
Trusted Block as a Service:
Towards Sensitive Applications on the Cloud

Jianan Hao Wentong Cai
Parallel and Distributed Computing Centre, School of Computer Engineering

Nanyang Technological University, Singapore
haojn@pmail.ntu.edu.sg, ASWTCAI@ntu.edu.sg

Abstract—Cloud computing grows rapidly as today’s advanced
information technology. However, by allowing outsourcing com-
putation on the Cloud, users risk of disclosing privacy and
obtaining forged results. These potential threats block sensitive
applications to join the Cloud.

In this paper, we characterize sensitive applications on the
Cloud (SAND) problem and define two critical security require-
ments: confidentiality and verifiability. The former refers to the
protection of sensitive programs/data from disclosing to other
users or even the Cloud administrators. The latter concerns
with user’s capability to verify whether computing results are
faithfully calculated.

To address SAND, we propose a new Cloud model, Trusted
Block as a Service (TBaaS), to provide a confidential and
verifiable environment for each sensitive application. TBaaS
limits Cloud provider’s access of sensitive applications while
granting user the ability to verify whether the computation is
faithfully carried out. Moreover, it offers high flexibility and low
performance overhead.

I. INTRODUCTION

The emergence of Cloud computing significantly changes
the rules of information technology. By integrating geometry
and capacity of resources, a Cloud provider can offer its users
flexible environments to execute their own business. The Cloud
provides the illusion of unlimited resources to satisfy users’
dynamic and scalable requirements. Meanwhile, by ruling out
the necessity to establish the infrastructure, users save their
investments at initial stage, as well as the time to market
for products. The pay-per-use model may further decrease
the cost for resource usage. Finally, centralized resources can
be efficiently maintained by the Cloud provider and thereby
reduces its users’ maintenance cost.

Despite the various benefits offered by the Cloud, many
potential users do not join the Cloud, or only put their less sen-
sitive applications on the Cloud [4]. The worry mainly comes
from data leakage, and service hijacking [6]. For a company,
losing core intellectual property may lead to a disaster and
hijacked services may result in falsified information which
damages company’s reputation.

To solve the problem of Sensitive Application oN clouD
(SAND), we suggest two security requirements must be sat-
isfied: confidentiality and verifiability. Confidentiality guaran-
tees that users can securely transfer a processing program,
parameter and return value to/from the Cloud without risk
of disclosing them to another Cloud tenant or other parties.
It is important for sensitive applications since a processing

program, parameter and return value may contain raw sen-
sitive data. Even the Cloud provider should not be allowed
to access these data. The other requirement, verifiability,
is also necessary. Verifiability grants that users can verify
their results returned from the Cloud, that is, whether it is
faithfully computed by the applications they deployed along
with the genuine parameter they provided. Moreover, since
an application’s purpose may vary from one to another, a
highly flexible environment is desirable and the performance
overhead should be minimized.

To mitigate security issues, some existing Cloud solutions
rely on trusted computing [16] to build up a trusted Cloud. The
Cloud grants users the ability to verify its Trusted Computing
Base (TCB). TCB refers to a set of components critical to
system security, e.g., hypervisor and management domain for
Xen [5]. Nevertheless, knowing what software stack is running
on the Cloud is not enough to provide confidentiality and
verifiability. A secure protocol is required to satisfy such
requirements. Furthermore, a trusted Cloud only answers what
constructs TCB; however, whether components inside TCB
can meet their asserted design depends on trustworthiness.
A trusted and trustworthy Cloud is necessary for deploying
sensitive applications. For example, Xen can be used to build a
trusted Cloud, but if Xen hypervisor is buggy, the Cloud cannot
be trustworthy and the attackers may utilize the bug to attack
sensitive applications. To prove a Cloud is trustworthy, Cloud’s
TCB should be formally verified via mathematical proof or be
inspected manually. Both approaches are sensitive to the size
of TCB which can be measured by Lines Of Code (LOC). The
smaller the TCB, the higher the possibility to be trustworthy.
Unfortunately, most of the existing hypervisors have a large
TCB. For instance, hypervisor of Xen 4.0.1 is around 187K
LOC (for x86 platform only) calculated by SLOCCount [18],
not including the management domain (Dom0) that includes
numerous hardware drivers.

We propose Trusted Block as a Service (TBaaS) to solve
SAND problem in this paper. A tiny hypervisor, named
SandVisor, is introduced to achieve isolation. The simplified
infrastructure significantly reduces the TCB. In addition, we
present carefully designed protocols to satisfy security require-
ments of SAND. Informal analysis of the protocols will be
also given. We hope our work can be helpful to release the
potential power of Cloud for sensitive applications.

The rest of paper is organized as follows. The next section

defines SAND problem and its requirements. Section III inves-
tigates technical background. The overview of TBaaS is shown
in section IV. Section V illustrates five phases of TBaaS and
their protocols. Section VI informally verifies the protocols
and Section VII reviews related research work. Finally, Section
VIII concludes the paper and discusses future work.

II. PROBLEM FORMULATION

We will define Sensitive Applications oN clouD (SAND)
problem in this section.

We assume the computation is carried out between two
parties: Alice and Cloud. Alice refers to an user who is out-
sourcing a sensitive application on the Cloud. The logic of pro-
cessing program is abstracted as foo and the parameter/return
value of the program is denoted by input/result. Cloud is
supposed to compute result = foo(input). Generally, the
computation can be described in four steps:

1) Alice→ Cloud: foo, input
2) Cloud: result = foo(input)
3) Cloud→ Alice: result
4) Alice: Verify result

Firstly, Alice will tell Cloud foo and input (optionally with
encryption). Then Cloud will obtain result by performing
foo(input) and send return value result back to Alice (op-
tionally with encryption). Finally, Alice may verify result.

Confidentiality: foo and input are sensitive program/data
for computing result = foo(input) exclusively. Cloud is
responsible for protecting them from disclosure.

