An Improved Construction of Petri Net Unfoldings

César Rodríguez Stefan Schwoon

LSV, ENS Cachan & CNRS, INRIA Saclay, France

FSFMA 2013, Singapore, July 15, 2013

Reachability Checking in Petri Nets

- Reachability in safe PNs
- Faces state-explosion due to concurrency
- Partial-order semantics
 - Initially developed in the area of semantics
 - Unfolding algorithm by McMillan
 - Finite, complete unfolding prefixes

[McM92]

2 / 17

Reachability Checking in Petri Nets

- Reachability in safe PNs
- Faces state-explosion due to concurrency
- Partial-order semantics
 - Initially developed in the area of semantics
 - Unfolding algorithm by McMillan
 - Finite, complete unfolding prefixes

Our contribution: improvement in the unfolding algorithm

- Targets the computationally most expensive step
- General: can be integrated into several unfolding approaches
- Preliminary implementation

[McM92]

Definition

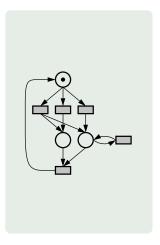
A Petri net is a tuple $N = \langle P, T, F, m_0 \rangle$

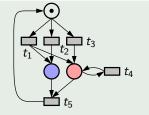
- *P*: finite set of places
- T: finite set of transitions
- $F \subseteq P \times T \cup T \times P$: flow relation
- $m_0 \subseteq P$: initial marking

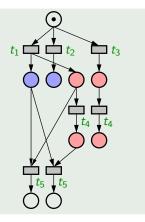
Notation

•*x* for preset, x^{\bullet} for postset

We only consider 1-safe nets







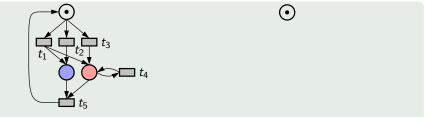
Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Events and conditions

- Labelling is a homomorphism
- Infinite in general

Rodríguez, Schwoon (LSV)

Improved Construction of PN Unfoldings



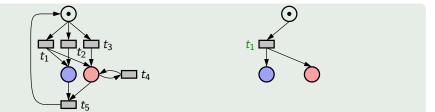
Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Events and conditions

- Labelling is a homomorphism
- Infinite in general

Rodríguez, Schwoon (LSV)

Improved Construction of PN Unfoldings



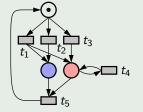
Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Events and conditions

- Labelling is a homomorphism
- Infinite in general

Rodríguez, Schwoon (LSV)

Improved Construction of PN Unfoldings



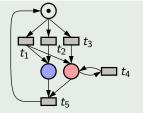
Remarks

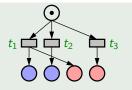
- \mathcal{U}_N is acyclic, 1-safe
- Events and conditions

- Labelling is a homomorphism
- Infinite in general

Rodríguez, Schwoon (LSV)

Improved Construction of PN Unfoldings





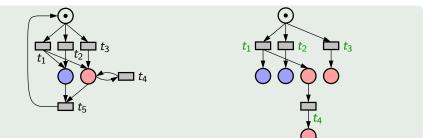
Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Events and conditions

- Labelling is a homomorphism
- Infinite in general

Rodríguez, Schwoon (LSV)

Improved Construction of PN Unfoldings



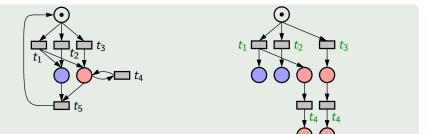
Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Events and conditions

- Labelling is a homomorphism
- Infinite in general

Rodríguez, Schwoon (LSV)

Improved Construction of PN Unfoldings



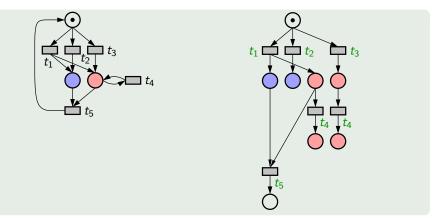
Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Events and conditions

- Labelling is a homomorphism
- Infinite in general

Rodríguez, Schwoon (LSV)

Improved Construction of PN Unfoldings



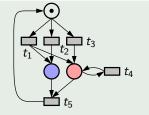
Remarks

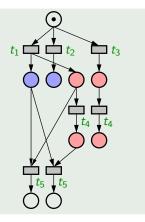
- \mathcal{U}_N is acyclic, 1-safe
- Events and conditions

