERS>
 </sd:ADAPTOR>
 </sd:PROTOCOL>

These DSJDBCProtocolAdaptor parameters consist of two parts: the first one
defines the JDBC connections necessary for processing the XSQL page, while the
second one defines the XSQL page to be processed. Because the implementation of
DSJDBCProtocolAdaptor uses the Oracle XSQL package, the xsql namespace must
be declared in the JDBC_PA_PARAMS elements to correctly scope the XSQL page
elements. The use of <username>, <password>,<dburl>, <driver>, and
<autocommit> are consistent with those defined in Oracle JDBC Driver 2.0.

As defined by the XSQL syntax, any query statement is quoted within the pair of
<xsql:query>, while other DML statements are bounded by <xsql:dml> pairs. The
statements may contain some aliases, which are resolved according to what has
been defined in the SERVICE_BODY/INPUT/ALIASES section.

In general, all the ALIASES defined for the service are supplied as XSQL parameters
to the XSQL page processor. DBService is a sample service to illustrate how to
execute any actions to a database.

If additional resources need to be accessed by the XSQL page (for example another
XSQL page, an XSL stylesheet, or an XML document), they can be bundled in a jar
file packaged as a binary resource for the service. The location of the jar file
containing the resource has to be specified as a service binary resource using the
BINARY_RESOURCE/JAR_POINTER element in the package section of the service
header. The path specified to access those resources will be used to load them from
the supplied jar file.
6-32 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Description of Supplied Adaptors
When a service using DSJDBCProtocolAdaptor is executed within a service
consumer (application) session, the JDBC connection (identified by its name) is
reused within the session. Also, if within a session, two connections are defined
with the same name but their connection strings (identified as user name,
password, and dburl) do not match, an exception will be raised.

At session closing time, the JDBC connection is rolled back. To commit any updates,
a service must explicitly make a commit() call, or set autocommit to be true. The
behavior is analogous to discarding cookies for an HTTP connection. It is the
responsibility of the service consumer (application) to close any session that it
created so that the associated resource will be released.

See the DBService sample service package for more information.

6.4.2.4 oracle.ds.engine.pa.smtp.DSSMTPProtocolAdaptor
DSSMTPProtocolAdaptor is the protocol adaptor used for service providers that use
SMTP as an underlying service access mechanism. Such services can include simple
mail sending services that get invoked upon the occurrence of an error.

The parameters and other details needed to execute DSSMTPProtocolAdaptor are
defined in the service descriptor, in the section SERVICE_
BODY/PROTOCOL/ADAPTOR, as shown in Example 6–30. They include
information such as the host name, port number of the SMTP server, the from, to,
cc, bcc, and subject fields of an e-mail message, additional message headers, and
finally a message body. This is an example that is taken from the notifier service that
comes with the installation package.

Example 6–30 Sample SMTP Protocol Adaptor Specification

<sd:SERVICE_BODY>
...
 <sd:PROTOCOL>
 <sd:ADAPTOR>
 <sd:NAME>oracle.ds.engine.pa.smtp.DSSMTPProtocolAdaptor</sd:NAME>
 <sd:DRIVER>java.net.Socket</sd:DRIVER>
 <sd:PARAMETERS>
 <!-- Predefined XML schema of the SMTP protocol adaptor parameters -->
 <spParams:SMTP_PA_PARAMS
 xmlns:spParams="http://www.xyz.com/ds/2000/SMTP_PA_PARAMS">
 <spParams:Host>server1.xyzcorp.com</spParams:Host>
 <spParams:Port>25</spParams:Port>
 <spParams:From>group@server2.xyz.com</spParams:From>
 <!-- Notice how aliases can be used in each of these fields. -->
 <spParams:To>{@To}</spParams:To>
Service Development Guide 6-33

Creating Advanced Services -- Description of Supplied Adaptors
 <spParams:cc>{@cc}</spParams:cc>
 <spParams:Subject>
 Notification for svc: {@EvtSvc} Op: {@EvtType} Stat: {@EvtStat}
 </spParams:Subject>

 <spParams:MsgHeaders>
 <spParams:MsgHeader name="Mime-Version">1.0</spParams:MsgHeader>
 <spParams:MsgHeader
 name="Content-Type">text/html;charset="us-ascii"
 </spParams:MsgHeader>
 </spParams:MsgHeaders>

 <spParams:MsgBody>
 <html>
 <title>Notification for service {@EvtService}.
 Operation: {@EvtType} Status: {@EvtStatus}</title>
 <body>
 <H3>Service: {@EvtService}</H3>
 <H3>Consumer: {@EvtConsumer}</H3>
 <H3>TimeStamp: {@EvtTimeStamp}</H3>
 <H3>Operation: {@EvtType}</H3>
 <H3>Status:
 {@EvtStatus}
 </H3>
 <H3>Description: {@EvtDescription}</H3>
 <P></P>
 <H3>Message</H3>
 <PRE>{@EvtBody}</PRE>
 </body>
 </html>
 </spParams:MsgBody>
 </spParams:SMTP_PA_PARAMS>
 </sd:PARAMETERS>
 </sd:ADAPTOR>
 </sd:PROTOCOL>

In Example 6–30, the message body actually is an HTML document that displays
the status of a certain operation.

6.4.3 Execution Adaptors
Section 6.4.3.1 through Section 6.4.3.3 describe the execution adaptors supplied by
Oracle Dynamic Services.
6-34 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Description of Supplied Adaptors
6.4.3.1 oracle.ds.engine.ea.DSFailOverExecutionAdaptor
DSFailOverExecutionAdaptor takes as parameters an ordered list of compatible
services, which means the services respond to the same service interface. At
execution time, the failover execution adaptor tries to execute the first one in the
list; if it fails, it moves to the second list item, and so on, until it finds a service that
executes with no exception. If none succeeds, an exception is raised. Example 6–31
shows a sample adaptor specification for a failover service taken from the
FailOverPortfolio service.

Example 6–31 Sample Failover Adaptor Specification

<sd:EXECUTION>
 <sd:ADAPTOR>
 <sd:NAME>oracle.ds.engine.ea.DSFailOverExecutionAdaptor</NAME>
 <sd:PARAMETERS>
 <feParams:FAILOVER_EA_PARAMS
 xmlns:feParams="http://www.oracle.com/ds/2000/FAILOVER_EA_PARAMS">
 <feParams:execute priority="0">
 urn:com.yahoo:finance.portfolio_fails
 </feParams:execute>
 <feParams:execute priority="1">
 urn:com.cnnfn:finance.portfolio03
 </feParams:execute>
 </feParams:FAILOVER_EA_PARAMS>
 </sd:PARAMETERS>
 </sd:ADAPTOR>
</sd:EXECUTION>

6.4.3.2 oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor
DSCompoundServiceExecutionAdaptor controls the execution of compound
services. Example 6–32 shows the XML portion of a compound service, execution
adaptor specification.

Example 6–32 Sample Compound Service Specification

<sd:EXECUTION>
 <sd:ADAPTOR>

<sd:NAME>oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor</NAME>
 <sd:PARAMETERS>
 <ceParams:COMPOUND_EA_PARAMS
 xmlns:ceParams="http://www.oracle.com/ds/2000/COMPOUND_EA_PARAMS">
Service Development Guide 6-35

Creating Advanced Services -- Description of Supplied Adaptors
Compound services let you encapsulate the execution of a multitude of services by
combining them into a directed graph of service executions. Each node of the graph
is identified as a CompoundEAModule. There are four possible types of modules
that can be used in the graph. Each of the modules is designed as a JavaBean with
exposed properties. Those properties are set at compound service design time
(probably through service provider design tools), and persist through runtime,
when they are used to control the execution.

DSCompoundServiceExecutionAdaptor coordinates the execution of the modules
according to the graph specifications, triggering the module executions through
JavaBeans events. The following subsections describe the four available modules
and their properties.

oracle.ds.engine.ea.compound.ServiceExecution
This module executes one service. It accepts an array of messages, interpreting them
as requests, and produces another array of messages composed of responses
returned by the service execution(s). There are two possible syntax forms for its
properties:

■ executeSingleRequest

With this option for the properties, the module takes in a message index
number as an attribute -- a request event can contain a list of requests -- and
takes the ID of the service to be executed, as an element value. Only one
execution is performed using the one selected request message, and the service
executed is the one specified by the ID with that request. Example 6–33 shows a
sample ServiceExecution module specification with the executeSingleRequest
property option.

Example 6–33 Sample Service Execution Module with the executeSingleRequest
Property

<ceParams:Module name="ID2">
 <ceParams:Class>
 oracle.ds.engine.ea.compound.ServiceExecution
 </ceParams:Class>
 <ceParams:Properties>
 <ceParams:executeSingleRequest index="0">
 ServiceID1
 </ceParams:executeSingleRequest>
 </ceParams:Properties>
</ceParams:Module>

■ executeAllRequests
6-36 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Description of Supplied Adaptors
With this option for the properties, the module takes the ID of the service as an
element value, and executes the service with all the request messages from the
request event, generating response messages and building up a response event.
Example 6–34 shows a sample ServiceExecution module specification with the
executeAllRequests property option.

Example 6–34 Sample Service Execution Module with the executeAllRequests
Property

<ceParams:Module name="ID3">
 <ceParams:Class>
 oracle.ds.engine.ea.compound.ServiceExecution
 </ceParams:Class>
 <ceParams:Properties>
 <ceParams:executeAllRequests>
 serviceID1
 </ceParams:executeAllRequests>
 </ceParams:Properties>
</ceParams:Module>

oracle.ds.engine.ea.compound.MessageTransformer
This module transforms service messages to either requests or responses. It takes an
XSLT stylesheet as a property in its properties element, and applies that XSLT
stylesheet to all the incoming service messages to produce a list of outgoing services
messages. Note that the MessageTransformer module can take an optional attribute
index to select one message from an array of messages of a MessageSplitter module.
Example 6–35 shows a sample module specification of the MessageTransformer
Module. The stylesheet specified for this adaptor can use the aliases in the same
way they are used by the DSXSLTInputAdaptor (see Section 6.4.1.1 for more
information). If the <XSLT> element is not supplied, the MessageTransformer
module behaves as if an identity transformation was applied.

The XSLTs to be applied by the MessageTransformer module must be packaged into
a jar file. The location of the jar file containing the XSLTs must be specified as a
service binary resource using the BINARY_RESOURCE/JAR_POINTER element in
the package section of the service header. The XSLT path specified in the module
properties is used to load the XSLT as a resource from that jar file.

Example 6–35 Sample MessageTransformer Module

<ceParams:Module name="ID4">
 <ceParams:Class>
 oracle.ds.engine.ea.compound.MessageTransformer
Service Development Guide 6-37

Creating Advanced Services -- Description of Supplied Adaptors
 </ceParams:Class>
 <ceParams:Properties>
 <ceParams:XSLT index="0">SomeXSLTURL.xsl</ceParams:XSLT>
 </ceParams:Properties>
</ceParams:Module>

oracle.ds.engine.ea.compound.MessageSplitter
This module splits a single message into multiple messages. It does so in one of two
ways:

■ SingleTransformation

With this option of the properties, an XSLT stylesheet is specified in an element
called XSLT and this stylesheet is able to transform the starting service message
into a well-known structure described in Example 6–36. A list of service
messages can then be generated from it.

Example 6–36 Sample Message Section of the MessageSplitter Module

<MESSAGES>
 <MESSAGE index="0">...</MESSAGE>
 <MESSAGE index="1">...</MESSAGE>
</MESSAGES>

Each message must have a valid index, and indexes must be sequential and
starting from 0. If this syntax is not matched after applying the transformation
to the incoming message, an exception is raised. Example 6–37 shows a sample
module specification of the MessageSplitter Module using the
SingleTransformation option.

Example 6–37 Sample MessageSplitter Module Using the SingleTransformation
Option

<ceParams:Module name="ID5">
 <ceParams:Class>
 oracle.ds.engine.ea.compound.MessageSplitter
 </ceParams:Class>
 <ceParams:Properties>
 <ceParams:SingleTransformation>
 <ceParams:XSLT>SomeXSLT.xsl</ceParams:XSLT>
 </ceParams:SingleTransformation>
 </ceParams:Properties>
</ceParams:Module>
6-38 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Description of Supplied Adaptors
The stylesheet specified for this adaptor can use the aliases in the same way they are
used by the DSXSLTInputAdaptor (see Section 6.4.1.1 for more information).

■ MultipleTransformations

With this option, a list of XSLT stylesheets is specified that correspond to a list
of transformations performed on the original service message. This results in a
list of resulting messages. With each XSLT stylesheet, an index is specified to
order the list of service messages that result in the one-by-one application of the
XSLT stylesheets. Example 6–38 shows a sample module specification of the
MessageSplitter Module using the MultipleTransformations option.

Example 6–38 Sample MessageSplitter Module Using the Multiple Transformation
Option

<ceParams:Module name="ID6">
 <ceParams:Class>
 oracle.ds.engine.ea.compound.MessageSplitter
 </ceParams:Class>
 <ceParams:Properties>
 <ceParams:MultipleTransformations>
 <ceParams:XSLT index="0">req2req_curr.xsl</ceParams:XSLT>
 <ceParams:XSLT index="1">req2req_pfl.xsl</ceParams:XSLT>
 </ceParams:MultipleTransformations>
 </ceParams:Properties>
</ceParams:Module>

The XSLTs to be applied by the MessageSplitter module must be packaged into a jar
file. The location of the jar file containing the XSLTs must be specified as a service
binary resource using the BINARY_RESOURCE/JAR_POINTER element in the
package section of the service header. The XSLT path specified in the module
properties is used to load the XSLT as a resource from that jar file. The stylesheet
specified for this module can use the aliases in the same way they are used by the
DSXSLTInputAdaptor (see Section 6.4.1.1 for more information). If the <XSLT>
element is not supplied, the MessageSplitter module behaves as if an identity
transformation was applied.

oracle.ds.engine.ea.compound.MessageMerger
This module merges multiple service messages into one single message in the form
shown in Example 6–39, and then applies an XSLT stylesheet to transform that
message.

The XSLT to be applied by the MessageMerger module must be packaged into a jar
file. The location of the jar file containing the XSLTs must be specified as a service
Service Development Guide 6-39

Creating Advanced Services -- Description of Supplied Adaptors
binary resource using the BINARY_RESOURCE/JAR_POINTER element in the
package section of the service header. The XSLT path specified in the module
properties is used to load the XSLT as a resource from that jar file. The stylesheet
specified for this module can use the aliases in the same way they are used by the
DSXSLTInputAdaptor (see Section 6.4.1.1 for more information). If the <XSLT>
element is not supplied, the MessageMerger module behaves as if an identity
transformation was applied.

