
Fine-Grained Cryptography

by

Prashant Nalini Vasudevan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2018

© Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 15, 2018

Certified by. .
Vinod Vaikuntanathan

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Fine-Grained Cryptography

by

Prashant Nalini Vasudevan

Submitted to the Department of Electrical Engineering and Computer Science
on August 15, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Fine-grained cryptography is the study of cryptographic objects that are required to
be secure only against adversaries that are moderately more powerful than the honest
parties. This weakening in security requirements opens up possibilities for meaningful
cryptographic constructions in various settings using hardness assumptions that are
considerably weaker than those used in standard cryptography. In this thesis, we
study these possibilities in two different settings.

First, we present functions that are hard to compute on average for algorithms
running in some fixed polynomial time, assuming widely-conjectured worst-case hard-
ness of certain problems from the study of fine-grained complexity. We also construct
a proof-of-work protocol based on this hardness and certain structural properties of
our functions.

Second, we construct several unconditionally secure cryptographic primitives that
are computable by and secure against constant-depth circuits. Under a reasonable
complexity-theoretic assumption, we do the same for log-depth circuits.

Thesis Supervisor: Vinod Vaikuntanathan
Title: Associate Professor of Electrical Engineering and Computer Science

3

Fine-Grained Cryptography

by

Prashant Nalini Vasudevan

Submitted to the Department of Electrical Engineering and Computer Science
on August 15, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Fine-grained cryptography is the study of cryptographic objects that are required to
be secure only against adversaries that are moderately more powerful than the honest
parties. This weakening in security requirements opens up possibilities for meaningful
cryptographic constructions in various settings using hardness assumptions that are
considerably weaker than those used in standard cryptography. In this thesis, we
study these possibilities in two different settings.

First, we present functions that are hard to compute on average for algorithms
running in some fixed polynomial time, assuming widely-conjectured worst-case hard-
ness of certain problems from the study of fine-grained complexity. We also construct
a proof-of-work protocol based on this hardness and certain structural properties of
our functions.

Second, we construct several unconditionally secure cryptographic primitives that
are computable by and secure against constant-depth circuits. Under a reasonable
complexity-theoretic assumption, we do the same for log-depth circuits.

Thesis Supervisor: Vinod Vaikuntanathan
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I should first thank my advisor, Vinod Vaikuntanathan, for supporting me for the

past five years and teaching me much in spite of myself. Vinod has been a constant

source of interesting problems (though I did not work on as many as I should have),

and his infectious energy and enthusiasm have often served as great inspiration. I

have learnt much from him, and I am sure I still have much to learn.

John Lennon said he might have been born in Liverpool, but he grew up in

Hamburg. I am graduating from MIT, but I grew up in Tel Aviv. Much of the work

in this thesis was done two years ago there with Marshall Ball, Alon Rosen, and

Manuel Sabin, while I was visiting Alon at IDC Herzliya. Alon believed in me in

times when even I did not believe in myself, and this has made all the difference.

I am grateful to Benny Applebaum, for hosting me several times in Israel and

spending days and weeks in the trenches with me, working on problems with little

more than hope, persistence, and linear algebra. It has been a great experience

working with him, as it has with Andrej Bogdanov. It has been over a year since I

spent a summer with Andrej in Hong Kong, and I still cannot think of concentration

bounds without being reminded of him just a little.

I was very lucky to find others – Itay Berman, Akshay Degwekar, and Ron Roth-

blum – who shared my interests in understanding a number of aspects of the founda-

tions of cryptography. Together, we have dug around the foothills and come up with

numerous interesting connections and implications and continue to discover promis-

ing veins to mine. Ron has also been of great help in other respects, always available

with advice, whether on research or otherwise.

I also thank all my other collaborators, especially Adam Bouland and Dhiraj

Holden, with whom I have laid several sieges against looming fortifications, and while

many of these fortresses have held up to our batteries, each of these attempts have

left me with finer weapons for future assaults. As Alon once told me, paraphrasing

Friedrich Nietzsche, “In the mountains of truth, we never walk in vain”.

No winter can be that cold, and no night too dark, with good company and

5

nothing much to do. Over the past five years I have spent several hours and days in

conversations with many I am fortunate to call friends. Prabhanjan Ananth, Marshall

Ball, Danny Blumberg, Michael Coulombe, Apoorvaa Deshpande, Sergey Gorbunov,

Robin Hui, Pritish Kamath, Ranjit Kumaresan, Tianren Liu, Madalina Persu, Srini-

vasan Raghuraman, Manuel Sabin, Adam Sealfon, Rajan Udwani, the list goes on

and there are many whom I am surely missing out who have softened the relentless

ticking of time as it trundles along oblivious to our fears and failures. And there are

my friends from my undergraduate times, whom I can always rely on when the path

seems full of potholes and loose gravel.

I am also grateful to From Software for making one of the greatest computer games

to exist, and to everyone who organised and participated in years of Theory Jam.

And most of all, I could not have made it anywhere without my family. My

parents have encouraged and supported me selflessly for the past twenty six years,

and of everything I have done, I owe them some part. My sister remains a persistent

source of glee and mockery, and I am incredibly grateful to my grandmothers and

Perippa and Perimma and everyone else in my family who have cared for me and

remain pillars of support.

6

Dedicated to the couches on the sixth floor, the playground outside my

window, and the movie theatre on Brattle Street.

7

8

Contents

1 Introduction 11
1.1 Fine-Grained Cryptography . 12
1.2 Cryptography Against Bounded Running Time 20

1.2.1 Average-Case Hardness . 21
1.2.2 Proofs of Work . 21

1.3 Cryptography Against Bounded Circuit Depth 23
1.3.1 Cryptography against AC0 . 23
1.3.2 Cryptography against NC1 . 24

2 Average-Case Fine-Grained Hardness 27
2.1 Worst-Case Conjectures . 33
2.2 Average-Case Fine-Grained Hardness 37

2.2.1 Orthogonal Vectors . 39
2.2.2 3SUM and All-Pairs Shortest Path 41
2.2.3 SETH, 3SUM, and All-Pairs Shortest Path 42
2.2.4 CONVOLUTION-3SUM . 44

2.3 Evaluating Low Degree Polynomials 46

3 Proofs of Work 49
3.1 Definitions . 53

3.1.1 Proofs of Work . 53
3.1.2 Orthogonal Vectors . 55

3.2 Verifying ℱOV𝑘 . 57
3.3 The PoW Protocol . 63
3.4 A Direct Sum Theorem for ℱOV . 66
3.5 Removing Interaction . 72
3.6 Zero-Knowledge Proofs of Work . 76