Verifiability: Alice must be able to detect whether result
returned from Cloud is faithfully computed by foo with input
as parameter.

To solve SAND, potential solutions must satisfy the above
two security requirements. Confidentiality guarantees Alice
can securely deliver the processing program foo and parameter
input to the Cloud and obtain return value result without
taking the risk of disclosing them to another Cloud tenant or
other parties. Even the Cloud administrators should not have
rights to access them. The other requirement, verifiability is
also necessary for sensitive applications. It grants Alice to
verify whether result returned from the Cloud is faithfully
computed by the program foo with parameter input she
provided.

Note that practical solutions to SAND should not rely on
morality of the Cloud provider. As indicated in [6], when the
potential reward becomes sufficiently attractive, Cloud em-
ployees may become malicious insiders. We suggest solutions
should only depend on high assurance knowledge, e.g., well-
studied hardware-based technologies.

Besides security, we also require solutions to provide high
flexibility and performance. The former provides the free-
dom to deploy various applications on the Cloud; the latter
means less performance overhead as measured by execution
efficiency margin between non-Cloud and Cloud.

III. BACKGROUND

In this section, we will review technical background related
to our work.

A. Cryptographic Primitives

Cryptography is the critical fundamental for security sys-
tems. In this paper, one-time pad, public encryption, digital
signature, hash function and nonce will be used.

One-time pad is an encryption method. Each bit from the
plaintext is encrypted by eXclusive-OR (XOR) with a bit
from a secret random key (pad) of the same length, returning
a ciphertext. If the pad is truly random, kept secret and
never reused, it is infeasible to decrypt the ciphertext without
knowing the pad.

Public encryption and digital signature are both based on
public-key cryptography. Essentially, each key pair consists
of two parts, public key and private key. The former will be
exposed to public and the latter should be kept by its owner.
Plaintext encrypted by a public key can only be recovered by
the corresponding private key and vice versa. For encryption,
Alice can encrypt a message by Bob’s public key so only
Bob can reveal it by his private key. For signature, Bob can
digitally sign a message by his private key so Alice can verify
the signature by Bob’s public key, knowing the signature is
made by Bob.

Hash function is a well-defined deterministic procedure to
produce a fixed digest (hash value) by given a message with
arbitrary length. It guarantees that it is infeasible to recover
a message by given its digest. It also guarantees that it is
infeasible to find two messages that share an identical hash
value.

A nonce is an one-time random number used to mitigate
replay attacks. Nonces are generated as session tokens to
distinguish messages sent at different time. Receiver thereby
can verify the nonce to detect replayed messages.

B. Virtualization

Virtualization is a key technology for Cloud computing
to multiplex resources among users. Generally, virtualization
involves two parts, hypervisor and virtual machines (VMs).
A hypervisor is responsible for managing physical hardware
and providing virtual environments to VMs. Isolation and
communication are also offered by the hypervisor. Traditional
x86 platform does not satisfy Popek and Goldberg’s virtu-
alization requirements [13]. Thereby, emulation or dynamic
binary translation [3] is used to build the hypervisor. However,
it leads to a large code base and decreased performance. It also
lacks of ability to block illegal DMA requests.

To improve this situation, Hardware-assist Virtual Machine
(HVM) is applied to the latest x86 platform to satisfy the
virtualization requirements. Architectural supports are made
to facilitate hypervisor design. A hypervisor can simply set
up a series of sensitive events and transfer control to a VM.
When an event occurs, the hypervisor will automatically regain
control to do necessary operations and resume the VM again.
As a result, the code base of hypervisor can be reduced.
Moreover, the instructions inside VMs are running natively,
thus resulting in reduced performance overhead. Besides that,
HVM offers new features to prohibit DMA attacks. It can

mark a region of memory as “no DMA” so any DMA-capable
devices cannot access it.

To facilitate communication between VMs and hypervisor,
HVM provides hypercall interface. A VM can invoke hypercall
instructions to issue requests to hypervisor.

C. Trusted Computing

Trusted computing is a technology promoted by the Trusted
Computing Group (TCG [16]). The terminology trust is de-
fined as: An entity can be trusted if it always behaves in the
expected manner for the intended purpose.

In particular, TCG has specified Trusted Platform Module
(TPM [17]), a low-cost secure chip. It can be used to extend
trusted region from trust root to necessary components by
measurement. The trust root can be initialized by Dynamic
Root of Trust for Measurement (DRTM [1], [9]) via invoking
a special instruction with a hypervisor as parameter. DRTM
will reset processors and chipset to a trusted/determined status.
Next, DRTM will calculate hash value of the hypervisor
(measurement) and store it into a well-known Platform Con-
figuration Register (PCR) which is inside TPM’s protected
region. The register (pcrdrtm in this paper) will be locked and
the hypervisor will gain the control. Therefore, pcrdrtm can
be referred to as evidence of first execution component after
DRTM. Later, other PCRs can be used to store measurements
of additional components.

Furthermore, we can invoke a TPM command to generate
key pairs with protection. The public part of the key will be
returned in plaintext while the private part will be protected
under a specified PCR value. This protection is called “seal”
in TCG’s terminology. For example, one can generate a key
pair and seal it to pcrdrtm = 1234, resulting in a message
containing the plain public part and the encrypted private part
plus sealing information. To use the key, one should firstly load
the key into TPM by passing the message. TPM internally can
recover the original private part and know the key is sealed
to pcrdrtm = 1234. A handle will be returned as a reference
to the key. When one requests decryption or signature by the
key, TPM will first check whether current pcrdrtm equals to
1234. The operation can be performed only if the check is
passed. It further hints the hypervisor presented now is the
one presented when the key was generated.

