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Preface

This is a revised edition of Oracle9i Data Mining Concepts, originally published in 
March 2002.

This manual describes how to use the Oracle9i Data Mining Java Application 
Programming Interface to perform data mining tasks, including building and 
testing models, computing lift, and scoring.

Intended Audience
This manual is intended for anyone planning to write Java programs using the 
Oracle9i Data Mining API. Familiarity with Java, databases, and data mining is 
assumed.

Structure
This manual is organized as follows:

■ Chapter 1: Defines basic data mining concepts.

■ Chapter 2: Describes compiling and executing ODM programs and using ODM 
to perform common data mining tasks.

■ Chapter 3: Contains short examples of using ODM to build a model and then 
using that model to score new data.

■ Appendix A: Lists ODM sample programs and outlines how to compile and 
execute them.

■ Glossary: A glossary of terms related to data mining and ODM.
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Where to Find More Information
The documentation set for Oracle9i Data Mining is part of the Oracle9i Database 
Documentation Library. The ODM documentation set consists of the following 
documents, available online:

■ Oracle9i Data Mining Administrator’s Guide, Release 2 (9.2)

■ Oracle9i Data Mining Concepts, Release 9.2.0.2 (this document)

For last minute information about ODM, see the Oracle9i README, Release 9.2.0.2, 
and the release notes for your platform.

For detailed information about the ODM API, see the ODM Javadoc in the directory 
$ORACLE_HOME/dm/doc on any system where ODM is installed.

Related Manuals
For more information about the database underlying Oracle9i Data Mining, see:

■ Oracle9i Administrator’s Guide, Release 2 (9.2)

For information about upgrading from Oracle9i Data Mining release 9.0.1 to release 
9.2.0, see 

■ Oracle9i Database Migration, Release 2 (9.2)       

For information about installing Oracle9i Data Mining, see 

■ Oracle9i Installation Guide, Release 2 (9.2) 

Conventions
In this manual, Windows refers to the Windows 95, Windows 98, Windows NT, 
Windows 2000, and Windows XP operating systems.

The SQL interface to Oracle9i is referred to as SQL. This interface is the Oracle9i 
implementation of the SQL standard ANSI X3.135-1992, ISO 9075:1992, commonly 
referred to as the ANSI/ISO SQL standard or SQL92. 

In examples, an implied carriage return occurs at the end of each line, unless 
otherwise noted. You must press the Return key at the end of a line of input.
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The following conventions are also followed in this manual:

Documentation Accessibility 

Documentation Accessibility 
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of 
assistive technology. This documentation is available in HTML format, and contains 
markup to facilitate access by the disabled community. Standards will continue to 
evolve over time, and Oracle Corporation is actively engaged with other 
market-leading technology vendors to address technical obstacles so that our 
documentation can be accessible to all of our customers. For additional information, 
visit the Oracle Accessibility Program Web site at 
http://www.oracle.com/accessibility/. 

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples 
in this document. The conventions for writing code require that closing braces 
should appear on an otherwise empty line; however, JAWS may not always read a 
line of text that consists solely of a bracket or brace. 

Convention Meaning

    .
    .
    .

Vertical ellipsis points in an example mean that information not 
directly related to the example has been omitted.

 . . . Horizontal ellipsis points in statements or commands mean that 
parts of the statement or command not directly related to the 
example have been omitted

boldface Boldface type in text indicates the name of a class or method.

italic text Italic type in text indicates a term defined in the text, the glossary, or 
in both locations.

< > Angle brackets enclose user-supplied names.

[ ] Brackets enclose optional clauses from which you can choose one or 
none
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Accessibility of Links to External Web Sites in Documentation 
This documentation may contain links to Web sites of other companies or 
organizations that Oracle Corporation does not own or control. Oracle Corporation 
neither evaluates nor makes any representations regarding the accessibility of these 
Web sites. 
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1
Basic ODM Concepts

Oracle9i Data Mining (ODM) embeds data mining within the Oracle9i database. 
The data never leaves the database — the data, data preparation, model building, 
and model scoring activities all remain in the database. This enables Oracle9i to 
provide an infrastructure for data analysts and application developers to integrate 
data mining seamlessly with database applications.

Data mining functions such as model building, testing, and scoring are provided via 
a Java API. This chapter provides an overview of basic Oracle9i Data Mining 
concepts. It is organized as follows:

■ Section 1.1, "New Features and Functionality"

■ Section 1.2, "Oracle9i Data Mining Components"

■ Section 1.3, "Data Mining Functions"

■ Section 1.5, "Data Mining Tasks"

■ Section 1.4, "ODM Algorithms"

■ Section 1.6, "ODM Objects and Functionality"

■ Section 1.7, "Missing Values"

■ Section 1.8, "Discretization (Binning)"

■ Section 1.9, "PMML Support"
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1.1 New Features and Functionality
With Release 2, Oracle9i Data Mining adds several data mining capabilities: 
Adaptive Bayes Network, clustering, attribute importance (also known as feature 
selection), and others, as described below. 

■ Adaptive Bayes Networks (ABN): Expands ODM support of supervised 
learning techniques (techniques that predict a target value). ODM can be used 
to make predictions with an associated probability.

A significant benefit of ABN is that they produce a set of human-readable 
"rules" or explanations that can be interpreted by analysts and managers. Users 
can then query the database for all records that fit the criteria of a rule.

■ Clustering: Expands ODM support of unsupervised learning (learning 
techniques that do not have a target value). Clustering can be used to segment 
data into naturally occurring clusters or for assigning new data to clusters. 
ODM Clustering techniques use k-means and an Oracle proprietary algorithm, 
O-Cluster, that allows both numerical and categorical data types to be clustered. 
The clustering model generates probabilistic cluster membership assignment 
and cluster rules that describe the characteristics of each cluster.

■ Attribute Importance: Used to identify those attributes that have the greatest 
influence on a target attribute. It assesses the predictive usefulness of each 
available non-target mining attribute and ranks them according to their 
predictive importance. See Section 1.3.4, "Attribute Importance". Attribute 
importance is also sometimes referred to as feature selection or key fields.

■ Model Seeker: A productivity tool that automatically builds multiple data 
mining models with minimal user input, compares the models, and selects the 
"best" of the models it has built. See Section 1.4.3, "Model Seeker", for a fuller 
description.

■ Automated Binning: Automates the task of discretizing (binning) all attributes 
into categorical bins for the purposes of counting. Internally, many ODM 
algorithms require the data to be binned for analysis. With this feature, the user 
can create bins of fixed size for each field. The user can either bin the data as 
part of data preprocessing or allow the algorithms to bin the data automatically. 
With manual preprocessing, the user sets bin boundaries and can later modify 
them. With automatic preprocessing, there is no modifying the boundaries after 
they are set. Target attribute values are not binned. See Section 1.8, 
"Discretization (Binning)". 

■ Predictive Model Markup Language (PMML): ODM supports the import and 
export of PMML models for Naive Bayes and Association Rules models. PMML 



Oracle9i Data Mining Components

Basic ODM Concepts 1-3

allows data mining applications to produce and consume models for use by 
data mining applications that follow the PMML 2.0 standard. See Section 1.9, 
"PMML Support".

■ Mining Task: All data mining operations (build, test, compute lift, apply, 
import, and export) are performed asynchronously using a mining task. This is 
important when you are creating large data mining applications. The static 
methods supported in ODM release 9.0.1 for these mining operations are not 
supported in this release. Mining tasks allow the user to obtain the status of the 
mining operations as they are executed. 

1.2 Oracle9i Data Mining Components
Oracle9i Data Mining has two main components:

■ Oracle9i Data Mining API 

■ Data Mining Server (DMS)

1.2.1 Oracle9i Data Mining API
The Oracle9i Data Mining API is the component of Oracle9i Data Mining that 
allows users to write Java programs that mine data. 

The ODM API provides an early look at concepts and approaches being proposed 
for the emerging standard Java Data Mining (JDM). JDM follows Sun Microsystem’s 
Java Community Process as a Java Specification Request (JSR-73). JDM used design 
elements from several evolving data mining standards, including the Object 
Management Group’s Common Warehouse Metadata (CWM), the Data Mining 
Group’s Predictive Model Markup Language (PMML), and the International 
Standards Organization’s SQL/MM for Data Mining. JDM has also influenced these 
standards. Oracle9i Data Mining will comply with the JDM standard when that 
standard is published.

1.2.2 Data Mining Server
The Data Mining Server (DMS) is the server-side, in-database component that 
performs the data mining operations within the 9i database, and thus benefits from 
RDBMS availability and scalability.

The DMS also provides a metadata repository consisting of mining input objects 
and result objects, along with the namespaces within which these objects are stored 
and retrieved. 
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1.3 Data Mining Functions
Data mining models are based on one of two kinds of learning: supervised and 
unsupervised (sometimes referred to as directed and undirected learning). 
Supervised learning functions are typically used to predict a value.Unsupervised 
learning functions are typically used to find the intrinsic structure, relations, or 
affinities in a body of data but no classes or labels are assigned a priori. Examples of 
unsupervised learning algorithms include k-means clustering and Apriori 
association rules. An example of supervised learning algorithms includes Naive 
Bayes for classification. 

ODM supports the following data mining functions:

■ Classification (supervised)

■ Clustering (unsupervised)

■ Association Rules (unsupervised)

■ Attribute Importance (supervised)

1.3.1 Classification
In a classification problem, you have a number of cases (examples) and wish to 
predict which of several classes each case belongs to. Each case consists of multiple 
attributes, each of which takes on one of several possible values. The attributes 
consist of multiple predictor attributes (independent variables) and one target 
attribute (dependent variable). Each of the target attribute’s possible values is a class 
to be predicted on the basis of that case’s predictor attribute values.

1.3.1.1 Costs
Classification is used in customer segmentation, business modeling, credit analysis, 
and many other applications. For example, a credit card company may wish to 
predict which customers will default on their payments. Each customer corresponds 
to a case; data for each case might consist of a number of attributes that describe the 
customer’s spending habits, income, demographic attributes, etc. These are the 
predictor attributes. The target attribute indicates whether or not the customer has 
defaulted; that is, there are two possible classes, corresponding to having defaulted 
or not. The build data are used to build a model that you then use to predict, for 
new cases, whether those customers are likely to default. 
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A classification task begins with build data for which the target values (or class 
assignments) are known. Different classification algorithms use different techniques 
for finding relations between the predictor attributes’ values and the target 
attribute's values in the build data. These relations are summarized in a model, 
which can then be applied to new cases with unknown target values to predict 
target values. A classification model can also be used on build data with known 
target values, to compare the predictions to the known answers. This technique is 
used when testing a model to measure the model's predictive accuracy. The 
application of a classification model to new data is often called scoring the data.

In a classification problem, it may be important to specify the costs involved in 
making an incorrect decision. Doing so can be useful when the costs of different 
misclassifications varies significantly.

For example, suppose the problem is to predict whether a user will respond to a 
promotional mailing. The target has two categories: YES (the customer responds) 
and NO (the customer does not respond). Suppose a positive response to the 
promotion generates $500 and that it costs $5 to do the mailing. If the model 
predicts YES and the actual value is YES, the cost of misclassification is $0. If the 
model predicts YES and the actual value is NO, the cost of misclassification is $5. If 
the model predicts NO and the actual value is YES, the cost of misclassification is 
$500. If the model predicts NO and the actual value is NO, the cost is $0. 

The row indexes of a cost matrix correspond to actual values; the column indexes 
correspond to predicted values. For any pair of actual/predicted indexes, the value 
indicates the number of records classified in that pairing. 

Some algorithms, like Adaptive Bayes Network, optimize for the cost matrix 
directly, modifying the model structure so as to produce minimal cost solutions. 
Other algorithms, like Naive Bayes, that predict probabilities, use the cost matrix 
during scoring to propose the least expensive solution.

1.3.1.2 Priors
In building a classification model, you may need to balance the number of positive 
and negative cases for the target of a supervised model. This can happen either 
because a given target value is rare in the population, for example, fraud cases, or 
because the data you have does not accurately reflect the real population, that is, the 
data sample is skewed.

A classification model works best when it has a reasonable number of examples of 
each target value in its build data table. When only a few possible values exist, it 
works best with more or less equal numbers of each value.



Data Mining Functions

1-6 Oracle9i Data Mining Concepts

For example, a data table may accurately reflect reality, yet have 99% negatives in its 
target classification and only 1% positives. A model could be 99% accurate if it 
predicted on the negative case, yet the model would be useless.

To work around this problem, you can create a build data table in which positive 
and negative target values are more or less evenly balanced, and then supply priors 
information to tell the model what the true balance of target values is.

1.3.2 Clustering
Clustering is a technique useful for exploring data. It is particularly useful where 
there are many cases and no obvious natural groupings. Here, clustering data 
mining algorithms can be used to find whatever natural groupings may exist. 

Clustering analysis identifies clusters embedded in the data. A cluster is a collection 
of data objects that are similar in some sense to one another. A good clustering 
method produces high-quality clusters to ensure that the inter-cluster similarity is 
low and the intra-cluster similarity is high; in other words, members of a cluster are 
more like each other than they are like members of a different cluster. 

Clustering can also serve as a useful data-preprocessing step to identify 
homogeneous groups on which to build predictive models. Clustering models are 
different from predictive models in that the outcome of the process is not guided by 
a known result, that is, there is no target attribute. Predictive models predict values 
for a target attribute, and an error rate between the target and predicted values can 
be calculated to guide model building. Clustering models, on the other hand, 
uncover natural groupings (clusters) in the data. The model can then be used to 
assign groupings labels (cluster IDs) to data points. 

In ODM a cluster is characterized by its centroid, attribute histograms, and place in 
the clustering model hierarchical tree. ODM performs hierarchical clustering using 
an enhanced version of the k-means algorithm and O-Cluster, an Oracle proprietary 
algorithm. The clusters discovered by these algorithms are then used to create rules 
that capture the main characteristics of the data assigned to each cluster. The rules 
represent the hyperboxes (bounding boxes) that envelop the clusters discovered by 
the clustering algorithm. The antecedent of each rule describes the clustering 
bounding box. The consequent encodes the cluster ID for the cluster described by 
the rule. For example, for a dataset with two attributes: AGE and HEIGHT, the 
following rule represents most of the data assigned to cluster 10:

If AGE >= 25 and AGE <= 40
and HEIGHT >= 5.0ft
and HEIGHT <= 5.5ft
then CLUSTER = 10
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The clusters are also used to generate a Bayesian probability model which is used 
during scoring for assigning data points to clusters.

1.3.3 Association Rules
The Association Rules model is often associated with "market basket analysis", 
which is used to discover relationships or correlations among a set of items. It is 
widely used in data analysis for direct marketing, catalog design, and other 
business decision-making processes. A typical association rule of this kind asserts 
the likelihood that, for example,"70% of the people who buy spaghetti, wine, and 
sauce also buy garlic bread."

Association rules capture the co-occurrence of items or events in large volumes of 
customer transaction data. Because of progress in bar-code technology, it is now 
possible for retail organizations to collect and store massive amounts of sales data, 
referred to as "basket data." Association rules were initially defined on basket data, 
even though they are applicable in several other applications. Finding all such rules 
is valuable for cross-marketing and mail-order promotions, but there are other 
applications as well: catalog design, add-on sales, store layout, customer 
segmentation, web page personalization, and target marketing.

Traditionally, association rules are used to discover business trends by analyzing 
customer transactions. However, they can also be used effectively to predict Web 
page accesses for personalization. For example, assume that after mining the Web 
access log we discovered an association rule "A and B implies C," with 80% 
confidence, where A, B, and C are Web page accesses. If a user has visited pages A 
and B, there is an 80% chance that he/she will visit page C in the same session. Page 
C may or may not have a direct link from A or B. This information can be used to 
create a link dynamically to page C from pages A or B so that the user can 
"click-through" to page C directly. This kind of information is particularly valuable 
for a Web server supporting an e-commerce site to link the different product pages 
dynamically, based on the customer interaction. 

Association rule mining can be formally defined as follows: Let I = {i1, i2, ..., in} be a 
set of literals (constants: either a number or a character) called items and D be a set 
of transactions where each transaction T is a set of items such that T is a subset of I. 
Associated with each transaction is an identifier, called its TID. An association rule 
is an implication of the form X implies Y, where X and Y are both subsets of I, and X 
intersect Y is empty. The rule has support s in the database D if s% of the 
transactions in D contain both X and Y, and confidence c if c% of transactions that 
contain X also contain Y. The problem of mining association rules is to generate all 
rules that have support and confidence greater than the user-specified minimum 
support and minimum confidence, respectively.
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Algorithms that calculate association rules work in two phases. In the first phase, all 
combinations of items that have the required minimum support (called the 
"frequent item sets") are discovered. In the second phase, rules of the form X implies 
Y with the specified minimum confidence are generated from the frequent item sets. 
Typically the first phase is computationally expensive and has in recent years 
attracted attention from researchers all over the world. This has resulted in several 
innovative techniques for discovering frequent item sets.

There are several properties of association rules that can be calculated. ODM 
supports two: 

■ Support: Support of a rule is a measure of how frequently the items involved in 
it occur together. Using probability notation, support (A implies B) = P(A, B).

■ Confidence: Confidence of a rule is the conditional probability of B given A; 
confidence (A implies B) = P (B given A), which is equal to P(A, B) or P(A). 

These statistical measures can be used to rank the rules and hence the predictions.

1.3.4 Attribute Importance
Attribute Importance, also known as feature selection, provides an automated 
solution for improving the speed and possibly the accuracy of classification models 
built on data tables with a large number of attributes. 

Attribute Importance ranks the predictive attributes by eliminating redundant, 
irrelevant, or uninformative attributes and identifying those predictor attributes 
that may have the most influence in making predictions. ODM examines data and 
constructs classification models that can be used to make predictions about 
subsequent data. The time required to build these models increases with the 
number of predictors. Attribute Importance helps a user identify a proper subset of 
these attributes that are most relevant to predicting the target. Model building can 
proceed using the selected attributes (predictor attributes) only. 