4 Cryptography Against Bounded Depth 83
4.1 Definitions and Preliminaries . 93

4.1.1 Bounded Adversaries . 94
4.1.2 Constant-Depth Circuits . 98
4.1.3 Graphs and Linear Codes . 100
4.1.4 Randomized Encodings . 106

4.2 Cryptography Against AC0 . 107

9

4.2.1 High-Stretch Pseudo-Random Generators 108
4.2.2 Weak Pseudo-Random Functions 109
4.2.3 Symmetric Key Encryption 116
4.2.4 Collision Resistant Hash Functions 123
4.2.5 Candidate Public Key Encryption Scheme 126

4.3 Cryptography Against NC1 . 127
4.3.1 OWFs from worst-case assumptions 128
4.3.2 PKE and CRHF against NC1 130

5 Conclusion and Future Directions 137
5.1 Subsequent Work . 137
5.2 Towards Fine-Grained One-Way Functions 138

5.2.1 Barriers and NSETH . 140
5.2.2 A Way Around . 140

5.3 Other Open Problems . 142

A Appendices to Chapter 2 145
A.1 An Average-Case Time Hierarchy . 145
A.2 On the Heuristic Falsifiability of Conjectures 147
A.3 A Tighter Reduction for ℱOV . 149
A.4 Polynomials Computing Sums . 154
A.5 Isolating Orthogonal Vectors . 155

B Appendices to Chapter 3 161
B.1 A Stronger Direct Sum Theorem for ℱOV 161

10

Chapter 1

Introduction

Cryptography is today a central part of commerce and communication around the

world; from encrypting credit card numbers to authenticating web servers, crypto-

graphic operations have become a part of everyday life for large sections of the popu-

lation. The last four decades of research in the theory of cryptography has produced

a host of fantastic notions that have enabled these numerous applications, such as

digital signatures [DH76, RSA78, GMR88] and public-key encryption [DH76, RSA78,

GM82], and continues to produce more that stand to shape the digital world in the

years to come, such as zero-knowledge proofs [GMR85], fully homomorphic encryp-

tion [RAD78, Gen09, BV11], and program obfuscation [BGI+01, GGH+13, SW14].

Complexity theory is at the heart of these developments, playing a key role in coming

up with precise mathematical definitions as well as constructions whose security can

be reduced to precisely stated computational hardness assumptions.

However, the uncomfortable fact remains that a vast majority of cryptographic

constructions rely on unproven assumptions. At the very least, one requires that P ̸=

NP [IL89], but that is hardly ever enough — when designing advanced cryptographic

objects, cryptographers assume the existence of one-way functions as a given, move

up a notch to assuming the hardness of specific problems such as factoring [Rab79,

RSA78], discrete logarithms [DH76], quadratic residuosity [GM82], the approximate

shortest vector and other problems for lattices and codes [Mce78, Ajt96], and, more

recently, even more exotic assumptions [BFKL93, ABW10, MI88, Ale03]. While

11

there are some generic transformations between primitives, such as from one-way

functions to pseudo-random generators and symmetric encryption (e.g., [HILL99]),

there are large gaps in our understanding of the relationships between most others.

In particular, it is a wide open question whether P ̸= NP suffices to construct even

the most basic cryptographic objects such as one-way functions, and whether it is

possible to construct public-key encryption assuming only the existence of one-way

functions (for some partial negative results, see [BT03, AGGM06, BB15, IR88]).

1.1 Fine-Grained Cryptography

In this thesis, we explore one possible approach towards weakening the assumptions

necessary to do useful cryptography – that of weakening the requirements we place

on the cryptographic objects we wish to construct.

Traditionally, in theoretical computer science, efficiency is associated with (arbi-

trarily large) polynomial time. Consequently, in cryptography, security is typically

desired against all adversaries that run in polynomial time, even those that are vastly

more powerful than the honest parties involved. We propose to instead study what

we call fine-grained cryptography, where we care only about adversaries that are

moderately more powerful than the honest parties.

For illustration, let us consider the case of encryption schemes. In the design

of an encryption scheme, it is typically desired that the encryption and decryption

procedures are efficient – that is, that they run in polynomial time – and that the

ciphertexts are secure against any efficient adversary – that is, any adversary that

runs in polynomial time. It could be that encryption and decryption run in 𝑂(𝑛)

time (where 𝑛 is a security parameter), and such a scheme would have to be secure

against adversaries that run in 𝑂(𝑛2), 𝑂(𝑛10), and even 𝑂(𝑛100) time.

In a fine-grained encryption scheme, the security and efficiency requirements be-

come more fine-grained. For instance if, in such a scheme, encryption and decryption

can be done in 𝑂(𝑛) time, we would ask for security only against adversaries that

run in, say, 𝑜(𝑛3) time. It may even be the case that an adversary running in Θ(𝑛3)

12

time can already break the encryption, and this would be permissible. By setting

the parameter 𝑛 appropriately, it may be ensured that encryption and decryption

are eminently feasible, while the scheme cannot be broken by all the computational

power available in the world in a reasonable amount of time.

More generally, fine-grained cryptography is the study of cryptographic primitives

that are:

1. Secure against adversaries with bounded resources (e.g. 𝑜(𝑛3) time, log-space)

2. Computable with fewer resources than these adversaries

Cryptography even if P = NP. A significant benefit of considering such fine-

grained cryptographic primitives is that this limited security, while still useful in

practical settings, is a much weaker requirement than security against adversaries

that run in arbitrary polynomial time. This opens up the possibility of constructing

such primitives based on hardness assumptions that are much weaker than those used

presently.

In particular, recall that, as mentioned earlier, the security of most standard

cryptographic primitives already implies that P ̸= NP. Fine-grained primitives, such

as an encryption scheme that is secure against 𝑜(𝑛3) adversaries, on the other hand, do

not have this implication. Thus, we might very well be able to construct such objects

unconditionally much earlier than we are able to resolve P vs. NP. In different terms,

even in a world where P = NP and standard polynomial-time cryptography is not

possible, such fine-grained cryptographic objects could still exist.

Security based on more reliable assumptions. As mentioned earlier, by setting

the parameters right, several fine-grained cryptographic primitives could be used in

the place of standard ones. These parameter settings would perhaps require more

computation effort of the honest parties, but they stand to offer better confidence in

the security of the resulting primitives, if we are indeed able to realise our goal of

building such primitives from weaker assumptions.