Above operations are all executed locally, to convince a
remote party that a key is sealed to a certain PCR value, TPM
offers reporting function. Each TPM is shipped with an unique
Endorsement Key (EK) to certify it is a genuine TPM. To
mitigate privacy issues, Attestation Identity Key (AIK), as an
alias of EK, will be used to prove a message is generated from
a genuine TPM. Once a key is loaded, a TPM command can
be invoked to generate a certificate for the key. The certificate
essentially contains the public part of the key and sealing
information (e.g., pcrdrtm = 1234). An AIK will be employed
to sign the certificate. Verifier then can check its validation by
using AIK’s public part. The loaded key can be released by
unloading operation if not used.

D. Trustworthy Cloud

Currently, trusted computing becomes the corner stone to
build a trusted Cloud. Users are able to know what software
is running on the Cloud by measuring TCB.

In general, TCB refers to a set of hardware and software
components that are critical to the security. If a vulnerability
occurs in components inside TCB, security properties cannot
be satisfied. On the contrary, bugs outside TCB will not harm
the security.

When a trusted Cloud is built, we can know how TCB is
constructed; however, whether a component inside TCB can
meet its design is still unclear. For example, a hypervisor
(e.g., Xen hypervisor) is supposed to achieve isolation between
VMs. However, even knowing the hypervisor is faithfully
running, we cannot infer whether the implementation of Xen
hypervisor can correctly realize isolation as it asserts. The
term to describe a component’s behavior follows its design
is called “trustworthiness”. To convince users the Cloud is
secure to deploy sensitive applications, it must be trusted and
trustworthy.

Achieving trustworthiness is non-trivial. Conceptually, for-
mal verification is principally the only method to make a
proof of trustworthiness; however, the mathematical proof
is costly. A study [8] indicates industry estimate for CC
EAL6 certification (semiformal verification) is $10K per Line
of Code (LOC). An alternative way is to perform manual
inspection of source code. Both approaches are sensitive to
the size of TCB which is typically estimated by LOC. In
other words, reducing TCB size is necessary to build up a
trustworthy Cloud.

For an end application on Cloud, its TCB can be divided into
two parts–service provided by the Cloud and software (and
platform) provided by user. Both Cloud-provided and user-
provided TCBs must be reduced.

IV. TRUSTED BLOCK AS A SERVICE

We propose Trusted Block as a Service (TBaaS) as a solu-
tion to SAND problem. The core idea is to provide a trusted
block for each user to perform the sensitive application with
security guarantees. Meanwhile, TCB will be significantly
reduced.

SandVisor

Special Domain
Trusted

Block

Hardware

Trusted
Block

Trusted
Block

TrustedUntrusted

DMA Devices

Legends:

TPM
pcr_drtm=hash(SandVisor)

Figure 1. Trusted Block as a Service Architecture

The architecture of TBaaS is shown in Figure 1. The com-
ponents provided by Cloud provider are hardware, SandVisor
and a special domain while users provide sensitive applications
in the trusted blocks. The isolation among different users is
guaranteed by SandVisor, that is, our proposed tiny hypervi-
sor whose code base is much smaller compared to general
hypervisors. The sensitive application will be executed in the
block whose environment consists of only virtual processors,
memory and essential interfaces. TPM will be dominated
by SandVisor exclusively. The special domain will manage
devices, e.g., network adapter.

We will introduce principal features of TBaaS in this section
and protocol details will be described in the next section.

A. Reduced TCB

As mentioned in Section 3, a trusted Cloud without trust-
worthiness is impractical. TBaaS introduces many methods to
reduce TCB.

First of all, a tiny hypervisor called SandVisor is employed
in TBaaS. It provides isolation and scheduling among VMs
like a normal hypervisor. Different from the existing hyper-
visors, the SandVisor has very limited functionalities, thus
resulting in a reduced code base. Only the most necessary
hardware, such as processors and memory, will be virtualized
to execute foo(input). Benefit from HVM, the SandVisor can
fully virtualize them without inflating its size. The physical
TPM is protected and only accessible to the SandVisor. Other
devices, such as network adapter, will be managed by a special
domain instead, offering ability to communicate with Alice.
Unlike Dom0 in Xen, the special domain in TBaaS is outside
each trusted block’s TCB. Any bug in the special domain
will not break security requirements of confidentiality and
verifiability.

Next, to further reduce user-provided TCB, SandVisor hides
unnecessary architectural details for the trusted blocks. For
example, identity mapping page table can be set up in advance;
system description tables can be initialized with default values;
external interrupts can be disabled and exceptions (e.g. divided
by zero) can be handled by the SandVisor. The processing
program foo now can run on a ready-to-use context thus
eliminating the demand of Operating System (OS), which in
turn dramatically reduces user-provided TCB.

B. Confidential Execution

As one requirement of SAND, TBaaS is able to securely
deliver processing program foo and parameter input to a
trusted block and obtain return value result without disclosing
them to the special domain, other trusted blocks or even
Cloud administrators. In other words, only Alice knows what
is running on the Cloud. Cloud provider or a third party is
thereby hard to violate user’s privacy.

To this end, Alice and her trusted block should share a secret
by establishing a secure channel via encrypted messages.
However, how to generate the secret and safely distribute
it to both parties without disclosing will be a challenge.
Traditionally, Diffie-Hellman [7] protocol is widely used to

exchange secret. However, this method suffers man-in-the-
middle (MITM) attack.

To address this issue, we utilize new features provided by
the trusted computing, i.e., creating a sealed key for each
block. SandVisor is responsible for distinguishing each user
and its block, selecting corresponding key for secure delivery.
The private part will be sealed to pcrdrtm and a certificate
will be issued to certify the sealed information. After verifing
the certificate, Alice knows the key is sealed to SandVisor,
thus can employ public encryption to securely transfer foo
and input to SandVisor. To encrypt result without generating
more keys, one-time pad is used.

C. Verifiable Result

As the other security requirement of SAND, it is neces-
sary to know whether the Cloud is carrying out result =
foo(input) faithfully.

Our solution is to construct a digital digest of foo, input
and result. Since Alice owns the knowledge of genuine foo
and input, as well as result recovered by one-time pad,
she can verify the digest by herself. If correct, Alice can
safely conclude the computation is faithfully performed by
the SandVisor.