Using fewer attributes decreases model building time, although sometimes at a cost 
in predictive accuracy. Using too many attributes (especially those that are "noise") 
can affect the model and degrade its performance and accuracy. By extracting as 
much information as possible from a given data table using the smallest number of 
attributes, a user can save significant computing time and often build better models. 

Attribute Importance permits the user to specify a number or percentage of 
attributes to use; alternatively the user can specify a cutoff point. After an Attribute 
Importance model is built, the user can select the subset of attributes based on the 
ranking or the predictive value.
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Attribute Importance can be applied to data tables with a very large set of 
attributes. However, the DBA may have to tune the database in various ways to 
ensure that a large Attribute Importance build executes efficiently. For example, it is 
important to ensure that there is adequate swap space and table space. 

1.4 ODM Algorithms
Oracle9i Data Mining supports the following data mining algorithms: 
■ Adaptive Bayes Network (classification)
■ Naive Bayes (classification)
■ Model Seeker (classification)
■ k-Means (clustering)
■ O-Cluster (clustering)
■ Predictor variance (attribute importance)
■ Apriori (association rules)

The choice of data mining algorithm depends on the data and the conclusions to be 
reached.

For classification: 
■ Choose ABN if you

– have a large number of attributes
– need model transparency, that is, rules that explain the model
– want more options to control the amount of time required to build the 

model

■ Choose NB for the fastest build time

■ Choose Model Seeker if you

– are unsure which settings should be provided

– wish to compare Naive Bayes to Adaptive Bayes Network automatically

– the figure of merit for computing the "best" model is appropriate for your 
situation

For clustering: 
■ Choose O-Cluster if you 

– want the number of clusters to be automatically determined
– have both categorical and numerical attributes
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– have a large number of attributes >20)
– have a large number of cases (>1000)

■ Choose k-means if you
– want to specify the number of clusters
– need to mine only numerical attributes
– have small tables (<100 rows)

– a small number of attributes (<100)

1.4.1 Adaptive Bayes Network
Adaptive Bayes Network (ABN) is an Oracle proprietary algorithm supporting 
decision-tree-like features in that it produces "rules". ABN provides a fast, scalable, 
non-parametric means of extracting predictive information from data with respect 
to a target attribute. (Non-parametric statistical techniques avoid assuming that the 
population is characterized by a family of simple distributional models, such as 
standard linear regression, where different members of the family are differentiated 
by a small set of parameters.)

ABN can provide such information in the form of human-understandable rules. For 
example, a rule may be "If income is $70K-$80K and household size is 3-5, the 
likelihood of owning a late-model minivan is YES." The rules produced by ABN are 
one of its main advantages over Naive Bayes. The business user, marketing 
professional, or business analyst can understand the basis of the model’s 
predictions and can therefore be comfortable acting on them and explaining them to 
others.

In addition to explanatory rules, ABN provides performance and scalability, which 
are derived via a collection of user parameters controlling the trade-off of accuracy 
and build time.

ABN predicts binary as well as multiclass targets. Binary targets are those that take 
on only two values, for example, buy and not buy. Multiclass targets have more than 
two values, for example, products purchased (product A or product B or product 
C). Multiclass target values are not assumed to exist in an ordered relation to each 
other, for example, hair brush is not assumed to be greater or less than comb.

ABN can use costs and priors for both building and scoring (see Section 1.3.1.1, 
"Costs" and Section 1.3.1.2, "Priors").

A key concept for ABN is network feature. Network features are like individual 
decision trees. Features are tree-like multi-attribute structures. From the standpoint 
of the network, features are conditionally independent components. Features 



ODM Algorithms

Basic ODM Concepts 1-11

contain at least one attribute (the root attribute). Conditional probabilities are 
computed for each value of the root predictor. A two-attribute feature will have, in 
addition to the root predictor conditional probabilities, computed conditional 
probabilities for each combination of values of the root and the depth 2 predictor. 
That is, if a root predictor, x, has i values and the depth 2 predictor, y, has j values, a 
conditional probability is computed for each combination of values {x=a, y=b such 
that a is in the set [1,..,i] and b is in the set [1,..,j]}. Similarly, a depth 3 predictor, z, 
would have an additional associated conditional probability computed for each 
combination of values {x=a, y=b, z=c such that a is in the set [1,..,i] and b is in the set 
[1,..,j] and c is in the set [1,..,k]}.

1.4.1.1 Build Parameters
To control the execution time of a build, ABN provides four user-settable 
parameters: 

■ MaximumNetworkFeatureDepth: This parameter restricts the depth of any 
individual network feature in the model. At each depth for an individual 
network feature, there is only one predictor. Each depth level requires a scan of 
the data to accumulate the counts required for predictor selection and 
probability estimates and an apply operation on a sample to test for 
significance. Thus, the computational cost of deep feature builds may be high. 
The range for this parameter consists of the positive integers. The NULL or 0 
value setting has special meaning: unrestricted depth. Builds beyond depth 7 
are rare. Setting this parameter to 1 makes the algorithm act like a Naive Bayes 
model with stepwise attribute selection. ABN may stop model building well 
before reaching the maximum. The default is 10. 

■ MaximumNumberOfNetworkFeatures: This controls the maximum number of 
features included in the model. It also controls the number of predictors in the 
Naive Bayes model it tests as a first step in its model selection procedure. 
Subsequent steps in the model build procedure construct multidimensional 
features by extending single-predictor "seed" features. Note that the seed 
features are extended in rank order. During stepwise selection, subsequent 
features must improve the model as measured by MDL (Minimum Description 
Length) relative to the current state of the model. Thus the likelihood of 
substantial benefit from extending later features declines rapidly. The default 
is 10.

■ MaximumConsecutivePrunedNetworkFeatures: This is the maximum number 
of consecutive pruned features before halting the stepwise selection process. A 
negative value of –1 is used to indicate that only the Naive Bayes model and a 
single-feature model are constructed. If the Naive Bayes model is best, then it is 
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selected. Otherwise, all as-yet untested features are pruned from the final 
feature tree array. The default is –1.

■ MaximumBuildTime: The maximum build time (in minutes) allows the user to 
build quick, possibly less accurate models for immediate use or simply to get a 
sense of how long it will take to build a model with a given set of data. To 
accomplish this, the algorithm divides the build into milestones (model states) 
representing complete functional models. The algorithm completes at least a 
single milestone and then projects whether it can reach the next one within the 
user-specified maximum build time. This decision is revisited at each milestone 
achieved until either the model build is complete or the algorithm determines it 
cannot reach the next milestone within the user-specified time limit. The user 
has access to the statistics produced by the time estimation procedure. The 
default is NULL (no time limit):

Model States:

– CompleteMultiFeature: Multiple features have been tested for inclusion in 
the model. MDL pruning has determined whether the model actually has 
one or more features. The model may have completed either because there 
is insufficient time to test an additional feature or because the number of 
consecutive features failing the stepwise selection criteria exceeded the 
maximum allowed or seed features have been extended and tested.

– CompleteSingleFeature: A single feature has been built to completion.

– IncompleteSingleFeature: The model consists of a single feature of at least 
depth two (two predictors) but the attempts to extend this feature have not 
completed.

– NaiveBayes: The model consists of a subset of (single-predictor) features 
that individually pass MDL correlation criteria. No MDL pruning has 
occurred with respect to the joint model.

The algorithm outputs its current model state and statistics that provide an 
estimate of how long it would take for the model to build (and prune) a feature.

See Table 1–1, below, for a comparison of the main characteristics of the two 
classification algorithms, Adaptive Bayes Network and Naive Bayes. 

1.4.2 Naive Bayes Algorithm
The Naive Bayes algorithm (NB) makes predictions using Bayes’ Theorem, which 
derives the probability of a prediction from the underlying evidence, as described 
below. NB affords fast model building and scoring.



ODM Algorithms

Basic ODM Concepts 1-13

NB can be used for both binary and multiclass classification problems to answer 
questions such as "Which customers will switch to a competitor? Which transaction 
patterns suggest fraud? Which prospects will respond to an advertising campaign?" 
For example, suppose a bank wants to promote its mortgage offering to its current 
customers and that, to reduce promotion costs, it wants to target the most likely 
prospects. The bank has historical data for its customers, including income, number 
of household members, money-market holdings, and information on whether a 
customer has recently obtained a mortgage through the bank. Using NB, the bank 
can predict how likely a customer is to respond positively to a mortgage offering. 
With this information, the bank can reduce its promotion costs by restricting the 
promotion to the most likely candidates.

Bayes’ Theorem proves the following equation:

P(this-prediction | this-evidence) =            P(this-prediction) P(this-evidence | this-prediction)            
sumP(some-prediction) P(this-evidence | some-prediction)

where P means "probability of", " | " means "given", and "sum" means "sum of all 
these terms". Translated into English, the equation says that the probability of a 
particular predicted event, given the evidence in this instance, is computed from 
three other numbers: the probability of that prediction in similar situations in 
general, ignoring the specific evidence (this is called the prior probability); times the 
probability of seeing the evidence we have here, given that the particular prediction 
is correct; divided by the sum, for each possible prediction (including the present 
one), of a similar product for that prediction (i.e., the probability of that prediction 
in general, times the probability of seeing the current evidence given that possible 
prediction).

NB assumes that each attribute, or piece of evidence, is independent from the 
others. In practice, this assumption usually does not degrade the model’s predictive 
accuracy significantly, and makes the difference between a computationally feasible 
algorithm and an intractable one.

It is useful to have a good estimate of the accuracy of any predictive model. An 
especially accurate estimate of accuracy is a type of cross-validation called 
"leave-one-out cross-validation", discussed below. 

Naive Bayes cross-validation permits the user to test model accuracy on the same 
data that was used to build the model, rather than building the model on one 
portion of the data and testing it on a different portion. Not having to hold aside a 
portion of the data for testing is especially useful if the amount of build data is 
relatively small.

"Leave-one-out cross-validation" is a special case of cross-validation in which one 
record is left out of the build data when building each of several models. The 
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number of models built equals the number of records (omitting a different build 
record for each model), which makes this procedure computationally expensive. 
With Naive Bayes models, however, the approach can be modified such that all 
build records are used for building a single model. Then, the model is repeatedly 
modified to quickly remove the effects of one build record, incrementally 
"unbuilding" the model for that record, as though that record had been omitted 
when building the model in the first place. The accuracy of the prediction for each 
build record can then be assessed against the model that would have been built 
from all the build records except that one, without having had to actually build a 
separate model for each build record.

To use Naive Bayes cross-validation, the user executes a MiningTaskCrossValidate 
task, specifying that a Naive Bayes model is to be built and tested. The execution of 
the cross-validate task creates a MiningTestResult object populated with the test 
results.

See Table 1–1, below, for a comparison of the main characteristics of ABN and NB. 

1.4.3 Model Seeker
Model Seeker is a new feature of the ODM API that allows a user to build multiple 
classifications, evaluate the models, and select a "best" model, asynchronously.

The models to be built and evaluated can be a combination of Naive Bayes (NB) and 
Adaptive Bayes Network (ABN) models. Model Seeker does not build 
unsupervised models.

Table 1–1 Comparison of Adaptive Bayes Network and Naive Bayes

Feature Adaptive Bayes Network Naive Bayes

Number of cases Any size Any size

Number of 
attributes

Any number (built-in feature 
selection)

Best if less than 200

Speed Not as fast Faster

Accuracy As accurate or more accurate than 
Naive Bayes

As accurate or less accurate than 
Adaptive Bayes Network

Attribute types Numerical (binned) and 
categorical

Numerical (binned) and 
categorical

Automatic binning Yes Yes

Target attribute Binary and multiclass Binary and multiclass
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After building the specified models, Model Seeker evaluates each model by testing 
and calculating lift. Model Seeker generates a summary of information about each 
model built so that a user can manually select the "best" model using different 
criteria, if desired.

Model Seeker’s criterion for the "best" model is the one with the largest value for 
the weighted target positive and total negative relative error rate. The weight is set 
as the relative importance of the positive category to the other categories treated as 
a single negative category. If the weight is set to 1.0, the positive category error rate 
has the same weight as all the other categories combined.

The following formula is used to calculate the figure of merit (FOM) for the "best" 
model, where FOM is the weighted sum of target positive relative accuracy and 
total negative relative accuracy: 

FOM =    W  * (number of correct positives) +   (number of correct negatives)       
( W  + 1 ) * (number of actual positives) ( W  + 1 ) * (number of actual negatives)

 
where W is the user-specified weight, a value that must be > 0. The weight is the 
ratio of the false negative cost to the false positive cost. A weight of 1 means that the 
false positives and false negatives have equal weight.

1.4.4 Enhanced k-Means Algorithm
The k-means algorithm is a distance-based clustering algorithm that partitions the 
data into a predetermined number of clusters (provided there are enough distinct 
cases). The k-means algorithm works only with numerical attributes. Distance-based 
algorithms rely on a distance metric (function) to measure the similarity between 
data points. Data points are assigned to the nearest cluster according to the distance 
metric used.

ODM implements a hierarchical version of the k-means algorithm. The tree can 
either be grown one level at a time (balanced approach) or one node at the time 
(unbalanced approach). The node with the largest distortion (sum of distance to the 
node's centroid) is split to increase the size of the tree until the desired number of 
clusters is reached. 

This incremental approach to k-means avoids the need for building multiple 
k-means models and provides clustering results that are consistently superior to the 
traditional k-means. 

The choice between balanced and unbalanced approaches is controlled by the 
system parameter CL_ALG_SETTING_TREE_GROWTH in the 
ODM_CONFIGURATION table. The balanced approach is faster than the 
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unbalanced approach, while the unbalanced approach generates models with 
smaller overall distortion.

1.4.4.1 Binning for k-Means
ODM-enhanced k-means bins the data internally, thus providing automatic data 
discretization. However, if manual binning is used, the bin values should be 
represented by contiguous integer numbers starting at 1. In addition, the same 
number of bins should be used for all attributes.

k-means works with numerical data only. As a result, if a user would like to cluster 
data with categorical attributes, he/she should "explode" the categorical attribute 
into multiple binary columns (one per unique value of the categorical attribute) 
before using ODM clustering k-means.

1.4.4.2 Scalability through Summarization
Because traditional k-means requires multiple passes through the data, it can be 
impractical for large data tables that don’t fit in memory. In this case multiple 
expensive database scans would be required. ODM’s enhanced k-means requires 
at most one database scan. For data tables that don’t fit in memory, the enhanced 
k-means algorithm employs a smart summarization approach that creates a 
summary of the data table that can be stored in memory. This approach allows the 
enhanced k-means algorithm to handle data tables of any size. The summarization 
scheme can be seen as a smart sampling approach that first identifies the main 
partitions in the data and then generates summary points for each partition in 
proportion to their share of the total data. Each summary point has a weight that 
accounts for the proportion of the data it represents.

1.4.4.3 Scoring
The clusters discovered by enhanced k-means are used to generate a Bayesian 
probability model that is then used during scoring (model apply) for assigning data 
points to clusters. The traditional k-means algorithm can be interpreted as a mixture 
model where the mixture components are spherical multivariate normal 
distributions with the same variance for all components. (A mixture model is a type 
of density model that includes several component functions (usually Gaussian) that 
are combined to provide a multimodal density.)

In the mixture model created from the clusters discovered by enhanced k-means, on 
the other hand, the mixture components are a product of independent normal 
distribution with potentially different variances. Because of this greater flexibility, 
the probability model created by enhanced k-means provides a better description of 
the underlying data than the underlying model of traditional k-means.
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See Table 1–2, below, for a comparison of the main characteristics of the two 
clustering algorithms. 

1.4.5 O-Cluster Algorithm
The O-Cluster algorithm creates a hierarchical grid-based clustering model, that is, 
it creates axis-parallel partitions in the input attribute space. The algorithm operates 
recursively. The resulting hierarchical structure represents an irregular grid that 
tessellates the attribute space into clusters. The resulting clusters define dense areas 
in the attribute space. The clusters are described by intervals along the attribute 
axes and the corresponding centroids and histograms. A parameter called sensitivity 
defines a baseline density level. Only areas with peak density above this baseline 
level can be identified as clusters. 

1.4.5.1 Binning for O-Cluster
O-Cluster bins the data internally, thus providing automatic data discretization. 
However, if manual binning is used, the bin values should be represented by 
contiguous integer numbers starting at 1. 

1.4.5.2 Attribute Type
Binary attributes should be declared as categorical. O-Cluster distinguishes between 
continuous and discrete numerical attributes. The two types of attributes undergo 
different binning procedures in order to capture the characteristics of the 
underlying distributions. For example, a discrete numerical attribute such as age 
should be declared of data type INTEGER. On the other hand, continuous 
numerical attributes such as height measured in feet should be declared of data 
type NUMBER. 

1.4.5.3 Scoring
The clusters discovered by O-Cluster are used to generate a Bayesian probability 
model that is then used during scoring (model apply) for assigning data points to 
clusters. The generated probability model is a mixture model where the mixture 
components are represented by a product of independent normal distributions for 
numerical attributes and multinomial distributions for categorical attributes.

The main characteristics of the enhanced k-means and O-Cluster algorithms are 
summarized in Table 1–2, below.
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1.4.6 Predictor Variance Algorithm
ODM Attribute Importance is implemented using the Predictor Variance algorithm. 
Predictor Variance estimates the variances of the predictor target combinations and 
the variance with respect to the other predictors. 

The basic concept is that the higher the sum of the variances, the more informative 
the predictor attribute is in the build data table. These statistics give an idea of how 
correlated each predictor is with the target attribute. Predictor variance assesses the 
relative usefulness of each attribute for making predictions for rows in general, 
instead of making a prediction for any particular case. 

For algorithms like ABN that perform automatic attribute selection, the attributes 
selected may differ significantly from Predictor Variance. This is because of the 
different techniques used to derive the important attributes.

