
PAT BDD Library Manual

Truong Khanh Nguyen

School of Computing
National University of Singapore

truongkhanh@comp.nus.edu.sg

1 Introduction

PAT BDD Library is a .Net library for symbolic model checking. It includes a .Net
interface to the CUDD package (version 2.4.2). More importantly, it also contains many
functions to get BDD encoding of a system easily. A system often consists of many
components and primitive components described by transition systems are encoded it
first, then these encodings are composed by our supported CSP-like operators.

2 Download and Use

After you download our library and unzip it. The folder will contains 2 DLL files of
CUDD interface and the Source folder. However you must use the corresponding ver-
sion of the CUDD interface. For example if your machine is a 32 bit, you need to rename
the DLL from ‘CUDDHelper 32.dll’ to ‘CUDDHelper.dll’ and can remove the ‘CUD-
DHelper 64.dll’. However Windows 32 bit is recommended to use our library. Then in
the Source folder is a project which contains the entire source code of our library and
another testing project. To use our library, your project must (i) make a reference to our
PAT.BDD project and (ii) put the CUDDHelper.dll in the executive folder. Normally
you can add this dll to your project and set it to be copied to the executive folder. For
more details, try to run PAT.BDD.Release.sln

3 Overview of PAT BDD Library

In this section, we will explain the structure of our library. We will also discuss how to
encode from an expression to a system.

3.1 CUDD Library

You can find all of the functions manipulating BDDs in the namespace PAT.Common.Classes.CUDDLib.
It includes an interface to CUDD 2.4.2 library and our own friendly interface which
helps you to use CUDD library easier. Below are the list of important classes in this
namespace.

– Class PlatformInvoke includes all of the necessary functions ported from CUDD.
Note that all datastructures in C/C++ are converted to IntPtr in C#. However it is
not recommended to call directly these functions.

– Class CUDD provide easier interface to use. General functions are contained in
CUDD.cs. Other classes are divided into sub class by its function.

– The corresponding binary decision diagram (BDD) datastructure of CUDD is CUD-
DNode. It is actually a wrapper of the BDD in CUDD memory with the pointer
pointing to the BDD’s address. Since CUDD library handles the garbage collec-
tion manually, we need to carefully manage the number of references to a certain
BDD. Basically a BDD will be removed in the garbage collection process if the
its number of references is zero. You can call CUDD.Ref and CUDD.Deref with
many overloading functions to increase or decrease the number of references by 1.
For each functions, its documentation will show that it changes parameters’ num-
ber of references. For instance, in the function CUDD.Function.Or, it said ‘[REFS:
result, DEREFS: dd1, dd2]’ which means that the parameters dd1 and dd2 are
called Deref while the returned value is called Ref. In other work, the number of
references of dd1 and dd2 are decreased by 1, while the one of the returned value
is increased by 1 and actually becomes 1.

– Since CUDD library only works with boolean variables. To encode any variable
whose type is finite, we need a set of boolean variables to encode its value. Then
CUDDVars will contain these boolean variables encoding a certain variable.

– It is important to know the range of data type we want to encode, specifically the
lower bound and the upper bound. Class VariableList will manage variables and
their lower bounds and upper bounds.

3.2 Encode a Finite Set

Before giving explanation how to encode an expression, we will briefly describe how
to encode a finite set. Essentially given any finite set X , encoding X is to enumer-
ate elements of X in binary and represent them as Boolean functions. Therefore to
encode X , we need n boolean variables x0, · · · , xn−1 where n = dlog2 |X |e. Then
each element in X is mapped with a bit vector (x0, · · · , xn−1) by an injective encoding
function fX : X → {0, 1}n . Note that this mapping is fixed throughout the BDD en-
coding. For instance, encoding the set of four elements X = {a, b, c, d} requires two
boolean variables x0 and x1. The encoding functions fX is defined as fX (a) = (0, 0),
fX (b) = (0, 1), fX (c) = (1, 0), and fX (d) = (1, 1). As a result the predicate of the
subset Y = {a, b} is ((x0, x1) = fX (a) ∨ (x0, x1) = fX (b)). For simplicity we will
use the label x to denote the bit vector (x0, · · · , xn−1). Therefore the predicate of the
subset Y can be rewritten shortly as (x = fX (a) ∨ x = fX (b)). Using this technique,
we can encode all the data types whose domain is finite, e.g., boolean, integer, array of
booleans, and array of integers. To encode transitions, each variable x has another copy
called x ′ which denotes the variable x’s value after the transition.

3.3 Encode Expression

Our library provides many types of expressions including boolean expression, arith-
metic expression and some program structure like While loop, and If. The result of
BDD encoding of any expression is the type of ExpressionBDDEncoding. To get the

BDD encoding of an expression, we can call one of 3 below functions depending on the
type of expression:

1. TranslateBoolExpToBDD: You must call this function for a boolean expression.
Then the result is a list of BDDs which are OR-implicitly contained in Expres-
sionBDDEncoding.GuardDDs.