D. High Flexibility and Low Performance Overhead

TBaaS is flexible since it sets a few limitations for foo. In
general, any non-privileged instruction sequence can be used.
Runtime library if required can be embedded in foo too. For
applications that require network connection, Alice may only
put the most sensitive part, e.g., authentication module, on the
TBaaS Cloud and execute other parts on a second traditional
Cloud with external communication enabled.

Every instruction of sensitive applications will run natively
without emulation or translation, thus leading to low per-
formance overhead. Additionally, removing OS also saves
memory that can be used by trust blocks to run sensitive
applications.

Trusted Block

Identifier State

Handle to
Encryption Key

Decrypt

Processing
Program

Parameter Return Value One-Time Pad

Infrastructure

Hash XOR

Digest
Encrypted

Return Value

Ciphertext

Virtual Processors Virtual Memory Hypercall Interface

Nonce

Nonce

Figure 2. Trusted Block Architecture

TABLE I
NOTATIONS OF DATA AND OPERATOR

Symbol Content
n A nonce
otp An one-time pad
kx Public part of a key pair x
k−1
x Private part of a key pair x

hx A handle to key x
data1‖data2 Concatenation of data1 and data2
data1 ⊕ data2 data1 XOR data2
statef State of the trusted block whose identifier is f
pcrm A PCR register. In this paper, pcrdrtm refers to the special PCR register that measures SandVisor.

Its value will be hash(SandV isor) after DRTM.
hash(data) Digital digest of data
sealedkey(k−1

x , pcrm) An encrypted private key k−1
x which is sealed to pcrm.

keycert(kx, pcrm, n) Certificate of key x, stating its public part is kx and its private part is sealed to pcrm where n is a
nonce.

ciphertext(kx, data) data encrypted by kx
signature(k−1

x , data) data signed by k−1
x

TABLE II
NOTATIONS OF COMMANDS

Symbol Content
TPM CreateEncKey(pcrm) will create a key pair x for encryption and seal its private part k−1

x to pcrm. Return
kx and sealedkey(k−1

x , pcrm).
TPM CertifyKey(hx, n, ha) will generate a certificate signed by AIK K−1

a to prove key pair x is created with
certain sealing information where n is a nonce. Return keycert(kx, pcrm, n) and
signature(k−1

a , keycert(kx, pcrm, n)).
TPM LoadKey(kx, sealedkey(k−1

x , pcrm)) will load key pair x to TPM. Return its handle hx.
TPM UnloadKey(hx) will unload key pair x from TPM.
CMD Encrypt(kx, data) will encrypt data by kx. Return ciphertext(kx, data).
TPM Decrypt(hx, ciphertext(kx, data)) will decrypt ciphertext(kx, data) by k−1

x referred to by hx if current PCR value
matches sealing information of k−1

x . Return data.
CMD Verify(kx, signature(k−1

x , data)) will verify whether signature(k−1
x , data) is signed by k−1

x .

TABLE III
INITIAL KNOWLEDGE OF TBI

TPM k−1
aik Private part of AIK aik

SandVisor haik Handle to AIK aik
Alice kaik Public part of AIK aik

hash(SandV isor) SandVisor’s digest
foo Processing program

V. DESIGN RATIONALE

In this section, we will present the design of TBaaS in detail.
To facilitate demonstration, we introduce several notations
in Table I and Table II for data, operations and commands
respectively. The commands with prefix TPM will have
equivalent TPM hardware implementations while the others
can be completed by software.

In general, five phases are involved: TBaaS bootstrapping,
trusted block initialization (TBI), processing program instal-
lation (PPI), sensitive application execution (SAE) and return
value fetch (RVF).

Figure 2 shows trusted block architecture. Every block will
be created by a TBI request. The state illustrates block’s
current condition and updates according to the state machine
as shown in Figure 3. The identifier is used to distinguish
a trusted block from others, generally equal to hash(foo).
The encryption key will be created for secure delivery in
TBI phase. In PPI phase, processing program foo will be

securely installed in the block. In SAE phase, parameter input
and one-time pad otp will be confidentially delivered to the
block as well. Then, return value result can be obtained by
executing foo(input). In RVF phase, otp will be used to
encrypt return value while a digital digest will summarize foo,
input, result and nonce. Finally, Alice can recover result and
verify the digest. She may further input another parameter for
next computation.

waitfoo

waitinput

computing jobdone

PPI

SAE

hypercall

RVF

TBI

Figure 3. Finite State Machine of Trusted Block

We will describe the details of each phase. For simplicity,
only the main steps will be explained in this paper.

TABLE IV
PROTOCOL OF TRUSTED BLOCK INITIALIZATION (TBI)

Component Content
1) A→SV Request of trusted block initialization, na1 , hash(foo)
2) SV Assign a trusted block with hash(foo) as identifier.

Calculate hash(hash(foo)‖na1).
3) SV→TPM TPM CreateEncKey(pcrdrtm)

4) SV←TPM kencfoo , sealedkey(k−1
encfoo

, pcrdrtm)

5) SV→TPM TPM LoadKey(kencfoo , sealedkey(k
−1
encfoo

, pcrdrtm))
6) SV←TPM hencfoo

7) SV→TPM TPM CertifyKey(hencfoo , hash(hash(foo)‖na1), haik)
8) SV←TPM keycert(kencfoo , pcrdrtm, hash(hash(foo)‖na1))

signature(k−1
aik, keycert(kencfoo , pcrdrtm, hash(hash(foo)‖na1)))

9) SV→TPM TPM UnloadKey(hencfoo)
10) SV statefoo = waitfoo
11) A←SV keycert(kencfoo , pcrdrtm, hash(hash(foo)‖na1))

signature(k−1
aik, keycert(kencfoo , pcrdrtm, hash(hash(foo)‖na1)))

12) A Assert CMD Verify(kaik, signature(k
−1
aik, keycert(kencfoo

, pcrdrtm, hash(hash(foo)‖na1
)))) succeeds.