1.4.7 Apriori Algorithm
The association rule mining problem can be decomposed into two subproblems:

■ Find all combinations of items, called frequent itemsets, whose support is 
greater than minimum support.

Table 1–2 Comparison of Enhanced k-Means and O-Cluster

Feature Enhanced k-means O-Cluster

Clustering 
methodology

Distance-based Grid-based

Number of cases Handles tables of any size. Uses 
summarization for tables that 
don’t fit in the memory buffer.

Good for data tables that have 
more than 1,000 cases

Number of attributes Good for datasets that have 10 
or fewer attributes

Good for data tables that have 
more than 10 attributes

Number of clusters User-specified Automatically determined

Attribute type Numerical attributes only Numerical and categorical 
attributes

Hierarchical clustering Yes Yes

Probabilistic cluster 
assignment

Yes Yes

Automatic data 
normalization

Yes Yes
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■ Use the frequent itemsets to generate the desired rules. The idea is that if, for 
example, ABCD and AB are frequent, then the rule AB implies CD holds if the 
ratio of support(ABCD) to support(AB) is at least as large as the minimum 
confidence. Note that the rule will have minimum support because ABCD is 
frequent.

The Apriori algorithm for finding frequent itemsets makes multiple passes over the 
data. In the kth pass, it finds all itemsets having k items, called the k-itemsets. Each 
pass consists of two phases. Let Fk represent the set of frequent k-itemsets, and Ck 
the set of candidate k-itemsets (potentially frequent itemsets). First, is the candidate 
generation phase where the set of all frequent (k-1) itemsets, Fk-1, found in the (k-1)th 
pass, is used to generate the candidate itemsets Ck. The candidate generation 
procedure ensures that Ck is a superset of the set of all frequent k-itemsets. A 
specialized in-memory hash-tree data structure is used to store Ck. Then, data is 
scanned in the support counting phase. For each transaction, the candidates in Ck 
contained in the transaction are determined using the hash-tree data structure and 
their support count is incremented. At the end of the pass, Ck is examined to 
determine which of the candidates are frequent, yielding Fk. The algorithm 
terminates when Fk or Ck+1 becomes empty.

In ODM, we use an SQL-based implementation of the Apriori algorithm. The 
candidate generation and support counting steps are implemented using SQL 
queries. We do not use any specialized in-memory data structures. The SQL queries 
are fine-tuned to run efficiently in the database server by using various hints. 

1.5 Data Mining Tasks
Data mining tasks in ODM include model building, testing, computing lift, and 
applying (scoring), as well as importing and exporting a PMML representation of 
certain models.

All models go through a build process. Classification models also have a testing 
phase in which a different data table also containing known target values is 
presented to the model and the predicted value is compared with the known (or 
actual) target values. Association Rules, Attribute Importance, and clustering 
models do not have a testing phase, nor do they compute lift. Classification models 
and clustering models can both be used to score a data table, whereas an association 
rules model does not support scoring. ODM imports and exports PMML models for 
Naive Bayes classification and Association Rules. Attribute Importance supports 
only build since it produces an importance ordering of the attributes.

Table 1–3 compares data mining tasks performed for the different ODM functions.
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Table 1–3 Data Mining Tasks per Function

1.5.1 Model Build
ODM supports two levels of settings: function and algorithm. When the function 
level settings do not specify particular algorithm settings, ODM chooses an 
appropriate algorithm and provides defaults for the relevant parameters. In general, 
model building at the function level eliminates many of the technical details of data 
mining.

Models are built in the data mining server (DMS). After a model is built, it is 
persisted in the DMS and can be accessed by its user-specified unique name.

The typical steps for model building are as follows:

1. Specify input data by creating a physical data specification that references an 
existing data table or view (see Section 1.6.1, "Physical Data Specification"). This 
data may or may not have been prepared (for example, binned) manually (see 
Section 1.8, "Discretization (Binning)").

2. Create a mining function settings object, which specifies function-level 
parameters to the algorithm (see Section 1.6.2, "Mining Function Settings").

3. Create a logical data specification and associate it with the mining function 
settings (see Section 1.6.4, "Logical Data Specification").

4. Create mining algorithm settings (optional), which specifies algorithm-specific 
parameters to the algorithm.

5. Create a build task and invoke the execute method.

See Section 2.2, "Using ODM to Perform Mining Tasks" in Chapter 2.

Figure 1–1 illustrates the build process. Raw data undergoes the transformations 
specified by the user and may also be manually binned (i.e., sorted into bins) 
according to user-specified bin boundaries. The resulting data table, that is, the build 

Function Build Test
Compute 
Lift

Apply 
(Score)

Import 
PMML

Export 
PMML

Classification X X X X Naive 
Bayes

Naive 
Bayes

Clustering X X

Association Rules X X X

Attribute Importance X
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data table, is fed to the appropriate ODM algorithm, along with mining function 
settings. The algorithm performs further data preprocessing that may include 
automatic internal binning, and then performs the build. The resulting model 
includes bin boundary tables internal to the algorithm, i.e., the ones that resulted 
from automatic binning. They are not part of the model if you did not choose 
automatic binning. 

Figure 1–1 The Build Process

1.5.2 Model Test
Classification models can be tested to get an estimate of their accuracy. 

After a model is built, model testing estimates the accuracy of a model’s predictions 
by applying it to a new data table that has the same format as the build data table 
(see Section 1.6.4, "Logical Data Specification"). The test results are stored in a 
mining test result object. A classification test result includes a confusion matrix (see 
Section 1.6.9, "Confusion Matrix") that allows a user to understand the type and 
number of classification errors made by the model. 
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1.5.3 Computing Lift
ODM supports computing lift for a classification model. Lift can be computed for 
binary (2 values) target fields and multiclass (more than 2 values) target fields. 
Given a designated positive target value, that is, the value of most interest for 
prediction, such as "buyer," or "has disease," test cases are sorted according to how 
confidently they are predicted to be positive cases. Positive cases with highest 
confidence come first, followed by positive cases with lowest confidence. Negative 
cases with lowest confidence come next, followed by negative cases with highest 
confidence. Based on that ordering, they are partitioned into quantiles, and the 
following statistics are calculated: 

■ Target density of a quantile is the number of actually positive instances in that 
quantile divided by the total number of instances in the quantile. 

■ Cumulative target density is the target density computed over the first n 
quantiles.

■ Quantile lift is the ratio of target density for the quantile to the target density 
over all the test data. 

■ Cumulative percentage of records for a given quantile is the percentage of all test 
cases represented by the first n quantiles, starting at the end that is most 
confidently positive, up to and including the given quantile. 

■ Cumulative number of targets for a given quantile is the number of actually 
positive instances in the first n quantiles (defined as above). 

■ Cumulative number of nontargets is the number of actually negative instances in 
the first n quantiles (defined as above). 

■ Cumulative lift for a given quantile is the ratio of the cumulative target density 
to the target density over all the test data. 

Targets_cumulative can be computed from the quantities that are available in the 
odm_lift_result_entry using the following formula:

targets_cumulative = lift_cumulative * percentage_records_cumulative

1.5.4 Model Apply (Scoring)
Applying a classification model such as Naive Bayes or Adaptive Bayes Network to 
data produces scores or predictions with an associated probability. Applying a 
clustering model to data produces, for each case, a predicted cluster identifier and 
the probability that the case is in that cluster. The apply data must be in the same 
format and state of preprocessing as the data used to build the model.
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Applying a clustering model to new data produces, for each case, a predicted 
cluster identifier and the probability that the case belongs to that cluster. The apply 
data must be in the same format and state of preprocessing as the data used to build 
the model.

Figure 1–2 shows the apply process. Note that the input data for the apply process 
must undergo the same preprocessing undergone by the build data table. The data 
to be scored must have attributes compatible with those of the build data, that is, it 
must have the same attributes with the same names and respective data types or 
there must be a suitable mapping of one to the other. The apply data table can have 
attributes not found in the build data table. The result of the apply operation is 
placed in the schema specified by the user.

Figure 1–2 The Apply Process

The ODM user specifies the result content. For example, a user may want the 
customer identifier attribute, along with the score and probability, to be output into a 
table for each record in the provided mining data. This is specified using the 
MiningApplyOutput class.

ODM supports the apply operation for a table (a set of cases) or a single case 
(represented by a Java object). ODM supports multicategory apply, obtaining 
multiple class values with their associated probabilities for each case.
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1.6 ODM Objects and Functionality
The principal objects that constitute Oracle9i Data Mining are described below.

1.6.1 Physical Data Specification
A physical data specification object specifies the characteristics of the physical 
data to be used for mining, for example, whether the data is in transactional or 
nontransactional format and the roles the various data columns play. The data 
referenced by a physical data specification object can be used in several ways: 
model building, testing, computing lift, scoring, transformations, etc. 

ODM physical data must be in one of two formats:
■ Transactional
■ Nontransactional

These formats describe how to interpret each case as stored in a given database 
table. See Figure 1–3.

1.6.1.1 Transactional Data Format
In transactional data format, each case is stored as multiple records in a table with 
columns sequenceID, attribute_name, and value (these are names user-defined names). 
This format is also referred to as multi-record case.

sequenceID is an integer that associates multiple records in a transactional table. 
attribute_name is a string containing the name of the attribute. value is an integer 
representing the value of the attribute. Note that the values in the Value column 
must be integers; they become integers when they are binned, that is, the bin ID is 
an integer (see Section 1.8, "Discretization (Binning)").

1.6.1.2 Nontransactional Data Format
In nontransactional format, each case is stored as one record (row) in a table. 
Nontransactional data is not required to provide a key column to uniquely identify 
each record. However, a key is recommended to associate cases with resulting 
scores for supervised learning. This format is also referred to as single-record case.

Note that in Oracle 9i, ODM algorithms automatically convert all nontransactional 
data to transactional data prior to model building. If data is already in transactional 
format, algorithm performance can be enhanced over data in nontransactional 
format.
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Figure 1–3 Nontransactional and Transactional Data Format
 

1.6.2 Mining Function Settings
A mining function settings (MFS) object contains the high-level parameters for 
building a mining model. Oracle9i Data Mining supports several mining algorithms 
for building a model.

The mining function settings allow a user to specify the type of problem to solve 
(for example, classification) without having to specify a particular algorithm. The 
ODM API allows a user to specify an algorithm; however, if none is specified, the 
data mining system selects an algorithm based on the function settings the user has 
specified. For example, if the user specifies clustering, the DMS may select k-means 
as the algorithm to build the model.

Each MFS object consists of the following:
■ parameters specific to the mining function
■ a logical data specification
■ a data usage specification

ODM supports the persistence of mining function settings as independent, named 
entities in the Data Mining Server (DMS). 
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Table 1–4 displays function-level parameter settings and their default values. 

1.6.3 Mining Algorithm Settings
A mining algorithm settings object contains the parameters associated with a 
particular algorithm for building a model. It allows expert data miners to fine-tune 
the behavior of the algorithm. Generally, not all parameters must be specified. 
Missing parameters are replaced with system default values. Algorithm parameters 
are algorithm-specific, along with their corresponding default values.

ODM’s design, which separates mining algorithm settings from mining function 
settings, enables non-expert data miners to use ODM effectively, while expert data 
miners can have the control they need. 

Table 1–5 displays the algorithm-level parameters and their default values. The 
default algorithm for a function appears in boldface type.

Table 1–4 Parameter Settings by Function

Function Parameter Default

Classification CostMatrix NULL

Priors NULL

Clustering MaxNumberOfClusters 20

Association Rules MinimumSupport 0.1

MinimumConfidence 0.1

MaximumRuleLength 2

Attribute Importance None

Table 1–5 Parameter Settings by Algorithm

Function Algorithm Parameter Default

Classification ABN MaximumNetworkFeatureDepth 10

MaximumNumberOfNetwork- 
Features

10

MaximumConsecutivePruned- 
NetworkFeatures

–1

MaximumBuildTime NULL

NB singletonThreshold 0.1

pairwiseThreshold 0.1
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1.6.4 Logical Data Specification
A logical data specification (LDS) object is a set of mining attribute (see Section 1.6.5, 
"Mining Attributes") instances that describes the logical nature of the data used as 
input for model building. This set of mining attributes is the basis for producing the 
signature of the model. Each mining attribute specified in a logical data specification 
must have a unique name.

As stored in the DMS, each MFS has its own copy of the LDS, even if references are 
shared in the API client process.

1.6.5 Mining Attributes
A mining attribute is a logical concept that describes a domain of data used as input 
to an ODM data mining operation. Mining attributes are either categorical or 
numerical. For example, domains of data include "age" ranging from 0 to 100, 
"buyer" with values true and false. A mining attribute specifies the name, data type, 
and attribute type (categorical or numeric).

1.6.6 Data Usage Specification
A data usage specification (DUS) object specifies how the attributes in a logical data 
specification (LDS) instance are used for building a model. A specification contains 
at most one data usage entry instance for each mining attribute in the LDS. If no 
data use is specified for an attribute, the default usage is active, implying that the 
attribute is used in building a model. 

Clustering k-means DistanceFunction Euclidean

Iterations 7

Error 0.05

StoppingCriterion ErrorAnd- 
Iterations

O-Cluster Sensitivity 0.5

Association Rules N/A

Attribute Importance Predictor 
Variance

None

Table 1–5 Parameter Settings by Algorithm

Function Algorithm Parameter Default
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Usage includes specifying:

■ whether an attribute is active (to be used in the model build process), inactive 
(ignored), or supplementary (an attribute for use with results output during 
scoring but not during model build)

■ whether an attribute is a target for a supervised learning model

1.6.6.1 ODM Attribute Names and Case
ODM’s treatment of attribute names differs from that of Oracle SQL. Oracle SQL 
can treat attribute names in a case-insensitive manner; ODM attribute names, 
however, are case-sensitive. The implications of this for ODM users are:

■ The specification of attribute names must be consistent across build, test, 
compute lift, and apply tasks. For example, if a given target attribute name is 
specified for build in mixed-case format, then the same format must be 
maintained while specifying the attribute for test, apply, and lift.

■ For a MiningApply output specification, the API allows the specification of 
aliases for active and supplementary attributes; the results are based on these 
aliases. These aliases must be unique and case-insensitive.

1.6.7 Mining Model
A mining model object is the result of building a model based on a mining function 
settings object. The representation of the model depends on the algorithm specified 
by the user or selected by the DMS. Some models can be used for direct inspection, 
for example, to examine the rules produced from association rules or clusters, 
others to generate predictions, for example, using a classification model.

ODM supports the persistence of mining models as independent, named entities in 
the DMS. A mining model contains a copy of the mining function settings (MFS) 
used to build it. Models cannot be stored by the user.

1.6.8 Mining Results
A mining result object contains the end products of one of the following mining 
tasks: build, test, compute lift, or apply. ODM supports the persistence of mining 
results as independent, named entities in the DMS.

A mining result object contains the operation start time and end time, the name of 
the model used, input data location, and output data location (if any) for the data 
mining operation. 
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A build result contains the model details. It provides the function and algorithm 
name of the model.

An apply result names the destination table (schema and table name) for the result. 

A test result, for classification models, contains the model accuracy and references 
the confusion matrix.

A lift result of the lift elements is calculated on a per-quantile basis. 

1.6.9 Confusion Matrix
The row indexes of a confusion matrix correspond to actual values observed and 
used for model testing; the column indexes correspond to predicted values produced 
by applying the model to the test data. For any pair of actual/predicted indexes, the 
value indicates the number of records classified in that pairing. For example, a 
value of 25 for an actual value index of "buyer" and a predicted value index of 
"nonbuyer" indicates that the model incorrectly classified a "buyer" as a "nonbuyer" 
25 times. A value of 516 for an actual/predicted value index of "buyer" indicates 
that the model correctly classified a "buyer" 516 times. 

The predictions were correct 516 + 725 = 1241 times, and incorrect 25 + 10 = 35 
times. The sum of the values in the matrix is equal to the number of scored records 
in the input data table. The number of scored records is the sum of correct and 
incorrect predictions, which is 1241 + 35 = 1276. The error rate is 35/1276 = 0.0274; 
the accuracy rate is 1241/1276 = 0.9725.

A confusion matrix provides a quick understanding of model accuracy and the types 
of errors the model makes when scoring records. It is the result of a test task for 
classification models.

Figure 1–4 Confusion Matrix
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1.6.10 Mining Apply Output
A mining apply output instance contains several items that allow users to tailor the 
results of a model apply operation. Output can be in one or more of the following 
forms: 

■ scalar data to be passed through to the output from the input data table, for 
example, key attributes

■ computed values from the apply itself such as score and probability

■ for transactional input data, the sequence ID associated with a given case

The resulting data representation is in nontransactional form (one record per result). 

Through the mining apply object, ODM supports specifying names for the resulting 
data columns.

There are two types of input to the apply mining operation: a database table for batch 
scoring and an individual record for record scoring. Apply input data must contain 
the same attributes that were used to build the model. However, the input data may 
contain additional attributes, which may appear in the output to describe the 
output (see source attribute, below). 

Batch scoring using an input database table results in a table called the apply output 
table. An input record is represented as an instance of RecordInstance that contains a 
set of AttributeInstance objects, each of which describes the name of the attribute, the 
data type, and the value. The result of record scoring is also an instance of 
RecordInstance. The output of the apply mining operation is specified by 
MiningApplyOutput.

An instance of MiningApplyOutput is a specification of the data to be included in the 
apply output (either a table or a record) created as the result of the apply mining 
operation. The columns (or attributes) in the apply output are described by a 
combination of multiple ApplyContentItem objects. Each item can be one of the 
following:

■ Source attribute: The apply output table (or record) may contain columns 
copied directly from the input table (or record). These are called source attributes, 
and each is represented by an instance of ApplySourceAttributeItem. Source 
attributes can be used to identify the individual source cases in the apply 
output, i.e., associate a key with each output record. There can be no more than 
997 source attributes the output table.