A major challenge to the hardness of any computational problem is the presence

13

of some “structure” or symmetry that can be exploited to design algorithms for it. At

the same time, in the design of more advanced cryptographic primitives like public-

key encryption with standard security guarantees, it seems, from our experience so

far, that hard problems with a certain amount of structure (like DDH or LWE) are

necessary. As a result, the hardness of problems that public-key cryptography is

based on is much more suspect than those that the simpler private-key primitives are

based on, at least where security against all polynomial-time adversaries is desired

(see [Bar17] for a more detailed discussion of this subject).

On the other hand, Merkle [Mer78], in the 70’s, already showed how an object

as structureless as a random oracle could be used to construct a public-key primitive

like key agreement where the honest parties run in 𝑂(𝑛) time and security holds

against 𝑜(𝑛2)-time adversaries. This suggests that perhaps fine-grained cryptographic

primitives could be based on problems that are qualitatively different, lacking much

exploitable structure, which would let us rest more comfortably on beliefs that these

problems are hard.

Ephemeral security. Primitives with limited security guarantees are most appro-

priate in applications where more security is not deemed necessary – where security

that is ephemeral, lasting only for a brief period of time, is sufficient. For example,

consider the stock market and, in particular, the setting of high-frequency trading.

In this regime, there is large constant stream of information that is maintained and

communicated by various parties regarding which products to trade, etc., all of which

is relevant and valuable for little longer than mere seconds. In such a setting, fine-

grained encryption schemes would have all the other benefits mentioned here without

any concerns regarding loss of security against stronger adversaries, as any adver-

sary that spends too much time breaking these primitives would only end up with

information that has already lost its value.

Another example of an application that only requires ephemeral security is inter-

active authentication [BR93]. Authentication protocols are run by communicating

parties at the very beginning of a session of communication in order to authenticate

14

themselves to the each other. Any adversary that seeks to intrude into their commu-

nication by defeating the authentication protocol has to be able to break the security

of the protocol in the small amount of time that the other parties involved are willing

to wait before they decide to terminate the protocol. Thus, security is not needed

against adversaries that run for longer than the pre-determined time-to-live in the

protocol description.

Towards an economic model for security. Fine-grained primitives could also be

used to make the cost of breaking security just high enough to render it unprofitable.

If the cost, to any adversary that may be presumed to be rational, of the resources

(computational power or even energy) required to decrypt a ciphertext without the

key is greater than value it places on whatever was encrypted, then no such adversary

will even attempt to break this security, even if it would be able to. Fine-grained

control over the security of the primitives used would allow the honest parties to tune

the parameters so that the work required on their part is minimised while the cost of

an attack is still high enough to effect the above situation.

Win-win. While this is certainly not true in all cases, a large number of crypto-

graphic constructions are built on the hardness of problems that are interesting for

little reason other than our belief in their hardness itself. With such constructions,

while the security of the resulting primitive is valuable, if it turns out that they are

insecure, there are no interesting implications. For instance, if SHA-256 is secure

then it has a number of applications, if it is not, then SHA-256 is broken. This is a

Win-Lose situation – either we have a secure hash function, or a specific instantiation

of a heuristic cryptographic hash function is broken and no new knowledge is gained.

On the other hand, many of the problems whose worst-case hardness we make use

of in Chapter 2, such as Orthogonal Vectors or 3SUM for instance, are of indepen-

dent interest and have several connections with other interesting problems [Wil15].

Building cryptographic primitives on the hardness of such problems would set up a

Win-Win situation where, if these problems are hard then we have cryptography, and

15

if not, we end up with better algorithms for several useful problems or at least with

better knowledge of their complexities.

Hybrid constructions. Another interesting possibility with fine-grained primi-

tives (that was suggested to us independently by Ron Rothblum and Yuval Ishai) is

using them in conjunction with other primitives that are secure against polynomial-

time adversaries under stronger assumptions; this would result in hybrids that are

secure against polynomial-time adversaries under these stronger assumptions while

also being secure against bounded adversaries under weaker assumptions (or even

unconditionally).

For instance, consider an encryption scheme where the message is first encrypted

using the symmetric-key encryption scheme from Section 4.2.3 (that is uncondition-

ally secure against AC0 adversaries), and the resultant ciphertext is then encrypted

using an encryption scheme that works in AC0 and is secure against polynomial-time

adversaries under some standard assumptions (see [AIK04] for such schemes). This

hybrid scheme is now secure against polynomial-time adversaries under these stan-

dard assumptions while being unconditionally secure against AC0 adversaries, and

encryption and decryption can still be done in AC0.

Examples of prior work. Of course, we are not the first to investigate the possibil-

ity of cryptography with security against a bounded class of adversaries; this question

has been asked by several researchers ever since the big-bang of cryptography [Mer78],

and some examples of such research are the following.

1. Merkle [Mer78] constructed a non-interactive key exchange protocol (and thus, a

public-key encryption scheme) where the honest parties run in linear time 𝑂(𝑛)

and security is shown against adversaries that run in time 𝑜(𝑛2). His assumption

was the existence of a random function that both the honest parties and the

adversary can access (essentially, the random oracle model [BR93]). Later, the

assumption was improved to exponentially strong one-way functions [BGI08].

This work is timeless, not only because it jump-started public-key cryptography,

16

but also because it showed how to obtain a primitive with much structure

(trapdoors) from one that apparently has none (namely, random oracles and

exponentially strong one-way functions).

2. Maurer [Mau92] introduced the bounded storage model, which considers ad-

versaries that have an a-priori bounded amount of space but unbounded com-

putation time. Cachin and Maurer constructed symmetric-key encryption and

key-exchange protocols that are unconditionally secure in this model [CM97]

assuming that the honest parties have storage 𝑂(𝑠) and the adversary has stor-

age 𝑜(𝑠2) for some parameter 𝑠. There has been a rich line of work on this

model [CM97, AR99, DM04] following [Mau92].

3. Implicit in the work of Håstad [Has87] is a beautiful construction of a one-way

permutation that can be computed in NC0 (constant-depth circuits with AND

and OR gates of constant fan-in and NOT gates), but inverting which is hard

for any AC0 circuit (also constant-depth, but unbounded fan-in). Here is the

function:

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
(︀
𝑥1, 𝑥1 ⊕ 𝑥2, 𝑥2 ⊕ 𝑥3, . . . , 𝑥𝑛−1 ⊕ 𝑥𝑛

)︀
Clearly, each output bit of this function depends on at most two input bits.

Inverting the function implies in particular the ability to compute 𝑥𝑛, which is

the parity of all the output bits. This is hard for AC0 circuits as per [FSS84,

Ajt83, Hås86].

4. Certain primitives, like proof of work and proof of space protocols and time-lock

puzzles, are inherently fine-grained. There is a significant body of work study-

ing these owing to their various applications. [DN92, JJ99, RSW00, MMV11,

DFKP15, BGJ+16, . . .]