- Labelling is a homomorphism
- Infinite in general

Rodríguez, Schwoon (LSV)

Improved Construction of PN Unfoldings





Remarks

- \mathcal{U}_N is acyclic, 1-safe
- Events and conditions

- Labelling is a homomorphism
- Infinite in general

Rodríguez, Schwoon (LSV)

Improved Construction of PN Unfoldings

- \mathcal{U}_N is the result of unfolding 'as much as possible'
- If you stop: finite unfolding prefix \mathcal{P}_N

- \mathcal{U}_N is the result of unfolding 'as much as possible'
- If you stop: finite unfolding prefix \mathcal{P}_N

Definition

Prefix \mathcal{P}_N is marking-complete if:

for all marking m reachable in N, there is marking \tilde{m} reachable in \mathcal{P}_N with

 $h(\tilde{m}) = m.$

- \mathcal{U}_N is the result of unfolding 'as much as possible'
- If you stop: finite unfolding prefix \mathcal{P}_N

Definition

Prefix \mathcal{P}_N is marking-complete if:

for all marking m reachable in N, there is marking \tilde{m} reachable in \mathcal{P}_N with

 $h(\tilde{m}) = m.$

- McMillan's algorithm constructs \mathcal{P}_N stopping at the cutoff events
 - Improved by Esparza et al.
 - Tools: Mole, Punf

[ERV02]

- \mathcal{U}_N is the result of unfolding 'as much as possible'
- If you stop: finite unfolding prefix \mathcal{P}_N

Definition

Prefix \mathcal{P}_N is marking-complete if:

for all marking m reachable in N, there is marking \tilde{m} reachable in \mathcal{P}_N with

 $h(\tilde{m}) = m.$

- McMillan's algorithm constructs \mathcal{P}_N stopping at the cutoff events
 - Improved by Esparza et al.
 - Tools: Mole, Punf

Reachability in N is

- P_{SPACE} -complete on N
- NP-complete on \mathcal{P}_N

(upper bound: \mathcal{P}_N is acyclic!)

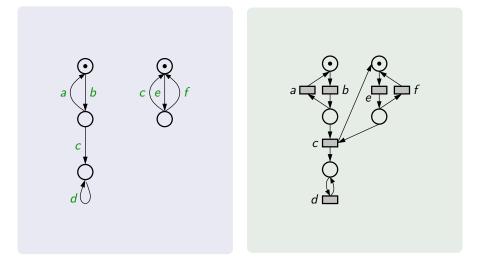
[ERV02]

Unfolding Other Models of Concurrency

Unfoldings applicable to other models of concurrency:

- Process algebras
- High-level nets
- Unbounded nets
- Nets with read arcs
- Time Petri nets
- Communicating automata
- Concurrent boolean programs
- . . .

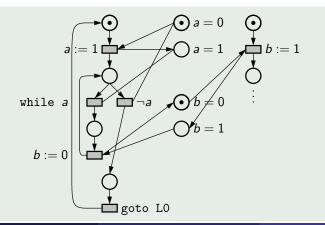
Communicating Automata



Concurrent Boolean Programs

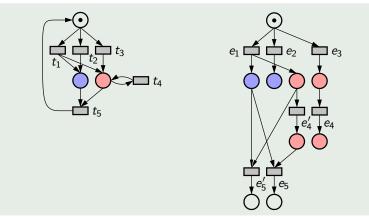
```
LO: a := 1;
while (a) b := 0;
goto LO;
```

```
L1: b := 1;
while (b) a := 0;
goto L1;
```



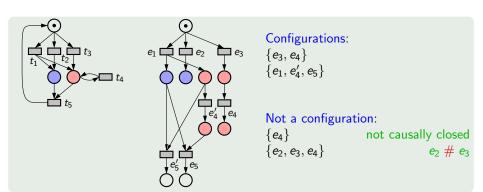
Causality and Conflict

The structure of an unfolding induces three relations over its events:



Causality: e < e' iff e' occurs $\Rightarrow e$ occurs before Conflict: e # e' iff e and e' never occur in the same run Concurrency: $e \parallel e'$ iff not e < e' and not e' < e and not e # e'