■ Multiple predictions based on probability: An instance of 
ApplyMultipleScoringItem results in top or bottom n predictions ordered by 
probability of the predictions, where n can range from 1 to the total number of 
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target values. One such item produces two columns in the output: prediction 
and probability, each of which is named by the user. There can be at most one 
instance of ApplyMultipleScoringItem in a MiningApplyOutput object.

Typically, users select "top" with n = 1 for obtaining the top likely prediction for 
each case from, for example, a classification model. However, other users may 
require seeing the top three predictions, for example, for recommending 
products to a customer.

■ Multiple predictions based on target values: An instance of 
ApplyTargetProbabilityItem results in predictions for target values. Each such 
target value must be one of the original target values used to build the model. A 
given target value can be specified at most once. One such item produces up to 
three columns in the output: prediction, (optional) probability, and (optional) 
rank, each of which is named by the user. Probability and rank are optional. 
There can be at most one instance of ApplyTargetProbabilityItem or 
ApplyMultipleScoringItem in a MiningApplyOutput object. This option is useful 
when interested in the probability of a particular prediction, for example, if a 
retailer has many red sweaters, what is the probability the customer would buy 
something red?

The number of columns in the apply output table varies depending on the 
combination of items. When multiple target values are specified by 
MiningApplyOutput (if n > 1), n rows of output table correspond to the prediction 
for an input row. 

Consider an input table of 15 rows. If the top 2 predictions (n = 2) with probabilities 
are specified in MiningApplyOutput with one source attribute from the input table, 
there will be 3 columns in the output table: the source attribute, the prediction, and 
its probability.The number of rows in the output table is 30 because the result of 
apply for each input row will be 2 rows (top 2) in the output table.

If the input data is transactional, the sequence ID is automatically included in the 
output table. However, explicit inclusion of source attributes is required for 
nontransactional data. 
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1.7 Missing Values 
In this section, we discuss ODM’s handing of missing values.

1.7.1 Missing Values Handling
Data tables often contain missing values, that is, one or more of the attributes in a 
case have a null value. ODM handles missing values as follows, depending on the 
data format:

■ For nontransactional data, an attribute name and value pair is used only if the 
value is not null; otherwise, it is ignored.

■ For transactional data, the row is ignored if either the sequence ID, attribute 
name, or value is null. 

Note that this means it is the empty "cell" that is ignored, not the entire record. By 
"cell", we mean the intersection of one row and one column (attribute name). For 
transactional data, it can be said that the "row" is ignored because in transactional 
format, each row contains the value for one attribute.

1.8 Discretization (Binning)
ODM algorithms require that input data be discretized (binned) before model 
building, testing, computing lift, and applying (scoring). Binning means grouping 
related values together to reduce the number of distinct values for an attribute. 
Having fewer bins typically leads to a more compact model and one that builds 
faster, but it can also lead to some loss in accuracy. The target attribute is typically 
not binned.

The decisions about the number of bins, the values that are to be assigned to each 
bin, where the bin boundaries are to be set, etc., can be made according to program 
defaults or can be specified by the user.

The best binning is done by an expert familiar with the data being binned and the 
problem to be solved. However, if there is no additional information that can inform 
decisions about binning or if what is wanted is an initial exploration of the data and 
problem, ODM can bin the data using default settings.

1.8.1 Numerical and Categorical Attributes
The distinction between categorical and numerical attributes depends on the 
application, that is, the application determines how to treat a particular attribute. 
The main difference is whether the values of an attribute have a certain order. 
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Values of a categorical attribute do not have any meaningful order; values of a 
numerical attribute do have a meaningful order. This does not mean that the values 
of a categorical attribute cannot be ordered, but rather that the order does not 
matter. For example, since U.S. postal codes are numbers, they can be ordered; 
however, their order is not necessarily meaningful to an application, and they can 
therefore be considered categorical. 

1.8.2 Automated Binning
Because binning can have an effect on a model’s accuracy, it is better when an expert 
specifies the binning based on some information about the data or the problem. 
However, in cases where there is no additional information to inform binning 
decisions or when the purpose is to get an initial understanding of the problem, it 
makes sense to use some form of automatic binning that uses global defaults. For 
example, group all attributes into five bins, where five is a globally specified 
default. Then for categorical attributes, the five most frequent values are assigned to 
five different bins, and all remaining values are assigned to a sixth bin. 

For numerical attributes, the values are divided into five groups of equal size 
according to their order.

An important advantage of automated binning is that it allows ODM to handle raw 
(unprepared) data, and thus simplifies what can be a daunting task for the user new 
to data mining. Automated binning also allows initial exploration of problems 
about which there is little or no information to guide binning decisions.

1.8.3 Data Preparation
ODM provides four ways to bin data:

■ Explicit specification: The user provides the bin boundaries for one or more 
attributes. The user provides one of the following:

– for categorical data, a list of categorical values to be contained in each bin

– for numerical data, a set of upper and lower boundaries for the bins

■ Top N most frequent items: For categorical attributes only, the user selects the 
value N and the name of the "other" category. ODM determines the N most 
frequent values and puts all other values in the "other" category.

■ Quantile binning: For numerical attributes only, the values are sorted, and the 
values are divided into the number of user-specified quantiles. ODM 
determines which values are in which bins.
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■ Automated binning: In cases where the user has no insight into how to define 
optimal bins or needs to get an initial understanding of the problem, ODM can 
perform the binning.

An example of binning is shown below. Table 1–6 displays original data, before 
binning. Table 1–7 shows the bin boundaries for numeric data; Table 1–8 shows bin 
boundaries for categorical data. Table 1–9 shows the results of binning.

Table 1–6 Binning Illustration: Data before Binning

Table 1–7 Binning Illustration: Bin Boundaries for Numeric Data

PERSON_ID AGE
WORK
CLASS WEIGHT EDUCATION

MARITAL_
STATUS OCCUPATION

2 27 Private 160972 HS-grad Married Crafts

8 46 Private 116635 Bach. Separ. Prof.

10 34 Private 62124 HS-grad Separ. Agricultural

11 23 Sta-gov 103588 < Bach. NeverM Cleric.

41 30 Private 178835 < Bach. Married Sales

COLUMN_
NAME

LOWER_ 
BOUNDARY

UPPER_
BOUNDARY BIN_ID

IS_
ATTRIBUTE DISPLAY_NAME

AGE 17 24.3 1 T 17-24.3

AGE 24.3 31.6 2 T 24.3-31.6

AGE 31.6 38.9 3 T 31.6-38.9

AGE 38.9 46.2 4 T 38.9-46.2

AGE 46.2 53.5 5 T 46.2-53.5

WEIGHT 13769 122137.4 1 T 13769-122137.4

WEIGHT 122137.4 230505.8 2 T 122137.4-230505.8

WEIGHT 230505.8 338874.2 3 T 230505.8-338874.2

WEIGHT 338874.2 447242.6 4 T 338874.2-447242.6
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Table 1–8 Binning Illustration: Bin Boundaries for Categorical Data

COLUMN_NAME CATEGORY BIN_ID
DISPLAY_
NAME

IS_
ATTRIBUTE

WORKCLASS Loc-gov 100 Governme
nt

T

WORKCLASS Fed-gov 100 Governme
nt

T

WORKCLASS Sta-gov 100 Governme
nt

T

WORKCLASS Private 300 Others T

EDUCATION HS-grad 1 HS-grad T

EDUCATION < Bach. 2 < Bach. T

EDUCATION Bach. 3 Bach. T

EDUCATION Masters 4 Masters T

MARITAL_
STATUS

Married 1 Married T

MARITAL_ 
STATUS

NeverM 2 NeverM T

MARITAL_ 
STATUS

Divorc. 3 Divorc. T

MARITAL_ 
STATUS

Widowed 4 Widowed T

MARITAL_ 
STATUS

Separ. 5 Separ. T

OCCUPATION Prof 1 Prof T

OCCUPATION Crafts 2 Crafts T

OCCUPATION Exec. 3 Exec. T

OCCUPATION Sales 4 Sales T

OCCUPATION Cleric 5 Cleric T

OCCUPATION 6 Other_occ T
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Table 1–9 Binning Illustration: Assignment of Original Data to Bins

Note: Currently automatic binning requires closed intervals for numerical bins. This 
can result in certain values being ignored. For example, if the salary range in the 
build data table is 0 to 1,000,000, any salary greater than 1,000,000 is ignored when 
the model is applied. If you are trying to identify likely purchasers of a high-end 
consumer product, attributes indicating the wealthiest individuals are likely to be 
deleted, and you probably won’t find the best targets. Manual binning has the 
option of making extreme bins open-ended, that is, with infinite boundaries.

1.9 PMML Support
The Predictive Model Markup Language (PMML) specifies data mining models 
using an XML DTD (document type definition). PMML provides a standard 
representation for data mining models to facilitate model interchange among 
vendors. PMML is specified by the Data Mining Group (http://www.dmg.org). 

ODM is both a producer and consumer of PMML models. That is, ODM can 
produce (generate) a PMML model that can be used by other software that can 
consume PMML. ODM can also consume PMML models, that is, ODM can convert 
certain PMML model representations to valid ODM models. ODM is a producer 
and consumer of two model types: Association Rules models and Naive Bayes 
classification models.

ODM consumes only models that use features supported by ODM. 

PERSON_ID AGE
WORK
CLASS WEIGHT EDUCATION

MARITAL_
STATUS OCCUPATION

2 2 300 2 1 1 2

8 4 300 1 3 5 1

10 3 300 1 1 5 6

11 1 100 1 2 2 5

41 2 300 2 2 1 4
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2
ODM Programming

This chapter discusses two major topics:

■ The requirements for compiling and executing ODM programs

■ How to perform common data mining tasks using Oracle9i Data Mining 
(ODM).

For an example of ODM basic usage, see Chapter 3. 

This chapter provides an overview of the steps required to perform basic ODM 
tasks. For detailed examples of how to perform these tasks, see the ODM sample 
programs. The ODM sample programs are distributed with the ODM 
documentation. For an overview of the ODM sample programs, see Appendix A. 

This chapter does not include a detailed description of any of the ODM API classes 
and methods. For detailed information about the ODM API, see the ODM Javadoc 
in the directory $ORACLE_HOME/dm/doc on any system where ODM is installed.

2.1 Compiling and Executing ODM Programs
ODM depends on the following Oracle9i Java Archive (.jar) files:

$ORACLE_HOME/jdbc/lib/classes12.jar
$ORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbms/jlib/aqapi.jar
$ORACLE_HOME/rdbms/jlib/xsu12.jar
$ORACLE_HOME/dm/lib/odmapi.jar

These files must be in your CLASSPATH to compile and execute ODM programs.

If you use a database character set that is not US7ASCII, WE8DEC, WE8ISO8859P1, 
or UTF8, you must also include the following in your CLASSPATH:
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$ORACLE_HOME/jdbc/lib/nls_charset12.zip 

If you do not include nls_charset12.zip in your CLASSPATH, an ODM program 
will fail with the following error:

oracle.jms.AQjmsException: Non supported character set:oracle-character-set-178 

2.2 Using ODM to Perform Mining Tasks
This section describes the steps required to perform several common data mining 
tasks using ODM.

All work in ODM is done using MiningTask objects. 

2.2.1 Build a Model
This section summarizes the steps required to build a model.

1. Prepocess the input data, as required.

2. Discretize (bin) the input data. (This step is optional, ODM algorithms can 
automatically bin input data.)

3. Construct and store a MiningFunctionSettings object.

4. Construct and store a MiningBuildTask object.

5. After successful construction of the build task object, call a store method to store 
the object in the data mining server.

6. Call the execute method; the execute method queues the work for asynchronous 
execution and returns a task identifier to the caller.

7. Periodically call the getCurrentStatus method to get the status of the task. 
Alternatively, use the waitForCompletion method to wait until all 
asynchronous activity for task completes.

After successful completion of the task, a build results object exists.

The following sample programs illustrate building ODM models:

■ Sample_AdaptiveBayesNetworkBuild.java

■ Sample_NaiveBayesBuild.java

■ Sample_AssociationRulesBuild.java

■ Sample_ClusteringBuild.java
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2.2.2 Perform Tasks in Sequence
Data mining tasks are usually performed in sequence. The following sequence of 
tasks is typical:

1. Collect and preprocess data

2. Build a model

3. Test the model

4. Calculate lift

5. Apply the model

To implement a sequence of dependent task executions, you may periodically check 
the asynchronous task execution status using the getCurrentStatus method or 
block for completion using the waitForCompletion method. You can then 
perform the dependent task after completion of the previous task. 

For example, follow these steps to perform the build, test, and compute lift 
sequence:

1. Perform the build task as described in Section 2.2.1 above.

2. After successful completion of the build task, start the test task by calling the 
execute method on a MiningTestTask object. Either periodically check the 
status of the test operation or block until the task completes.

3. After successful completion of the test task, execute the compute lift task by 
calling the execute method on a MiningComputeLiftTask object.

2.2.3 Find the Best Model
Model Seeker builds multiple models; it then evaluates and compares the models to 
find a "best" model.

Follow these steps to use Model Seeker:

1. Create a single ModelSeekerTask (MST) instance to hold the information 
needed to specify the models to build. The required information is defined in 
subclasses of the MiningFunctionSettings (MFS) and 
MiningAlgorithmSettings (MAS) classes.

You can specify a combination of as many instances of the following as desired:

■ NaiveBayesAlgorithmnSettings

■ CombinationNaiveBayesSettings
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■ AdaptiveBayesNetworkAlgorithmSettings

■ CombinationAdaptiveBayesNetSettings

(You cannot specify clustering models or Association Rules models.)

2. Call the Model Seeker Task execute method. The method returns once the task 
is queued for asynchronous execution.

3. Periodically call the getCurrentStatus method to get the status of the task, 
using the task name. Alternatively, use the waitForCompletion method to 
wait until all asynchronous activity for the required work completes.

4. When the model seeker task completes, use the getResults method to view 
the summary information and the best model. Model Seeker discards all models 
that it builds except the best one.

The sample program Sample_ModelSeeker.java illustrates how to use Model Seeker.

2.2.4 Find and Use the Most Important Attributes
Models based on data sets with a large number of attributes can have very long 
build times. To minimize build time, you can use ODM Attribute Importance to 
identify the critical attributes and then build a model using these attributes only.

Identify the most important attributes by building an Attributes Importance model 
as follows:

1. Create a Physical Data Specification for input data set.

2. Discretize the data if required.

3. Create and store mining settings for the attribute importance.

4. Build the Attribute Importance model.

5. Access the model and retrieve the attributes by threshold.

The sample program Sample_AttributeImportanceBuild.java illustrates how to build 
an attribute importance model.

After identifying the important attributes, build a model using the selected 
attributes as follows:

1. Access the model and retrieve the attributes by threshold or by rank.

2. Modify the Data Usage Specification by calling the function 
adjustAttributeUsage defined on MiningFunctionSetting. Only the 
attributes returned by Attribute Importance will be active for model building.
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3. Build a model using the new Logical Data Specification and Data Usage 
Specification.

The sample program Sample_AttributeImportanceUsage.java illustrates 
how to build a model using the important attributes.

2.2.5 Apply a Model to New Data
You make predictions by applying a model to new data, that is, by scoring the data.

Any table that you score (apply a model to) must have the same format as the table 
used to build the model. If you build a model using a table that is in transactional 
format, any table that you apply that model to must be in transactional format. 
Similarly, if the table used to build the model was in nontransactional format, any 
table to which you apply the model must be in nontransactional format.

Note that you can score a single record, which must also be in the same format as 
the table used to build the model.
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This chapter contains complete examples of using ODM to build a model and then 
score new data using that model. These examples illustrate the steps that are 
required in all code that uses ODM. The following two sample programs are 
discussed in this chapter:

■ Sample_NaiveBayesBuild_short.java (Section 3.2)

■ Sample_NaiveBayesApply_short.java (Section 3.3) 

The complete code for these examples is included in the ODM sample programs 
that are installed when ODM is installed. For an overview of the ODM sample 
programs, see Appendix A. For detailed information about compiling and linking 
these programs, see Section A.6.

The data that the sample programs use are included with sample programs: 
Sample_NaiveBayesBuild_short.java uses census_2d_build_unbinned 
and Sample_NaiveBayesApply_short.java uses census_2d_apply_
unbinned. For more information about these tables, see Section A.4. The data used 
sample programs is installed in the ODM_MTR schema. 

This chapter does not include a detailed description of any of the ODM API classes 
and methods. For detailed information about the ODM API, see the ODM Javadoc 
in the directory $ORACLE_HOME/dm/doc on any system where ODM is installed.

The sample programs have a number of steps in common. Common steps are 
repeated for simplicity of reference.

These short sample programs use data tables that are used by the other ODM 
sample programs. The short sample program that builds a model uses the table 
CENSUS_2D_BUILD_UNBINNED; the short sample program that applies the model 
uses CENSUS_2D_APPLY_UNBINNED. For more information about these tables, see 
Section A.4.
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Note that these short sample programs do not use the property files that the other 
ODM use.

3.1 Using the Short Sample Programs
The short sample programs must be compiled and then executed in the proper 
order; you must execute SampleNaiveBayesBuild_short.java (which builds 
the model) before you execute SampleNaiveBayesApply_short.java (which 
applies the model to data).

You can compile and execute these models in several ways:

■ Using scripts provided with the sample programs

■ Using Oracle9i JDeveloper

These methods are described in Section A.6.

Note that the short sample programs do not use property files.

3.2 Building a Model
This section describes the steps that must be performed by any program that builds 
an ODM model. 

The sample program Sample_NaiveBayesBuild_short.java is a complete 
executable program that illustrates these required steps. The data for the sample 
program is CENSUS_2D_BUILD_UNBINNED. 

3.2.1 Before Building an ODM Model
Before you build an ODM model, ODM must be installed on your system. You need 
to know the URL of the database where the ODM Data Mining Server resides, the 
user name, and the password. (Ask the person who installed the program what the 
user name and password are.)