Example 6–39 Sample Messages Section of the MessageMerger Module

<MESSAGES>
 <MODULE name="ID1">
 ... msg ...
 </MODULE>
 <MODULE name="ID2">
 ... msg ...
 </MODULE>
</MESSAGES>

Each of the incoming messages is included in a new XML element called Module.
Each of the module elements has an attribute reporting the name of the module that
generated the message. Example 6–40 shows a sample module specification for the
MessageMerger module.

Example 6–40 Sample MessageMerger Module

<ceParams:Module name="ID4">
 <ceParams:Class>
 oracle.ds.engine.ea.compound.MessageMerger
 </ceParams:Class>
 <ceParams:Properties>
 <ceParams:XSLT>resp2resp_ipfl.xsl</ceParams:XSLT>
 </ceParams:Properties>
</ceParams:Module>

DSCompoundServiceExecutionAdaptor acts as a coordinator to control the
execution flow among the CompoundEAModules. To define the modules that
participate in the execution flow, DSCompoundServiceExecutionAdaptor requires a
dependency matrix parameter that is used to evaluate the execution flow.
Figure 6–3 shows an example of a network of two service execution adaptors
running in parallel.
6-40 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Description of Supplied Adaptors
Figure 6–3 Parallel Execution of Services

Figure 6–3 shows a possible use of the modules described previously. In this case,
you can achieve the parallel execution of a couple of services by first splitting the
service consumer application-supplied request, and then, joining the two services
responses into one single response. The dependency matrix supplied in the
DSCompoundServiceExecutionAdaptor parameters appears as shown in
Example 6–41.

Example 6–41 Sample Dependency Matrix

<ceParams:Graph>
 <ceParams:row name="M1">
 <ceParams:column>0</ceParams:column>
 <ceParams:column>0</ceParams:column>
 <ceParams:column>0</ceParams:column>
 <ceParams:column>0</ceParams:column>
 </ceParams:row>
 <ceParams:row name="M2">
 <ceParams:column>1</ceParams:column>
 <ceParams:column>0</ceParams:column>
 <ceParams:column>0</ceParams:column>
 <ceParams:column>0</ceParams:column>
 </row>
 <ceParams:row name="M3">
 <ceParams:column>1</ceParams:column>
 <ceParams:column>0</ceParams:column>
 <ceParams:column>0</ceParams:column>
 <ceParams:column>0</ceParams:column>
 </ceParams:row>
 <ceParams:row name="M4">
 <ceParams:column>0</ceParams:column>
Service Development Guide 6-41

Creating Advanced Services -- Description of Supplied Adaptors
 <ceParams:column>1</ceParams:column>
 <ceParams:column>1</ceParams:column>
 <ceParams:column>0</ceParams:column>
 </ceParams:row>
</ceParams:Graph>

The matrix shows the dependencies on the input of each of the modules.
DSCompoundServiceExecutionAdaptor uses this information to coordinate the
execution flow, and creates the necessary threads to allow for parallel execution, if
necessary. For a complete example showing how to define compound services, refer
to the supplied International Portfolio (IPFL) sample service in the sample service
packages directory (see Appendix D for more information).

6.4.3.3 oracle.ds.engine.ea.DSConditionalExecutionAdaptor
DSConditionalExecutionAdaptor controls the flow of execution because it executes
a specified service based on the value of a certain defined alias. Service providers
can configure the adaptor with switch statements that can be nested, to specify
something like a decision tree, where the leaf elements are the IDs of the services to
execute.

For each switch element, there is an attribute called on that you must specify to tell
the adaptor which alias to switch on. In this case, only the alias is referenced, thus
the value of this attribute should be just the alias name rather than {@alias}. The
{@alias} value means preprocessing the value, and using the value of the alias.

For each case element under a switch element, there is an attribute called value that
you must specify to tell the adaptor which match of the alias brings you to the
inside of the case element. Inside the case element, there can be either an execute
element, which means that you have reached a leaf and that its element value is the
ID of the service to be executed, or you have reached another nested switch
statement.

Example 6–42 shows a sample execution adaptor specification for a
DSConditionalExecutionAdaptor taken from the smartlog service that comes with
the installation package.

Example 6–42 Sample DSConditionalExecutionAdaptor Execution Adaptor

<sd:EXECUTION>
 <sd:ADAPTOR>
 <sd:NAME>oracle.ds.engine.ea.DSConditionalExecutionAdaptor</sd:NAME>
 <sd:PARAMETERS>
 <deParams:CONDITIONAL_EA_PARAMS
 xmlns:deParams="http://www.oracle.com/ds/2000/CONDITIONAL_EA_PARAMS">
6-42 Oracle Dynamic Services User’s and Administrator’s Guide

Creating Advanced Services -- Description of Supplied Adaptors
 <!-- eventType has been defined previously as an alias; note, here
 we are referencing it only so the syntax used is just the alias
 name and not {@alias}. -->
 <deParams:switch on="eventType">
 <deParams:case value="CONNECT">
 <!-- Here is an example of the nesting of switch statements. -->
 <deParams:switch on="eventStatus">
 <!-- We traverse here if the eventType alias == "FAILED" -->
 <deParams:case value="FAILED">
 <!-- This is where you specify what service to execute. -->
 <deParams:execute>urn:com.oracle:ds.logger</deParams:execute>
 </deParams:case>
 <deParams:case value="CLOSE">
 <deParams:execute>urn:com.oracle:ds.logger</deParams:execute>
 </deParams:case>
 <deParams:default>urn:com.oracle:ds.logger</deParams:default>
 </deParams:switch>
 </deParams:case>

 <deParams:case value="LOOKUP">
 <deParams:switch on="eventStatus">
 <deParams:case value="OPEN">
 <deParams:execute>urn:com.oracle:ds.logger</deParams:execute>
 </deParams:case>
 <deParams:case value="FAILED">
 <deParams:execute>urn:com.oracle:ds.logger</deParams:execute>
 </deParams:case>
 <deParams:default>urn:com.oracle:ds.logger</deParams:default>
 </deParams:switch>
 </deParams:case>

 </deParams:switch>
 </deParams:CONDITIONAL_EA_PARAMS>
 </sd:PARAMETERS>
 </sd:ADAPTOR>
</sd:EXECUTION>

6.4.4 Output Adaptor
Section 6.4.4.1 describes the output adaptor supplied by Oracle Dynamic Services.

6.4.4.1 oracle.ds.engine.ioa.DSXSLTOutputAdaptor
DSXSLTOutputAdaptor applies an XSLT stylesheet to transform either a
java.net.URLConnection or an oracle.xml.parser.v2.XMLDocument raw response. In
Service Development Guide 6-43

Creating Advanced Services -- Building Your Own Adaptors
the case of a URLConnection, this adaptor first checks if the content-type is
text/html, text/xml, or application/xml. In the HTML case, it first applies a
stylesheet to transform the HTML representation into XHTML, compliant with
W3C XHTML 1.0 specifications. Finally, an XSLT stylesheet is applied to the XML
response. The adaptor parameters in the service descriptor define the stylesheet to
apply. The stylesheet specified for this adaptor can use the aliases in the same way
they are used by the DSXSLTInputAdaptor (see Section 6.4.1.1 for more
information). Refer to the YahooPortfolio sample service for an example. If no
<XSLT> argument is passed to the DSXSLTOutputAdaptor, the
DSXSLTOutputAdaptor behaves as if an identity XSLT transformation is applied.

In the DSXSLTOutputAdaptor, there is an option of bringing in other service
descriptors before applying the stylesheet. This can be done using an attribute of
the xiParams:XSLT element called applyWithServiceDescriptor. Refer to the
notifier event monitor service that comes with the Oracle Dynamic Services
installation. This option can be used, for example, to bring in the logo of the service
provider.

6.5 Creating Advanced Services -- Building Your Own Adaptors
Service providers can supply their own adaptors. As described previously,
according to the layer or role that the adaptor addresses during the service
execution, each adaptor must implement the corresponding Java interface. For
example, input adaptors must implement the
oracle.ds.engine.InputAdaptor interface and so on.

For more information about the responsibilities of each adaptor and the interfaces,
see the description in the JavaDoc documentation.

For an example of building your own adaptors, refer to the
YahooPortfolioCustomAdaptor demo service provided in the
ds/demo/services/YahooPortfolioCustomAdaptor directory on Solaris or
ds\demo\services\YahooPortfolioCustomAdaptor directory on Windows
NT.

6.5.1 Packaging Your Adaptor
Once you have built your classes, grouped them into a jar file, and bundled the file
into your service package, ensure the jar pointer element in the binary resource
section of the service descriptor refers to the correct jar file. See Section 6.3.1.2 for
more information.
6-44 Oracle Dynamic Services User’s and Administrator’s Guide

Service Administ
7

Service Administration

In the previous chapters, some service administrator tasks included how to use the
DSAdmin utility to perform basic tasks such as registering a service, creating a new
service consumer application identity, and how to test a service execution. Other
basic tasks such as unregistering a service, adding service consumer application
properties, and so forth can also be performed using the DSAdmin utility. In this
chapter, a brief overview of other topics relevant to administrators is provided.

7.1 Managing Consumer Applications
Using the DSAdmin utility, you can manage service consumer applications with
respect to the application profile registry. Managing service consumer applications
includes these tasks:

■ Add A: adds the named service consumer application to the application profile
registry. This operation assumes that this service consumer application name is
a database user, who has been granted the connect privilege to this schema, and
has been granted the DSUSER_ROLE privilege. See Section 5.1.2 for more
information.

■ Remove R: removes the named service consumer application from the
application profile registry. Removing a service consumer application from the
application profile registry does not remove the database user associated with
it; it removes only the named service consumer application from the application
profile registry.

■ Grant G: grants the named service consumer application the privilege to
execute the named service. Only a user with administrative privilege can
perform this operation.

■ Revoke K: revokes the named service consumer application the privilege to
execute the named service. All properties owned by the named service
ration 7-1

Managing Services
consumer application for the named service are removed. Only a user with
administrative privilege can perform this operation.

■ AddProp AP: adds a property name and property value for the named service
to the named service consumer application profile. Only a user with
administrative privilege can perform this operation.

■ RemoveProp RP: removes the named property name and property value for the
named service from the named service consumer application profile. Only a
user with administrative privilege can perform this operation.

■ GetProp GP: gets the named property and named property value of the named
service belonging to the named service consumer application from the service
consumer application profile registry.

■ ListConsumers LC: lists all the currently registered consumer applications, the
service IDs for which each service consumer application has execute privilege,
and the properties of each service. Only a user with administrative privilege can
perform this operation.

■ ListServices LS: lists all service IDs for the named service consumer application
to which it has been explicitly granted the privilege to access. Only a user with
administrative privilege can perform this operation.

■ ListProperties LP: lists all properties of the named service consumer application
for the named service. Only a user with administrative privilege can perform
this operation.

7.2 Managing Services
Using the DSAdmin utility, you can manage services with respect to the service
registry. Managing services includes these tasks:

■ Register R: registers a service in the service registry. See Section 3.2.2 for more
information.

■ Deregister D: unregisters a service from the service registry. Registered services
can be unregistered using this command.

■ Reregister RR: reregisters a service in the service registry. Previously registered
services that have been unregistered, can be reregistered using this command.

■ Lookup L: looks up a registered service in the service registry by service ID.

■ Search S: searches the registered services in the service registry by category or
keywords. See Section 3.3 for more information.
7-2 Oracle Dynamic Services User’s and Administrator’s Guide

Service Response Caching
■ AddCat AC: adds a service category to the service registry. See Section 3.2.1 for
more information.

■ RemoveCat RC: removes a service category from the service registry.

7.3 Service Response Caching
The Dynamic Services engine uses the Oracle database for caching the service
responses. The caching policy for a given service is controlled through deployment
parameters in the service descriptors. Before registering a service, the service
administrator can review these parameters and modify them as needed. The
caching parameters are defined in the SERVICE_HEADER, DEPLOYMENT, and
CACHING elements in the service descriptor.

In this release, to change the caching parameters of a given service, you must
unregister the service and register it again with the new parameter settings. The
following information describes the caching parameters that are available:

■ MAX_AGE: specifies the number of seconds the service response remains valid
in the cache. After the specified amount of time elapses, the cached response is
discarded. When the MAX_AGE value is specified to be zero or less, the service
response is never cached.

■ SESSION_PRIVATE: takes a Boolean value (TRUE or FALSE) to indicate
whether cached responses for this service should be visible only within the
current session, or if they should be visible to all executions. Table 7–1 shows an
overview of the behavior of four possible service response cases.

Table 7–1 Possible Service Response Cases When Using a SESSION_PRIVATE
Parameter Setting

Where the
Service Is
Executed

How the Service Response Cache Is Specified, Where the
Response Is Stored, and to Whom It Is Accessible

The service response cache is
specified as session private.

The service response cache is not
specified as session private.

Service is executed
within a session

The response is stored in the
cache and it is accessible only to
service execution within that
session.

The response is stored in the
cache and it is accessible to all
service executions.

Service is not
executed within a
session

The response is not stored in the
cache.

The response is stored in the
cache and it is accessible to all
service executions.
Service Administration 7-3

Cache Cleanup
■ USE_PROTOCOL: takes a Boolean value (TRUE or FALSE) to indicate if the
expiration date of a service response should be set by what is specified through
the communication protocol between the Dynamic Services engine and the
remote service provider. If this parameter is true, the value of the MAX_AGE
parameter described previously is ignored.

If the USE_PROTOCOL caching parameter is true, the supplied HTTP/HTTPS
protocol adaptors check the Expired HTTP header to determine the expiration date
of the response. The supplied JDBC protocol adaptor does not support caching.

7.4 Cache Cleanup
The cache can grow to be rather large. If caching is enabled, you may want to
manually run the DS_CacheManager package procedure, deleteExpiredResponses,
or start a DBMS_JOB package to periodically clean up the cache. A procedure is
supplied within the DS_CacheManager package to start the DBMS_JOB package
that performs the cache cleanup. This procedure is called startCleanupJob, and it
takes a VARCHAR2 argument that specifies the interval between cleanup jobs.

7.5 Connecting Multiple Dynamic Services Engine Instances

A logical service engine can be deployed with multiple physical service engine
instances running, all sharing the same central master registry. The system can then
be tuned by adding additional service execution engines. The central registry will
not become a bottleneck because of the heavy use of caches at the service execution
engine.

No load-balancing or failover feature is available in the current release.
Administrators should partition the requests based on workload pattern. For
example, an administrator can direct all applications in a subnet to a service engine
in the same subnet.