Assert pcrdrtm = hash(SandV isor).
Assert hash(hash(foo)‖na1) is correct.

A. TBaaS Bootstrapping

This phase is to establish the foundation of a TBaaS Cloud
by trusted computing and virtualization, preparing essential
environments for potential users. The phase is performed only
once after power up.

It starts by DRTM to initiate the trust. Processors and
chipset will be reset to a trusted state. SandVisor will be
loaded into a special memory zone marked with “no DMA”. A
special PCR pcrdrtm (in practice, it would be a combination
of specific PCRs) will be employed to measure SandVisor.

pcrdrtm = hash(SandV isor)

Once SandVisor is in charge, it will enable virtualization
with proper settings. The physical TPM will be protected
and only SandVisor can access it. The special domain will
be loaded to manage other devices. The physical memory
will be reserved as several regions for isolation: SandVisor,
special domain and trusted blocks. The “no DMA” memory
zone should be adjusted to cover SandVisor and trusted blocks.

Afterwards, a TBaaS Cloud has been established with Sand-
Visor as hypervisor. The special domain is ready to response
user requests.

B. Trusted Block Initialization

This phase aims to initialize a trusted block for a user, e.g.,
Alice. The block identifier will be set and an encryption key
will be generated and sealed to SandVisor. Alice will verify
whether the key is generated properly. The protocol involves
three parties: Alice (A), SandVisor (SV) and TPM. Their initial
knowledge is shown in Table III.

The TBI protocol is described in Table IV. It is important
to note that in case a message is corrupted and an assertion
fails, the protocol will abort immediately. The communications
between SandVisor and Alice are actually performed via the
special domain. Only these messages can be seen by untrusted
parties. We will prove disclosing or even modifying these
messages will not break secuirty requirements in Section VI.

TABLE V
INITIAL KNOWLEDGE OF PPI, SAE AND RVF

TPM k−1
encfoo

Private part of encryption key for the block
whose identifier is foo

SandVisor hencfoo Handle to encfoo
Alice foo Processing program

input Parameter for foo
otp One-time pad for encryption of result

Alice firstly requests to initialize a trusted block with
hash(foo) as identifier (step 1). She also sends a nonce na1

to mitigate replay attack. SandVisor will then assign a trusted
block to Alice and set its identifier to hash(foo), as well
as calculating hash(hash(foo)‖na1

) (step 2). It will also
perform necessary operations to configure its infrastructure. In
particular, a hypercall, namely JOBDONE, will be registered
to the SandVisor as a signal for completion of computation.

Next, SandVisor generates a key encfoo as encryption key,
along with its certificate (steps 3 to 9). It invokes a TPM
command TPM CreateEncKey to create a key pair for en-
cryption and seal its private part to pcrdrtm which essentially
measures SandVisor (steps 3 and 4). A certificate will be
issued by invoking TPM CertifyKey, proving the key is sealed
to pcrdrtm (steps 5 to 8). This certificate will be signed by
k−1aik with hash(hash(foo)‖na1) as nonce. After that, handle
to the key will be released (step 9).

When Alice receives the key and its certificate from Sand-
Visor, she will verify whether the certificate is signed by the
genuine TPM as she expects (step 12). Moreover, she will
check whether the PCR value the key sealed to is matching
with her expected value hash(SandV isor). She will also ver-
ify whether the nonce in certificate is hash(hash(foo)‖na1).
If all correct, she can conclude the encryption key encfoo is
sealed to SandVisor, and can be used exclusively to encrypt
messages to the trusted block whose identifier is hash(foo)
exclusively.

TABLE VI
PROTOCOL OF PROCESSING PROGRAM INSTALLATION (PPI)

Component Content
1) A CMD Encrypt(kencfoo , foo) returns ciphertext(kencfoo , foo)
2) A→SV Request of processing program installation, ciphertext(kencfoo , foo), hash(foo)
3) SV Locate the block whose identifier is hash(foo)

Assert statefoo = waitfoo

4) SV→TPM TPM LoadKey(kencfoo , sealedkey(k
−1
encfoo

, pcrdrtm))
5) SV←TPM hencfoo

6) SV→TPM TPM Decrypt(hencfoo , ciphertext(kencfoo , foo))
7) SV←TPM foo
8) SV→TPM TPM UnloadKey(hencfoo)
9) SV Assert hash(foo) equals to identifier of the block.

SandVisor loads foo as processing program in the trusted block located above.
statefoo = waitinput

TABLE VII
PROTOCOL OF SENSITIVE APPLICATION EXECUTION (SAE)

Component Content
1) A→SV Request of sensitive application execution
2) A←SV nsv1
3) A CMD Encrypt(kencfoo , input) returns ciphertext(kencfoo , input).

CMD Encrypt(kencfoo , otp) returns ciphertext(kencfoo , otp).
4) A→SV ciphertext(kencfoo , input), ciphertext(kencfoo , otp)

hash(foo), hash(foo‖nsv1), hash(foo‖input), hash(foo‖otp)
5) SV Locate the block whose identifier is hash(foo).

Assert statefoo = waitinput.
Assert hash(foo‖nsv1) is correct.

6) SV→TPM TPM LoadKey(kencfoo , sealedkey(k
−1
encfoo

, pcrdrtm))
7) SV←TPM hencfoo

8) SV→TPM TPM Decrypt(hencfoo , ciphertext(kencfoo , input))
9) SV←TPM input

10) SV→TPM TPM Decrypt(hencfoo , ciphertext(kencfoo , otp))
11) SV←TPM otp
12) SV→TPM TPM UnloadKey(hencfoo)
13) SV Assert hash(foo‖input) is correct.

Set input as parameter in the trusted block located above.
Assert hash(foo‖otp) is correct.
Set otp as one-time pad in the trusted block located above.