Note: If you execute SampleNaiveBayesBuild.java and then 
execute SampleNaiveBayesBuild_short.java or Sample_
NaiveBayesApply_short.java, you must change the 
buildtablename to a new name. Otherwise, you get a unique 
constraint error because the model name, MFS name, and Mining 
Task name are identical in both programs. 
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Before you execute an ODM program, the ODM Monitor must be running.

Before you build a model, you must identify the data to be used during model 
building. The data must reside in a table in an Oracle9i database. You should clean 
the data as necessary; for example, you may want to treat missing values and deal 
with outliers, that is, extreme values that are either errors or values that may skew 
the binning. The table that contains the data can be in either transactional or 
nontransactional form. The ODM sample programs include data tables to use for 
model building.

Before you building a model, you must also know what data mining function that 
you wish to perform; for example, you may wish to create a classification model. 
You may specify which algorithm to use or let ODM decide which algorithm to use. 
The sample programs described in this chapter build and apply a Naive Bayes 
model.

3.2.2 Main Steps in ODM Model Building
For ODM to build a model, ODM must know the answers to the following 
questions:

■ Which server should be used to do the mining?

■ Where is the data for mining and how is it organized?

■ What type of model should be built? What is its function? Which algorithm 
should be used?

The following steps provide answers to the questions asked above:

1. Connect to the DMS (data mining server).

2. Create a PhysicalDataSpecification object for the build data.

3. Create a MiningFunctionSettings object (in this case, a 
ClassificationFunctionSettings object with no supplemental 
attributes).

4. Build the model.

The steps are illustrated below with code for building a Naive Bayes model.

3.2.3 Connect to the Data Mining Server
Before building a model, it is necessary to create an instance of 
DataMiningServer. This instance is used as a proxy to create connections to a 
Data Mining Server (DMS). The instance also maintains the connection. The DMS is 



Building a Model

3-4 Oracle9i Data Mining Concepts

the server-side, in-database component that performs the actual data mining 
operations within ODM. The DMS also provides a metadata repository consisting of 
mining input objects and result objects, along with the namespaces within which 
these objects are stored and retrieved.

//Create an instance of the DMS server.
//The mining server DB_URL, user_name, and password for your installation
//need to be specified
dms=new DataMiningServer("DB_URL", "user_name", "password");

//get the actual connection
dmsConnection = dms.login();

3.2.4 Describe the Build Data
Before ODM can use data to build a model, it must know where the data is and how 
the data is organized. This is done through a PhysicalDataSpecification 
instance where you indicate whether the data is in nontransactional or transactional 
format and describe the roles the various data columns play.

3.2.4.1 Location Access Data for Build Data
Before you create a PhysicalDataSpecification instance, you must provide 
information about the location of the build data. This is accomplished using a 
LocationAccessData object.

//Create a LocationAccessData using the table_name
//(CENSUS_2D_BUILD_UNBINNED) and schema_name for your installation
LocationAccessData lad =
     new LocationAccessData("CENSUS_2D_BUILD_UNBINNED", "schema_name");

Next, create the actual PhysicalDataSpecification instance. 

3.2.4.2 Physical Data Specification for Nontransactional Build Data
If the data is in nontransactional format, all the information needed to build a 
PhysicalDataSpecification is contained in the LocationAccessData 
object.

//Create the actual PhysicalDataSpecification for a 
//NonTransactionalDataSpecification object since the 
//data set is nontransactional
PhysicalDataSpecification m_PhysicalDataSpecification =
                  new NonTransactionalDataSpecification(lad);
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3.2.4.3 Physical Data Specification for Transactional Build Data
If the data is in transactional format, you must specify the role that the various data 
columns play.

//Create the actual PhysicalDataSpecification for a transactional 
//data case
PhysicalDataSpecification m_PhysicalDataSpecification = 
        new TransactionalDataSpecification(
                "CASE_ID", //column name for sequence id
                "ATTRIBUTES",  //column name for attribute name
                "VALUES",      //column name for value
                lad);

3.2.5 Create the MiningFunctionSettings Object 
The MiningFunctionSettings (MFS) object tells the DMS the type of model to 
build, the function of the model, and the algorithm to use.        

ODM supports the following mining functions:

■ Association rules (unsupervised learning)

■ Clustering (unsupervised learning)

■ Classification (supervised learning)

■ Attribute importance (supervised learning)

The MFS allows a user to specify the type of result desired without having to 
specify a particular algorithm. If an algorithm is not specified, the underlying DMS 
selects the algorithm based on user-provided parameters.

3.2.5.1 Specify the Default Algorithm for Classification 
To build a model for classification using ODM’s default classification algorithm, use 
a ClassificationFunctionSettings object with a null 
MiningAlgorithmSettings for the MFS. An easy way to create a 
ClassificationFunctionSettings object is to use the create method, as 
illustrated below. In this case, it is necessary to indicate the name of the target 
attribute, the type of the target attribute, and whether the data has been prepared 
(binned) by the user. Unprepared data will automatically be binned by ODM.

//Specify "class" as the target attribute name, categorical for the target
//attribute type, and set the DataPreparationStatus to unprepared. 
//Automatic binning will be applied in this case.
ClassificationFunctionSettings m_ClassificationFunctionSettings =



Building a Model

3-6 Oracle9i Data Mining Concepts

         ClassificationFunctionSettings.create(
                  dmsConnection,
                  null,
                  m_PhysicalDataSpecification,
                  "class",
                  AttributeType.categorical,
                  DataPreparationStatus.getInstance("unprepared"));

3.2.5.2 Specify the Naive Bayes Algorithm
If a particular algorithm is to be used, the information about the algorithm is 
captured in a MiningAlgorithmSettings instance. For example, if you want to 
build a model for classification using the Naive Bayes algorithm, first create a 
NaiveBayesSettings instance to specify settings for the Naive Bayes algorithm. 
Two settings are available: singleton threshold and pairwise threshold. 
Then create a ClassificationFunctionSettings instance for the build 
operation.

//Create the Naive Bayes algorithm settings by setting the thresholds 
//to 0.01. 
NaiveBayesSettings algorithmSetting = new NaiveBayesSettings(0.01f 0.01f);

//Create the actual ClassificationFunctionSettings using
//algorithmSetting for MiningAlgorithmSettings. Specify "class" as 
//the target attribute name, "categorical" for the target attribute
//type, and set the DataPreparationStatus to "unprepared".
//Automatic binning will be applied in this case.
ClassificationFunctionSettings m_ClassificationFunctionSettings =
          ClassificationFunctionSettings.create(
                 dmsConnection,
                 algorithmSetting,
                 m_PhysicalDataSpecification,
                 class,
                 Attribute Type.categorical,
                 DataPreparationStatus.getInstance(unprepared));

3.2.5.3 Validate the Mining Function Settings for Build
Because MiningFunctionSettings objects are complex objects, it is good 
practice to validate whether they were correctly created before starting the actual 
build task. If the MiningFunctionSettings object is a valid one, it should be 
persisted in the DMS for later use. This is illustrated below for the 
ClassificationFunctionSettings in our example.
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//Validate and store the ClassificationFunctionSettings object
//with the name "Sample_NB_MFS".
m_ClassificationFunctionSettings.validate();
m_ClassificationFunctionSettings.store(dmsConnection, "Sample_NB_MFS");

3.2.6 Build the Model
Now that all the required information for building the model has been captured in 
an instance of PhysicalDataSpecification and MiningFunctionSettings, 
the last step needed is to decide whether the model should be built synchronously 
or asynchronously. 

If you are calling ODM from an application, the design of the calling application 
may determine whether to build the model synchronously or asynchronously. Also, 
if the data used to build the model is large, it may take a significant amount of time 
to build the model; in such a case, you will probably want to build the model 
asynchronously.

3.2.6.1 Build the Model Synchronously
For a synchronous build, use the static MiningModel.build method. Note that 
this method is deprecated for ODM release 2.

//Build the model using the MFS named "Sample_NB_MFS" and store the
//model under the name "Sample_NB_Model".
MiningModel.build(
     dmsConn,
     lad,
     m_PhysicalDataSpecification,
     "Sample_NB_MFS",
     "Sample_NB_Model");

3.2.6.2 Build the Model Asynchronously
For an asynchronous build, create an instance of MiningTask. A mining task can 
be persisted in the DMS using the store method and executed at any time; 
however, it can be executed only once. Once the task is executing, query the current 
status information of a task by calling the getCurrentStatus method. This call 
returns a MiningTaskStatus object, which provides more details about the state. 
You can get the complete status history of a task by calling the getStatusHistory 
method.

//Create a Naive Bayes build task and execute it.
//MiningFunctionsSettings name (for example, "Sample_NB_MFS"), and 
//the ModelName (for example, "Sample_NB_Model") need to be specified.
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MiningBuildTask task = 
     new MiningBuildTask(
          m_PhysicalDataSpecification,
          "Sample__NB_MFS",
          "Sample_NB_Model");

 //Store the task under the name "Sample_NB_Build_Task"
task.store(dmsConnection, "Sample_NB_Build_Task");

//Execute the task
task.execute(dmsConnection);

After the MiningModel.build or the task.execute call successfully completes, 
the model will be stored using the name that you specified (in this case, Sample_NB_
Model) in the DMS.

3.3 Scoring Data Using a Model
After you’ve created a model, you can apply it to new data to make predictions; the 
process is referred to as "scoring data."

ODM can be used to score multiple records specified in a single database table or to 
score a single record. This section describes scoring multiple records.

The sample program Sample_NaiveBayesApply_short.java is a complete 
executable program that illustrates these required steps. The data for this sample 
program is CENSUS_2D_APPLY_UNBINNED. Note that this sample program does 
not use a property file.

3.3.1 Before Scoring Data
Before scoring an ODM model, you must have built an ODM model. This implies 
that ODM is installed on your system, and that you know the location of the 
database, the user name, and the password.

Before executing an ODM program, the ODM Monitor must be running.

Before you score data, the data must reside in a table in an Oracle9i database. The 
data to score must be compatible with the build data that you used when you built 
the model. You should clean the data to be scored in the same way that you cleaned 
the build data. If the build data for the model was not binned, the data to score 
must also be not binned. 
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The table that contains the data to score can be in either transactional or 
nontransactional form.

3.3.2 Main Steps in ODM Scoring
For ODM to score data using a model, ODM must know the answers to the 
following questions:

■ Which server should be used to do the scoring?

■ Where is the data for scoring and how is it organized?

■ Where should the output be stored?

■ What information do you want returned as the result of scoring?

The following steps provide answers to the questions above:

1. Connect to the DMS (data mining server).

2. Create a PhysicalDataSpecification object for the input data (the data 
that you want to score).

3. Create a LocationAccessData object for the input and output data.

4. Create a MiningApplyOutput object for the output data.

5. Score the data.

The steps above are illustrated in this section with code for scoring a Naive Bayes 
model.

3.3.3 Connect to the Data Mining Server
Before scoring data, it is necessary to create an instance of DataMiningServer. 
This instance is used as a proxy to create connections to a Data Mining Server 
(DMS). The instance also maintains the connection. The DMS is the server-side, 
in-database component that performs the actual data mining operations within 
ODM. The DMS also provides a metadata repository consisting of mining input 
objects and result objects, along with the namespaces within which these objects are 
stored and retrieved.

//Create an instance of the DMS server.
//The mining server DB_URL, user_name, and password for your installation
//need to be specified.
dms=new DataMiningServer("DB_URL", "user_name", "password");

//get the actual connection
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dmsConnection = dms.login(();

3.3.4 Describe the Input Data
Before ODM can apply a model to data, it must know the physical layout of the 
data. This is done through a PhysicalDataSpecification instance where you 
indicate whether the data is in nontransactional or transactional format and 
describe the roles the various data columns play.

3.3.4.1 Location Access Data for Apply Input
Before you create a PhysicalDataSpecification instance, you must provide 
information about the location of the input data. This is accomplished using a 
LocationAccessData object.

//Create a LocationAccessData using the table_name
//(CENSUS_2D_APPLY_UNBINNED) and the schema_name for your installation
LocationAccessData lad =
    new LocationAccessData("CENSUS_2D_APPLY_UNBINNED", "schema_name)";

Next, create the PhysicalDataSpecification instance.

3.3.4.2 Physical Data Specification for Nontransactional Input Data
If the data is in nontransactional format, all the information needed to build a 
PhysicalDataSpecification is contained in the LocationAccessData 
object.

//Create the actual PhysicalDataSpecification for a 
//NonTransactionalDataSpecification object since the 
//data set is nontransactional
PhysicalDataSpecification m_PhysicalDataSpecification =
                new NonTransactionalDataSpecification(lad);

3.3.4.3 Physical Data Specification for Transactional Input Data
If the data is in transactional format, you must specify the role that the various data 
columns play.

//Create the actual PhysicalDataSpecification for transactional 
//data case
PhysicalDataSpecification m_PhysicalDataSpecification = 
        new TransactionalDataSpecification(
                "CASE_ID", //column name for sequence id
                "ATTRIBUTES",  //column name for attribute name
                "VALUES",      //column name for value
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                lad);

3.3.5 Describe the Output Data
Before scoring the input data the DMS needs to know where to store the output of 
the scoring.

3.3.5.1 Location Access Data for Apply Output
Create a LocationAccessData object specifying where to store the apply output. 
The following code specifies writing to the output table CENSUS_NB_APPLY_RESULT.

// LocationAccessData for output table to store the apply results.
LocationAccessData ladOutput = new LocationAccessData ("CENSUS_NB_APPLY_RESULT",   
                               "output_schema_name");

3.3.6 Specify the Format of the Apply Output
The DMS also needs to know the content of the scoring output. This information is 
captured in a MiningApplyOutput (MAO) object. An instance of 
MiningApplyOutput specifies the data (columns) to be included in the apply 
output table that is created as the result of an apply operation. The columns in the 
apply output table are described by a combination of ApplyContentItem objects. 
These columns can be either from the input table or generated by the scoring task 
(for example, prediction and probability). The following steps are involved in 
creating a MiningApplyOutput object:

1. Create an empty MiningApplyOutput object.

2. Create an ApplyContentItem object describing which generated columns to 
be included in the output and add it to the MiningApplyOutput object.

3. Create ApplyContentItem objects describing columns from the input table to 
be included in the output and add them to the MiningApplyOutput object.

4. Validate the MiningApplyOuput that you created.

3.3.6.1 Create an Empty Mining Apply Output Object
Create an empty MiningApplyOutput object as follows:

// Create MiningApplyOutput object
MiningApplyOutput m_MiningApplyOutput = new MiningApplyOutput();
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3.3.6.2 Specify the Generated Columns in the Apply Output
There are two options for generated columns, described by the following 
ApplyContentItem subclasses:

■ ApplyMultipleScoringItem: used for generating a list of top or bottom n 
predictions ordered by their associated target value probability

■ ApplyTargetProbabilityItem: used for generating a list of probabilities 
for particular target values

For the current example, let’s use an ApplyTargetProbabilityItem instance. 
Before creating an instance of ApplyTargetProbabilityItem, it is necessary to 
specify the names and the data types of the prediction, probability, and rank 
columns for the output. This is done through Attribute objects.

// Create Attribute objects that specify the names and data 
// types of the prediction, probability, and rank columns for the 
// output.
Attribute predictionAttribute = 
new Attribute("myprediction", DataType.stringType);
Attribute probabilityAttribute = 
new Attribute("myprobability", DataType.stringType);
Attribute rankAttr = 
new Attribute("myrank", DataType.stringType);

// Create the ApplyTargetProbabilityItem instance
ApplyTargetProbabilityItem aTargetAttrItem = 
new ApplyTargetProbabilityItem(predictionAttribute, probabilityAttribute,
                            rankAttr);

An ApplyTargetProbabilityItem class contains a set of target values whose 
prediction and probability appear in the apply output table, regardless of their 
ranks. A target value is represented as a Category, and it must be one of the target 
values in the target attribute used when building the model to be applied. This step 
is not necessary for the ApplyMultipleScoringItem case.

// Create Category objects to represent the target values
// to be included in the apply output table. In this example
// two target values are specified.
Category target_category = new Category("positive_class", "0", 
                                   DataType.getInstance("int"));
Category target_category1 = new Category("positive_class", "1",
                                      DataType.getInstance("int"));

// Add the target values to the ApplyTargetProbabilityItem 
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// instance
aTargetAttrItem.addTarget(target_category);
aTargetAttrItem.addTarget(target_category1);

// Add the ApplyTargetProbabilityItem to the MiningApplyOutput 
// object
m_MiningApplyOutput.addItem(aTargetAttrItem);

3.3.6.3 Specify the Input Columns to be Included in Output
The input table columns to be included in the apply output are described by 
ApplySourceAttributeItem instances. Each instance maps a column in the 
input table to a column in the output table. These columns are described by a source 
Attribute and a destination Attribute. 

// In this example, attribute "PERSON_ID" from the source table 
// will be returned in the column "ID" in the output table.
// This specification is captured by the
// m_ApplySourceAttributeItem object.
MiningAttribute sourceAttribute = new MiningAttribute(
                 "PERSON_ID", 
                  DataType.intType,
                  AttributeType.notApplicable,
                  false,
                  false);

Attribute destinationAttribute = new Attribute(
                "ID",
                DataType.intType);

ApplySourceAttributeItem m_ ApplySourceAttributeItem =
             new ApplySourceAttributeItem(
             sourceAttribute,
             destinationAttribute)

// Add the ApplySourceAttributeItem object 
// to the MiningApplyOutput object
m_MiningApplyOutput.addItem(m_ApplySourceAttributeItem);

Note that the source mining attribute could have been taken from the logical data of 
the model’s function settings.
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3.3.6.4 Validate the Mining Apply Output Object
Because MiningApplyOutput objects are complex objects, it is a good practice to 
validate that they were correctly created before you do the actual scoring. This is 
illustrated below for the MiningApplyOutput in our example.