Note: The information presented in this section assumes that you
have performed the advanced installation option of installing the
Oracle Internet Directory (OID) and set up LDAP with OID as
described in Section 4.5. Once OID is installed and set up with
LDAP, you can use the DSAdmin utility to manage Dynamic
Services engine instances with the master registry or repository.
7-4 Oracle Dynamic Services User’s and Administrator’s Guide

Additional Operations of the DSAdmin Utility
There is no automatic synchronizing between multiple service engines in this
current release. Administrators should synchronize all engines with the central
master registry after an update. Therefore, Oracle Corporation recommends that
you schedule the updates in batch mode, during low-load hours.

By default, installing a Dynamic Services engine includes:

■ A registry mirror in an Oracle database

■ A central master registry in a Lightweight Directory Access Protocol (LDAP)
directory, for example, Oracle Internet Directory (OID)

To install an additional Dynamic Services engine:

1. Install a Dynamic Services engine as usual, but do not install the LDAP
directory again.

2. Configure the LDAP connection system properties.

3. Invoke the resync command to resynchronize the registry. Using the
DSAdmin utility, you can navigate to this command by selecting Reg or R for
registry operations, and then select Engine or E to manage engine instances.

The registry should be running. Administrators should direct some users to the new
Dynamic Services engines.

To perform any updates:

1. Connect to a Dynamic Services engine and perform the update (or a set of
updates).

2. Connect to all other Dynamic Services engines, and invoke the resync
command as described previously in step 3 using the DSAdmin utility.

Again, Oracle Corporation recommends that you schedule the updates in batch
mode, during low-load hours.

7.6 Additional Operations of the DSAdmin Utility
You can browse through the DSAdmin utility to find additional administrative
tasks that may be useful to perform.

7.6.1 Using Script Files with the DSAdmin Utility
Script files can be used with the DSAdmin utility to facilitate the process of
regression testing and batch processing. Example 7–1 shows the command line and
option to use is as described in Section 3.1.
Service Administration 7-5

Additional Operations of the DSAdmin Utility
Example 7–1 Run the DSAdmin Utility Using the -i Option

On UNIX systems:
<ORACLE_HOME>/ds/bin/dsadmin -u dssys/<dssys-password> -i <script file name>

On Windows NT systems:
<ORACLE_HOME>\ds\bin\dsadmin -u dssys/<dssys-password> -i <script file name>

Comments are allowed in the script in the form of lines that begin with the two
slash (//) characters. Every string token supplied in the script file is treated as a
separate command, or as user input. Commands are usually single string tokens,
whereas user input need not be. For example, a category string can contain spaces
within it. To use a parameter with spaces, you must enclose the entire parameter
between quotation marks. This is true whether the DSAdmin utility is being used
interactively or with a script.
7-6 Oracle Dynamic Services User’s and Administrator’s Guide

Known Issues and Pro
8

Known Issues and Problems

8.1 Communications
■ The current release does not throw events for warnings. So for now, the

warnings take on the form of debug messages.

■ If no JMS daemon is running to listen to asynchronous requests, the current
implementation of the JMS driver does not time out.

8.2 Service Execution
■ Service requests and responses are not validated against the corresponding

XML schema.

■ The FailOver adaptor does not yet enforce the service interface consistency.

8.3 Service Definitions and Creation
■ Service providers defining a new service package may be able to define new

adaptors.

8.4 Other Problems and Issues
For problems and issues that have become known after the release of this guide, see
the online README.txt file in your ORACLE_HOME directory. Depending on your
operating system, this file may be in:

On UNIX systems: ORACLE_HOME/ds/doc/README.txt

On Windows NT systems: ORACLE_HOME\ds\doc\README.txt
blems 8-1

Other Problems and Issues
8-2 Oracle Dynamic Services User’s and Administrator’s Guide

A

Links

The following is a list of Web sites that you may find useful during the use or
development of services:

■ W3C Extensible Markup Language (XML) 1.0 (Second Edition) Specification

http://www.w3.org/TR/2000/WD-xml-2e-20000814

■ W3C Extensible Stylesheet Language (XSL) Specifications

http://www.w3.org/TR/xsl/

■ W3C XSL Transformations (XSLT) Specifications

http://www.w3.org/TR/1999/PR-xslt-19991008

■ W3C XML Schema Specifications Part 0: Primer

http://www.w3.org/TR/xmlschema-0/

■ W3C XML Schema Specifications Part 1: Structures

http://www.w3.org/TR/xmlschema-1/

■ W3C XML Schema Specifications Part 2: Datatypes

http://www.w3.org/TR/xmlschema-2/

■ W3C Namespaces in XML

http://www.w3.org/TR/1999/REC-xml-names-19990114/

■ W3C Extensible HyperText Markup Language (XHTML) Specifications

http://www.w3.org/TR/1999/xhtml1-19990505/lastCallDiff
 Links A-1

■ W3C HTTP 1.0 Specification

http://www.w3c.org/Protocols
A-2 Oracle Dynamic Services User’s and Administrator’s Guide

 Frequently Asked Que
B

Frequently Asked Questions

A text file containing a list of frequently asked questions is available online after
installing Oracle Dynamic Services.

This text file can be found at:

On UNIX systems:

$ORACLE_HOME/ds/doc/dsfaq.txt

On Windows NT systems:

$ORACLE_HOME\ds\doc\dsfaq.txt
stions B-1

B-2 Oracle Dynamic Services User’s and Administrator’s Guide

 Descriptive M
C

Descriptive Matrix

This appendix describes the descriptive matrix of the schemas and adaptors sup-
plied by Oracle Dynamic Services.

C.1 Syntax of the Service Descriptor Schema
At the top level, a service descriptor schema contains the data shown in Table C–1.
Table Table C–2 through Table C–4 show the descriptive matrix for the classifica-
tion, contact, and organization schemas. Required data is designated by bold ele-
ment names. Element names are indented to show the relationship and hierarchy of
elements. A service provider will define a service by writing an XML document that
complies with the XML schema file sd.xsd and other auxiliary documents such as
the classification, organization, and contact XML documents. See Example 6–11
through Example 6–15 to view the contents of sample service header and service
body sections of a service descriptor schema.

Table C–1 Descriptive Matrix of the Service Descriptor Schema

Element Name Description

SERVICE_DESCRIPTOR Required element. The root element in the service descrip-
tor document.

SERVICE_HEADER Required element. The service header section. Contains
high-level descriptions of the service.

NAMING Required element. The naming section. Contains a glo-
bally unique identifier ID, as well as NAME and
DESCRIPTION elements describing what the service does.

ID Required element. An identifier uniquely identifies the
service and must be a uniform resource name (URN).
atrix C-1

Syntax of the Service Descriptor Schema
NAME Required element. The name of the service.

DESCRIPTION Required element. The description of the service.

PACKAGE Required element. The package section. Contains version
specifications and pointers to where the service update is
to be performed.

VERSION Required element. The version number of the service defi-
nition package.

RELEASEDATE Required element. The release date of the service defini-
tion package.

UPDATEURL Optional element. The URL to obtain the latest version of
the service definition package. In general, a service should
contain an update URL.

Note: However, for services created by an administrator,
this parameter is meant to be used locally and UPDA-
TEURL is not applicable (not used currently).

BINARY_RESOURCES Optional element. The binary resources section. For
advanced usage, such as specifying locations for Java class
files or stylesheets for custom services and adaptors, as
well as names of resource bundles.

JAR_POINTER Optional element. The URL of the jar file containing ser-
vice-specific Java classes and resources within the service
definition zip file.

EXCEPTIONS Optional element. The exceptions section. Contains the
specification for the resource bundle for custom excep-
tions.

EXCEPTION_MSG_BUNDLE Optional element. The specification for the custom excep-
tions that rely on the custom resource bundle.

DEPLOYMENT Required element. The deployment section. Contains a set
of deployment properties from the service provider to aid
the service administrator during service registration.

CLASSIFICATION Required element. An xlink to the classification XML doc-
ument. Service providers can provide suggestions while a
service administrator will decide the classification of the
service. The XML file should comply with
sd_classification.xsd. See Table C–2 for a description of the
classification schema.

Table C–1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description
C-2 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Service Descriptor Schema
CACHING Required element. The caching section. Contains recom-
mended caching parameter values.

MAX_AGE Required element. The duration that a cache entry is valid
for, in seconds. If the value is 0, it means the entry should
not be cached. The default value is 0.

SESSION_PRIVATE Required element. A value of TRUE means that the scope
of the cache entry is within the service engine user ses-
sion. The default value is FALSE.

USE_PROTOCOL Required element. A value of TRUE means that the proto-
col caching parameters will override MAX_AGE. The
default value is FALSE.

PROVIDER Required element. The service provider section. Contains
information about the service provider including the pro-
vider’s company name, copyright information, company
URL, contacts for support, and URLs for logos.

ORGANIZATION Required element. An xlink to the organization XML doc-
ument. Provides generic information about the service
provider. The xml file should comply with
sd_organization.xsd. See Table C–4 for a description of the
organization schema.

CONTACTS Required element. The contacts section. Contains detailed
support contacts for this service.

CONTACT Required repeating element. An xlink to the contact XML
document. Provides information to contact a person for
any issues related to the service. The xml file should com-
ply with sd_contact.xsd. See Table C–3 for a description of
the contact schema.

INTERFACE Required element. The service interface specification.
Contains the definition of an interface characterized by
the schema specifications of its input, output, and excep-
tions.

NAME Required element. The name of the interface template.

INPUT_SCHEMA Required element. An xlink to the request XML docu-
ment. The URL to the request definition XML schema doc-
ument, or the DTD defining the XML service request
syntax.

Table C–1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description
 Descriptive Matrix C-3

Syntax of the Service Descriptor Schema
OUTPUT_SCHEMA Required element. An xlink to the response XML docu-
ment. The URL to the response definition XML schema
document, or the DTD defining the XML service response
syntax.

SERVICE_BODY Required element. The service body section. Contains
detailed descriptions and information used by the
Dynamic Services engine at execution time. Information is
sectioned into specifications (including adaptors) for
input, protocol, execution, and output.

INPUT Optional element. The input section. Contains the details
for preprocessing the XML request from the service con-
sumer application and includes the following sections:
namespaces, alias directives, input adaptor, and render-
ing directives.

NAMESPACES Optional element. The namespaces section. Declares any
namespaces and their prefixes that can be used in the
aliases section to build the XPaths pointing to where the
data is located.

NAMESPACE Required repeating element. A single entry of a
namespace definition.

 PREFIX Required element. The namespace prefix.

 VALUE Required element. The namespace value.

ALIASES Optional element. The aliases section. Used by service
providers to specify additional directives for the purpose
of creating aliases. Aliases are used to create a map that
can translate the parameters embedded in the XML docu-
ment to actual parameters needed by the adaptor (for
example, the protocol adaptor).

ALIAS Required repeating element. A single entry of an alias def-
inition.

NAME Required element. The alias name.

VALUE Required element. The alias value. Can be specified as an
XPath or as a service consumer application profile prop-
erty and optionally its modifier. The XPath is used at
run-time to extract either the value of the node pointed to
by the XPath, or the XML fragment (for which this node is
the root) from the service request.

Table C–1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description
C-4 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Service Descriptor Schema
RENDERERS Optional element. The renderers section. Contains addi-
tional rendering directives. The service provider can
optionally supply some form of schema mapping specifi-
cations, such as an XSL transformation, that could map
the input XML schema to a presentation form such as
HTML or Wireless Markup Language (WML). Thus, the
service consumer application can provide to its clients a
way to enter service requests, for applications that have
an HTML or WML interface.

RENDERER Optional element. A single entry of the renderers defini-
tion.

TYPE Optional element. The type of rendering directive, such as
the request XML document or the type of input transfor-
mation, or both.

STYLESHEET Optional element. An xlink to the request XML document
or the schema mapping specification XSL transformation,
or both. The URL to the request XML document or the
XSL transformation mapping the input XML schema to a
presentation form, or both.

ADAPTOR Optional element. The input adaptor section. Specifies,
optionally, an adaptor that further processes the service
request before sending it to the service provider. A pack-
aged adaptor is the XSLT input adaptor.

NAME Optional element. The fully qualified name of the class
implementing the oracle.ds.engine.InputAdaptor Java
interface that handles the processing.

PARAMETERS Optional element. The parameters specification. The ser-
vice provider can optionally specify adaptor-specific
parameters that are validated at service registration time
and interpreted at runtime by the adaptor. These parame-
ters must be in XML syntax. See Table C–5 for a descrip-
tion of the input adaptors parameters specification.

PROTOCOL Optional element. The protocol section. Contains the
details for submitting a request to the service provider.
Identifies the way that a service engine accesses the
underlying service.

Table C–1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description
 Descriptive Matrix C-5

Syntax of the Service Descriptor Schema
ADAPTOR Optional element. The protocol adaptor section. Specifies,
optionally, an adaptor that transforms the standard ser-
vice request into the input needed by the underlying ser-
vice, using the underlying protocol.

NAME Required element. The fully qualified name of the class
implementing the oracle.ds.engine.ProtocolAdaptor inter-
face that handles the communication to the underlying
service. Packaged protocol adaptors support the HTTP,
HTTPS, SMTP, or JDBC protocols.

DRIVER Required element. The driver specification. Ensures that a
certain class in the classpath for the adaptor to function
properly.

PARAMETERS Optional element. The parameters specification. The ser-
vice provider can optionally specify adaptor-specific
parameters that are validated at service registration time
and interpreted at runtime by the adaptor. These parame-
ters must be in XML syntax. See Table C–7, Table C–8, and
Table C–9 for a description of the HTTP, JDBC, and SMTP
protocol adaptors parameters specifications.

EXECUTION Optional element. The execution section. Identifies the
way in which the service must be executed. It takes the
request XML and returns the response from the underly-
ing service provider.

ADAPTOR Optional element. The execution adaptor section. Speci-
fies, optionally, an adaptor that executes a service request
in a particular flow or order.

NAME Optional element. The fully qualified name of the class
implementing the oracle.ds.engine.ExecutionAdaptor Java
interface that performs the execution. Packaged adaptors
are compound, failover, and conditional service execution
adaptors.

PARAMETERS Optional element. The parameters specification. The ser-
vice provider can optionally specify adaptor-specific
parameters that are validated at service registration time
and interpreted at runtime by the adaptor. These parame-
ters must be in XML syntax. See Table C–10 and
Table C–11 for a description of the compound and condi-
tional execution adaptors parameters specifications.

Table C–1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description
C-6 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Service Descriptor Schema
OUTPUT Optional element. The output section. Specifies the list of
necessary as well as optional processing to produce the
service response to the service consumer application.
Includes the output adaptor and rendering directives sec-
tions.