Note that all these works share two common features. First, security is achieved

against a class of adversaries with bounded resources (time, space and circuit-depth

or parallel-time, respectively, in the first three works above). Secondly, the honest

17

algorithms use less resources than the class of adversaries they are trying to fool.

These are the two essential properties of fine-grained cryptography as we study it.

Our contributions in this thesis are to employ recent advances in the study of the

fine-grained hardness of problems within P to construct some simple cryptographic

objects against adversaries that run in some fixed polynomial time, and a number of

constructions (some unconditional, some based on reasonable worst-case complexity-

theoretic assumptions) against adversaries that are computable by low-depth circuits.

These are described briefly in the following sections, and in detail in the following

chapters.

Remark 1 (on the relative power of honest parties). An important desideratum for

us is that the (honest) algorithms in our constructions can be implemented with

fewer resources than the adversary that they are trying to fool. This is the set-

ting that is most commonly studied in cryptography, though there are a number of

exceptions [DPW09, GR15, . . .]; and outside cryptography (in complexity theory,

for instance), there are many cases where the “adversary” has less power than the

“honest” algorithms. Perhaps the clearest and the most well-known example of this

distinction is the case of pseudo-random generators (PRGs) [BM84, Yao82, NW94].

Cryptographic PRGs, pioneered in the works of Blum, Micali and Yao [BM84, Yao82]

are functions computable in a fixed polynomial time that produce outputs that are

indistinguishable from random against any polynomial-time machine. The designer

of the PRG does not know the precise power of the adversary: he knows that the

adversary is polynomial-time, but not which polynomial. On the other hand, non-

cryptographic (“Nisan-Wigderson type”) PRGs [NW94] take more time to compute

than the adversaries they are designed to fool. Our constructions will be exclusively

in the former regime.

The Landscape of Hardness in Cryptography

Before describing our results, in order to place them in sufficient context, we provide

a brief and informal overview of the different kinds of computational hardness and

18

how they relate to some basic cryptographic primitives. We refer the reader to any

standard textbook on cryptography [Gol01, KL14, . . .] for a more detailed discussion

of the known relationships between these and also for references for other statements

made below.

The simplest notion of hardness, and the one that is most prevalent in the study of

complexity, algorithms, etc., is that of worst-case hardness. A problem is worst-case

hard if every efficient algorithm fails to solve it correctly on some input of size 𝑛 for

all large enough 𝑛.

The notion of hardness that is of greater interest in the study of cryptography,

however, is that of average-case hardness. A problem is average-case hard if, for all

large enough 𝑛, there is a distribution over instances of size 𝑛 such that no efficient

algorithm solves the problem correctly with high success probability over random

instances drawn according to this distribution.

The cleanest notion of hardness that is actually useful in a cryptographic sense is

that of the one-way function, one of the simplest cryptographic primitives. A one-way

function is a function that can be computed efficiently, but no efficient algorithm can,

for large enough input lengths, invert a uniformly random output of the function.

It is commonly known that if a problem is average-case hard and it is possible to

efficiently sample an input from the hard distribution along with the corresponding

solution, then this implies a one-way function.

The most sophisticated cryptographic primitive we discuss here is public-key en-

cryption. In a loose sense, public-key encryption is known to follow from families

of one-way functions that are permutations and have “trapdoors” – some additional

information that makes the function efficiently invertible if known.

Each notion described above is stronger than the one before it, as represented

below. No generic transformations are known from any of these notions to a stronger

one, and most cryptographic constructions can be thought of as performing such

a transformation in a special case. In our constructions, we start from worst-case

hardness (either assumed or known) and obtain various primitives in various settings

as described in the next few sections.

19

Worst-Case
Hardness

Average-Case
Hardness

One-Way
Functions

Public-Key
Encryption

. . .< < < <

This picture is for illustrative purposes and is by no means complete, excluding

as it does even common primitives like collision-resistant hash functions and several

advanced primitives that are stronger than public-key encryption. Also, in the above

description, we have left unmentioned the fact that generally, at least in complexity

theory, when one says that a problem is hard, one means it is hard infinitely often –

that any efficient algorithm does not solve it on instances of size 𝑛 for some infinite

sequence of 𝑛’s; whereas, in cryptography, security is generally desired for all large

enough 𝑛. In all our constructions described below (except the unconditional ones),

the kind of security obtained (infinitely often or for all large 𝑛) corresponds directly

to the kind of computational hardness assumption one starts with.

1.2 Cryptography Against Bounded Running Time

Perhaps the most natural computational resource one could consider is running-time,

and indeed, much of complexity theory concerns itself with classifying problems ac-

cording to how much time a Turing Machine takes to solve them or how large a

Boolean circuit for them is. Typically, efficiency is associated with algorithms run-

ning in polynomial time (or circuits of polynomial size), and this has also been the

view in cryptography, where the adversaries we seek to be secure against are allowed

to run in arbitrary polynomial time.

Over the last couple of decades, however, there has been significant progress in the

study of the fine-grained complexity of problems that are known to have polynomial-

time algorithms (see [Wil15] for relevant references). Similar to polynomial-time

reductions in the study of NP-completeness, several efficient reductions between prob-

lems of interest have been discovered that relate their complexities in a fine-grained

manner. As the dust settles, a handful of these problems – such as Orthogonal Vectors

(OV, a version of Hopcroft’s problem), 3SUM, and All Pairs Shortest Paths (APSP)

(all defined in Chapter 2) – have risen in prominence, both because of their importance

20

by themselves, and owing to their tight connections with the fine-grained complexi-

ties of other important problems. These problems have been extensively studied, and

there are fine-grained conjectures regarding their complexities. We asked whether

these conjectures could be used to do fine-grained cryptography, and have been able

to make the following initial progress towards an answer.

1.2.1 Average-Case Hardness

The first step to constructing cryptographic objects is identifying problems that are

hard in the average-case (rather than just in the worst-case). All previous study of

fine-grained complexity, however, has been in the worst-case setting. Towards ad-

dressing this, we show several fine-grained worst-case to average-case reductions that,

along with the conjectured worst-case hardness of the problems mentioned above,

give us problems that are as hard to solve on random inputs. The following is an

example of such a statement that we prove.

Informal Theorem 1. There is a function 𝑓OV such that, if OV requires 𝑛2−𝑜(1) time

to decide in the worst-case, then 𝑓OV requires 𝑛2−𝑜(1) time to compute on uniformly

random inputs. Further, 𝑓OV can be computed on any input in ̃︀𝑂(𝑛2) time.