// Validate the MiningApplyOutput
m_ MiningApplyOutput.validate();

3.3.7 Apply the Model
Now that all the required information for scoring the model has been captured in 
instances of PhysicalDataSpecification, LocationAccessData, and 
MiningApplyOutput, the last step is 

■ Specify how to score the data (synchronously or asynchronously)

■ Tell the DMS which model to use for scoring

If you are calling ODM from an application, the design of the calling application 
may determine whether to apply the model synchronously or asynchronously. Also, 
if the input data has many cases, the apply operation may require a significant 
amount of time; in such a case,, you will probably want to apply the model 
asynchronously.

3.3.7.1 Apply the Model Synchronously
For synchronous apply, use the static SupervisedModel.Apply method. Note 
that this method is deprecated for ODM release 2.

// Synchronous Apply
// Score the model using the model named "Sample_NB_Model" and 
// store the results in the "Sample_NB_APPLY_RESULT"
public static void apply(
              dmsConn,
              lad,
              m_PhysicalDataSpecification,
              "Sample_NB_Model",
              m_MiningApplyOutput,
              ladOutput,
              "Sample_NB_APPLY_RESULT")
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3.3.7.2 Apply the Model Asynchronously
For asynchronous apply, it is necessary to create an instance of MiningTask. A 
mining task can be persisted in the DMS using the store(dmsConn, taskName) 
method and executed at any time; such a task can be executed only once. The 
current status information of a task can be queried by calling the 
getCurrentStatus(dmsConn, taskName) method. This returns a 
MiningTaskStatus object, which provides more details about the state. You can 
get the complete status history of a task by calling the 
getStatusHistory(dmsConn, taskName) method. 

// Asynchronous Apply
/ Create a Naive Bayes apply task and execute it.
// Result name (e.g., "Sample_NB_APPLY_RESULT"), and the 
// model name (e.g., "Sample_NB_Model") need to be specified
MiningApplyTask task =  new MiningBuildTask(
                        m_PhysicalDataSpecification, 
                        "Sample_NB_Model", 
                        m_MiningApplyOutput,
                        ladOutput,
                        "Sample_NB_APPLY_RESULT");

// Store the task under the name "Sample_NB_APPLY_Task"
task.store(dmsConnection, "Sample_NB_APPLY_Task");

// Execute the task
task.execute(dmsConnection);



Scoring Data Using a Model

3-16 Oracle9i Data Mining Concepts



ODM Sample Programs A-1

A
ODM Sample Programs

Oracle9i Data Mining (ODM) includes sample input data and sample Java 
programs that illustrate techniques available with ODM’s Java API. This appendix 
contains instructions for compiling and executing these sample programs.

The input data used by the sample programs is created as part of the ODM install; 
the data is available in the odm_mtr schema.

You can compile and execute the sample programs using provided scripts; you can 
also compile and execute the sample programs in JDeveloper using a JDeveloper 
project that you can download from Oracle Technology Network 
(http://otn.oracle.com). For information about installing and using the 
JDeveloper project for ODM, see the README that is included in the download.

A.1 Overview of the ODM Sample Programs
The ODM sample programs illustrate the main operations of the data mining 
process: 

■ Data preparation (binning and attribute importance),

■ Model creation

■ Model testing

■ Application of the model to new data (scoring the data) 

Data mining models are either supervised or unsupervised.

A supervised model is used to predict the value of a designated variable, called a 
target, together with the confidence associated with each prediction. Supervised 
models are illustrated in the sample programs for Naive Bayes (NB) and Adaptive 
Bayes Networks (ABN).
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An unsupervised model has no target variable, but is used to predict group 
membership or relationships of an individual. Unsupervised models are illustrated 
in the sample programs for Clustering and Association Rules.

The Discretization sample programs illustrate the techniques of binning, that is, 
forming groups of categorical values and ranges of numerical values to satisfy the 
requirements of ODM’s algorithms.

The Model Seeker sample program illustrates the creation and testing of several 
supervised models with a variety of parameter settings; the model with the best test 
results is saved.

The Attribute Importance sample program illustrates the analysis of data in order to 
rank the variables by the influence of each in predicting target values.

The PMML sample programs illustrate the production and consumption 
(export/import) of data mining models conforming to the emerging standards for 
Predictive Model Markup Language.

The short sample programs Sample_NaiveBayesBuild_short.java and 
Sample_NaiveBayesApply_short.java illustrate basic ODM usage. They are 
described in detail in Chapter 3.

A.1.1 ODM Java API
This appendix does not include a detailed description of the ODM API classes and 
methods. For detailed information about the ODM API, see the ODM Javadoc in the 
directory $ORACLE_HOME/dm/doc (UNIX) or %ORACLE_HOME%\dm\doc 
(Windows) on any system where ODM is installed.

A.1.2 Oracle9i JDeveloper Project for the Sample Programs
If you want to use Oracle9i JDeveloper to exercise the sample programs, you can 
either create a new project or download an existing one. The ODM sample 
programs are available on Oracle Technology Network (otn.oracle.com) as an 
Oracle9i JDeveloper project. For information about the JDeveloper project, 
including installation instructions, see the readme file included with the download. 

A.1.3 Requirements for Using the Sample Programs
The ODM user schema must be configured with or upgraded to Oracle9i release 2 
(9.2.0.1).

The patch 9.2.0.2 must be applied.
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The ODM user and ODM_MTR accounts must be unlocked if locked.

You will be required to provide the host name, TCP/IP port, and Oracle SID of the 
database to which you want to connect. Additionally, you will also need to know 
the password for ODM user on that database. Contact your database administrator 
if you do not know what those values are.

A.2 ODM Sample Programs Summary
Most programs have an (input) table. See Section A.4 for more information.

The sample programs, except for the short sample programs, use property files to 
specify values that control program execution. Each program has at least one 
property file. There is also one special property file, Sample_Global.property, 
that is used to specify the characteristics of the environment in which the programs 
run. See Section A.5 for more information.

After ODM is installed on your system, the sample programs, property files, and 
scripts are in the directory $ORACLE_HOME/dm/demo/sample (UNIX) or 
%ORACLE_HOME%\dm\demo\sample (Windows).

The rest of this section lists the ODM sample programs, arranged according to the 
ODM features that they illustrate. For detailed information about a program, see the 
comments in the sample program and in its property file.

A.2.1 Basic ODM Usage
The following sample programs are the programs that are discussed in detail in 
Chapter 3:

1. Sample_NaiveBayesBuild_short.java 

■ Property file: This program does not have a property file.

■ Data: census_2d_build_unbinned

Note: If you execute SampleNaiveBayesBuild.java and then 
execute SampleNaiveBayesBuild_short.java or Sample_
NaiveBayesApply_short.java, you must change 
buildtablename to a new name. Otherwise, you get a unique 
constraint error because the model name, MFS name, and Mining 
Task name are identical in both programs. 



ODM Sample Programs Summary

A-4 Oracle9i Data Mining Concepts

2. Sample_NaiveBayesApply_short.java

■ Property file: This program does not have a property file.

■ Data: census_2d_apply_unbinned

Neither of these sample programs uses either a property file or Sample_
Global.property.

A.2.2 Adaptive Bayes Network Models
The following sample programs illustrate building an Adaptive Bayes Network 
Model, calculating lift for the model and testing it, and applying the model:

1. Sample_AdaptiveBayesNetworkBuild.java

■ Property file: Sample_AdaptiveBayesNetworkBuild.property 

■ Data: census_2d_build_binned

2. Sample_AdaptiveBayesNetworkLiftAndTest.java 

■ Property file:
Sample_AdaptiveBayesNetworkLiftAndTest.property 

■ Data: census_2d_test_binned

3. Sample_AdaptiveBayesNetworkApply.java 

■ Property file: Sample_AdaptiveBayesNetworkApply.property 

■ Data: census_2d_apply_binned

A.2.3 Naive Bayes Models
The following programs illustrate building a Naive Bayes Model, calculating lift for 
the model and testing it, applying the model, and cross validating the model:

1. Sample_NaiveBayesBuild.java 

Note: If you execute SampleNaiveBayesBuild.java and then 
execute SampleNaiveBayesBuild_short.java or Sample_
NaiveBayesApply_short.java, you must change the 
buildtablename to a new name. Otherwise, you get a unique 
constraint error because the model name, MFS name, and Mining 
Task name are identical in both programs. 
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■ Property file: Sample_NaiveBayesBuild.property

■ Data: census_2d_build_unbinned

2. Sample_NaiveBayesLiftAndTest.java 

■ Property file: Sample_NaiveBayesLiftAndTest.property

■ Data: census_2d_test_unbinned

3. Sample_NaiveBayesApply.java 

■ Property file: Sample_NaiveBayesApply.property

■ Data: census_2d_apply_unbinned

4. Sample_NaiveBayesCrossValidate.java 

■ Property file: Sample_NaiveBayesCrossValidate.property

■ Data: census_2d_build_unbinned

A.2.4 Model Seeker Usage
The following sample program illustrates how to use Model Seeker to identify a 
"best" model:

1. Sample_ModelSeeker.java 

■ Property file: Sample_ModelSeeker.property 

■ Data: census_2d_build_unbinned and census_2d_test_unbinned

A.2.5 Clustering Models
The following sample programs illustrate building a clustering model, applying it, 
and inspecting clustering results:

1. Sample_ClusteringBuild.java 

■ Property file: Sample_ClusteringBuild.property

■ Data: eight_clouds_build_unbinned

2. Sample_ClusteringApply.java 

■ Property file: Sample_ClusteringApply.property

■ Data: eight_clouds_apply_unbinned

3. Sample_Clustering_Results.java

■ Property file: Sample_Clustering_Results.property.
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■ Input is name of built and applied clustering model

A.2.6 Association Rules Models
The following sample program illustrates building an Association Rules model:

Sample_AssociationRules.java

The property file depends on the format of the data:

■ For transactional data:

■ Property file:
Sample_AssociationRules_Transactional.property 

■ Data: market_basket_tx_binned

■ For nontransactional data:

■ Property file: 
Sample_AssociationRules_TwoDimensional.property 

■ Data: market_basket_2d_binned

A.2.7 PMML Export and Import
The following sample programs illustrate importing and exporting PMML Models:

1. Sample_PMML_Export.java 

■ Property file: Sample_PMML_Export.property

■ Data: no input data is required

2. Sample_PMML_Import.java

■ Property file: Sample_PMML_Import.property

■ Data: no input data is required

A.2.8 Attribute Importance Model Build and Use
The following sample programs illustrate how to build an attribute importance 
model and use the results to build another model:

1. Sample_AttributeImportanceBuild.java

■ Property file: Sample_AttributeImportanceBuild.property

■ Data: magazine_2d_build_binned 
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2. Sample_AttributeImportanceUsage.java 

■ Property file: Sample_AttributeImportanceUsage.property

■ Data: magazine_2d_build_binned and magazine_2d_test_binned

A.2.9 Discretization
The following sample programs show to discretize (bin) data by creating a bin 
boundaries table and how to use the bin boundaries table:

1. Sample_Discretization_CreateBinBoundaryTables.java

■ Property file:
Sample_Discretization_CreateBinBoundaryTables.property

■ Data: census_2d_build_unbinned 

2. Sample_Discretization_UseBinBoundaryTables.java

■ Property file:
Sample_Discretization_UseBinBoundaryTables.property 

■ Data: census_2d_apply_unbinned

A.3 Using the ODM Sample Programs
After ODM is installed on your system, the sample programs, property files, and 
scripts are in the directory $ORACLE_HOME/dm/demo/sample (UNIX) or 
%ORACLE_HOME%\dm\demo\sample (Windows); the data used by the sample 
programs is in the directory $ORACLE_HOME/dm/demo/data (UNIX) or 
%ORACLE_HOME%\dm\demo\data (Windows). The data required by the sample 
programs is also installed in the ODM_MTR schema. 

First, copy all of the sample files into a new directory so that the original files will 
remain intact.

Next, if necessary, connect to the database as the user ODM and run the script that 
starts the scheduler for ODM programs:

exec odm_start_monitor

The monitor must be started once in the life of a database installation; it is not 
harmful to start the monitor if it is already running. If a sample program is executed 
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and hangs at the beginning of a data mining task, then the monitor is probably not 
running.

Property files are used to specify common characteristics of the execution 
environment and to control execution of individual programs. Sample_
Global.property file must be edited to point to the local database before any 
sample programs can be executed. The property files provide parameter settings for 
each of the sample programs; every parameter has a default setting, so the sample 
programs can be run without editing any of the property files. Each property file is 
discussed in Section A.5.

Scripts are included with the sample programs to compile and execute them. See 
Section A.6 for details.

The sample programs must be executed in the proper order. For a given model type, 
the sample build program must be executed before test, apply, or PMML export can 
be executed. For discretization, CreateBinBoundaryTables must be executed 
before UseBinBoundaryTables. The script that executes the sample programs 
supports a parameter that executes all of the programs in the correct order.

The sample programs illustrate the ODM API classes and methods used to perform 
various data mining tasks, and display the input required for each task as well as 
typical results.

Possible phases in exercising the sample code might be:

1. Compile and run a sequence of sample programs using all default values in the 
property files. To compile one or all of the sample programs, see Section A.6.1; 
to execute one of sample programs or all of them in order, see Section A.6.2.

2. For each program, make note of the input values, look at the source code to 
observe which ODM methods accomplish each piece of the process, and note 
the results.

3. Edit a property file to modify one or more parameters; re-execute the program 
and note changes in the results. Modifying the binning scheme requires editing 
the source code in Sample_Discretization_
CreateBinBoundaryTables.java, which must then be re-compiled before 
execution.

4. Create new sample tables for building and testing a model from data that is not 
part of the supplied sample data. This will illustrate the data preparation that is 
required in order to implement a data mining solution within an existing 
application.
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A.4 Data Used by the Sample Programs
Each of the algorithms employed by ODM requires data that is discrete (binned) 
and numerical. Data for ODM programs can be binned in several ways:

■ As a data preparation step performed before any ODM methods are executed

■ Using ODM classes and methods as described in Section A.2.9

■ Automatically by the ODM algorithms 

For some of the sample programs, there is a choice of format for the input data, and 
binned as well as unbinned versions of the input data are supplied. The 
Discretization programs can be used to apply a customized binning scheme to 
unbinned data.

ODM can accept input data in either “nontransactional” format, that is one row per 
case, or “transactional” format, that is multiple rows per case. The input for the 
Association sample programs, the “Market Basket” data, is available in either 
format.

The data used to test a model must be distinct from the data that was used to build 
that model, but it is valid in a development setting to apply the model to the same 
data that was used for testing.

The data used by the sample programs is in the directory $ORACLE_
HOME/dm/demo/data (UNIX) or %ORACLE_HOME%\dm\demo\data (Windows). 
The data is also installed in the ODM_MTR schema. 

Table A–1 summarizes the data that is included with the sample programs.

Note: The sample programs for Naive Bayes and Adaptive Bayes 
Network models require that any record to which you apply the 
models has either an integer or string attribute. You cannot apply 
the models to records that have a continuous numeric attribute.
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A.5 Property Files for the ODM Sample Programs
After ODM is installed on your system, the sample programs, property files, and 
scripts are in the directory $ORACLE_HOME/dm/demo/sample (UNIX) or 
%ORACLE_HOME%\dm\demo\sample (Windows).

Most sample programs require two property files, Sample_Global.property 
and a property file specific to the sample program. The two short sample programs, 
Sample_NaiveBayesBuild_short.java and Sample_NaiveBayesApply_
short.java, do not require any property files.

Table A–1 ODM Sample Programs Data

Tables Description

CENSUS_2D_BUILD_BINNED

CENSUS_2D_BUILD_UNBINNED

CENSUS_2D_TEST_BINNED

CENSUS_2D_TEST_UNBINNED

CENSUS_2D_APPLY_BINNED

CENSUS_2D_APPLY_UNBINNED

The Census data is derived from information 
from the U.S. Census Bureau. The target attribute 
is CLASS, which represents salary level (0 = low 
salary and 1 = high salary). The Census data is 
used in all of the sample programs except in 
those illustrating clustering, attribute importance, 
and association rules.

EIGHT_CLOUDS_APPLY_UNBINNED

EIGHT_CLOUDS_BUILD_UNBINNED

The Eight Clouds data is artificially generated for 
the sole purpose of illustrating Clustering.It is 
designed to produce eight partially overlapping 
clusters, which makes clustering this dataset 
nontrivial.

MAGAZINE_2D_BUILD_BINNED

MAGAZINE_2D_TEST_BINNED

The Magazine data is derived from an actual 
marketing data set concerning a magazine 
subscription campaign. The target is MR_MAG, 
which represents Purchase (= 1) or No Purchase 
(= 0). This data is used in the Attribute 
Importance sample program.

MARKET_BASKET_2D_BINNED

MARKET_BASKET_TX_BINNED

The Market Basket data represents shopping 
sessions in a grocery store. In the 2D 
(nontransactional) version, each row represents a 
shopping session and has a value 1 in the column 
for a product found in the check-out basket. This 
data is used in the Association Rules sample 
program.
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A.5.1 Sample_Global.property
The information in this file is used to make the connection to the database when a 
sample program is executed and to specify the location of the input and output 
tables.

A.5.1.1 Database and Schemas
 During the installation of Oracle9i, the database name and port number were 
established. You must specify the URL for the database and the password for the 
ODM user in miningServer.url. The database URL is a string that specifies the 
type of JDBC driver used to connect to the database and database details. ODM 
supports the JDBC thin driver which requires a database URL in the following form:

"jdbc:oracle:thin:@<host_name>:<port_number>:<sid>"

The schemas (and user names) ODM and ODM_MTR were created during the 
installation, and during the Password Management phase, each schema user was 
assigned a password. Ensure that the password for ODM is entered in 
miningServer.password.

For an example of how to edit the global property file, see step 5 on page A-24.

The ODM schema is used internally by the ODM API programs; the ODM_MTR 
schema contains the sample input tables and some of the output tables. Normally 
you enter ODM_MTR for the values of both inputDataSchemaName and 
outputSchemaName.