2. TranslateIntExpToBDD: This function is called if your expression is an arithmetic
expression. Then the result can be calculated from ExpressionBDDEncoding.GuardDDs
and ExpressionBDDEncoding.ExpressionDDs. The encoding can be translated as
‘if the guard condition in GuardDDs[i] is true, then the value of the expression
is encoded as ExpressionDDs[i]. The reason of the returned type ExpressionBD-
DEncoding is to support array with variables in the index. For example, the encod-
ing of the expression a[i] where i ∈ {1, 2} is the ExpressionBDDEncoding where
GuardDDs is a list of 2 BDDs encoding of i = 1 and i = 2, and ExpressionDDs
is a list of 2 BDDs encoding of variables a[1] and a[2].

3. TranslateStatementToBDD: In modeling system, after a transition is taken, vari-
ables are updated according to some algorithm. This update can be simple assign-
ment or even a complex program. Our library allows programs to contains state-
ments where they may depend on the previous statements, or programming struc-
tures like While loop or If . We provide TranslateStatementToBDD to encode
these kinds of programs.

3.4 Encode a Finite State Machine(FSM)

In this section we will define FSM and its encoding. We extend FSM to encode timed
systems by using tick-transitions. If you use our library for encoding untimed-systems,
you can ignore the part related with tick transition. An FSM is a tupleM = (Var ,S , init ,Act ,T)
such that Var is a set of finite-domain variables; S is a finite set of control states;
init ∈ S is the initial state; Act is the alphabet of events and channels; and T is a
labeled transition relation. A transition label is of the form [guard]evt{prog} where
guard is an optional guard condition constituted by variables in Var ; evt is either
an event name, a channel input/output or the special tick event (which denotes 1-unit
elapsed time); and prog is an optional transaction, i.e., a sequential program which up-
dates global/local variables. A transaction (which may contain program constructs like
while-do) associated with a transition is to be executed atomically. A non-atomic op-
eration can be broken into multiple transitions. A transition is possible if the guard is
true given current valuation σ of Var . Moreover a transition labeled with channel in-
put/output can not occur by itself but must be synchronized with the transition labeled
with corresponding channel output/input.

SymbolicLTS is the class to describe an FSM. Similarly State and Transition are
used to describe states and transitions in an FSM. You can build an FSM by creating a
new SymbolicLTS and adding states, and transitions to it. These classes can be found
in namespace PAT.Common.Classes.SemanticModels.LTS.BDD.

The BDD encoding of an FSM, referred to as a BDD machine, is a tuple B =
(
−→
V ,−→v , Init ,Trans,Out , In,Tick). −→V is a set of unprimed Boolean variables encod-

ing global variables, event names and channel names, which are fixed for the whole

system before encoding. −→v is a set of variables encoding local variables and local con-
trol states; Init is a formula over −→V and −→v encoding the initial valuation of the vari-
ables. Trans is the encoding of transitions excluding synchronous channel input/output
and tick-transitions. Out (In) is the encoding of synchronous channel output (input).
Note that transitions in Out and In are to be matched by corresponding transitions in
In and Out respectively from the environment and are thus separated from the rest of
the transitions. Tick is also the encoding of transitions labeled with tick . Then the final
transition function of an FSM is taken from Trans and Tick . In other words, it can
engage an action or idle one time unit. We still calculate Out and In and separate them
from Trans and Tick because transitions from Out and In can be useful if they are
synchronized.

Let BDD machine B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) be the encoding of an

FSMM = (Var ,S , init ,Act ,T) where

– −→V = V1 ∪ Events where V1 and Events = {event0, · · · , eventn−1} are the sets
of boolean variables to encode global variables and the alphabet Act respectively.
Let event denote the bit vector (event0, · · · , eventn−1).

– −→v = v1 ∪ States where v1 and States = {state0, · · · , statem−1} are the sets
of boolean variables to encode local variables and the set of states S respectively.
Similarly let state denote the bit vector (state0, · · · , statem−1). Moreover for any
global or local variable x , let the same label x denote the corresponding bit vector
of boolean variables to encode that variable. Note that these labels x are different.
The former x is the variable declared in the model while the latter x is a shorthand
for a bit vector in the BDD encoding functions.

– Init = (state = fS (init))

– Trans =
∨
(state = fS (s0) ∧ gbdd ∧ event ′ = fAct(e) ∧ progbdd ∧ state ′ =

fS (s1)) for all transitions from state s0 to state s1 labeled with [g]e{prog} (where
e 6= tick). For simplicity, we skip how we encode guard expression g to gbdd and
program block prog to progbdd . Interested readers can refer to [?].