Note that 𝑛2−𝑜(1) is the conjectured complexity of the OV problem; this hardness

of OV follows from the Strong Exponential Time Hypothesis (SETH, which states,

very roughly, that 𝑘-SAT cannot be solved in the worst-case in time 2(1−𝛿)𝑛 for any

constant 𝛿 > 0) due to a reduction by Williams [Wil05].

We also construct such functions that are similarly average-case hard based on

the conjectured worst-case hardness of 3SUM and APSP. These average-case hard

problems, in addition, happen to possess a number of desirable properties, which we

take advantage of to construct Proof of Work protocols, as described next.

1.2.2 Proofs of Work

Proofs of Work (PoWs), introduced by Dwork and Naor [DN92], are protocols that

allow a prover to prove to a verifier that it has performed a certain amount of com-

21

putational work. Proofs of Work have shown themselves to be an invaluable cryp-

tographic primitive. Originally introduced to combat Denial of Service attacks and

email spam, they now serve as the heart of a number of modern cryptocurrencies. By

quickly generating easily verifiable challenges that require a certain amount of work

to solve, PoWs ensure that adversaries attempting to swarm a system must have a

large amount of computational power to do so.

One thing to note about a PoW is that it is inherently a fine-grained cryptographic

primitive – we typically want the honest prover to run in a certain polynomial amount

of time, while disabling any prover strategy that tries to run in less. Using the above

fine-grained average-case reductions, along with a theorem of Williams [Wil16] and a

direct sum theorem described shortly, we construct PoWs based on the conjectured

worst-case hardness of OV, 3SUM, or APSP. The following is an example of a theorem

we show, this one based on the hardness of OV.

Informal Theorem 2. Suppose OV takes 𝑛2−𝑜(1) time to decide. A challenge 𝑐 can

be generated in ̃︀𝑂(𝑛) time such that:

• A valid solution 𝜋 to 𝑐 can be computed in ̃︀𝑂(𝑛2) time.

• The validity of a candidate solution to 𝑐 can be verified in ̃︀𝑂(𝑛) time.

• Any valid solution to 𝑐 requires 𝑛2−𝑜(1) time to compute.

The hardness above can be scaled to 𝑛𝑘−𝑜(1) for any 𝑘 ∈ N by employing a natural

generalization of the OV problem, called the 𝑘-OV problem, whose hardness is also

supported by SETH. As the verification in this case can still be done in ̃︀𝑂(𝑛) time,

this allows us to tune the hardness of the PoW.

An important property of PoWs is non-batchability; for several applications, it

is desired that a prover not be able to participate successfully in some ℓ instances

of a PoW protocol in less than ℓ times the time it would take to participate in one

instance. We show that our PoW satisfies this property using the following lemma,

which may be of independent interest, and is a direct sum theorem for computing the

function 𝑓OV mentioned earlier.

22

Informal Theorem 3. Suppose OV takes 𝑛2−𝑜(1) time to decide. Then, for any poly-

nomial ℓ, any algorithm that computes 𝑓OV(𝑥𝑖)’s correctly on ℓ uniformaly random

𝑥𝑖’s with probability 1/𝑛𝑂(1) takes time ℓ · 𝑛2−𝑜(1).

Further, our PoWs allow the prover to prove that it has done work with zero

knowledge; that is, such that the proofs can be simulated in very low complexity – in

time comparable to the verification time. While previously known PoWs could also

be proved in zero knowledge as they essentially involve proving NP statements, the

exact polynomial time complexities matter in this regime. We are able to use the

algebraic structure of our problem to attain a notion of zero knowledge that makes

sense in the fine-grained world.

An important open question following our work in this setting is the possibility

of constructing other fine-grained cryptographic objects – say fine-grained one-way

functions, to start with – based on the hardness of such well-studied problems from

the area of fine-grained complexity. We discuss the possibilities and barriers in this

regard in Section 5.2.

1.3 Cryptography Against Bounded Circuit Depth

Another measure of computational complexity we consider in this thesis is circuit-

depth or parallel-time. That is, we consider adversaries (and honest parties) that are

computable by Boolean circuits of some bounded depth.

We study two classes of low-depth circuits. The first is AC0, which is the class of

functions computable by constant-depth polynomial-sized circuits consisting of AND,

OR, and NOT gates of unbounded fan-in, and the second is NC1, the class of functions

computable by logarithmic-depth polynomial-sized circuits consisting of AND, OR,

and NOT gates of fan-in 2.

1.3.1 Cryptography against AC0

Early developments in circuit lower bounds [FSS84, Ajt83, Hås86] showed progres-

sively better and average-case and exponential lower bounds for the PARITY function

23

against AC0 circuits. This has recently been sharpened to an average-case depth hier-

archy theorem [RST15]. Other very recent progress on circuit lower bounds also show

the hardness of computing explicit functions with a lot of structure [GK15, FGHK15].

We already saw how these lower bounds translate to meaningful cryptography, namely

one-way permutations against AC0 adversaries. Extending this a little further, a

reader familiar with Braverman’s breakthrough result [Bra10] (regarding the pseudo-

randomness of 𝑛𝜖-wise independent distributions against AC0) will notice that his

result can be used to construct large-stretch pseudo-random generators that are

computable by fixed-depth AC0 circuits and are pseudo-random against arbitrary

constant-depth AC0 circuits.

Can we do more? Can we construct secret-key encryption, collision-resistant hash

functions, and even trapdoor functions, starting from known lower bounds against

AC0 circuits? We show positive answers to some of these questions, and construct

the following primitives that are computable in and (unconditionally) secure against

AC0:

• Weak Pseudo-Random Functions

• Symmetric Key Encryption

• Collision Resistant Hash Functions

A conspicuous question left open by our work here is the construction of Public-

Key Encryption for AC0. We have a candidate scheme that we are unable to prove

secure, but also unable to break. Its security is connected to an interesting and simple

open problem, which is stated in Section 4.2.5.

1.3.2 Cryptography against NC1

Our second contribution in this direction is to study adversaries that live in NC1. In

this setting, as we do not know any lower bounds against NC1, we are forced to rely

on an unproven complexity-theoretic assumption; however, we aim to limit this to a

worst-case, widely believed, separation of complexity classes.

24

Here, we construct several cryptographic primitives from the worst-case hardness

assumption that ⊕L/poly ̸⊆ NC1, the most notable being an additively-homomorphic

public-key encryption scheme where the key generation, encryption and decryption

algorithms are all computable in ACC0[2] (constant-depth circuits with MOD2 gates;

note that ACC0[2] (NC1 [Raz87, Smo87]), and the scheme is semantically secure

against NC1 adversaries. (For simplicity, ⊕L/poly can be thought of as the class

of languages with polynomial-sized branching programs. Note that by Barrington’s

Theorem [Bar86], all languages in NC1 have polynomial-sized branching programs of

constant width.)