14) SV→TB Transfer control to the trusted block.
15) TB Calculate result = foo(input).

TB Set result as a return value.
16) SV←TB Invoke hypercall JOBDONE.
17) SV statefoo = jobdone

TABLE VIII
PROTOCOL OF RETURN VALUE FETCH (RVF)

Component Content
1) A→SV Request of return value fetch
2) A←SV nsv2
3) A→SV hash(foo), hash(foo‖nsv2), na2

4) SV Locate the block whose identifier is hash(foo)
Assert statefoo = jobdone
Assert hash(foo‖nsv2) is correct

5) SV Obtain result from return value in the block located above.
6) A←SV result⊕ otp, hash(result‖foo‖input‖na2)
7) SV statefoo = waitinput
8) A Recover result = (result⊕ otp)⊕ otp.

Assert hash(result‖foo‖input‖na2) is correct.

C. Processing Program Installation

This phase is going to confidentially install processing
program foo to the trusted block. The protocol is detailed
in Table VI with initial knowledge in Table V.

Since the private part of encryption key encfoo is sealed to

SandVisor, Alice can deliver sensitive messages by this key.
She will encrypt processing program foo by kencfoo

and send
the ciphertext to SandVisor without risks of disclosure.

After receives the request of PPI, the SandVisor will try
to locate the block whose identifier is hash(foo) and assert

TABLE IX
VULNERABLE MESSAGES

Phase Step Message
TBI 1)A→SV Request of TBI, na1 , hash(foo)

11)A←SV keycert(kencfoo
, pcrdrtm, hash(hash(foo)‖na1

)),

signature(k−1
aik, keycert(. . .))

PPI 2)A→SV Request of PPI, ciphertext(kencfoo , foo),
hash(foo)

SAE 1)A→SV Request of SAE
2)A←SV nsv1
4)A→SV ciphertext(kencfoo , input),

ciphertext(kencfoo , otp),
hash(foo), hash(foo‖nsv1),
hash(foo‖input), hash(foo‖otp)

RVF 1)A→SV Request of RVF
2)A←SV nsv2
3)A→SV hash(foo), hash(foo‖nsv2), na2

6)A←SV result⊕ otp, hash(result‖foo‖input‖na2)

current state of the block is waitfoo (steps 1 to 3). If passed,
the SandVisor will load k−1encfoo

to recover processing program
foo from the ciphertext (steps 4 to 8).

Once foo is revealed, SandVisor will calculate hash(foo)
locally. If it matches block’s identifier, SandVisor will load
foo as processing program in the block and update statefoo
to waitinput (step 9).

D. Sensitive Application Execution

This phase aims to confidentially deliver parameter input
and one-time pad otp to the trusted block and perform calcu-
lation result = foo(input). The trusted block (TB) will be
involved in the interactive protocol as shown in Table VII.

Alice sends a request of SAE to SandVisor and gets a
nonce back (steps 1 and 2). Using the same method employed
in PPI, she will encrypt input and otp by kencfoo

, and
send the ciphertexts along with hash(foo), hash(foo‖input)
and hash(foo‖otp) to SandVisor (steps 3 and 4). SandVisor
will locate the trusted block and verify its state (step 5).
SandVisor will further load k−1encfoo

to recover input and otp
from the ciphertexts (steps 6 to 11). If hash(foo‖input)
and hash(foo‖otp) are correct, input and otp will be set as
parameter and on-time pad (step 13). After that, computation
of result = foo(input) will start (steps 14 and 15).

When foo finishes computation, it will invoke a hypercall
named JOBDONE (step 16). As a result, SandVisor will regain
control and update the state to jobdone (step 17).

E. Return Value Fetch

The last phase is for Alice to fetch and verify the return
value result. The protocol is described in Table VIII.

Similarly, Alice sends a request of RVF and receives a nonce
(steps 1 and 2). She will send hash(foo) as identifier, digests
of foo and nonce received, and a new nonce na2 (step 3).
SandVisor will then locate the trusted block and check its state
(step 4). If passed, result will be fetched from the trusted
block (step 5) and encrypted by one-time pad otp (step 6). In
the meantime, a digital digest hash(result‖foo‖input‖na2

)
will be also generated (step 6). The state of the block will be
set back to waitinput again (step 7).

When result⊕ otp and the digest arrive, Alice can recover
result by XOR with otp and verify the digest (step 8).
If passed, she can conclude the computation is carried out
faithfully.

VI. SECURITY ANALYSIS

Since security is our top concern, we will provide in-
formal verification of the protocols in this section. Basic
assumptions will be given and two security requirements, i.e.,
confidentiality and verifiability will be proved. In particular,
we summarize all messages exposed to potential attackers who
can be classified into passive attackers and active attackers.
The former can eavesdrop these messages only while the
latter can alter them. We will analyze passive and active
attacks separately and prove neither can break the security
requirements.

A. Assumptions

We list several assumptions here as basis of the following
proofs.

Assumption 1. It is computationally infeasible to break cryp-
tographic system. In particular, one cannot recover k−1x by
given kx; and one cannot find data such that h = hash(data)
by given h and hash.

Assumption 2. SandVisor is trustworthy. If SandVisor is exe-
cuted as hypervisor, design properties, such as isolation, can
be guaranteed; and protocols in all phases can be faithfully
carried out.

Assumption 3. If pcrdrtm = hash(SandV isor) appears on a
genuine TPM, one can conclude DRTM is faithfully performed
and the hypervisor is SandVisor.

Assumption 4. If a key certificate is signed by k−1aik, one can
conclude the key is generated by a genuine TPM which holds
k−1aik. Its private part is sealed to the PCR that the certificate
asserts.

Assumption 5. Alice will faithfully perform the protocols.

B. Summary of Vulnerable Messages

As mentioned in last section, only the messages transferred
between Alice and SandVisor are vulnerable to potential
attacks. We summarize such messages in Table IX. In the
following sections, we use Phase-Step to denote a message
group or operations. For example, SAE-1 refers to the message
“Request of SAE”.