RENDERERS Optional element. The renderers section. Contains addi-
tional rendering directives. The service provider can
optionally supply some form of schema mapping specifi-
cations, such as an XSL transformation, that could map
this response XML to other forms, such as HTML or
WML. Thus, the service consumer application can pro-
vide to its clients a way to produce service responses, for
applications that have an HTML or WML interface.

RENDERER Optional element. A single entry of the renderers defini-
tion.

TYPE Optional element. The type of rendering directive, such as
the response XML document or the type of output trans-
formation, or both.

STYLESHEET Optional element. An xlink to the response XML docu-
ment or the schema mapping specification XSL transfor-
mation, or both. The URL to the response XML document
or the XSL transformation mapping the output XML
schema to a presentation form, or both.

Table C–1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description
 Descriptive Matrix C-7

Syntax of the Service Descriptor Schema
At the next level, a Classification schema contains the data shown in Table C–2.
Required data is designated by bold element names. Element names are indented to
show the relationship and hierarchy of elements. See Example 6–5 to view the con-
tents of a classification schema.

At the next level, a Contact schema contains the data shown in Table C–3. Required
data is designated by bold element names. Element names are indented to show the

ADAPTOR Optional element. The output adaptor section. Specifies
an output adaptor to be used to transform the output
returned by the execution adaptor into an XML document
compliant with the output XML schema specified in the
service interface. The output name is a fully qualified
name of the class implementing the oracle.ds.engine.Out-
putAdaptor interface that handles the transformation. A
packaged adaptor is the XSLT output adaptor.

NAME Optional element. The fully qualified name of the class
implementing the oracle.ds.engine.OutputAdaptor Java
interface that handles the transformation.

PARAMETERS Optional element. The parameters specification. The ser-
vice provider can optionally specify adaptor-specific
parameters that are validated at service registration time
and interpreted at runtime by the adaptor. These parame-
ters must be in XML syntax. See Table C–5 for a descrip-
tion of the output adaptors parameters specification.

Table C–2 Descriptive Matrix of the Classification Schema

Element Name Description

CLASSIFICATION Required element. The classification information from the
service provider to assist the service administrator during
registration.

CATEGORY Required element. The hierarchical categories specified
using the substring of the Distinguished Name (DN) spec-
ified in the RFC2253 specification (http://
www.ietf.org/).

KEYWORDS Required element. The keywords, separated by commas.

Table C–1 Descriptive Matrix of the Service Descriptor Schema (Cont.)

Element Name Description
C-8 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Parameters Section for the Packaged Adaptors
relationship and hierarchy of elements. See Example 6–4 to view the contents of a
contact schema.

At the next level, an Organization schema contains the data shown in Table C–4.
Required data is designated by bold element names. Element names are indented to
show the relationship and hierarchy of elements. See Example 6–3 to view the con-
tents of an organization schema.

C.2 Syntax of the Parameters Section for the Packaged Adaptors
Table C–5 through Table C–12 show the descriptive matrix for the parameters sec-
tion of each type of adaptor schema supplied by Oracle Dynamic Services.

Table C–3 Descriptive Matrix of the Contact Schema

Element Name Description

CONTACT Required element. The contact information from the ser-
vice provider.

NAME Required element. The name of the contact.

EMAIL Required element. The electronic mail address.

PHONE Required element. The phone number.

FAX Required element. The FAX number. The default is " ".

PAGER Required element. The pager number. The default is " ".

MOBILE Required element. The mobile number. The default is " ".

Table C–4 Descriptive Matrix of the Organization Schema

Element Name Description

ORGANIZATION Required element. The company information from the ser-
vice provider.

NAME Required element. The service provider’s company name.

COPYRIGHT Required element. The copyright information for the com-
pany.

URL Required element. The URL for the company.

LOGOURL Required element. The URL for the company’s logo.
 Descriptive Matrix C-9

Syntax of the Parameters Section for the Packaged Adaptors
C.2.1 oracle.ds.engine.ioa.DSXSLTInputAdaptor
An Input Adaptor schema contains the data shown in Table C–5. Required data is
designated by bold element names. Element names are indented to show the rela-
tionship and hierarchy of elements. See Example 6–13 to view the contents of the
input adaptor schema contained within the service body description.

C.2.2 oracle.ds.engine.ioa.DSXSLTOutputAdaptor
An Output Adaptor schema contains the data shown in Table C–6. Required data is
designated by bold element names. Element names are indented to show the rela-
tionship and hierarchy of elements. See Example 6–15 to view the contents of the
output adaptor schema contained within the service body description.

Table C–5 Descriptive Matrix of the Input Adaptor Parameters

Element Name Description

XSLT_IA_PARAMS Optional element. The parameters section of the input
adaptor supplied by Oracle Dynamic Services.

XSLT Optional element. The XSL stylesheet used by the input
adaptor. Takes in two attributes: the isSchemaCompliant
attribute specifies whether or not the XML request schema
is compliant after applying the XSL stylesheet, and the
applyWithServiceDescriptor attribute specifies the names
of additional service descriptors to bring in before apply-
ing the stylesheet.

isSchemaCompliant Attribute. Specifies whether or not the XML request
schema is compliant after applying the XSL stylesheet.
The data type is Boolean. The default value is false. This
attribute is currently not in use.

applyWithServiceDescriptor Optional attribute. Specifies the names of additional ser-
vice descriptors to bring in before applying the stylesheet.
The data type is string.
C-10 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Parameters Section for the Packaged Adaptors

e

efi-
C.2.3 oracle.ds.engine.pa.DSHTTPProtocolAdaptor
An HTTP Protocol Adaptor schema contains the data shown in Table C–7. Required
data is designated by bold element names. Element names are indented to show the
relationship and hierarchy of elements. See Example 6–27 to view the contents of
the HTTP protocol adaptor parameters section contained within the service body
description.

Table C–6 Descriptive Matrix of the Output Adaptor Parameters

Element Name Description

XSLT_OA_PARAMS Optional element. The parameters section of the output
adaptor supplied by Oracle Dynamic Services.

XSLT Optional element. The XSL stylesheet used by the output
adaptor. Takes in two attributes: the isSchemaCompliant
attribute specifies whether or not the XML response
schema is compliant after applying the XSL stylesheet,
and the applyWithServiceDescriptor attribute specifies the
names of additional service descriptors to bring in before
applying the stylesheet.

isSchemaCompliant Attribute. Specifies whether or not the XML response
schema is compliant after applying the XSL stylesheet.
The data type is Boolean. The default value is false. This
attribute is currently not in use.

applyWithServiceDescriptor Optional attribute. Specifies the names of additional ser-
vice descriptors to bring in before applying the stylesheet.
The data type is string.

Table C–7 Descriptive Matrix of the HTTP Protocol Adaptor Parameters

Element Name Description

HTTP_PA_PARAMS Optional element. The section for the HTTP Protocol Adaptor parameters.

Method Required element. The method used for the HTTP request. Must be one of thre
options: GET, POST, or HEAD.

URL Required element. The URL to be contacted.

RequestHeaders Optional element. Setting HTTP request headers in the request. Contains the d
nition of additional HTTP request headers that the user wants to define.
 Descriptive Matrix C-11

Syntax of the Parameters Section for the Packaged Adaptors

his

ore
me-

n
al

rd
C.2.4 oracle.ds.engine.pa.DSJDBCProtocolAdaptor
A JDBC Protocol Adaptor schema contains the data shown in Table C–8. Required
data is designated by bold element names. Element names are indented to show the
relationship and hierarchy of elements. See Example 6–29 to view the contents of
the JDBC protocol adaptor parameters section contained within the service body
description.

RequestHeader Required repeating element. The request header. Used to set the HTTP request
header in the request. It is specified as a name attribute and element value of t
element. Any number of request headers can be specified.

name Attribute. The name of the request header. The data type is string.

QueryStringParameters Optional element. The definition of the query string used for complex GET or
POST requests.

QueryStringParameter Required repeating element. The query string parameter. There can be one or m
parameters for the HTTP query string. Each of these elements defines one para
ter. It is specified as a "name" attribute and element value of this element. Any
number of query string parameters can be specified.

name Attribute. The name of the query string parameter. The data type is string.

Authorization Optional element. Used for some secured Web sites that require the user’s logi
name and password. It contains either an encoded string element or a credenti
element.

type Attribute. The type of authorization. The value is fixed to the value Basic.

EncodedString Required element. The encoded string that contains the user’s login name and
password. The data type is string.

Credential Required element. The credential section. Contains the user name and passwo
elements.

Username Required element. The user’s login name. The data type is string.

Password Required element. The user’s login password. The data type is string.

Table C–7 Descriptive Matrix of the HTTP Protocol Adaptor Parameters (Cont.)

Element Name Description
C-12 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Parameters Section for the Packaged Adaptors
C.2.5 oracle.ds.engine.pa.DSSMTPProtocolAdaptor
An SMTP Protocol Adaptor schema contains the data shown in Table C–9. Required
data is designated by bold element names. Element names are indented to show the
relationship and hierarchy of elements. See Example 6–30 to view the contents of
the SMTP protocol adaptor parameters section contained within the service body
description.

Table C–8 Descriptive Matrix of the JDBC Protocol Adaptor Parameters

Element Name Description

JDBC_PA_PARAMS Optional element. The section for the JDBC Protocol
Adaptor parameters.

Connectiondefs Required element. The section for connection definitions.

Connection Required repeating element. The connection section. Spec-
ifies the database connection parameters.

Username Required element. The database user name. The data type
is string.

Password Required element. The database password. The data type
is string.

dburl Required element. The database URL. The data type is
string.

driver Optional element. The name of the Oracle JDBC driver.
The data type is string.

autocommit Required element. The automatic commit parameter
value. The data type is Boolean. The default is TRUE to
automatically commit any updates.

Page Required element. The name of the connection page.

Query Required element. The query string.

Table C–9 Descriptive Matrix of the SMTP Protocol Adaptor Parameters

Element Name Description

SMTP_PA_PARAMS Optional element. The section for the SMTP Protocol
Adaptor parameters.

Host Required element. The SMTP host name. The data type is
string.
 Descriptive Matrix C-13

Syntax of the Parameters Section for the Packaged Adaptors
C.2.6 oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor
A Compound Execution Adaptor schema contains the data shown in Table C–10.
Required data is designated by bold element names. Element names are indented to
show the relationship and hierarchy of elements. See Example 6–32 through
Example 6–41 to view the contents of the compound execution adaptor parameters
sections contained within the service body description that are described in
Table C–10.

Port Required element. The SMTP port number. The data type
is positive integer.

From Required element. From whom the mail was sent. The
data type is string.

To Required element. To whom the mail is to be sent. The
data type is string.

cc Optional element. To whom else should receive a copy of
the mail. The data type is string.

bcc Optional element. To whom else should receive a copy of
the mail, but that is unseen by anyone else who receives a
copy. The data type is string.

Subject Required element. The subject line of the mail. The data
type is string.

MsgHeaders Optional element. The message header section.

MsgHeader Required repeating element. The header of the mail mes-
sage. It is specified as a name attribute and element value
of this element.

name Attribute. The name of the message header. The data type
is string.

MsgBody Required element. The body of the mail message.

Table C–9 Descriptive Matrix of the SMTP Protocol Adaptor Parameters (Cont.)
C-14 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Parameters Section for the Packaged Adaptors
Table C–10 Descriptive Matrix of the Compound Execution Adaptor Parameters

Element Name Description

COMPOUND_EA_PARAMS Optional element. The section for the compound execu-
tion adaptor parameters. Contains the specification that
encapsulates the execution of a multitude of services,
combining them into a directed graph of service execu-
tions.

Modules Required element. The modules section.

Module Required element. A single entry of a module. The name
attribute specifies the name of the module.

Name Attribute. The module name. The data type is string.

Class Required element. The class type. One of four classes of
compound service execution modules: service execution,
message transformer, message splitter, and message merger.

Properties Required element. Properties needed by each module.

Message Splitter Properties: choice of MultipleTransformations or SingleTransformation

MultipleTransformations Required element. The multiple transformations module.
This module splits a single message into multiple mes-
sages, working with a specified list of XSLTs. With each
XSLT, an index is also specified to order the list of service
messages that result in the one-by-one application of the
XSLTs. Each service message has a valid index that is
sequential, starting from 0.

XSLT Required repeating element. The specified list of XSLTs.
This list corresponds to a list of transformations to the
original service message, which then produces a list of
resulting messages.

index Attribute. The XSLT index number. The data type is a
non-negative integer.

SingleTransformation Required element. The single transformation module. This
module splits a single message into multiple messages.
The specified XSLT transforms the starting service mes-
sage into a list of service messages, each with a valid
index that is sequential, starting from 0.

XSLT Required element. The specified XSLT.

Service Execution Properties: choice of executeSingleRequest or executeAllRequests
 Descriptive Matrix C-15

Syntax of the Parameters Section for the Packaged Adaptors
executeSingleRequest Required element. The execute single request option. This
compound service execution takes in a message index
number as an attribute (a request event can contain a list
of requests) and takes the ID of the service to be executed,
as an element value. Only one execution is performed
using one selected request message. The service specified
by the ID with that request is executed.

index Attribute. The message index number. The data type is a
non-negative integer.

executeAllRequests Required element. The execute-all-requests option. This
compound service execution takes the ID of the service as
an element value and executes the service with all the
request messages from the request event, generating
response messages to create a response event. The data
type is string.

Message Merger Properties

XSLT Required element. The message merger XSLT. The data
type is string.

Message Transformer Properties

XSLT Required element. The message transformer XSLT. The
data type is string.

Execution Flow Definition Using a Dependency Matrix

Graph Required element. The dependency matrix. Contains the
definition of the execution flow among a set of modules
using a dependency matrix. In the dependency matrix,
each module is specified by a row name and each module
is also ordered by column. A dependency is represented
by a column value of 1, while a value of 0 means there is
no dependency.

row Required repeating element. The row element. The name
attribute specifies the row name.

name Attribute. The name of the row. The data type is string.

column Required repeating element. The dependency column
value for each module. A value of 1 means that for the
specified row, there is a dependency upon those modules
representing those columns. A value of 0 means there is
no dependency. The data type is a non-negative integer.

Table C–10 Descriptive Matrix of the Compound Execution Adaptor Parameters (Cont.)

Element Name Description
C-16 Oracle Dynamic Services User’s and Administrator’s Guide

Syntax of the Parameters Section for the Packaged Adaptors
C.2.7 oracle.ds.engine.ea.DSConditionalExecutionAdaptor
A Conditional Execution Adaptor schema contains the data shown in Table C–11.
Required data is designated by bold element names. Element names are indented to
show the relationship and hierarchy of elements. See Example 6–42 to view the con-
tents of a sample conditional execution adaptor parameters section contained
within the service body description.