A.5.1.2 Cleanup Section
Each sample program property file has a Cleanup Section. Since the sample 
programs, by default, re-use the names of objects created during execution, the 
default action is to delete the objects created during any previous execution of that 
program. You can choose to change the setting so that cleanup is prevented, but if 
you do, you must change all object names or risk program failure. You also have the 
option of cleaning up only, and not otherwise executing the program.

A.5.1.3 Tasks
Each distinct data mining operation is a task that is queued for execution. A task 
name is required to identify the operation, and each sample program has a default 
task name assigned in the parameter miningTaskName.
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A.5.2 Sample_Discretization_CreateBinBoundaryTables.property
ODM algorithms require that input data be discretized (binned) before model 
building, testing, computing lift, and applying (scoring). You can either bin the data 
using appropriate Java methods or you can let the ODM algorithms automatically 
bin data. For a detailed discussion of discretization, see Section 1.8.

A.5.2.1 Sample Discretization Create Bin Boundary Input
 If you use as input the default table census_2d_build_unbinned, then the 
transactionalData parameters are ignored. If you name a transactional table as 
discretizationData.tableName, then you must change 
discretizationData.type to transactional and enter the three column 
names of the table in the transactionalData parameters.

A.5.2.2 Sample Discretization Create Bin Boundary Output
This program creates separate binning definitions for categorical and numerical 
data and stores these definitions in the ODM_MTR schema in tables named in the 
parameters discretization.discretizationNumericTableName and 
discretization.discretizationCategoricalTableName.

A.5.3 Sample_Discretization_UseBinBoundaryTables.property
Section A.5.2 describes how to create bin boundaries. This section explains how to 
use those bin boundaries to create a bin boundaries table.

A.5.3.1 Sample Discretization Use Bin Boundary Input
If you use as input the default table census_2d_apply_unbinned, then the 
transactionalData parameters are ignored. If you name a transactional table as 
discretizationData.tableName, then you must change 
discretizationData.type to transactional and enter the three column 
names of the table in the transactionalData parameters.

The input table must have the same description as the table used in generating the 
Bin Boundary tables named in the input parameters 
discretization.discretizationNumericTableName and 
discretization.discretizationCategoricalTableName.
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A.5.3.2 Sample Discretization Use Bin Boundary Output
The attribute values in the input data table are binned according to the rules in the 
Bin Boundary tables and the results are found in the view named in the parameter 
discretization.discretizedViewName in the ODM_MTR schema.

If the parameter discretization.openEndedNumericalDiscretization is 
set to true, then the highest and lowest bins are open-ended. That is, for example, 
instead of a top Age range of 90-100, the range will be “greater than 90”.

A.5.4 Sample_NaiveBayesBuild.property
If you use as input the default table census_2d_build_unbinned, then the 
transactionalData parameters are ignored. If you name a transactional table as 
discretizationData.tableName, then you must change 
discretizationData.type to transactional and enter the three column 
names of the table in the transactionalData parameters.

In addition, several parameters describe how the model is to be built; these settings 
are held in the object named in 
classificationFunctionSettings.miningSettingsName. 

The setting dataPrepStatus indicates whether automatic binning will be used 
(unprepared) or whether the data has been previously binned (discretized). 

The setting supplementalAttributes lists those attributes, in a 
comma-separated list, that could be used to identify individuals in a report, but 
cannot be used in building the model because they would eliminate the generality 
needed for the production of meaningful rules.

The setting targetAttributeName identifies the attribute value that the model 
will predict.

The predictions of the model are based on probabilities, which are based on the 
number of times particular values occur in the Build input data. Setting the 
Thresholds establishes how much data is gathered; in particular, raising the 
threshold eliminates "rarer" cases, making the rules tables smaller and the build 
process faster, but possibly making the model less accurate.

The parameter naiveBayesOutput.modelName assigns a name to the resultant 
model so that it can be uniquely identified in the testing and applying programs. 
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A.5.5 Sample_NaiveBayesLiftAndTest.property
There are two tasks included in Lift and Test. 

■ The Test task calculates the raw accuracy of the model when applied to data 
distinct from the data used to build the model (the test data is sometimes called 
the hold-out sample); it also calculates the "confusion matrix", which is a 
measure what type of errors are made by the model (false positive versus false 
negative). 

■ The Lift task measures how much better the model’s predictions are than 
chance predictions. The lift calculations are reported on a quantile-by-quantile 
basis and the default number of quantiles is 10, that is, the results are reported 
on 10% subsets of the test data. One of the prediction values must be designated 
as the "positive" value. (This is easy if the predictions are "yes" versus "no", but 
even if the predictions are "red" versus "blue", one must be called "positive").

The parameter liftAndTest.modelName contains the name of the model 
produced by the Sample_NaiveBayesBuild program.

If you use as input the default table census_2d_test_unbinned, then the 
transactionalData parameters are ignored. If you name a transactional table as 
discretizationData.tableName, then you must change 
discretizationData.type to transactional and enter the three column names 
of the table in the transactionalData parameters.

The parameters for Lift are

■ numberOfQuantiles (default = 10)

■ positiveTargetDisplayName (the name used in reports, the default is 
Positive Value)

■ positiveTargetValue (the actual value to be considered positive; default is 
1),

■ positiveTargetDataType (default is int; other possible values are: char, 
float, boolean, string).

The parameters computeLift.resultName and test.resultName give the 
names of the objects containing the test results. 

A.5.6 Sample_NaiveBayesCrossValidate.property
The Sample_NaiveBayesCrossValidate program builds a Naive Bayes model 
and tests it by simulating an iterative process in which a model is built omitting one 
record of the input data, then the model is applied to that one record as a test. When 
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this procedure has been completed for each distinct record in the input data, an 
aggregate accuracy figure and confusion matrix are calculated. This process is an 
effective test when only a small number of records is available for model building.

The input parameters are the same as those for Sample_NaiveBayesBuild and 
Sample_NaiveBayesLiftAndTest and the results are the same as the results of 
Sample_NaiveBayesLiftAndTest, except that there are no Lift results.

A.5.7 Sample_NaiveBayesApply.property
The Naive Bayes model can be applied to new data to produce a scored list. The 
input data must be in the same format as the data used to build the model (attribute 
names and data types, binning scheme, dataset type – transactional or 
nontransactional). The input can be a table or a single record; in the case of a record, 
the column names must be in upper case and the model must have been built using 
automatic binning.

There are two output options for the format and contents of the resultant table: 
multipleScoring or targetProbability.

The choice of multipleScoring gives not only the predicted value and the 
probability (confidence) of the prediction, but also the option to list other possible 
target values and their probabilities. For example, if the target values are Low, 
Medium, High, then the output could be a single row with the prediction High and 
confidence.75, or three separate rows in the output table containing High/.75, 
Low/.15, Medium/.10.

The choice targetProbability gives a result for each target value, and in 
addition to the information produced by multipleScoring, displays the ranking of 
each predicted value.

applyOutputOption is multipleScoring or targetProbability, as 
explained above. The parameter sourceAttributeNames is a comma-separated 
list of the attribute names from the input table to be included in the output; 
sourceAttributeAliases give a display name for each attribute. 

For both multipleScoring and targetProbability, 
predictionColumnName and probabilityColumnName give the names of the 
columns in the result table containing the predicted value and the confidence. The 
parameter numberOfPredictions is an integer from 1 to the number of distinct 
target values, and indicates how many rows will be produced for each input record. 
The parameter topToBottom is true if you want the predictions sorted in 
descending order by probability and false if you want the predictions sorted in 
ascending order.
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The parameter rankAttribute is the column name for rank in the result table.

The distinct possible prediction values are listed in targetValues (with data type 
targetDataType), and the display names for the predictions are listed in 
targetDisplayNames.

A.5.8 Sample_AttributeImportanceBuild.property
The parameter dataPrepStatus indicates whether automatic binning should be 
applied to the input data (unprepared) or if the data is already binned 
(discretized).

The target attribute is named in targetAttributeName.   

The resultant table contains a list of the attributes ranked by their influence in 
predicting the target value.

A.5.9 Sample_AttributeImportanceUsage.property
This program executes the Attribute Importance program on the input data, then 
uses one of five methods available to create a table containing a subset of the 
original attributes. It then builds two Naive Bayes models, one using the full 
attribute set (NB1), the other using the reduced set as input (NB2), and displays the 
two test results.

The threshold and target parameters are set as for Naive Bayes Build. The accuracy 
parameter is ignored in the sample code.

The attributeSelection parameter has an integer value from 1 to 5, as follows:

1. Specify 1 to select attributes whose Importance is above or below (inclusive) a 
given value.

Example: attributes with importance value above 0.01: 

threshold = 0.01, aboveThreshold = true

2.  Specify 2 to select attributes whose Importance is between two given values

Example: attributes with importance value between 0.01 and 0.02: 

lowerBound = 0.01, upperBound = 0.02

3. Specify 3 to select attributes by rank from a list sorted in descending order by 
Importance, above or below a given rank

Example: the first five entries from the list: 
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threshold = 5, aboveThreshold = true

4. Specify 4 to select attributes by rank from a list sorted in descending order by 
Importance, between two given ranks

Example: attributes with rank between 3 and 6: 

lowerBound = 3, upperBound = 6

5. Specify 5 to select the highest N% or lowest N% of attributes from a list sorted 
in descending order by Importance

Example: the first 10% of attributes from the list 

percentage = 0.1, aboveThreshold = true

A.5.10 Sample_AssociationRules Property Files
The Sample_AssociationRules program takes one of two property files depending 
on the format of the input data table

■ Sample_AssociationRules_TwoDimensional.property (Input table is 
nontransactional.)

■ Sample_AssociationRules_Transactional.property (Input table is 
transactional.)

The buildData.type parameter is set appropriately to transactional or 
nonTransactional, depending on which property file is used, and in the 
transactional case, the column headings must be set. Otherwise the two property 
files have the same parameters.

The function settings parameters are as follows:

■ dataPrepStatus is set to discretized (binned) or unprepared 
(unbinned); the sample input tables MARKET_BASKET_TX_BINNED and 
MARKET_BASKET_2D_BINNED are already binned.

■ minimumSupport is a value between 0 and 1 that specifies a threshold for the 
frequency of the components of a rule occurring together. For example, if the 
rule is “A implies B”, then the number of cases in which A and B occur 

Note: Since there is a choice of property files, unlike the other 
sample programs, the name of the property file must be explicitly 
specified.
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simultaneously are counted. Itemsets below the minimum are eliminated, 
making the calculations faster.

■ minimumConfidence specifies a threshold for the conditional probability for a 
rule. Rules with probability below the threshold are eliminated, making the 
calculations faster.

■ maximumRuleLength specifies the number of components in a rule. The 
default setting in the sample property files is 2, forcing all rules to be of the type 
"A implies B", rather than "A and B imply C", or longer.

A.5.11 Sample_ModelSeeker.property
The Model Seeker sample program creates several Naive Bayes (NB) and Adaptive 
Bayes Network (ABN) models and compares them by calculating a value called the 
"Figure of Merit" based on the test results of the models. The model with the best 
Figure of Merit is saved; for other models, the models are discarded and only the 
settings and test results are saved.

Build and Test input data tables are identified, with parameter settings as for the 
Naive Bayes sample programs.

The AlgorithmSetting parameters specify the model types to be built and the 
input parameters for each. The Setting_1 specifies one NB model and Setting_
4 one ABN model; the parameters are as described for the property files of those 
model types. Settings 2, 3, and 5 specify multiple models and a list of values is 
entered for some parameters. For NB, the setting crossProduct indicates that 
models with every possible combination of parameter values are built, whereas 
parallelPairs indicates that a model is built using the first value in each list, 
another model is built using the second value in each list, and so on.

The function settings include dataPreparationStatus (discretized = 
binned, unprepared = unbinned), targetAttributeName, 
targetAttributeType (categorical, numerical), and 
supplementalAttributes (a comma-separated list of attributes to be ignored 
during model build). 

For the purposes of calculating Lift, one target value is designated as “positive”. 
The value, data type, and Name used in reports are established in the 
positiveCategoryTarget parameters.

The parameter modelSeeker.weight assigns a value used in calculating the 
Figure of Merit. The default value of 1 makes no distinction in cost between types of 
errors in prediction: false-positive (a prediction of positive when the actual value is 
negative) and false-negative (a prediction of negative when the actual value is 
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positive). An example is a model to predict that a customer is likely to buy Product 
X in a telemarketing campaign: the cost of a false-positive is small (the cost of a 
telephone call) but the cost of a false-negative is high (the revenue for a lost sale). In 
this case a weight greater than 1 would be set (by experiment). In a case in which 
the cost of false-positive is higher than false-negative, a weight between 0 and 1 
would be used.

The parameter modelSeeker.liftQuantiles sets the number of quantiles 
displayed in the Lift table. For large Test data tables, more finely-grained results can 
be observed for lift quantiles set to 100.

A.5.12 Sample_ClusteringBuild.property
There are two clustering algorithms available in ODM:

■ A version of k-means enhanced to provide hierarchies in the clustering

■ A proprietary algorithm called O-cluster.

For k-means, you define the (maximum) number of clusters, whereas O-cluster 
determines the number of clusters as part of the algorithm. The default input table 
is an artificially-generated set of data designed to illustrate the functionality by 
forming eight distinct clusters. 

The clustering parameters include:

■ algorithmType determines the algorithm to be used: 1 = k-means, 2 = 
O-cluster.

■ clusters sets a maximum number of clusters.

■ For O-cluster, the sensitivity parameter is a value between 0 and 1 that 
measures the sharpness of the cluster definitions: a lower sensitivity normally 
produces fewer clusters.

■ For k-means, the error, iterations, and stoppingCriterion parameters 
determine how long the build process will take. The error parameter 
measures the amount of change resulting from one more iteration; a lower error 
value normally allows more iterations. The iterations parameter is a 
maximum value and the stoppingCriterion parameter indicates whether to 
rely only on error, only on iterations, or on a combination of the two (whichever 
occurs first) to determine when to stop the process.

■ The dataPrepStatus indicates whether the input data is binned 
(discretized) or unbinned (unprepared). If unbinned, automatic binning 
will occur.
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A.5.13 Sample_ClusteringApply.property
The Clustering Apply program takes the rules generated by Clustering Build and 
applies them to a single record or to a table to identify the cluster membership of 
each record. If the input is a single record, then the clustering model must have 
been built using automatic binning.

The parameter apply.type indicates whether the input is a record or a table. The 
modelName is the clusteringOutput.modelName from the Clustering Build 
program. The miningApplyOutput.ApplyOutputOption indicates the format 
of the results table, as follows:

■ multipleScoring: for each record, one row is created for each cluster (up to 
the number of clusters specified in numberOfPredictions) containing 
columns giving the cluster number (targetAttribute) and probability that 
the given record is a member of that cluster 
(probabilityTargetAttribute), in descending order of probability 
(topToBottom = true) or ascending (topToBottom = false).

■ targetProbability: produces the same format as for multipleScoring except 
that scores are given only for the clusters listed in the parameter 
targetValues (with display names in targetDisplayName), and in 
addition the ranking of each cluster for the given record is stored in the column 
named in the parameter rankAttribute.

■ The parameter sourceAttributeNames is a comma-separated list of the 
attributes from the input table to be included in the output, with display names 
in sourceAttributeAliases.

A.5.14 Sample_Clustering_Results.property
Sample_Clustering_Results.java illustrates how to get information about 
the results of applying a clustering model. Sample_Clustering_Results.java 
returns the following kinds of information:

■ General information: number of clusters, number of records, number of levels 
in the hierarchy.

■ Information about each cluster: record count and attribute values for the 
centroid

■ Other information: rules for each cluster and a sample histogram for one of the 
clusters
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Sample_Clustering_Results.property requires on input value: the name of 
the clustering model built with Sample_ClusteringBuild.java and applied 
using Sample_ClusteringApply.java.

A.5.15 Sample_AdaptiveBayesNetworkBuild.property
An Adaptive Bayes Network can be thought of as a series of small trees that can be 
combined to produce a set of rules describing how the model makes predictions. 
These small trees are called Network Features. Each level of a network feature 
describes one attribute, and the number of branches at each node is the number of 
distinct values of that attribute. Thus, features can quickly become complex; there 
are several parameters in Adaptive Bayes Network that control the complexity and 
therefore the build time:

■ maximumNetworkFeatureDepth: the maximum number of levels in each 
feature.The default is 10.

■ maximumNumberOfNetworkFeatures: the features are ranked using a 
calculation called MDL (Minimum Description Length), and the top N, as 
specified by this parameter, are used. The default is 10.

■ maximumConsecutivePrunedNetworkFeatures: after one feature is built, 
a second feature is built and a test based on MDL determines whether the two 
features together have more predictive power than feature 1 alone. If not, 
feature 2 is eliminated, a new feature 2 is built and the test is repeated. If N new 
features are built and eliminated, then feature 1 alone is selected, where N is the 
value of this parameter. In addition, a Naive Bayes model is built and tested 
against the “winning” ABN model.

■ maximumBuildTime: sets a maximum time (in minutes) for the model build

■ priorProbabilities: if the distribution of target values in the build data set 
is very different from the distribution in a random sample of data, then the 
actual distribution is described in these parameters in order to produce realistic 
predictions. The parameter targetValues is a comma-separated list of values in 
the target attribute, and targetProbabilities lists the percentage of 
records having each of the values.

■ categoryMatrix: these parameters describe the cost matrix that will cause 
bias in the predictions towards one particular value by specifying the cost of 
each type of mistake. The matrix in the comments of the property file illustrates 
that a false negative prediction (predict 0 where the actual value is 1) is twice as 
costly as a false positive prediction. The list of values in costValues will fill 
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the rows of the matrix in order. (see also the discussion of weights for the Model 
Seeker Build program)

Other parameters have the same meaning as for Naive Bayes as described in 
Section A.5.4.