C. Passive Attack

For passive attack, the adversary (Eve) knows all messages
in Table IX but cannot modify any of them. Apparently, if
every message is unchanged, Alice can go through the protocol
thus successively verifying result. Thereby, Eve cannot break
the requirement of verifiability. For confidentiality, Eve may
try to recover foo, input and/or result from these messages.

First, requests of protocols (TBI-1, PPI-2, SAE-1 and RVF-
1), nonces (TBI-1, SAE-2, RVF-2 and RVF-3) and signature

(TBI-11) are totally irrelevant to secrets. Based on Assumption
1, the adversary cannot recover original message by given
hash value (TBI-1, PPI-2, SAE-4, RVF-3 and RVF-6). To
recover foo from ciphertext(kencfoo

, foo) (PPI-2), Eve has
to know k−1encfoo

which cannot be revealed from kencfoo
(TBI-

11). Likewise, Eve cannot recover input or otp in SAE-4.
Moreover, recovering result from result ⊕ otp in RVF-6
requires knowledge of otp which is unknown to Eve.

Consequently, passive attack cannot violate requirements of
confidentiality and verifiability.

D. Active Attack

For active attack, the adversary (Mallet) is able to modify
the messages before it reaches its destination.

First of all, Mallet cannot modify the structure of messages;
otherwise protocols will be aborted. He also has to survive
assertions to avoid detections.

For TBI, forging the signature of key certificate (TBI-11)
requires knowledge of k−1encfoo

which cannot be acquired.
Therefore, Mallet cannot alter kencfoo

, pcrdrtm and/or na1

in the key certificate or Alice can detect the integrity of
certificate is broken in TBI-12. He cannot modify na1

in TBI-
1 either; otherwise Alice can detect the nonce in certificate is
inconsistent with her own in TBI-12. If he forges a processing
program bar and modifies hash(foo) to hash(bar), Alice will
receive keycert(kencbar

, pcrdrtm, hash(hash(bar)‖na1))
and the check on hash(hash(bar)‖na1

) will be failed.
He may construct nm1

and hash(bar) such that
hash(hash(foo)‖na1

) = hash(hash(bar)‖nm1
) to pass

the assertion. However, this violates Assumption 1. As a
result, Mallet cannot replace any message in TBI without
being detected. The identifier of the trusted block is set as
hash(foo).

For PPI, Mallet cannot modify hash(foo); otherwise Sand-
Visor will not locate Alice’s trusted block and thus the
protocol will be aborted. If he alters ciphertext(kencfoo

, foo)
to ciphertext(kencfoo

, bar), SandVisor will recover bar in
PPI-7 and assertion in PPI-9 will be failed since hash(foo) 6=
hash(bar). No message in PPI can be changed without being
detected and genuine foo will be installed.

Similarly, ciphertext(kencfoo
, input) and

ciphertext(kencfoo
, otp) in SAE-4 cannot be altered.

Without knowledge of foo, Mallet cannot construct forged
nsv1

and hash(foo‖nsv1
) to pass assertion in SAE-5, or

construct forged hash(foo‖input) and hash(foo‖otp) to
pass assertion in SAE-13. Again, he cannot alter hash(foo)
which is used to locate Alice’s trusted block. In other words,
no message in SAE can be modified without being detected
and genuine input and otp are set inside the trusted block.
result can be faithfully computed with foo as processing
program and input as parameter.

For the last phase RVF, forged nsv2 in RVF-2 and/or
hash(foo‖nsv2

) in RVF-3 again cannot pass assertion
in RVF-4. Changing hash(foo) will result in abortion
of protocol since SandVisor cannot locate the trusted
block. If Mallet forges na2 in RVF-3, result ⊕ otp

and hash(result‖foo‖input‖na2) in RVF-6 to nm2 ,
forgedresultotp and forgedhash to pass assertion in RVF-8,
equation hash((forgedresultotp⊕otp)‖foo‖input‖nm2

) =
forgedhash must be satisfied. However, this requires knowl-
edge of otp, foo and input that are all unknown to Mallet.
Therefore, no message can be replaced without being detected.

In sum, any modification of message can be detected
in different phases. It prohibits possible active attacks and
requirements of confidentiality and verifiability are satisfied.

VII. RELATED WORK

How existing research has the potential to mitigate concerns
on controlling data in the Cloud is analyzed in [4]. It mentions
major corporations only put their less sensitive data in the
Cloud because of the lack of control. Moreover, it indicates the
core issue that prevents the execution of potential applications
on the Cloud is that Cloud providers have some control of
the users’ data. The authors conclude that current control
methods do not adequately address Cloud computing’s needs.
To improve the situation, they propose to extend control
measures from the user to the Cloud through trusted computing
and applied cryptographic approaches, in order to limit Cloud
provider’s access of data. But, this survey mainly focuses on
macro level and does not give concrete solutions.

As mentioned in Section 1, Xen has a large TCB that
includes hypervisor and Dom0. Derek G. Murray et al [12]
propose a method to disaggregate Dom0 in Xen. In their
paper, they explain why Dom0 is a part of TCB and how
to remove Dom0’s user-space code from TCB. In particular,
the new partition transfers the VM-building functionality into
a small trusted VM, DomB. As a result, TCB only includes
kernel, DomB and hypervisor in disaggregated Xen system.
The evaluation compares the existing and disaggregated Xen
3.1 system. 920, 15 and 160 KLOC in C, Assembly and Python
are removed from TCB while only 9.2 and 0.5 KLOC in C
and Assembly are added to TCB for DomB. However, TCB of
disaggregated Xen is till too large and therefore, it is arguable
to say disaggregated Xen can be trustworthy.