Table C–11 Descriptive Matrix of the Conditional Execution Adaptor Parameters

Element Name Description

CONDITIONAL_EA_PARAMS Optional element. The section for the conditional exe-
cution adaptor parameters. Contains an execution flow
for a group of services based on a series of switch, case,
and execute elements that can be nested to present a
decision tree whose leaf elements are the IDs of the ser-
vice to execute.

switch Required element. The switch element. The on
attribute specifies the alias name on which the switch is
based.

on Attribute. Specifies which alias to switch on. The data
type is string.

case Required repeating element. The case element. The
value attribute specifies the value of the switch.

value Attribute. Specifies which match of the alias brings you
to the inside of the case element. The data type is
string.

execute Optional element. The ID of the service to execute if a
case match occurs. The data type is string.

switch Optional element. The switch element. The on attribute
specifies the alias name on which the switch is based.

on Attribute. Specifies which alias to switch on. The data
type is string.

case Required repeating element. The case element. The
value attribute specifies the value of the switch.

value Attribute. Specifies which match of the alias brings you
to the inside of the case element. The data type is
string.
 Descriptive Matrix C-17

Syntax of the Parameters Section for the Packaged Adaptors
C.2.8 oracle.ds.engine.ea.DSFailOverExecutionAdaptor
A Failover Execution Adaptor schema contains the data shown in Table C–12.
Required data is designated by bold element names. Element names are indented to
show the relationship and hierarchy of elements. See Example 6–31 to view the con-
tents of a sample failover execution protocol adaptor parameters section contained
within the service body description.

execute Optional element. The ID of the service to execute if a
case match occurs. The data type is string.

default Optional element. The branch to follow if no case
match occurs.

execute Required repeating element. The ID of the service to
execute if no case match occurs. The data type is string.

default Optional element. The branch to follow if no case
match occurs.

execute Required repeating element. The ID of the service to
execute if no case match occurs. The data type is string.

Table C–12 Descriptive Matrix of the Failover Execution Adaptor Parameters

Element Name Description

FAILOVER_EA_PARAMS Optional element. The section for the failover execution
adaptor parameters. Contains an execution priority value
list of services to execute in the event that a service fails to
execute.

execute Required repeating element. The execute element. The pri-
ority attribute defines the priority among the services.

priority Attribute. The value determines the execution priority.
Data type is a non-negative integer.

Table C–11 Descriptive Matrix of the Conditional Execution Adaptor Parameters (Cont.)
C-18 Oracle Dynamic Services User’s and Administrator’s Guide

 Sample Service Pack
D

Sample Service Packages

A set of sample service packages (see Table D–1 through Table D–10) is available
online after installing Oracle Dynamic Services. The sample service packages can be
found at:

On UNIX systems:

$ORACLE_HOME/ds/demo/services

On Windows NT systems:

$ORACLE_HOME\ds\demo\services

These sample service packages can be installed as described in the note at the end of
Section 3.2. In creating your own services, you can use these sample service pack-
ages as beginning points and copy the entire sample service package directory to a
directory of your choice and then begin making modifications. Once you have
determined category information for the classification XML file and have modified
the remaining files to your liking, follow the steps in Section 3.2.1 to create a set of
categories required by your service using the DSAdmin utility and Section 3.2.2 to
register your service. Next, browse your registered services (see Section 3.3) and test
your service by executing it using the DSAdmin utility (see Section 3.4).
ages D-1

Table D–1 CnnPortfolio Sample Service Package

Service Package Description

CnnPortfolio Simple service package. CNN Financial Network. Given a
stock ticker, this service returns the stock ticker symbol, time,
current price, change in its value, and transaction volume. This
service specifies:

1. An input section that uses no input namespaces, no
aliases, specifies an input adaptor to do some validation of
the request and specifically of the specified parameters,
specifies rendering directives that maps the input XML
schema file to HTML for presentation to service consumer
application clients, then the service consumer application
transforms the HTTP request back into an XML document
that conforms to the request XML schema file specified by
the service provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET request
method, the servicing URL, and the HTTP query string
named symbols, which resolves to the alias SymbolList.

3. Uses the default, standard simple execution adaptor.

4. An output section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
items Symbol, Time, Price, Change, and Volume.
D-2 Oracle Dynamic Services User’s and Administrator’s Guide

Table D–2 Currency Sample Service Package

Service Package Description

Currency Simple service package. Oanda Currency Conversion service.
Given a source currency, this service returns a currency conver-
sion value. This service specifies:

1. An input section that uses the namespace curreq, the
aliases SourceCurrency, DestCurrency, and Value, all of
which specify the xpath used to extract the values of each
respective node, specifies no input adaptor, specifies ren-
dering directives that maps the input XML schema file to
HTML for presentation to service consumer application
clients, then the service consumer application transforms
the HTTP request back into an XML document that con-
forms to the request XML schema file specified by the ser-
vice provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET request
method, the servicing URL, and the HTTP query strings
named exch, which resolves to the alias SourceCurrency,
expr, which resolves to the alias DestCurrency, and value,
which resolves to the alias Value.

3. Uses the default, standard simple execution adaptor.

4. An output section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
items SourceCurrency, DestCurrency, and Value.
 Sample Service Packages D-3

Table D–3 DBService Sample Service Package

Service Package Description

DBService Simple service package. Database service. Given a connection
name, username, password and dbURL string, this service con-
nects to an Oracle database using the JDBC protocol adaptor,
queries a table, and returns the results of the query. This ser-
vice specifies:

1. An input section that uses the namespace db, the aliases
username, password, dburl, TableName, and Where, all of
which specify the xpath used to extract the values of each
respective node, specifies no input adaptor, specifies ren-
dering directives that maps the input XML schema file to
HTML for presentation to service consumer application
clients, then the service consumer application transforms
the HTTP request back into an XML document that con-
forms to the request XML schema file specified by the ser-
vice provider.

2. A protocol section that uses the JDBC protocol to commu-
nicate to a database-based service provider and specifies
in the connectiondefs section the connection information,
the connection page name and associated query string.

3. Uses the default, standard simple execution adaptor.

4. An output section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
rowset row consisting of resultnum, employee name, and
employee salary.
D-4 Oracle Dynamic Services User’s and Administrator’s Guide

Table D–4 FailOverPortfolio Sample Service Package

Service Package Description

FailOverPortfolio Failover service package. Given a stock ticker, this service
returns the current price. Should the first service not be avail-
able, a failover to a second service guarantees a result. This ser-
vice specifies:

1. An input section that uses no input namespaces, no
aliases, no input adaptor, and specifies rendering direc-
tives that maps the input XML schema file to HTML for
presentation to service consumer application clients, then
the service consumer application transforms the HTTP
request back into an XML document that conforms to the
request XML schema file specified by the service provider.

2. No protocol section.

3. A failover execution adaptor that takes as parameters an
ordered list of two compatible services. At execution time,
should the first service fail to execute, the second service
in the list is executed.

4. No output section.
 Sample Service Packages D-5

Table D–5 Ipfl Sample Service Package

Service Package Description

Ipfl Compound service package. International Portfolio service.
Given a stock ticker, this service returns current prices in the
supplied currency. This service specifies:

1. An input section that uses no input namespaces, no
aliases, no input adaptor, and specifies rendering direc-
tives that maps the input XML schema file to HTML for
presentation to service consumer application clients, then
the service consumer application transforms the HTTP
request back into an XML document that conforms to the
request XML schema file specified by the service provider.

2. No protocol section.

3. A compound execution adaptor that splits a single mes-
sage into two messages, applies a list of two XSLT
stylesheets by specifying an index that corresponds to the
list of transformations to be performed on the original ser-
vice message, which results in a list of two resulting mes-
sages. A conversion currency service and failover finance
service are executed as single requests and each of the two
messages is merged back into a single message. By modu-
larizing each message, a dependency matrix is utilized
that shows the dependencies of the input of each of the
modules, thereby controlling the execution flow of each
service on each message. The XSLTs are packaged in a jar
file and its location specified as a service binary resource
in the package section of the service header.

4. No output section.
D-6 Oracle Dynamic Services User’s and Administrator’s Guide

Table D–6 SampleService Sample Service Package

Service Package Description

SampleService Simple service package. Oanda Currency Conversion service.
Note that this service contains annotations describing how its
various sections work. Given a source currency, this service
returns a currency conversion value. This service specifies:

1. An input section that uses the fbreq namespace, aliases
named SourceCurrency, DestCurrency, and Value, all of
which specify the xpath used to extract the values of each
respective node, no input adaptor, and specifies rendering
directives that maps the input XML schema file to HTML
for presentation to service consumer application clients,
then the service consumer application transforms the
HTTP request back into an XML document that conforms
to the request XML schema file specified by the service
provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET request
method, the servicing URL, and the HTTP query strings
named exch, which resolves to the alias SourceCurrency,
expr, which resolves to the alias DestCurrency, and value,
which resolves to the alias Value.

3. Uses the default, standard simple execution adaptor.

4. An output section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
items SourceCurrency, DestCurrency, and Value.
 Sample Service Packages D-7

Table D–7 Ual Sample Service Package

Service Package Description

Ual Simple service package. United Airlines service. Given a user-
name and password, this service returns the mileage informa-
tion from your UAL account including mileage summary,
account number, membership level, and year-to-date premier
miles. This service specifies:

1. An input section that uses the namespace ualreq, the
aliases AccountNumber and Password, both of which
specify the xpath used to extract the values of each respec-
tive node, and specifies no input adaptor or rendering
directives.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP POST request
method, the servicing URL, the request header names to
manually set the HTTP request headers in the request, and
the HTTP query strings named stamp, user, which
resolves to the alias AccountNumber, pwd, which resolves
to the alias Password, ur_return_to, and ur_action.

3. Uses the default, standard simple execution adaptor.

4. An output section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
items AccountNumber, MembershipLevel, PrimierMiles,
and CurrentBalance.
D-8 Oracle Dynamic Services User’s and Administrator’s Guide

Table D–8 Yahoo Sample Service Package

Service Package Description

YahooPortfolio Simple service package. Yahoo Portfolio service. Given stock
tickers, this service returns the current price. This service speci-
fies:

1. An input section that uses no namespace, the alias Sym-
bolList, which specifies the xpath used to extract the val-
ues of the node, specifies an input adaptor to do some
validation of the request and specifically of the specified
parameters, and specifies rendering directives that maps
the input XML schema file to HTML for presentation to
service consumer application clients, then the service con-
sumer application transforms the HTTP request back into
an XML document that conforms to the request XML
schema file specified by the service provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET request
method, the servicing URL, the HTTP query string named
SymbolList, which resolves to the alias SymbolList.

3. Uses the default, standard simple execution adaptor.

4. An output section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then another
stylesheet transforms the XHTML response to the XML
response defined by the output schema; the output
schema points to the XML Schema documents (or DTDs)
that define the XML output the service returns to the ser-
vice consumer application. The output section formats the
XML response in the form of a template containing the
items Symbol, Time, Price, Change, and Volume.
 Sample Service Packages D-9

Table D–9 YahooPortfolioCustomAdaptor Sample Service Package

Service Package Description

YahooPortfolioCustom-
Adaptor

Simple service package. Yahoo Portfolio service. Given a stock
ticker, this service returns the stock ticker symbol, time, cur-
rent price, change in value, and transaction volume using text
response. This service specifies:

1. An input section that uses no namespace, the alias Sym-
bolList, which specifies the xpath used to extract the val-
ues of the node, specifies an input adaptor to do some
validation of the request and specifically of the specified
parameters, and specifies rendering directives that maps
the input XML schema file to HTML for presentation to
service consumer application clients, then the service con-
sumer application transforms the HTTP request back into
an XML document that conforms to the request XML
schema file specified by the service provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET request
method, the servicing URL, the HTTP query strings
named Symbols, which resolves to the alias SymbolList
and format.

3. Uses the default, standard simple execution adaptor.

4. An output section that specifies the name of the custom
output adaptor.
D-10 Oracle Dynamic Services User’s and Administrator’s Guide

Table D–10 YahooPortfolioCustomProperty Sample Service Packages

Service Package Description

YahooPortfolioCustomProperty Simple service package. Yahoo portfolio service. Given a
stock ticker, this service returns the stock ticker symbol,
time, current price, change in value, and transaction vol-
ume based on the profile of the user. This service specifies:

1. An input section that uses a ppflreq namespace, the
aliases Username and SymbolList, both of which spec-
ify the xpath used to extract the values of the node,
specifies no input adaptor, and specifies rendering
directives that maps the input XML schema file to
HTML for presentation to service consumer applica-
tion clients, then the service consumer application
transforms the HTTP request back into an XML docu-
ment that conforms to the request XML schema file
specified by the service provider.

2. A protocol section that uses the HTTP Web protocol to
communicate to the HTTP-based service provider and
specifies in the parameters section the HTTP GET
request method, the servicing URL, the HTTP query
string named SymbolList, which resolves to the alias
SymbolList.

3. Uses the default, standard simple execution adaptor.

4. An output section that uses an adaptor that takes the
HTML response, transforms it to XHTML, then
another stylesheet transforms the XHTML response to
the XML response defined by the output schema; the
output schema points to the XML Schema documents
(or DTDs) that define the XML output the service
returns to the service consumer application. The out-
put section formats the XML response in the form of a
template containing the items Symbol, Time, Price,
Change, and Volume.
 Sample Service Packages D-11

D-12 Oracle Dynamic Services User’s and Administrator’s Guide

 Error Mes
E

Error Messages

The following sections describe the error messages of Oracle Dynamic Services.

E.1 Execution Engine Errors
The following errors are associated with execution engine exceptions:

DS-010, Not connected
Cause: A DSConnection object attempts to make any call before the connection
is established.

Action: Make sure the connection has been established for the DSConnection
object.

DS-011, Already connected
Cause: A DSConnection object attempts to establish a connection after the con-
nection is established.

Action: Make sure that the DSConnection object does not establish a connec-
tion again.

DS-020, No privilege has been granted to set DS property
Cause: A service consumer application attempts to modify Dynamic Services
properties without the required privilege.

Action: Connect as DSSYS to modify a Dynamic Services property.

DS-021, No {0} property entry is found from DS property
Cause: The requested Dynamic Services property is not found.
sages E-1

Communication Errors
Action: Make sure the name of the property is correct, including the case. If the
name of the property is correct, contact Oracle Customer Support Services.

DS-029, Unknown error in processing DS properties
Cause: Unknown error occurred during the processing of Dynamic Services
properties.