– Out =
∨
(state = fS (s0) ∧ gbdd ∧ event ′ = fAct(e) ∧ progbdd ∧ state ′ =

fS (s1)) for all transitions from state s0 to state s1 labeled with a synchronous chan-
nel output e , guarded with g and attached with transaction prog .

– In =
∨
(state = fS (s0) ∧ gbdd ∧ event ′ = fAct(e) ∧ progbdd ∧ state ′ = fS (s1))

for all transitions from state s0 to state s1 labeled with a synchronous channel input
e , guarded with g and attached with transaction prog .

– Tick =
∨
(state = fS (s0) ∧ event ′ = fAct(tick) ∧ state ′ = fS (s1)) for all tick

transitions from state s0 to state s1.

AutomataBDD is the class to describe the structure BDD machine. Moreover this
class also contains many compositional functions to achieve the BDD encoding of an
untimed-system from the known BDD encoding of sub systems. For timed-systems,
you can find these functions in the class TimeBehaviors.

4 A Tutorial for PAT BDD Library

This section will show you how to use our library to do symbolic model checking. Most
of the instructions are for our functions. If you want to use CUDD package directly, you
should refer to CUDD manual, and CUDD tutorial

4.1 Initialize CUDD

To initialize the CUDD library, we need to call CUDD.InitialiseCUDD. We often initial-
ized with 2GB, CUDD UNIQUE SLOTS = 256, and CUDD CACHE SLOTS =
262144. You can find these constants in the class CUDD. The library can also be ini-
tialized from our interface by call Model’s constructor function.

4.2 Create Variables

There are two kinds of variables, local variables and global variables. The difference
is that for any transition, if global variables are not updated, they still keep the same
value while the fact that local variables are not updated means that they are not cared
and can receive any value in their range after the transition. You can create variables
by calling functions in Model : AddLocalVar , AddLocalArray , AddGlobalVar , and
AddGlobalArray . As our rule, for any array element A[i], its corresponding name is
A+Model .NAME SEPERATOR + i

Since our library is used for model checking purpose, for any variable x created, its
prime version x ′ is also created. Boolean variables representing for variable x are called
row variable while ones for variable x ′ are called column variables. You can get these
boolean variables by using the function GetRowVars and GetColVars in also class
Model . All row variables and column variables are contained in Model .AllRowVars ,
and Model .AllColVars respectively.

4.3 Create Expression

All of the Expression classes can be found in the name space PAT.Common.Classes.Expressions.ExpressionClass.

– Assignment: Create an assignment statement in the program part of a transition
– BoolConstant: Create boolean constants, True and False .
– If: To create if-then-else statement
– IntConstant: To Create integral constant expression
– PrimitiveApplication: This is the most important class which contains many kinds

of expression. Refer to the constant strings in this class to know how to create new
expressions

– Sequence: This class is used to create the program in a transition. A program is
a sequence of statements. Note that there are only 3 kinds of statements which
can appear in the program of transition, Assignment, While loop and if-the-else
condition.

– Variable: To get a variable by its name.
– VariablePrime: To get variable after the transition (prime version) by its name

http://vlsi.colorado.edu/~fabio/CUDD/
http://www.cs.ucla.edu/~ethan/documents/schreiber_cudd_tutorial.pdf

– While: To create a while loop
– WildConstant: This is a special expression which do not indicate any specific value.

It is often used in an update of a variable which means that after the update, the
variable value is not important and can receive any value in its range.

4.4 Create And Encode FSMs

You can create a FSM by creating a new SymbolicLTS and adding new State and
Transition to it. Note that FSMs are action-based graph where transitions are labeled
with guard condition (Transition.GuardCondition), action name(Transition.Event),
and transaction (Transition.ProgramBlock). The string Model .EVENT NAME is
reserved to encode the set of action names. Before starting to encode your model, you
need to provide the number of action names used in your model. We also support param-
eters in action names like get .i .i where i is a certain variable. If your model requires
parameters in action names, you need to configure the maximum number of param-
eters in an action name (Model .MAX NUMBER EVENT PARAMETERS) and
the lower bound/ upper bound for each parameter in Model .MIN EVENT INDEX ,
and Model .MAX EVENT INDEX respectively.

To get the encoding of a system, first you get the SymbolicLTSs of primitive com-
ponents and encode them. Then you will combine these encoding compositionally by
our functions in AutomataBDD and TimeBehaviors .

4.5 Search in FSMs

Our library provides many algorithms to search whether it is reachable to state satisfying
some condition. This searching can be conducted in forward search, backward search or
in both directions. These searching algorithms are in the classes Graph and GraphTA.
These class also contains a lot of functions to get pre-image and post-image of a set of
states.

4.6 Debug

The function CUDD .Print .PrintMinterm is very helpful for you to debug. It will
print all of the configurations making the BDD true.

	PAT BDD Library Manual