Organization

The layout of the rest of the thesis is as follows:

1. Chapter 2 describes our fine-grained worst-case to average-case reductions from

OV, 3SUM, and APSP.

2. Chapter 3 covers our construction of Proofs of Work using the above reductions

and the relevant worst-case hardness conjectures.

3. Chapter 4 describes our constructions of fine-grained cryptographic primitives

against low-depth circuits.

4. Chapter 5 concludes the thesis with a summary of subsequent related work

by others, an outline of an approach for some future work, and a list of open

problems.

The appendices contain some extensions and strengthenings of some theorems and

lemmas from the thesis.

The content of this thesis is drawn from the following papers:

1. Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.

Average-case fine-grained hardness. In Hamed Hatami, Pierre McKenzie, and

25

Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Sympo-

sium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-

23, 2017, pages 483–496. ACM, 2017

2. Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.

Proofs of work from worst-case assumptions. IACR Cryptology ePrint Archive,

2018:559, 2018. To appear in CRYPTO 2018

3. Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan.

Fine-grained cryptography. In Matthew Robshaw and Jonathan Katz, editors,

Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryp-

tology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,

Part III, volume 9816 of Lecture Notes in Computer Science, pages 533–562.

Springer, 2016

26

Chapter 2

Average-Case Fine-Grained Hardness

In this chapter, we present our fine-grained worst-case to average-case reductions

starting from a number of well-studied problems from the area of fine-grained com-

plexity. Apart from our cryptographic motivations as outlined in Chapter 1, there

are other reasons for interest in such reductions, as we discuss now.

Since the 1970s we have had a notion of what we consider “easy" and what we

consider “hard." Polynomial-time computable has long been synonymous to efficient

and easy, while showing a problem NP-complete was to condemn it as intractable. In

our recent history, however, this categorization has been called into question: SAT

instances, the flagship of NP-complete problems, are solved on the daily [BHvM09],

while algorithms that run in as little as quadratic time may be prohibitively expensive

for some practical problems such as DNA sequencing, due to large input sizes.

Thus, in the “real world," our notions of easy and hard may not always align

with our classical views. The main problem here is our choice of analysis. For SAT,

we classify it as “hard" when it often may be more appropriately classified as “easy"

because complexity theory typically employs worst-case analysis. That is, we may

be adhering to an overly-pessimistc metric, when, in practice, the SAT instances we

come across may be much more benign. In part to combat this sort of problem,

average-case complexity was introduced in [Lev86]. By considering distributions over

problem instances, we can at least hope to argue about the performance of heuristic

algorithms in practice.

27

Similarly, the practical hardness of a problem with quadratic time complexity

is invisible to our typical “coarse-grained" analysis that only distinguishes between

polynomial and not polynomial. Within the past decade, the field of fine-grained com-

plexity has quickly developed [Wil15], mapping out (conditional) hardness of natural

problems within P. By introducing fine-grained reductions, a picture is emerging of a

few main islands amongst the web of reductions, giving us an increasingly clearer clas-

sification of the relative hardness of fine-grained problems. Through such reductions,

the more exact practical hardness of problems, such as DNA sequencing’s quadratic

time barrier [BI14], has been given evidence for.

However, while average-case analysis and fine-grained analysis independently ad-

dress issues in classical complexity theory, average-case analysis is still coarse-grained

and fine-grained analysis is still worst-case. A more complete theory attempting to

capture the notion of “complexity" in our world should begin by marrying average-case

and fine-grained analysis.

In this chapter we do so by providing average-case fine-grained hardness conjec-

tures and show them to follow from widely conjectured worst-case assumptions on

well-studied fine-grained problems. Alternatively viewed, we give new routes for the

falsifications of these worst-case conjectures.

We present worst-case–to–average-case fine-grained reductions from the three main

islands of fine-grained complexity theory. We recall these three problems here to frame

our work, and their relevance is discussed in Section 2.1.

• Orthogonal Vectors: The OV problem on vectors of dimension 𝑑 (denoted OV𝑑)

is to determine, given two sets 𝑈 , 𝑉 of 𝑛 vectors from {0, 1}𝑑(𝑛) each, whether

there exist 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 such that ⟨𝑢, 𝑣⟩ = 0 (over Z). (If left unspecified,

𝑑 is to be taken to be
⌈︀
log2 𝑛

⌉︀
.)

• 3SUM: The 3SUM problem is to determine whether a given set 𝑆 ⊂ {−𝑛3, . . . , 𝑛3}

of size 𝑛 contains three distinct elements 𝑎, 𝑏, 𝑐 such that 𝑎 + 𝑏 = 𝑐.

• All-Pairs Shortest Path: Given an edge-weighted (undirected or directed) graph

on 𝑛 vertices, the APSP problem is to find the distances between every pair of

28

vertices, where edge weights are in {1, . . . , 𝑛𝑐} for some sufficiently large 𝑐.

We give a family of polynomials over finite fields corresponding to each of these,

called ℱOV, ℱ3SUM, and ℱZWT respectively, and conjecture these polynomials to

be hard to evaluate on uniformly chosen inputs. To support these conjectures we

prove worst-case–to–average-case fine-grained reductions from OV, 3SUM, and APSP

to their respective families of polynomials (where 3SUM reduces also to ℱZWT).

Specifically, we show:

• If OV requires 𝑛2−𝑜(1) time to decide in the worst-case, then ℱOV requires 𝑛2−𝑜(1)

time to evaluate with probability 3/4 on uniformly chosen inputs.

• If 3SUM requires 𝑛2−𝑜(1) time to decide in the worst-case, then ℱ3SUM requires

𝑛2−𝑜(1) time to evaluate with probability 3/4 on uniformly chosen inputs.

• If APSP requires 𝑛3−𝑜(1) time or 3SUM requires 𝑛2−𝑜(1) time to decide in the

worst-case, then ℱZWT requires 𝑛3−𝑜(1) time to evaluate with probability 3/4

on uniformly chosen inputs.

Further, we conjecture a fourth family of polynomials, ℱTC, to also be average-

case hard to evaluate and support this with fine-grained reductions from 3SUM, and

APSP, and 𝑘-SAT. The reduction from 𝑘-SAT makes ℱTC hard under the Strong

Exponential Time Hypothesis (SETH), which states that there is no 𝜖 > 0 such that

𝑘-SAT can be solved in time ̃︀𝑂(2𝑛(1−𝜖)) for all values of 𝑘.