Action: Contact Oracle Customer Support Services.

DS-099, Internal Exception
Cause: An unexpected runtime exception occurred during service execution.

Action: Contact Oracle Customer Support Services.

E.2 Communication Errors
DS-101, Communication Message not valid because missing header {1}

Cause: A mandatory header of a message is missing.

Action: Contact Oracle Customer Support Services.

DS-102, Communication Message not valid because there is no XML message
while being validated
Cause: The payload of a message is missing during validation.

Action: Populate the payload of the message.

DS-103, Communication Message not valid due to failure of XML parsing while
being validated
Cause: The payload of a message is not well-formed XML.

Action: Correct the payload of a message so that it is well-formed.

DS-104, Communication Message not valid due to IO failed while reading from
reader
Cause: Input/output related error occurred in writing the payload to a mes-
sage from the designated Reader.

Action: Resolve the hardware or software failure that causes the error.

DS-105, Communication Message not valid due to IO failed while writing to
writer
Cause: Input/output related error occurred in writing the payload to the desig-
nated Writer from a message.
E-2 Oracle Dynamic Services User’s and Administrator’s Guide

Communication Errors
Action: Resolve the hardware or software failure that causes the error.

DS-106, Communication Message not valid due to JMS error while reading from
JMS TextMessage
Cause: Some error related to Java Messaging Service (JMS) occurred in deseri-
alizing a message from the message queue.

Action: Make sure the message queue and the associated hardware/software
are functioning.

DS-107, Communication Message does not have xpath {0}
Cause: The supplied XPath, used to access a message, is not valid.

Action: Contact Oracle Customer Support Services.

DS-108, Communication Message not valid due to failure of XSLT transforma-
tion while reading message
Cause: An XSLT or XPath related error happened in processing a message.

Action: Contact Oracle Customer Support Services.

DS-109, Communication Message not valid because {0} is not of type of {1} mes-
sage
Cause: The message is of unrecognized type.

Action: Contact Oracle Customer Support Services.

DS-121, Event Message not valid since it is not of type of Event message
Cause: An event message is invalid.

Action: Contact Oracle Customer Support Services.

DS-122, Event Message not valid due to JMS error while reading from JMS Text-
Message
Cause: Some error related to Java Messaging Service (JMS) occurred in deseri-
alizing an event from the event message queue.

Action: Make sure the event message queue and the associated hardware/soft-
ware are functioning.

DS-123, Event Message not valid due to failure of XML parsing while reading
from reader
Cause: The payload of an event, generated by the service execution engine, is
not well-formed XML unexpectedly.
 Error Messages E-3

Communication Errors
Action: Contact Oracle Customer Support Services.

DS-132, Initialization failed due to authentication error
Cause: Invalid service consumer application credential is supplied in an
attempt to connect to Dynamic Services engine.

Action: Supply a valid credential, such as a valid name and password combi-
nation. Contact your service administrator, if necessary.

DS-137, {0} failed to load due to AQ/JMS error in initializing {1}
Cause: The named module initialization failed due to failure in initializing the
named queue.

Action: Make sure the installation and configuration of the named queue is
correct.

DS-154, DSE Executing failed trying to decrement null Request ID
Cause: The Request ID in a response message is unexpectedly null.

Action: Contact Oracle Customer Support Services.

DS-155, DSE Execution failed with inconsistent Request Count: {0}
Cause: Request count integrity is violated in an asynchronous DSDriver.

Action: Contact Oracle Customer Support Services.

DS-156, DSE Execution failed with null request synch type
Cause: The synchronous type is unexpectedly null in a message sent through
an asynchronous channel.

Action: Contact Oracle Customer Support Services.

DS-161, Publishing event failed due to IO error
Cause: An input/output related error occurred in publishing an event.

Action: Make sure the associated hardware/software are functioning.

DS162, Publishing event failed due to AQ error
Cause: An error related to the message queue occurred in publishing an event.

Action: Make sure the message queue and the associated hardware/software
are functioning.

DS-181, Monitor (connect or startup) failed
Cause: Unexpected error occurred in event monitor daemon initialization.

Action: Make sure the event support installation and configuration is correct.
E-4 Oracle Dynamic Services User’s and Administrator’s Guide

DS Registry Errors
E.3 DS Registry Errors
DS-201, Unable to communicate with registry

Cause: The user is unable to communicate with the registry. The inability to
communicate with the registry might be a result of many factors, such as net-
work partitioning, hardware or interface problems, failures on either the client
or server side.

Action: Retry the call that causes the exception. If the problem persists, contact
your system administrators.

DS-206, Unable to service the request
Cause: The registry is not able to service the request. It might be unavailable
for different reasons. For example, the server might be too busy to service the
request, the server is running out of memory, and so forth.

Action: Retry the call that causes the exception.

DS-211, Unsupported Operation
Cause: The operation is not supported by the current release.

Action: Contact Oracle Customer Support Services for the workaround or the
availability of the feature.

DS-219, Category {0} is not empty
Cause: An attempt was made to remove a service category that contains sub-
categories or services.

Action: Remove all services and sub-categories under the category before
re-attempting to remove the category.

DS-221, Unauthorized service consumer. login denied.
Cause: Login to the registry is denied because of improper credential.

Action: Make sure the credential is correct. If the credential is correct, contact
the service administrator.

DS-222, Insufficient privileges
Cause: The service consumer application attempted to perform an administra-
tive operation without the required privilege.

Action: Ask the service administrator to perform the administrative operation.

DS-223, Service privilege {0} is not granted to user {1}
Cause: The service consumer application does not have the service privilege
 Error Messages E-5

DS Registry Errors
for the named service.

Action: Ask the service administrator to grant the required service privilege to
the service consumer application.

DS-224, Administrative privilege is not granted to user {0}
Cause: An attempt was made to revoke the administrative privilege of the ser-
vice consumer application. However, the service consumer application does not
have the administrative privilege.

Action: Do not revoke the administrative privilege.

DS-231, Service {0} does not exist
Cause: An attempt was made to access a service that does not exist.

Action: Contact the service administrator to make sure that the service does
exist and the required service privilege is granted.

DS-232, Category {0} does not exist
Cause: An attempt was made to access a category that does not exist.

Action: Contact the service administrator to make sure that the category does
exist.

DS-233, Property {0} does not exist
Cause: An attempt was made to access a property that does not exist.

Action: Contact the service administrator to make sure that the property does
exist for the connected service consumer application.

DS-234, User {0} does not exist
Cause: An attempt was made to access a service consumer application that
does not exist.

Action: Contact the service administrator to make sure that the service con-
sumer application does exist.

DS-235, Engine {0} has not been registered
Cause: An attempt was made to access the metadata of an engine instance that
has not been registered.

Action: Contact the service administrator to make sure that the engine instance
is registered.

DS-236, Document {0} does not exist
Cause: An attempt was made to access a document that does not exist. Exam-
E-6 Oracle Dynamic Services User’s and Administrator’s Guide

DS Registry Errors
ples of documents include input schema, output schema, input renderers, and
output renderers.

Action: Contact the service administrator to make sure that the requested doc-
ument does exist.

DS-237, Binary {0} does not exist
Cause: An attempt was made to access a binary file that does not exist. Exam-
ples include .jar file that contains specific resources or custom adaptors.

Action: Contact the service administrator to make sure that the requested
binary does exist.

DS-238, Category for service {0} does not exist
Cause: During service registration, the category specified in the service
descriptor does not exist in the registry.

Action: Create the required category before registering the service.

DS-251, Service {0} exists
Cause: The service to be registered already exists.

Action: If the intention is to replace the existing service, perform reregister.
Otherwise, no action needs to be taken since the service already exists.

DS-252, Category {0} exists
Cause: The category to be added already exists.

Action: No action needs to be taken since the category already exists.

DS-253, Property {0} exists
Cause: The property to be added already exists.

Action: If the intention is to replace the existing property, remove the existing
property before adding the property. Otherwise, no action needs to be taken
since the property already exists.

DS-254, User {0} exists
Cause: The service consumer application to be added already exists.

Action: No action needs to be taken since the service consumer application
already exists.

DS-255, Engine has been registered
Cause: The engine instance to be registered already exists.
 Error Messages E-7

DS Registry Errors
Action: If the intention is to update the metadata of the engine instance, unreg-
ister the current engine instance before registering it again. Otherwise, no action
needs to be taken since the engine instance has been registered.

DS-261, Invalid XML document {0}
Cause: The named XML document, typically part of a service package, is not
valid.

Action: Make sure the named XML document is XML well-formed and valid.

DS-262, Invalid service package - error in accessing component {0}
Cause: An error occurred in accessing the named component of a service pack-
age. It is typically a file in a service package.

Action: Make sure the component does exist and is accessible. If the service
package is a file-based service package, make sure the path is correct.

DS-263, Invalid service package - component {0} is missing its key {1}
Cause: The required element (or attribute) which serves as a key of the compo-
nent is missing.

Action: Make sure the component does contain the required element (or
attribute).

DS-266, Invalid or null category string {0} - syntax error
Cause: The category supplied is null or syntactically invalid.

Action: Make sure the category string is non-null and follows LDAP DN syn-
tax.

DS-267, Invalid classification scheme constant {0}
Cause: An invalid classification scheme constant was used in conducting a
search of services.

Action: Make sure the constant being used is one of those defined in the Java
interface oracle.ds.registry.DSClassificationConstants.

DS-268, Invalid or null keyword string {0} - syntax error
Cause: The keyword supplied is null.

Action: Make sure the keyword string is non-null.

DS-269, Invalid or null interface string {0} - syntax error
Cause: The interface name supplied is null.
E-8 Oracle Dynamic Services User’s and Administrator’s Guide

DS Registry Errors
Action: Make sure the interface name string is non-null.

DS-275, Invalid engine metadata - object: {0}
Cause: The engine instance metadata supplied is null or invalid.

Action: Make sure the supplied metadata is non-null and is valid.

DS-279, Invalid object - object: {0} ; reason: {1}
Cause: The object being accessed is invalid for some unexpected reason.

Action: Contact Oracle Customer Support Services.

DS-291, Internal Error (misconfiguration) - parameter: {0}; required class type (if
applicable): {1}
Cause: An unexpected mis-configuration occurred.

Action: Make sure the installation is successful. If the installation is successful
and you still get this error, contact Oracle Customer Support Services.

DS-292, Internal Error (DSRegistryProvider sanity check failure) - provider class:
{0}; sanity test method: {1}
Cause: An unexpected mis-configuration occurred.

Action: Contact Oracle Customer Support Services.

DS-293, Internal Error (initializing internal resources) - resource name (if known):
{0}
Cause: An unexpected mis-configuration occurred.

Action: Make sure the installation is successful. If the installation is successful
and you still get this error, contact Oracle Customer Support Services.

DS-294, Internal Error (unexpected null object) - object: {0}
Cause: An unexpected internal error occurred.

Action: Contact Oracle Customer Support Services.

DS-295, Internal Error (registry integrity violation) - related object: {0}
Cause: The integrity of the registry is compromised, possibly because of exter-
nal intervention to the registry.

Action: Use a backup of the registry, if available. Otherwise, contact Oracle
Customer Support Services.

DS-296, Internal Error (mismatch in size of write) - expected: {0} bytes; actual: {1}
bytes
 Error Messages E-9

DS Engine Errors
Cause: An unexpected internal error occurred.

Action: Contact Oracle Customer Support Services.

DS-299, Internal Error (others) - {0}
Cause: An unexpected internal error occurred.

Action: Contact Oracle Customer Support Services.

E.4 DS Engine Errors
DS-302, Invalid Request: Cannot process the request because invalid {0}

Cause: The request message sent from a service consumer application is
invalid. The execution engine cannot process it.

Action: Make sure the service consumer application generates a valid request
message.

DS-303, Invalid Raw Response: Cannot process the service provider raw response
of type {0}
Cause: The raw response returned by the protocol adaptor is not supported by
the output adaptor used.

Action: Modify and re-register the service package to use an output adaptor
that supports the type of raw response returned by the protocol adaptor.

DS-304, Invalid Response: Cannot process the response of type {0}
Cause: An error occurred in processing the named response.

Action: Make sure the named response is a well-formed XML document.

DS-305, Empty Response: The service produced an empty response
Cause: The response produced is an empty one. It means that the response con-
tains one and only one XML element and the element is an empty element with-
out an attribute.

Action: Modify the parameters of the appropriate adaptor in the service pack-
age so that the service does not return an empty XML element only. Re-register
the service package after the modification. The adaptor is typically an execu-
tion adaptor or an output adaptor.

DS-306, Invalid Session: The supplied session ID {0} is expired or invalid
Cause: The DS session ID supplied in executing a service is invalid or expired.
E-10 Oracle Dynamic Services User’s and Administrator’s Guide

DS Engine Errors
Action: Make sure the DS session ID is valid. Obtain a new session, if neces-
sary.

DS-310, Invalid Adaptor: Cannot load adaptor {0}
Cause: The named adaptor cannot be loaded for any reason. A typical cause is
that there is a typo in the adaptor name in the service package.

Action: Refer to the underlying exception for actions.

DS-311, Invalid Adaptor Parameter: Cannot process adaptor parameters: {0}
Cause: The adaptor parameter is invalid either during service registration or
service execution.

Action: If the error occurs during service registration, check the syntax used of
the adaptor parameter in the service package. If the error occurs during service
execution, make sure all the other runtime requirements such as alias resolu-
tion have been satisfied.

DS-312, Invalid Alias: Required alias {0} could not be resolved
Cause: The named alias specified in the adaptor parameter is missing in the
ALIASES declaration in the service package.

Action: Make sure the named alias is defined with a proper value (a proper
XPath, string constant, and so forth) in the service package. Re-register the ser-
vice package if any modification is made.

DS-320, Invalid XML document: {0}
Cause: The named XML document used by an adaptor is invalid.

Action: Make sure the XML document supplied is valid.

DS-321, Invalid XSL document: {0}
Cause: The named XSLT document used by an adaptor is invalid.

Action: Make sure the XSLT document supplied is valid.

DS-322, Missing Protocol Adaptor
Cause: A protocol adaptor is required in a service.

Action: Add a protocol adaptor to the service package and re-register the ser-
vice package. If you believe a protocol adaptor is not required, contact the sup-
port responsible for the execution adaptor being used regarding the
requirement on protocol adaptor.

DS-323, Invalid protocol {0}
 Error Messages E-11

DS Engine Errors
Cause: The named protocol is not supported by the module.

Action: If there is an error in the name of the protocol, correct it. Otherwise,
contact Oracle Customer Support Services.

DS-325, HTML Parsing errors: {0}
Cause: An error occurred in HTML parsing. This error should only occur in
development tools.