Rodríguez, Schwoon (LSV)



Configurations

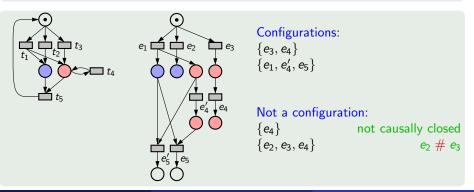
Definition

A set of events C is a configuration iff:

- $\bullet e \in \mathcal{C} \land e' < e \Rightarrow e' \in \mathcal{C}$
- **2** $\neg e \# e'$ for all $e, e' \in \mathcal{C}$

causally closed conflict free

Intuition: C configuration iff all its events can be arranged to form a run.



Main computational problem:

Prefix Extensions

Given \mathcal{P}_N and t, can we extend \mathcal{P}_N with e where h(e) = t: NP-complete

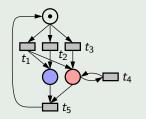
Main computational problem:

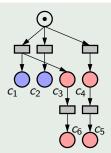
Prefix Extensions

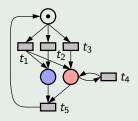
Given \mathcal{P}_N and t, can we extend \mathcal{P}_N with e where h(e) = t: NP-complete

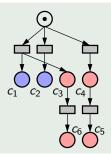
- Enumerate sets of conditions S s.t. $h(S) = {}^{\bullet}t \cup \underline{t}$ (exponential)
- If *S* is coverable, return YES; otherwise continue

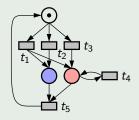
(linear)

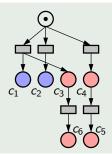




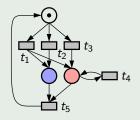


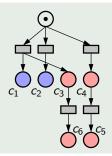






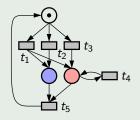
 $\begin{array}{c|c} & \bigcirc \\ c_1 & c_3 \\ c_2 & c_4 \\ & c_5 \\ & c_6 \end{array}$

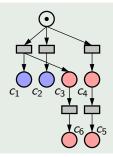




 $\begin{array}{c|c} & \bigcirc \\ c_1 & c_3 \\ c_2 & c_4 \\ & c_5 \\ & c_6 \end{array}$

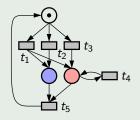
13

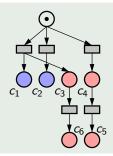




 $\begin{array}{c|c} & \bigcirc \\ c_1 & c_3 \\ c_2 & c_4 \\ & c_5 \\ & c_6 \end{array}$

1 3 Yes

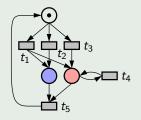


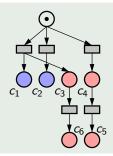


 $\begin{array}{c|c} & & \\ \hline \\ c_1 & c_3 \\ c_2 & c_4 \\ & c_5 \end{array}$

*c*₆

1 3 Yes 1 4

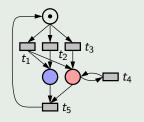


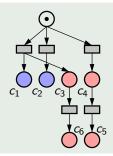


 $\begin{array}{c|c} & & \\ \hline \\ c_1 & c_3 \\ c_2 & c_4 \\ c_5 \end{array}$

*c*₆

1 3 Yes 1 4 No

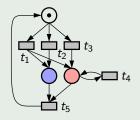


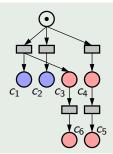


 $\begin{array}{c|c} & \bigcirc \\ c_1 & c_3 \\ c_2 & c_4 \\ & & c_5 \end{array}$

*c*₆

1 3 Yes 1 4 No 1 5 No 1 6 Yes



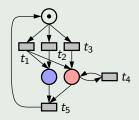


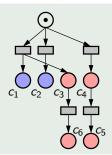
 $\begin{array}{c|c} & & & \\ \hline & & \\ c_1 & & \\ c_2 & & \\ c_4 & & \\ & & \\ c_5 & \end{array}$