F. John Krautheim et al [10] propose a Trusted Virtual
Environment Module (TVEM) for rooting trust in Cloud com-
puting. In particular, the virtual trust is a combination of both
information owners trust and host platform trust. To achieve
it, the authors implement TVEM as a software appliance for
TPM virtualization. To support migration, Migratable Storage
Key (MSK) is employed to allow virtual TPM transfer from
one platform to another. However, TVEM is designed as a
new TPM virtualization approach over traditional IaaS, thus
depending on a big TCB which makes it impossible to be
trustworthy. Moreover, TVEM’s dual-root trust relies on social
trust (reputation of Cloud provider) to protect information
security, which is practically unreliable. Therefore, TVEM
cannot be an efficient solution to SAND problem.

Some work focuses on utilizing HVM to alleviate security
problems. SecVisor [14] is a tiny hypervisor to maintain kernel
integrity. The solution is based on AMD platform to trap
transitions between user space and kernel space. Necessary

protections are applied to eliminate improper memory access
before committing the transition. If combined with Nested
Paging Technology (NPT) [2], the total TCB is only 3526
LOC. However, SecVisor requires modified OS to cooperate.
BitVisor [15] is a pass-through hypervisor to particularly
enhance I/O security, such as ATA device encryption. It will
intercept data transferring through ATA host controller and
encrypt/decrypt it by Advanced Encryption Standard (AES).
The TCB of BitVisor is around 20K LOC. TrustVisor [11]
is another hypervisor aiming to protect the execution of
sensitive code on legacy systems. It executes security-sensitive
code, i.e., Pieces of Application Logic (PAL), in an isolated
environment from the legacy system. It also provides a reduced
virtual TPM for each PAL to facilitate multiple PAL instances.
TrustVisor’s TCB is around 6K LOC. This work is similar
to our SandVisor but mainly focusing on trusted computing
on legacy systems rather than the Cloud computing security.
For example, TrustVisor performs cryptographic operations on
software because most physical TPMs used on legacy system
are slow. However, the cryptographic module (mainly on RSA)
introduces 2K-3K LOC. On the contrary, SandVisor executes
almost every cryptographic operation on the physical TPM. It
is because for Cloud computing, we can reasonably expect a
high-performance TPM installed on platform to mitigate the
issues.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed Trusted Block as a Service (TBaaS) to
solve the sensitive application on the Cloud (SAND) problem.
The requirements of SAND are defined as confidentiality and
verifiability, as well as high flexibility and low performance
overhead. TBaaS satisfies these requirements by offering each
user a trusted environment to confidentially deploy the sensi-
tive application, along with the ability to verify the computing
result. Moreover, the sensitive application can be executed
natively without major limitations.

The difference between “trusted” and “trustworthy” is dis-
cussed and reducing TCB becomes one critical guideline for
TBaaS design. A tiny hypervisor, i.e., SandVisor, is employed
to provide simplified infrastructure for sensitive applications
execution. Functionality of managing devices such as network
adapter is offloaded to a special domain which is outside TCB.
Sophisticated protocols for trusted block initialization, pro-
cessing program installation, sensitive application execution
and return value fetch are introduced and informally verified
in order to satisfy the security requirements of SAND. We
hope TBaaS can be a paradigm to address SAND problem
thus releasing the potential power of the Cloud computing.

Currently, a prototype of TBaaS is working in progress. It
will be helpful to evaluate the exact TCB size and performance
behavior. We will also investigate how to achieve trusted block
migration while keeping TCB small.

REFERENCES

[1] Secure Virtual Machine Architecture Reference Manual,
AMD, http://www.mimuw.edu.pl/∼vincent/lecture6/sources/
amd-pacifica-specification.pdf.

[2] AMD-V TMNested Paging, AMD, 1976.
[3] S. Bansal and A. Aiken, “Binary translation using peephole superopti-

mizers.”
[4] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,

and J. Molina, “Controlling data in the cloud: outsourcing computation
without outsourcing control,” in Proceedings of the 2009 ACM workshop
on Cloud computing security, ser. CCSW ’09, 2009, pp. 85–90.

[5] “Xen Hypervisor,” Citrix Systems, http://www.xen.org/products/xenhyp.
html.

[6] Top Threats to Cloud Computing V1.0, Cloud Security Alliance, http:
//www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf.

[7] W. Diffie and M. E. Hellman, “New directions in cryptography,” 1976.
[8] G. Heiser, “Trusted⇐Trustworthy⇐Proof,” Open Kernel Labs and

NICTA and University of New South Wales, 2008.
[9] Intel Trusted Execution Technology Measured Launched Environment

Developer’s Guide, Intel, http://download.intel.com/technology/security/
downloads/315168.pdf.

[10] F. J. Krautheim, D. S. Phatak, and A. T. Sherman, “Introducing the
trusted virtual environment module: a new mechanism for rooting trust
in cloud computing,” in Proceedings of the 3rd international conference
on Trust and trustworthy computing, ser. TRUST’10, 2010, pp. 211–227.

[11] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB reduction and attestation,” in Proceedings of
the IEEE Symposium on Security and Privacy, May 2010.

[12] D. G. Murray, G. Milos, and S. Hand, “Improving xen security through
disaggregation,” in Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, ser. VEE
’08, 2008, pp. 151–160.

[13] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Commun. ACM, vol. 17, pp. 412–421,
July 1974.

[14] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: a tiny hypervisor
to provide lifetime kernel code integrity for commodity oses,” SIGOPS
Oper. Syst. Rev., vol. 41, pp. 335–350, October 2007.

[15] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,
T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba,
Y. Shinjo, and K. Kato, “Bitvisor: a thin hypervisor for enforcing i/o
device security,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, ser. VEE
’09, 2009, pp. 121–130.

[16] “Trusted Computing Group,” Trusted Computing Group, http://www.
trustedcomputinggroup.org/.

[17] Trusted Platform Module Main Speci.cation. Version 1.2, Revision 103,
Trusted Computing Group, 2003.

[18] D. A. Wheeler, “SCLOCCount,” http://www.dwheeler.com/sloccount/.