Action: Make sure the HTML specified is valid.

DS-326, Element with tag {0} cannot be nested into each other, position {1}
Cause: An error occurred in HTML parsing. This error should only occur in
development tools.

Action: Make sure the HTML specified is valid.

DS-327, Encountered element with tag {0} outside of a {1} tag at position {2}
Cause: An error occurred in HTML parsing. This error should only occur in
development tools.

Action: Make sure the HTML specified is valid.

DS-330, Error occurred processing XSQL request: {0}
Cause: An error occurred in processing the XSQL request in DSJDBCProtocol-
Adaptor.

Action: Check the adaptor parameter in the service package and make sure the
XSQL request is valid.

DS-331, Error opening SQL connection. Zero or more connection definitions sup-
plied, or invalid connection parameters: {0}
Cause: An error occurred in opening a JDBC connection in DSJDBCProtocol-
Adaptor.

Action: Make sure the adaptor parameter in the service package contains con-
nection elements with valid parameters, and the connection attribute of the
page element refers to a valid connection.

DS-332, Error closing SQL connection: {0}
Cause: An error occurred in closing the JDBC connection in DSJDBCProtocol-
Adaptor.
E-12 Oracle Dynamic Services User’s and Administrator’s Guide

DS Engine Errors
Action: Refer to the underlying SQL exception for actions.

DS-333, Error trying to open a connection with name {0}. Another connection with
the same name has been found in the session, but its JDBC connection string
does not match
Cause: When a service is executed in a DS session, an attempt was made to
re-use an existing JDBC connection. However, the JDBC connection refers to a
different database/schema.

Action: Make sure all the JDBC-based services executed in a DS session do not
declare connections with the same name but different connection string.

DS-340, Error during HTTP/S connection: {0}
Cause: An HTTP transport error occurred with the named HTTP error code in
DSHTTPProtocolAdaptor.

Action: Refer to the HTTP error code for resolution.

DS-341, Unsupported HTTP/S status code: {0}
Cause: The named HTTP status code is not supported by DSHTTPProtocol-
Adaptor.

Action: Make sure the status code is not caused by errors in the service pack-
age or the service request. Contact Oracle Customer Support Services, if neces-
sary.

DS-342, HTTP/S reported a fatal error with status code: {0}
Cause: An HTTP error (with status code 4XX and 5XX) was reported by the
HTTP server.

Action: Refer to the underlying status code for further action. The error can
also happen because of errors in the service to be executed, such as missing
HTTP parameters.

DS-343, Cannot follow redirect as no Location tag has been supplied
Cause: DSHTTPProtocolAdaptor cannot follow a redirect command because
the Location header is missing from the HTTP response.

Action: Contact the administrator of the HTTP server.

DS-344, Invalid HTTP/S Cookie supplied. The cookie has the wrong syntax or
wrong parameters
Cause: DSHTTPProtocolAdaptor encounters an invalid cookie.
 Error Messages E-13

DS Engine Errors
Action: Contact the administrator of the HTTP server.

DS-350, Error opening connection to SMTP host: {0}
Cause: An error occurred in establishing an SMTP connection to the named
host in DSSMTPProtocolAdaptor.

Action: Make sure the host name and the port number are valid. If they are cor-
rect, contact system administrators to resolve any network, hardware, or soft-
ware issues.

DS-351, Error closing connection to SMTP host: {0}
Cause: An error occurred in closing an SMTP connection to the named host in
DSSMTPProtocolAdaptor.

Action: Contact the administrator of the SMTP server.

DS-352, Error sending message: {0}
Cause: An error occurred in sending the message to the SMTP server.

Action: Make sure the message is correctly formatted. If necessary, contact sys-
tem administrators.

DS-353, SMTP reported fatal error with code: {0}
Cause: An SMTP error (with status code 4XX and 5XX) was reported by the
SMTP server.

Action: Refer to the underlying status code for further action. The error can
also happen because of errors in the service to be executed, such as missing
SMTP headers, invalid email address in From header, and so forth.

DS-354, SMTP invalid mail parameter, missing {0} element
Cause: DSSMTPProtocolAdaptor reported that the named header is missing
from the email to be sent.

Action: Make sure the named header is present in the adaptor parameter in the
service package.

DS-360, Operation {0} on files not supported
Cause: The named operation is not supported by DSFILEProtocolAdaptor.

Action: Correct the operation to be used in the adaptor parameter in the ser-
vice package.

DS-361, IOException occurred during a file operation: {0}
Cause: An Input/output related error occurred in accessing a file with the
E-14 Oracle Dynamic Services User’s and Administrator’s Guide

DS Engine Errors
named operation.

Action: Make sure the named operation can be done on the file.

DS-380, One or more dependent services failed during execution: {0}
Cause: One or more dependent services in a compound service, executed by
DSCompoundServiceExecutionAdaptor, failed.

Action: Refer to the underlying exception for actions.

DS-383, The module ID {0} has already been defined
Cause: Multiple modules are defined with the same unique identifier incor-
rectly. The error is specific to DSCompoundServiceExecutionAdaptor.

Action: Find all the modules that share the same IDs in the adaptor parameter
of the service package and specify different IDs for each of the modules. Re-reg-
ister the modified service package.

DS-384, A module has been specified with a supplied ID or its associated class
Cause: A module is either missing the ID or the implementation class. The
error is specific to DSCompoundServiceExecutionAdaptor.

Action: Fill in the missing ID or class in the Module element in the adaptor
parameter of the service package. Re-register the modified service package.

DS-385, The number of rows in the execution flow matrix, {0}, does not match the
number of modules defined, {1}
Cause: The Graph element in the service package, which defines the connectiv-
ity of the modules, does not map to the module declaration. The error is spe-
cific to DSCompoundServiceExecutionAdaptor.

Action: Change the Graph element or the Module elements in the adaptor
parameter of the service package so that each row in the graph maps to a mod-
ule. Re-register the service package.

DS-386, A row in the execution flow matrix does not specify the associated mod-
ule name
Cause: The name attribute of a row element in a Graph element in the service
package is missing or empty. The error is specific to DSCompoundServiceExe-
cutionAdaptor.
 Error Messages E-15

DS Engine Errors
Action: Find the row element and fill in the name attribute. Re-register the
modified service package.

DS-387, The number of columns in the execution flow matrix, {0}, does not match
the number of rows {1}
Cause: The Graph element in the service package, which defines the connectiv-
ity of the modules, does not map to the module declaration. The error is spe-
cific to DSCompoundServiceExecutionAdaptor.

Action: Change the Graph element or the Module elements in the adaptor
parameter of the service package so that each column in the graph maps to a
module. Re-register the modified service package.

DS-388, The execution flow matrix does not have an empty row. Such a row is
necessary to identify the starting modules.
Cause: In the Graph element in the service package, there is no starting row
(indicated by 0 in all column elements). Such a row is required to indicate the
first module to be invoked. The error is specific to DSCompoundServiceExecu-
tionAdaptor.

Action: Correct the Graph element so that one row is set to be a starting row:
all of its column elements are 0. Re-register the modified service package.

DS-389, Module with ID {0} is not a DSEventListener
Cause: The implementation class of the named module does not implement the
required DSEventListener interface. The error is specific to DSCompoundServi-
ceExecutionAdaptor.

Action: Check the name of the implementation class of the module in the ser-
vice package. Make sure the name is one of the modules defined in the User’s
and Administrator’s Guide. Re-register the modified service package.

DS-390, Execution flow terminated with more than one message
Cause: More than one message was generated by the last module in a com-
pound service execution flow. The error is specific to DSCompoundServiceExe-
cutionAdaptor.

Action: Check the last module being executed and change it so that it does not
generate multiple messages. For example, a ServiceExecution module should
only be used with executeSingleRequest option. Re-register the modified ser-
vice package.

DS-391, Module with ID {0} does not have a corresponding row in the execution
flow matrix
E-16 Oracle Dynamic Services User’s and Administrator’s Guide

DS Engine Errors
Cause: The Graph element in the service package, which defines the connectiv-
ity of the modules, does not map to the module declaration. The error is spe-
cific to DSCompoundServiceExecutionAdaptor.

Action: Change the Graph element or the Module elements in the adaptor
parameter of the service package so that each module maps to a row in the
graph. Re-register the modified service package.

DS-392, Module with ID {0} could not clone a message {1}
Cause: Unexpected exception occurred in cloning a message. The error is spe-
cific to DSCompoundServiceExecutionAdaptor.

Action: Refer to the underlying exception to resolve the problem causing the
error.

DS-393, The execution flow matrix contains more than one empty column. Only
one empty column is necessary to identify the ending module.
Cause: In the Graph element in the service package, there are multiple mod-
ules identified as the ending module, indicated by multiple empty columns.
The error is specific to DSCompoundServiceExecutionAdaptor.

Action: Correct the Graph element so that one and only one module is the end-
ing module: one and only one column has all its values to be 0. Re-register the
modified service package.

DS-395, FailOverExecution Adaptor cannot find the service to be executed with
priority
Cause: An entry in the adaptor parameter of a failover service is either missing
the priority or the service ID.

Action: Correct the entry so that it has both the priority and the service ID.
Re-register the modified service package.

DS-396, FailOver Execution Adaptor Warning: Execution of service {0} failed ({1})
Cause: It is an indication that the named service execution fails. The failover
service will attempt to execute a backup service.

Action: Service administrators should try to resolve the problem by referring to
the underlying exception.

DS-397, Execution of FailOver service failed as none of the services successfully
completed
Cause: A failover service execution failed because all of the backup services to
be executed fail.
 Error Messages E-17

DS Driver Errors
Action: Resolve any problems that cause the execution of the backup services
to fail.

DS-398, An internal error occurred during response caching {0}
Cause: An internal error occurred in processing the Dynamic Services response
cache.

Action: Refer to the underlying exception for actions.

DS-399, An internal error occurred in the execution engine {0}
Cause: An unexpected internal error occurred in service execution.

Action: Contact Oracle Customer Support Services.

E.5 DS Driver Errors
DS-401, A transport protocol error occurred for {0}. Error code: {1}

Cause: An error occurred in the transport layer between a service consumer
application and a service engine. The error code, if available, is the trans-
port-specific error code.

Action: Correct the underlying transport layer error. Contact the relevant
administrator, if necessary.

DS-402, The received message has an invalid content type: {0}
Cause: The content type of the message returned by the transport layer is
incorrect.

Action: Contact the service administrator.

DS-403, The received message has no transport session information
Cause: Session information is missing in the transport layer.

Action: Contact the service administrator.

E.6 DS Compound Execution Adaptor Module Errors
DS-501, Module {0} ({1}): Invalid or missing XSLT in the module parameters

Cause: The XSLT element of the named module is missing or invalid.

Action: Make sure the named module in the compound service execution
adaptor parameter has a valid XSLT element.

DS-502, Module {0} ({1}): Module received {2} messages. Too many messages
received
E-18 Oracle Dynamic Services User’s and Administrator’s Guide

DS Compound Execution Adaptor Module Errors
Cause: The named module receives more messages than it is designed to han-
dle.

Action: Check the GRAPH element in the compound service execution adap-
tor parameter. Make sure the named module receives the correct number of
messages.

DS-503, Module {0} ({1}): Module received zero or null message
Cause: The named module receives no or null message.

Action: Check the GRAPH element in the compound service execution adap-
tor parameter. Make sure the named module receives the correct number of
messages.

DS-504, Module {0} ({1}): No message has been found at index {2}
Cause: The named module expects to receive a message with the named index
out of an array of messages.

Action: Check the GRAPH element in the compound service execution adap-
tor parameter. Make sure the module that produces messages to the named
module does create an message at the named index.

DS-505, Module {0} ({1}): XSL error applying stylesheet: {2}
Cause: The named module encounters XSLT error in applying the named XSLT
stylesheet.

Action: Make sure the named XSLT stylesheet is correct with respect to the
input source.

DS-508, Module {0} ({1}): Execution of service {2}, failed: {3}
Cause: The service execution of the named module fails.

Action: Check the nested exception for resolution.

DS-509, Module {0} ({1}): Internal Exception occurred: {2}
Cause: Unexpected exception occurred in the named module.

Action: Contact Oracle Customer Support Services.

DS-510, Module {0} ({1}): After applying the single transformation, the resulting
message does not contain sectioning tags such as "{2}">"
Cause: The resulting XML of the named message splitter module does not con-
tain the required sectioning tags.
 Error Messages E-19

DS Compound Execution Adaptor Module Errors
Action: Check the single XSLT stylesheet used in the message splitter module
and make sure the XML document generated is compliant to the specification
required by single transformation in a MessageSplitter.

DS-511, Module {0} ({1}): The module {2} cannot accept more than one depen-
dency (e.g. more than one non-null column in its row in the execution flow
matrix.)
Cause: The named module cannot depend on more than one other module.

Action: Check the GRAPH element in the compound service execution adap-
tor parameter. Make sure the named module depends on one and only one
other module.
E-20 Oracle Dynamic Services User’s and Administrator’s Guide

Glossary

application profile registry

A storage place that maintains the application security profile governing service
access. Registering service consumer applications allows the service administrator
to choose the services that are to be visible to a particular application.

central master registry

A Lightweight Directory Access Protocol (LDAP) registry that is the main registry
that can communicate with multiple Dynamic Services engine instances each
containing its own registry cache. Using the DSAdmin utility, a service
administrator can update the central master registry, broadcast a message to all
other instances of Dynamic Services engines to manually synchronize their registry
cache with the central master registry. Using a central master registry in this manner
increases the scalability of Dynamic Services.

compound service package

A service package that invokes one or more other services and typically includes
one additional file, a jar file, which contains all Java classes and stylesheets needed
by the compound service package.

Distinguished Name (DN)

The unique name of a directory entry in Oracle Internet Directory (OID). It includes
all the individual names of the parent entries back to the root. The Distinguished
Name tells you exactly where the entry resides in the directory’s hierarchy. This
hierarchy is represented by a directory information tree (DIT).
Glossary-1

Dynamic Services

A component of the Internet computing model that delivers a specialized
value-added function. A dynamic service typically comprises some content, or
some process, or both, with an open programmatic interface.

Dynamic Services engine

An engine that provides storage, access, and management of dynamic Internet and
Intranet services.

Dynamic Services framework

An open, Java-based programmatic framework for enhancing Oracle as the Internet
platform to incorporate, manage, and deploy dynamic Internet services. The
framework includes a Dynamic Services engine, a set of dynamic services, and
users of these services (service consumer applications). Oracle Dynamic Services
makes it easy for application developers to rapidly incorporate existing services
from a variety of Web sites, local databases, or proprietary systems into their own
applications.