• If either APSP requires 𝑛3−𝑜(1) time, 3SUM requires 𝑛2−𝑜(1) time, or SETH holds,

then ℱTC requires 𝑛3−𝑜(1) time to evaluate with probability 3/4 on uniformly

chosen inputs.

We note that SETH implies that OV requires 𝑛2−𝑜(1) time to decide in the worst-

case and so ℱOV is also hard on average under the stronger assumption of SETH.

Thus, ℱOV and ℱTC are our mostly strongly supported average-case hardness results.

ℱTC only can become easy if SETH breaks and both 3SUM and APSP become easy,

29

while ℱOV, even with a broken SETH, remains hard unless all first-order graph

problems become easy since [GI16] shows that all such problems reduce to (moderate-

dimension) OV.

Our results crucially rely on the fact that the polynomials in ℱOV, ℱ3SUM,

ℱZWT, and ℱTC have degree polylog(𝑛), which is very low. This extremely low

degree enables us to invoke in a fine-grained way the classic random self-reducibility

of evaluating low-degree polynomials, first used to show the average-case hardness of

computing the Permanent when assuming its worst-case hardness [Lip91, FF90], or

more generally to show local correctability of Reed-Muller codes [GS92] (see also the

work of Blum, Luby and Rubinfeld [BLR93] for related examples of self-reductions).

Beyond low degree, our polynomials are efficient to evaluate in time that tightly

matches their conjectured average-case hardness. These two properties are what dis-

tinguishes our polynomials from naïvely representing a decision problem with a mul-

tilinear extension, which has “low" degree 𝑛 and, having exponentially many terms,

can take exponential time to compute, both of which are too large for our fine-grained

analysis. A key technique we use to bypass the naïve construction, then, is to look

at the structure of specific problems from fine-grained complexity to tailor very low-

degree efficiently-computable polynomials to them. The matching upper and lower

bounds are precisely what allow us to capture the complexity of our problems in the

fine-grained setting and open the door for applications.

Extensions. We extend our results to a generalization of OV, called 𝑘-OV, whose

hardness can also be based on the SETH. To this end, we define a corresponding

polynomial ℱOV𝑘 which is computable in ̃︀𝑂(𝑛𝑘) time in the worst-case. Using the

same ideas as in the above worst-case to average-case reductions we show:

• If 𝑘-OV requires 𝑛𝑘−𝑜(1) time to decide in the worst-case, then ℱOV𝑘 requires

𝑛𝑘−𝑜(1) time to evaluate with probability 3/4 on uniformly chosen inputs.

We note that this yields a tight average-case time hierarchy: an average-case

problem computable in time 𝑛𝑘 but not much faster for every integer 𝑘 (these can be

30

extended to rational numbers through standard padding techniques). Unconditional

average-case time hierarchies are known – e.g. [GGH94] – but these are based on

canonical functions that have not found further use than as a proof of this concept,

while our functions are closely related to well-studied problems and have considerable

algebraic structure. We discuss this in more detail in Appendix A.1.

Building on [CPS99], we use local list decoding to show that our families of

polynomials remain hard even when asking for their successful evaluation on just

a 1/polylog(𝑛) fraction of inputs. We extend this to attain a smooth trade-off be-

tween the running time and the upper bound on the probability of success of any

average-case solver. Details may be found in Appendix A.3.

We additionally show, in Appendix A.5, that ℱOV remains hard to evaluate even

over very small field sizes by applying an isolation lemma to OV, which may be of

independent interest by itself.

Applications. Leveraging the structure of our problems, and using ideas from [Wil16],

in Chapter 3 we construct a Proof of Work scheme based on their average-case hard-

ness. We pose the application of creating fine-grained cryptography as an open prob-

lem, and in Chapter 5 outline a structural barrier to achieving fine-grained one-way

functions from our results.

Finally, we note that these reductions set up a win-win scenario: either the worst-

case conjectures are true and we have average-case fine-grained hard problems or we

can show them easy and thus break our worst-case conjectures, allowing a break-

through in fine-grained complexity theory. We explore this notion further by con-

sidering the ideas introduced in [Nao03] of falsifiable assumptions to show that our

results make the OV, 3SUM, and APSP conjectures falsifiable in a practical sense.

Specifically, in Appendix A.2 we discuss how empirically evaluating our polynomial

for OV faster than we conjecture possible would give strong heuristic evidence that

SAT has faster worst-case algorithms – i.e. that the SETH is false. In this sense, we

discuss how our results allow for the heuristic falsifiability of conjectures.

31

Related Work

Recently, and independently of our work, a sequence of papers [BK16b, GR17, Wil16]

has also observed that a number of problems from the fine-grained world can be cap-

tured by the evaluation of efficiently computable low-degree polynomials.The focus

of these papers has been on using the algebraic structure and low-degree of the poly-

nomials to delegate computation of fine-grained problems in quickly verifiable ways.

The papers were not, however, concerned with the hardness aspects of complexity

and made no average-case claims or guarantees.

A key discovery, then, achieved here and independently in [BK16b, GR17, Wil16],

is the utility of looking at the structure of specific computational problems to tailor

very low-degree polynomials that are efficiently computable to them. From the algo-

rithmic perspective, [BK16b, GR17, Wil16] find utility for delegation of computation,

while, from the hardness perspective, we connect it to average-case complexity and

applications thereof.

This gives a very rich framework that our results are applicable to, as our worst-

case to average-case reductions can be adapted in a straightforward way to work for

any problem appropriately expressible as a low-degree polynomial. Many other low-

degree polynomials for interesting practical problems are found in [BK16b, GR17,

Wil16], with [Wil16] independently discovering our ℱOV polynomial and [BK16b]

independently finding a polynomial similar to our ℱ3SUM. The work of [GR17], in

fact, identifies a natural class of “locally characterizable sets” that contains problems

admitting low-degree polynomials akin to the ones considered here. Many of the

above polynomials can fit into the framework of applications of average-case fine-

grained hardness, such as the Proofs of Work we introduce.

The notion of precise cryptography introduced by Micali and Pass [MP06] studies

reductions between cryptographic primitives that (among other things) can be com-

puted in linear time. That is, they show constructions of primitive 𝐵 from primitive

𝐴 such that if there is a TIME(𝑓(𝑛)) algorithm that breaks primitive 𝐵, there is

a TIME(𝑂(𝑓(𝑛))) algorithm that breaks 𝐴. While they are also interested in tight

32

reductions (similar to our quasi-linear time average-case reductions), their notions

are stronger as they refer to the complexity of reductions and simulations on a per-

instance basis. Similar to our case, their considerations also remain relevant even if

P ̸= NP.