A.5.16 Other Sample_AdaptiveBayesNetwork Property Files
The parameters in the property files 
SampleAdaptiveBayesNetworkLiftAndTest.property and 
SampleAdaptiveBayesNetworkApply.property are identical to those of the 
corresponding Naive Bayes property file:

■ Sample_NaiveBayesLiftAndTest.property (Section A.5.5)

■ Sample_NaiveBayesApply.property (Section A.5.7)

A.5.17 Sample PMML Import and Export Property
ODM provides programs to export a model into a table and import a model from a 
table in a format conforming to emerging standards called PMML. These standards 
will allow a model created by one vendor’s data mining utility to be used by 
another vendor’s utility for scoring.

The parameters specify the model to be imported/exported as well as the schema, 
table, and column containing the model specifications.

A.6 Compiling and Executing ODM Sample Programs
This section provides a brief description of how to compile and execute the ODM 
sample programs. You can do the following:

■ Compile one or all of the sample programs

■ Execute a sample program or all sample programs in the correct order

After ODM is installed on your system, the sample programs, property files, and 
scripts are in the directory $ORACLE_HOME/dm/demo/sample (UNIX) or 
%ORACLE_HOME%\dm\demo\sample (Windows).

The sample programs first check to see if they have run previously. If the program 
has run previously, each cleans up the environment before it runs again. You can 
execute these programs more than once without getting errors.
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A.6.1 Compiling the Sample Programs
Follow these steps to compile the sample programs:

1. Set your ORACLE_HOME environment variable.

2. Ensure that you have installed JDK 1.3.1 or above. JDK 1.3.1 may also be   
available in ORACLE_HOME with your installation. Set your JAVA_HOME 
environment variable; it should point to your installed JDK directory or the   
one available in ORACLE_HOME. 

3. On UNIX, you must set your CLASSPATH environment variable so that it 
includes the following Oracle9i Java Archive files:

$ORACLE_HOME/jdbc/lib/classes12.jar
$ORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbms/jlib/aqapi.jar
$ORACLE_HOME/rdbms/jlib/xsu12.jar
$ORACLE_HOME/dm/lib/odmapi.jar

On Windows, your Classpath system variable must include

%ORACLE_HOME%\jdbc\lib\classes12.jar
%ORACLE_HOME%\lib\xmlparserv2.jar
%ORACLE_HOME/rdbms/jlib/jmscommon.jar
%ORACLE_HOME%\rdbms\jlib\aqapi.jar
%ORACLE_HOME%\rdbms\jlib\xsu12.jar
%ORACLE_HOME\dm\lib\odmapi.jar

If you use a database character set that is not US7ASCII, WE8DEC, 
WE8ISO8859P1, or UTF8, you must also include the following in your 
CLASSPATH:

$ORACLE_HOME/jdbc/lib/nls_charset12.zip (on UNIX)
%ORACLE_HOME%\jdbc\lib\nls_charset12.zip (on Windows)

4. Before you compile the short programs Sample_NaiveBayesBuild_
short.java and Sample_NaiveBayesApply_short.java, you must edit 
the programs to specify the database URL (DB_URL) and the password for the 
ODM user. The database URL is a string that specifies the type of JDBC driver 
used and database details. ODM supports the JDBC thin driver which requires 
a database URL in the following form:

"jdbc:oracle:thin:@<host_name>:<port_number>:<sid>"
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To specify the data mining server, substitute appropriate values for DB_URL 
and ODM password in the following line in both short sample programs:

dms = new DataMiningServer("DB_URL", "odm", "ODM password");

The location access data has already been specified in both programs for your 
convenience.

5. For all other sample programs except for the short sample programs, you must 
edit Sample_Global.property file to specify the database URL, the ODM 
user name, and the password for ODM user. Replace the strings MyHost, 
MyPort, MySid, MyName, and MyPW with the appropriate values for your 
system. MyName refers to the ODM user and it must be replaced with odm. 
MyPW is the password specified during ODM configuration or while unlocking 
the ODM user account. By default the password is odm.

For example:

miningServer.url=jdbc:oracle:thin:@odmserver.company.com:1521:orcl
miningServer.userName=odm
miningServer.password=odm
inputDataSchemaName=odm_mtr
outputSchemaName=odm_mtr

6. You can compile each ODM sample program or all of them at once by running   
one of the provided scripts.

To compile a specific sample program, execute one of the following scripts as 
shown:

On UNIX platforms:

/usr/bin/sh compileSampleCode.sh <filename>

For example, to compile SampleModelSeeker.java:

/usr/bin/sh compileSampleCode.sh Sample_ModelSeeker.java

On Windows platforms:

compileSampleCode.bat <filename>

For example, to compile SampleModelSeeker.java:

compileSampleCode.bat Sample_ModelSeeker.java
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To compile all of the programs, use one of the scripts with the parameter all:

 On UNIX platforms:

/usr/bin/sh compileSampleCode.sh all

On Windows platforms:

compileSampleCode.bat all

A.6.2 Executing the Sample Programs
1. Before you execute a sample program, log in to the ODM user schema in the   

database and type the following command to turn on the ODM task monitor

exec odm_start_monitor

 Generally, you will not have to start the monitor again unless you manually 
stop it or the job associated with the task monitor turns broken. If you do not 
start the task monitor, any data mining tasks pending for execution will hang.

2. Each of the sample programs uses Sample_Global.property and a 
program-specific property file. For example, Sample_ModelSeeker.java 
requires Sample_ModelSeeker.property. To execute a specific sample 
program use one of the provided scripts. If you do not specify a property file, 
the script assumes the default property file for the specified program. Note that 
Sample_AssociationRules.java has a choice of two distinct property 
files; the desired property file for this sample program must be specified 
explicitly.

The short sample programs do not require property files. To execute them, use 
the script without specifying any property files.

To execute a specific sample program, execute one of the scripts as follows:

On UNIX platforms:

/usr/bin/sh executeSampleCode.sh <classname> [<property file>]

For example:

/usr/bin/sh executeSampleCode.sh Sample_ModelSeeker
/usr/bin/sh executeSampleCode.sh Sample_ModelSeeker myFile.property

On Windows platforms:

executeSampleCode.bat <classname> [<property file>]
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For example:

executeSampleCode.bat Sample_ModelSeeker
executeSampleCode.bat Sample_ModelSeeker myFile.property

3. The ODM sample programs must be executed in the correct order; for example,:

■  For a given model type, the sample build program must be executed before 
test, apply, or PMML export can be executed.

■ For discretization, Sample_Discretization_
CreateBinBoundaryTables must be executed before Sample_
Discretization_UseBinBoundaryTables can be executed.

■ You must execute Sample_NaiveBayesBuild_short before Sample_
NaiveBayesApply_short can be executed.

 To execute all of the programs in the correct order (except for Sample_
NaiveBayesBuild_short.java and Sample_NaiveBayesApply_
short.java), use one of the execution scripts with the parameter all:

On UNIX platforms:

/usr/bin/sh executeSampleCode.sh all

On Windows platforms:

executeSampleCode.bat all

Note: If you use the all parameter, you must use the default 
names for the program-specific property files. Association rules 
models are executed twice using both of the possible property files 
described in Section A.5.10.
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algorithm

A specific technique or procedure for producing a data mining model. An algorithm 
uses a specific model representation and may support one or more functional areas. 
Examples of algorithms used by ODM include Naive Bayes and Adaptive Bayes 
Networks for classification, k-means and O-Cluster for clustering, predictive 
variance for attribute importance, and Apriori for association rules.

algorithm settings

The settings that specify algorithm-specific behavior for model building.

apply output

A user specification describing the kind of output desired from applying a model to 
data. This output may include predicted values, associated probabilities, key values, 
and other supplementary data.

association rules

A data mining function that captures co-occurrence of items among transactions. A 
typical rule is an implication of the form A -> B, which means that the presence of 
itemset A implies the presence of itemset B with certain support and confidence. 
The support of the rule is the ratio of the number of transactions where the itemsets 
A and B are present to the total number of transactions. The confidence of the rule is 
the ratio of the number of transactions where the itemsets A and B are present to the 
number of transactions where itemset A is present. ODM uses the Apriori algorithm 
for association rules.

attribute 

An instance of Attribute maps to a column with a name and data type. The 
attribute corresponds to a column in a database table. When assigned to a column, 
the column must have a compatible data type; if the data type is not compatible, a 
runtime exception is likely. Attributes are also called variables, features, data fields, or 
table columns.
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attribute importance

A measure of the importance of an attribute in predicting a specified target. The 
measure of different attributes of a build data table enables users to select the 
attributes that are found to be most relevant to a mining model. A smaller set of 
attributes results in a faster model build; the resulting model could be more 
accurate. ODM uses the predictive variance algorithm for attribute importance. 
Also known as feature selection and key fields.

attribute usage

Specifies how a logical attribute is to be used when building a model, for example, 
active or supplementary, suppressing automatic data preprocessing, and assigning a 
weight to a particular attribute. See also attributes usage set.

attributes usage set

A collection of attribute usage objects that together determine how the logical 
attributes specified in a logical data object are to be used.

binning

See discretization.

case

All the data collected about a specific transaction or related set of values.

categorical attribute

An attribute where the values correspond to discrete categories. For example, state 
is a categorical attribute with discrete values (CA, NY, MA, etc.). Categorical 
attributes are either non-ordered (nominal) like state, gender, etc., or ordered 
(ordinal) such as high, medium, or low temperatures.

category

Corresponds to a distinct value of a categorical attribute.  Categories may have 
string or numeric values. String values must not exceed 64 characters in length.

centroid

See cluster centroid.

classification 

A data mining function for predicting target values for new records using a model 
built from records with known target values. ODM supports two algorithms for 
classification, Naive Bayes and Adaptive Bayes Networks. 
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cluster centroid

The cluster centroid is the vector that encodes, for each attribute, either the mean (if 
the attribute is numerical) or the mode (if the attribute is categorical) of the cases in 
the build data assigned to a cluster.

clustering

A data mining function for finding naturally occurring groupings in data. More 
precisely, given a set of data points, each having a set of attributes, and a similarity 
measure among them, clustering is the process of grouping the data points into 
different clusters such that data points in the same cluster are more similar to one 
another and data points in different clusters are less similar to one another. ODM 
supports two algorithms for clustering, k-means and O-Cluster.

confusion matrix

Measures the correctness of predictions made by a model from a text task. The row 
indexes of a confusion matrix correspond to actual values observed and provided in 
the test data. These were used for model building. The column indexes correspond 
to predicted values produced by applying the model. For any pair of actual/predicted 
indexes, the value indicates the number of records classified in that pairing. 

When predicted value equals actual value, the model produces correct predictions. 
All other entries indicate errors.

cost matrix

A two-dimensional, n by n table that defines the cost associated with a prediction 
versus the actual value. A cost matrix is typically used in classification models, 
where n is the number of distinct values in the target, and the columns and rows are 
labeled with target values. The rows are the actual values; the columns are the 
predicted values.

cross-validation

A technique of evaluating the accuracy of a classification or regression model. This 
technique is used when there are insufficient cases for model building and testing. 
The data table is divided into several parts, with each part in turn being used to 
evaluate a model built using the remaining parts. Cross-validation occurs 
automatically for Naive Bayes and Adaptive Bayes networks. 

data mining

The process of discovering hidden, previously unknown, and usable information 
from a large amount of data. This information is represented in a compact form, 
often referred to as a model.
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data mining server (DMS)

The component of the Oracle database that implements the data mining engine and 
persistent metadata repository. 

discretization

Discretization groups related values together under a single value (or bin). This 
reduces the number of distinct values in a column. Fewer bins result in models that 
build faster. ODM algorithms require that input data be discretized prior to model 
building, testing, computing lift, and applying (scoring).

distance-based (clustering algorithm)

Distance-based algorithms rely on a distance metric (function) to measure the 
similarity between data points. Data points are assigned to the nearest cluster 
according to the distance metric used.

DMS 

See data mining server (DMS).

feature

See network feature. 

lift

A measure of how much better prediction results are using a model than could be 
obtained by chance. For example, suppose that 2% of the customers mailed a 
catalog without using the model would make a purchase. However, using the 
model to select catalog recipients, 10% would make a purchase. Then the lift is 10/2 
or 5. Lift may also be used as a measure to compare different data mining models. 
Since lift is computed using a data table with actual outcomes, lift compares how 
well a model performs with respect to this data on predicted outcomes. Lift 
indicates how well the model improved the predictions over a random selection 
given actual results. Lift allows a user to infer how a model will perform on new 
data.

location access data

Specifies the location of data for a mining operation.

logical attribute

A description of a domain of data used as input to mining operations. Logical 
attributes may be categorical, ordinal, or numerical.
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logical data

A set of mining attributes used as input to building a mining model.

MDL principle

See minimum description length principle.

minimum description length principle

Given a sample of data and an effective enumeration of the appropriate alternative 
theories to explain the data, the best theory is the one that minimizes the sum of 

■ The length, in bits, of the description of the theory

■ The length, in bits, of the data when encoded with the help of the theory

mining apply output

See apply output. 

mining function

ODM supports the following mining functions: classification, association rules, 
attribute importance, and clustering.

mining function settings

An object that specifies the type of model to build, the function of the model, and 
the algorithm to use. ODM supports the following mining functions: classification, 
association rules, attribute importance, and clustering.

mining model

The result of building a model from mining function settings. The representation of 
the model is specific to the algorithm specified by the user or selected by the DMS. 
A model can be used for direct inspection, e.g., to examine the rules produced from 
a decision tree or association rules, or to score data.

mining result

The end product(s) of a mining operation. For example, a build task produces a 
mining model; a test task produces a test result.

missing value

A data value that is missing because it was not measured (that is, has a null value), 
not answered, was unknown, or was lost. Data mining systems vary in the way 
they treat missing values. Typically, they ignore missing values, omit any records 
containing missing values, replace missing values with the mode or mean, or infer 
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missing values from existing values. ODM ignores missing values during mining 
operations.

mixture model

A mixture model is a type of density model that includes several component functions  
(usually Gaussian) that are combined to provide a multimodal density.

model

An important function of data mining is the production of a model. A model can be 
descriptive or predictive. A descriptive model helps in understanding underlying 
processes or behavior. For example, an association model describes consumer 
behavior. A predictive model is an equation or set of rules that makes it possible to 
predict an unseen or unmeasured value (the dependent variable or output) from 
other, known values (independent variables or input). The form of the equation or 
rules is suggested by mining data collected from the process under study. Some 
training or estimation technique is used to estimate the parameters of the equation 
or rules. See also mining model.

multi-record case

See transactional format.

network feature

A network feature is a tree-like multi-attribute structure. From the standpoint of the 
network, features are conditionally independent components. Features contain at 
least one attribute (the root attribute). Conditional probabilities are computed for 
each value of the root predictor. A two-attribute feature will have, in addition to the 
root predictor conditional probabilities, computed conditional probabilities for each 
combination of values of the root and the depth 2 predictor. That is, if a root 
predictor, x, has i values and the depth 2 predictor, y, has j values, a conditional 
probability is computed for each combination of values {x=a, y=b such that a is in 
the set {1,..,i} and b is in the set {1,..,j}}. Similarly, a depth 3 predictor, z, would have 
additional associated conditional probability computed for each combination of 
values {x=a,  y=b,  z=c such that a is in the set {1,..,i} and b is in the set {1,..,j} and c is 
in the set {1,..,k}}.  Network features are used in the Adaptive Bayes Network 
algorithm.

nontransactional format

Each case in the data is stored as one record (row) in a table. Also known as 
single-record case. See also transactional format.
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numerical attribute

An attribute whose values are numbers. The numeric value can be either an integer 
or a real number. Numerical attribute values can be manipulated as continuous 
values. See also categorical attribute.

outlier

A data value that does not (or is not thought to have) come from the typical 
population of data; in other words, a data value that falls outside the boundaries 
that enclose most other data values in the data.

physical data 

Identifies data to be used as input to data mining. Through the use of attribute 
assignment, attributes of the physical data are mapped to logical attributes of a 
model’s logical data. The data referenced by a physical data object can be used in 
model building, model application (scoring), lift computation, statistical analysis, 
etc.

physical data specification

An object that specifies the characteristics of the physical data used in a mining 
operation. The physical data specification includes information about the format of 
the data (transactional or nontransactional) and the roles that the data columns play.

positive target value

In binary classification problems, you may designate one of the two classes (target 
values) as positive, the other as negative. When ODM computes a model's lift, it 
calculates the density of positive target values among a set of test instances for 
which the model predicts positive values with a given degree of confidence.

predictor

A logical attribute used as input to a supervised model or algorithm to build a 
model.

prior probabilities

The set of prior probabilities specifies the distribution of examples of the various 
classes in data. Also referred to as priors, these could be different from the 
distribution observed in the data.

priors

See prior probabilities.
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rule 

An expression of the general form if X, then Y. An output of certain models, such as 
association rules models or decision tree models. The predicate X may be a 
compound predicate.

score

Scoring data means applying a data mining model to new data to generate 
predictions. See apply output.

settings

See algorithm settings and mining function settings.

single-record case

See nontransactional format. 

supervised mining (learning)

The process of building data mining models using a known dependent variable, 
also referred to as the target. Classification techniques are supervised. See 
unsupervised mining (learning).

target

In supervised learning, the identified logical attribute that is to be predicted. 
Sometimes called target value or target attribute.

task

A container within which to specify arguments to data mining operations to be 
performed by the data mining system. 

transactional format

Each case in the data is stored as multiple records in a table with columns 
sequenceID, attribute_name, and value. Also known as multi-record case. See 
also nontransactional format.

transformation

A function applied to data resulting in a new form or representation of the data. For 
example, discretization and normalization are transformations on data.
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unsupervised mining (learning)

The process of building data mining models without the guidance (supervision) of a 
known, correct result. Clustering and association rules are unsupervised mining 
functions. See supervised mining (learning).
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