Dynamic Services Thin Java Client Library

Handles communication using either HTTP, HTTPS, or Java Messaging Services
(JMS) communication protocol between the service consumer application and the
Dynamic Services engine, which is running in the Dynamic Services gateway.
Because the Dynamic Services Java client library does not contain the Dynamic
Services Java engine, the Dynamic Services Java client library is referred to as a
Dynamic Services thin Java client library. This is the Java (HTTP/JMS) deployment
view of the Dynamic Services framework.

Dynamic Services Thick Java Client Library

Handles communication using direct Java calls between the service consumer
application and the Dynamic Services engine. When the Dynamic Services Java
engine is running on the machine hosting the service consumer application it is
using the thick Java client library, which contains the Dynamic Services Java engine.
This is the Java deployment view of the Dynamic Services framework.

execution adaptor

A routine that executes a service request in a particular flow. A flow could be as
simple as relaying a request, to contacting a service provider, or as complicated as
relaying a request to a service provider and relaying the response to another service
provider.
Glossary-2

input adaptor

A routine that post-processes the service input from service consumer applications
to produce the standard service input that is fed to the underlying service.

monitor services

A set of services (profiler, logger, and smartlog) that are configured in the
MonitorProperties.dss file for monitoring event messages generated by the
Dynamic Services engine.

output adaptors

A routine that transforms the raw output from the underlying service into the
standard service response.

protocol adaptor

A routine that transforms the standard service request into the input needed by the
underlying service, using the underlying protocol.

service

A component within the Internet computing model that delivers a specialized
value-added function.

service administrator

The person who performs administrative tasks for the Dynamic Services engine,
such as enabling or disabling of services, tuning caching parameters of a service,
and so forth.

service consumer application

An application that uses Dynamic Services to collect Web services from service
providers and provide a dynamic service to their customers.

service descriptor

An XML schema file that defines the behavior of a service and contains service
developer information, a description of service features, service management
information, service input adaptors, service output adaptors, and other service
provider-specific information, such as secure access, caching parameters, and so
forth.

service provider

A business partner or application developer who provides and manages the content
of a service for the Dynamic Services execution engine; typically, the service
Glossary-3

provider is the owner of some data resource or process, such as, the owner of a
currency exchange rate Web site. Also, someone who provides content for a service.

service registry

A storage place that maintains the service package information of registered
services that enables Dynamic Services engines to set up and execute a service and
access distributed sources from service providers.

simple service package

A service that is bundled into a simple service package and modeled as a local
directory. This directory contains at least a MANIFEST file that points to the service
descriptor XML file, which is the key XML document that describes the service and
points to the following descriptor (.xml) and definition (.xsd) files:

■ One classification XML file

■ One service developer organization XML file

■ One or more service developer contact XML files

■ One service interface specification request (.xsd) file

■ One service interface specification response (.xsd) file
Glossary-4

Index

A
access control

making services visible to an application, 1-13
access to services

using PL/SQL, Java, or HTTP, 1-14
adaptors

custom-built by resource providers, 6-44
execution, 6-13, 6-26

compound service, 6-35
compound service message merger, 6-39
compound service message splitter, 6-38
compound service message

transformer, 6-37
conditional, 6-42
failover, 6-34, 6-35

input, 6-11, 6-22, 6-28
XSLT, 6-28

output, 6-13, 6-26, 6-43
XSLT, 6-43

protocol, 6-12, 6-25, 6-29
HTTP, 6-29
HTTPS, 6-31
JDBC, 6-31
SMTP, 6-33

supplied by Dynamic Services, 6-28
administration

DSAdmin command-line utility, 3-1
application

creating a session with a remote resource
provider, 5-7

sessions
executing multiple services, 5-7
opening, closing, 5-7

application profile registry, 1-10, 1-13
registering a service consumer application, 5-2

B
browsing registered services, 3-9

C
cache cleanup, 7-4
central master registry, 4-17
classification descriptor XML file, 6-1, 6-5, 6-18
communication

between service administrator and Dynamic
Services engine, 1-12

between service consumer application and
Dynamic Services engine, 1-12, 1-13

supported protocols, 1-13
compound service execution adaptor, 6-35

message merger, 6-39
message splitter, 6-38
message transformer, 6-37

compound service package
contents, 3-6, 6-2

conditional execution adaptor, 6-42
configuring

DSAdmin utility, 3-2
connection drivers, 1-6, 5-4

direct, 5-4
HTTP, 5-5
HTTPS, 5-5
JMS, 5-5

contact descriptor XML file, 6-1, 6-4, 6-18
creating
Index-1

new service category, 3-7

D
direct connect driver

performing service lookup operations, 5-4
performing synchronous service executions, 5-4

displaying service response, 5-6
drivers

connection, 5-4
DSAdmin utility

browsing registered services, 3-9
creating a new service category, 3-7
creating script files for administration, 7-5
executing a registered service, 3-11
learning about additional operations, 7-5
managing service consumer applications, 7-1
managing services, 7-2
registering a service package, 3-9
registering user identity as a new Dynamic

Services service consumer application, 5-2
setting configuration file parameters, 3-2
setting options, 3-4
starting, 3-4

Dynamic Services
adaptors, 6-28
administrator, 1-10
application profile registry, 1-10
application scenarios, 1-4
benefits, 1-3
client library, 1-12, 1-13
communication, 1-12, 1-13
driver, 1-13
engine, 1-11, 1-12
framework, 1-14, 1-16, 1-17
service registry, 1-10, 1-13

E
executing a registered service, 3-11
executing a sample service, 5-5
execution adaptor, 6-26, 6-34

F
failover execution adaptor, 6-35
frequently asked questions (FAQ), B-1, E-1

H
HTTP protocol adaptor, 6-29
HTTPS protocol adaptor, 6-31

I
input adaptor, 6-22, 6-24, 6-28
installation

Dynamic Services distribution, 2-2
installing Dynamic Services in Oracle JVM, 4-2
installing Dynamic Services LDAP schema, 4-15
installing Oracle Internet Directory, 4-14
installing the DSSYS schema, 2-3
system requirements, 2-1

J
jar file, 6-16
Java API for application developers, 5-1
JDBC protocol adaptor, 6-31

K
known issues and problems, 8-1

M
managing

cache cleanup, 7-4
central master registry, 4-17
multiple Dynamic Services instances, 7-4
service consumer applications, 7-1
service response caching, 7-3
services, 7-2

manifest file, 6-1, 6-15

O
opaque session identifier, 5-7
Oracle Internet Directory server, 1-13
Index-2

organization descriptor XML file, 6-1, 6-4, 6-18
output adaptor, 6-26, 6-43

P
PL/SQL interface for application developers, 5-8
protocol adaptor, 6-25, 6-29

R
registering a service, 3-6
registering a service consumer application, 5-2
registering a service package, 3-9
request definition xsd file, 6-1, 6-6, 6-19
response definition xsd file, 6-1, 6-7, 6-19
running DSAdmin utility, 3-4

S
sample service

executing, 5-5
service

browsing registered services, 3-9
creating a new service category, 3-7
creating a service package, 6-15
describing using a service descriptor, 6-16
displaying response, 5-6
executing a registered service, 3-11
execution adaptors, 6-34
managing response caching, 7-3
registering a service package, 3-6, 3-9

service administration
connecting multiple Dynamic Services engine

instances, 7-4
modifying service response caching, 7-3
scripting the DSAdmin utility, 7-5

service administrator, 1-10
service consumer application, 1-10

development interfaces
Java API, 5-1
PL/SQL, 5-8

opening a connection to Dynamic Services
engine, 1-6, 5-4

registering in application profile registry, 5-2
using a direct connect driver, 5-4

service descriptor XML file, 6-9, 6-16
service body described, 6-20
service header described, 6-16

service package, 6-15
adaptors

execution, 6-13, 6-26, 6-34
input, 6-11, 6-24, 6-28
output, 6-13, 6-26, 6-43
protocol, 6-12, 6-25, 6-29

classification descriptor XML file, 6-1, 6-5, 6-18
contact descriptor XML file, 6-1, 6-4, 6-18
jar file, 6-16
manifest file, 6-1, 6-15
organization descriptor XML file, 6-1, 6-4, 6-18
registering, 3-6
request definition xsd file, 6-1, 6-6, 6-19
response definition xsd file, 6-1, 6-7, 6-19
service descriptor XML file, 6-1, 6-9, 6-16

service provider, 1-9
simple service package

contents, 3-5, 6-1
registering, 3-5

SMTP protocol adaptor, 6-33

U
using adaptors, 6-28
using connection drivers, 1-6, 5-4
using PL/SQL interface

supplied sample code, 5-8, 5-9
using the Java API

supplied sample code, 5-1

X
XSLT input adaptor, 6-28
XSLT output adaptor, 6-43
Index-3

Index-4

	User’s and Administrator’s Guide
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documents
	Conventions
	Documentation Accessibility

	1 Introduction
	1.1� Application Scenarios
	1.1.1� Business Problems or Technical Challenges
	1.1.2� Oracle Dynamic Services Solutions

	1.2� Overview of Concepts
	1.2.1� Service Provider
	1.2.2� Service Registry
	1.2.3� Application Profile Registry
	1.2.4� Service Administrator
	1.2.5� Service Consumer Application
	1.2.6� Dynamic Services Engine
	1.2.7� Services as Application Components
	1.2.8� Communication Between the Service Consumer Application and the Dynamic Services Engine
	1.2.9� Communication Between the Service Administrator and the Dynamic Services Engine

	1.3� Dynamic Services Implementation Overview
	1.3.1� Java Deployment View
	1.3.2� PL/SQL Deployment View
	1.3.3� Java (HTTP/Java Messaging Services (JMS)) Deployment View

	1.4� Using Multiple Dynamic Services Engines
	1.5� How to Get Started with Oracle Dynamic Services

	2 Installation
	2.1� System Requirements
	2.2� Dynamic Services Distribution
	2.3� Installing the DSSYS Schema
	2.4� Dynamic Services Configuration

	3 Configuration
	3.1� Configuring and Running the DSAdmin Utility
	3.1.1� Configuring Dynamic Services Proxy Settings
	3.1.2� Configuring the DSAdmin Utility
	3.1.3� Running the DSAdmin Utility

	3.2� Registering a New Service
	3.2.1� Creating a New Service Package Category
	3.2.2� Registering a Service Package

	3.3� Browsing Registered Services
	3.4� Executing a Registered Service

	4 Advanced Installation Options
	4.1� Enabling PL/SQL Interfaces
	4.2� Enabling Persistent Auditing or Event Monitor Services
	4.2.1� Configuring Oracle Advanced Queuing
	4.2.2� Installing Monitor Services
	4.2.3� Using the Event Monitor Utility
	4.2.4� Enabling Persistent Auditing
	4.2.5� Starting and Stopping the Event Monitor
	4.2.6� Using the Logger Monitor Service (Case Study)

	4.3� Enabling HTTP Communications
	4.3.1� Configuring the Apache/Jserv Servlet Engine
	4.3.2� Configuring the DSAdmin Utility to Use the HTTP Driver

	4.4� Enabling Java Messaging Services (JMS) Communications
	4.4.1� Configuring and Running the JMS Daemon
	4.4.2� Configuring the DSAdmin Utility to Enable JMS Communications

	4.5� Using Lightweight Directory Access Protocol (LDAP) as a Central Master Registry
	4.5.1� Setting Up LDAP with Oracle Internet Directory
	4.5.2� Configuring Dynamic Services Registry to Use LDAP

	4.6� Manual Fine-Tuning of Dynamic Services Properties

	5 Service Consumer Interfaces
	5.1� Java Interface for Service Consumers
	5.1.1� Setting the Classpath
	5.1.2� Registering a Service Consumer Application in the Application Profile Registry
	5.1.3� Opening a Connection to the Dynamic Services Engine
	5.1.4� Example: Executing the YahooPortfolio Service
	5.1.5� Displaying Service Response
	5.1.6� Service Consumer Application Sessions

	5.2� PL/SQL Interface for Service Consumers

	6 Service Development Guide
	6.1� Quick Start
	6.1.1� Creating a Service Package
	6.1.2� Service Provider -- Organization and Contacts XML Files
	6.1.3� Service Classification XML File
	6.1.4� Service Interface Specification -- Request Definition
	6.1.5� Service Interface Specification -- Response Definition
	6.1.6� Editing the Service Descriptor
	6.1.7� Testing the Execution of Your Service

	6.2� Creating Advanced Services -- Service Package
	6.3� Creating Advanced Services -- Service Descriptor
	6.3.1� Service Header Section
	6.3.2� Service Body Section

	6.4� Creating Advanced Services -- Description of Supplied Adaptors
	6.4.1� Input Adaptor
	6.4.2� Protocol Adaptors
	6.4.3� Execution Adaptors
	6.4.4� Output Adaptor

	6.5� Creating Advanced Services -- Building Your Own Adaptors
	6.5.1� Packaging Your Adaptor

	7 Service Administration
	7.1� Managing Consumer Applications
	7.2� Managing Services
	7.3� Service Response Caching
	7.4� Cache Cleanup
	7.5� Connecting Multiple Dynamic Services Engine Instances
	7.6� Additional Operations of the DSAdmin Utility
	7.6.1� Using Script Files with the DSAdmin Utility

	8 Known Issues and Problems
	8.1� Communications
	8.2� Service Execution
	8.3� Service Definitions and Creation
	8.4� Other Problems and Issues

	A Links
	B Frequently Asked Questions
	C Descriptive Matrix
	C.1� Syntax of the Service Descriptor Schema
	C.2� Syntax of the Parameters Section for the Packaged Adaptors
	C.2.1� oracle.ds.engine.ioa.DSXSLTInputAdaptor
	C.2.2� oracle.ds.engine.ioa.DSXSLTOutputAdaptor
	C.2.3� oracle.ds.engine.pa.DSHTTPProtocolAdaptor
	C.2.4� oracle.ds.engine.pa.DSJDBCProtocolAdaptor
	C.2.5� oracle.ds.engine.pa.DSSMTPProtocolAdaptor
	C.2.6� oracle.ds.engine.ea.compound.DSCompoundServiceExecutionAdaptor
	C.2.7� oracle.ds.engine.ea.DSConditionalExecutionAdaptor
	C.2.8� oracle.ds.engine.ea.DSFailOverExecutionAdaptor

	D Sample Service Packages
	E Error Messages
	E.1� Execution Engine Errors
	E.2� Communication Errors
	E.3� DS Registry Errors
	E.4� DS Engine Errors
	E.5� DS Driver Errors
	E.6� DS Compound Execution Adaptor Module Errors

	Glossary
	Index