13	Yes
14	No
15	No
16	Yes
2 3	No
2 4	No
2 5	No
2 6	No

*c*₆

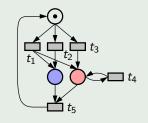
Exploiting Causality

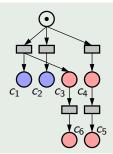


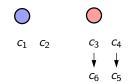


13 / 17

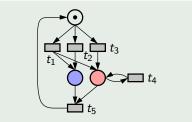
Exploiting Causality

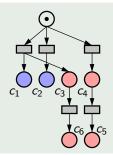






Exploiting Causality





 $c_1 c_2$

 C_3

C6 C5

*C*₄

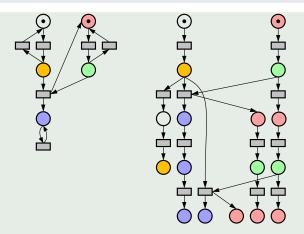
Yes 13 No 14 No 1-516 Yes 23 No 24 No No 25 No 2-6

p-forest

Definition

The *p*-forest is the partial order $(h^{-1}(p), <)$, i.e.,

- Conditions labelled by p
- Osing causality as order



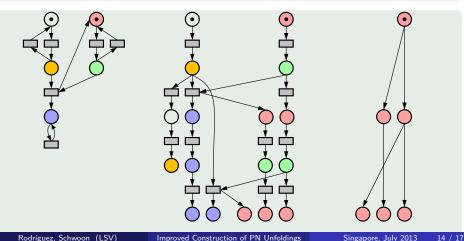
p-forest

Definition

The *p*-forest is the partial order $(h^{-1}(p), <)$, i.e.,

Conditions labelled by p

Using causality as order

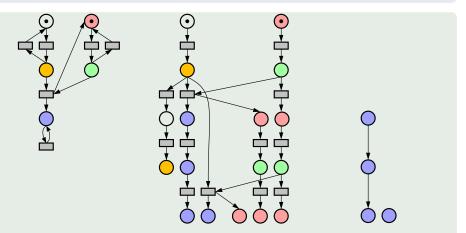


p-forest

Definition

The *p*-forest is the partial order $(h^{-1}(p), <)$, i.e.,

Conditions labelled by p
 Using causality as order



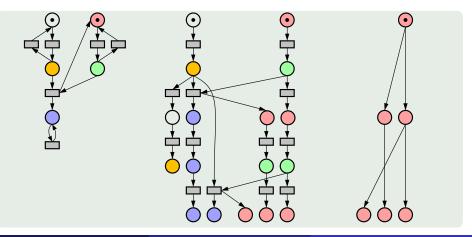
14 / 17

Computing *p*-forests

Incremental algorithm

• Cost $\mathcal{O}(1)$ for each condition *c* appended to the forest

• Once [c] has been marked



Experiments

Net	Unfolding		New Alg.	Punf	Mole
Name	Events	Cond.	Time	Time (r)	$\overline{\text{Time }(\mathbf{r})}$
Byz	14724	42276	0.73	11.48	2.66
Q(1)	7469	20969	0.21	6.81	2.14
ELEV(4)	16935	32354	0.50	5.06	0.24
DME(6)	1830	6451	0.04	4.50	3.50
DME(7)	2737	9542	0.08	4.88	3.88
DME(9)	5337	18316	0.22	6.64	4.95
DME(11)	9185	31186	0.53	8.13	5.92
Key(3)	6968	13941	0.23	2.52	0.30
Key(4)	67954	135914	15.94	2.34	0.06
FURN(3)	25394	58897	0.69	3.48	1.01
FURN(4)	146606	342140	25.75	3.02	0.67
Mmgt(3)	5841	11575	0.15	1.93	0.20
MMGT(4)	46902	92940	9.95	1.68	0.06

Rodríguez, Schwoon (LSV)

Improved Construction of PN Unfoldings

- Algorithmic improvement for constructing net unfoldings
- Preliminary implementation
- Promising results: beats **PUNF** in almost all examples

Future work

• Generalize the approach to contextual unfoldings

- Algorithmic improvement for constructing net unfoldings
- Preliminary implementation
- Promising results: beats **PUNF** in almost all examples

Future work

• Generalize the approach to contextual unfoldings

Thank you for your attention

Javier Esparza, Stefan Römer, and Walter Vogler.

An improvement of McMillan's unfolding algorithm.

Formal Methods in System Design, 20:285-310, 2002.

Kenneth L. McMillan.

Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits.

In Proc. CAV, LNCS 663, pages 164–177, 1992.