Lastly, [GH16] recently shows that fine-grained problems related to DNA sequenc-

ing are actually easy when given a batch of correlated instances. While these corre-

lated instances are not typically what we consider in average-case complexity, they

are distributional notions of inputs on fine-grained problems and so seems to be the

closest existing work to average-case fine-grained complexity. The techniques used,

however, are very different and focused on attaining easiness for specific problems

with respect to specific distributions, whereas we focus on attaining hardness and

applications of hardness and do so within the emerging low-degree polynomial frame-

work. However, [GH16] can also be used to make claims similar to our notion of

heuristic falsifiability, suggesting that whenever the intersection of average-case com-

plexity and fine-grained complexity is considered it may immediately bear interesting

fruit for this notion.

2.1 Worst-Case Conjectures

We present here a few well-studied problems in fine-grained complexity and con-

jectures about their worst-case hardness that we use to support our average-case

hardness conjectures. For a more comprehensive survey of fine-grained complexity,

connections between problems, and formal definitions of concepts like fine-grained

reductions, see [Wil15].

(All our discussion will be in the Word RAM model of computation with 𝑂(log(𝑛))-

bit words. When we speak of randomized algorithms in a worst-case setting, we mean

algorithms that, for every input, output the correct answer with probability at least

2/3. And unless specified otherwise, all algorithms and conjectures about algorithms

are randomized throughout the paper.)

First we recall the problems of OV, 3SUM, and APSP defined earlier. These

33

problems currently remain the three key problems of fine-grained complexity; there

are no known reductions between them, but they reduce to many other problems

and, thus, give us the basis for what we generally call hardness within P [Wil15].

This foundation is more formally given, after extensive attempts to find improved

algorithms for them, through the following popular hardness conjectures (see [Wil15]

for relevant discussion and references):

• OV Conjecture: For any 𝑑 = 𝜔(log 𝑛), any algorithm for OV𝑑 requires 𝑛2−𝑜(1)

time.

• 3SUM Conjecture: Any algorithm for 3SUM requires 𝑛2−𝑜(1) time.

• APSP Conjecture: Any algorithm for APSP requires 𝑛3−𝑜(1) time.

These conjectures are not only important because they help stratify P, but the

truth or falsity of each of them has many ramifications to practical problems.

It has been shown that if the the OV conjecture is true, then many string pro-

cessing problems, hugely relevant to DNA sequencing and data comparison, also have

hardness bounds (typically sub-quadratic) [AWW14, ABW15b, BI14, BK15]. On the

other hand, if a sub-quadratic algorithm for OV is found, Williams [Wil05] gave a

reduction to show we would achieve improved algorithms for SAT; more specifically,

the well-known Strong Exponential Time Hypothesis (SETH) would break. Thus, as

stated in earlier in this chapter, SETH implies the OV conjecture.

(We note that the results in this chapter still go through under a slightly weaker

variant of the OV conjecture: for all 𝜀 > 0, there is no 𝑂(𝑛2−𝜀poly(𝑑)) algorithm for

OV𝑑. This problem, “Moderate Dimension” OV, where 𝑑 could be as large as a small

polynomial in 𝑛, was shown to be hard for the class of all first-order graph problems

in [GI16].)

Similarly, if the 3SUM conjecture is true, problems in computational geometry

[GO95] and exact weighted subgraph problems [AL13] are moderately hard. Further,

[AL13] shows that if the 3SUM conjecture is false, we get improved algorithms for

many of the same graph problems.

34

Finally, the APSP conjecture’s truth would give lower bounds for many problems

in dense graphs [WW10] and for dynamic problems [RZ04]. [WW10] also shows that

the conjecture being false gives better algorithms for the dense graph problems.

We note that while it is common to make these conjectures only for deterministic

algorithms, we see these as structural beliefs about the problems – that brute force

is essentially necessary as there is no structure to algorithmically exploit – and so

there is no reason to believe that allowing randomness will allow a significant speed-

up. Indeed, these conjecture are often made against randomized expected running

time machines as in [Wil15] and randomized one-sided error versions of SETH have

been made in [DHW10] and [CIKP03]. Further, [CFK+15] conjectures and argues

for a SETH under randomized two-sided error machines (which are the machines we

assume and state our conjectures for).

Besides these three main islands of fine-grained complexity theory, a fourth seems

to be emerging based on the 𝑘-CLIQUE problem. With the current best algorithm

solving the problem in 𝑛𝜔𝑘/3 time [NP85], where 𝜔 is the matrix multiplication con-

stant, there has been recent work showing that conjecturing this to be optimal leads

to interesting hardness results for other important problems such as parsing languages

and RNA folding [ABW15a, BGL16, BDT16, BT16]. To explore delegating computa-

tion, [BK16b, GR17, Wil16] all introduce different families of polynomials to express

the 𝑘-CLIQUE problem, yet none yield analysis akin to those above. The polyno-

mials either yield average-case hardness via our techniques but cannot be computed

efficiently enough to give matching upper bounds [GR17, Wil16], or they have too

large of a degree for our worst-case to average-case reductions [BK16b]. We leave the

open problem of finding a family of polynomials to represent 𝑘-CLIQUE that both are

computable in time 𝑛𝜔𝑘/3 and have degree 𝑛𝑜(1).

For these practical connections, any reduction to or from the main island problems

has interesting consequences (see [Wil15] for a more comprehensive treatment). In

our results we achieve reductions from these problems and, to help facilitate that, we

recall two more problems.

• Zero-Weight Triangle: Given an edge-weighted graph on 𝑛 vertices, the ZWT

35

problem is to decide whether there exists a triangle with edge weights 𝑤1, 𝑤2, 𝑤3

such that 𝑤1 + 𝑤2 = −𝑤3, where edge weights are in {−𝑛𝑐, . . . , 𝑛𝑐} for some

sufficiently large 𝑐.

• Triangle-Collection: Given an graph on 𝑛 vertices and a partition 𝐶 of the

vertices into colors, the Triangle-Collection problem is to decide whether for

each triple of three colors 𝑎, 𝑏, 𝑐 ∈ 𝐶, there exists vertices 𝑥, 𝑦, 𝑧 in the graph

that form a triangle and 𝑥 ∈ 𝑎, 𝑦 ∈ 𝑏, and 𝑧 ∈ 𝑐. That is, each triplet of colors

is ‘collected’ by some triangle.

We will follow the approach in [CGI+16] of, at times, using ZWT as a proxy for

both 3SUM and APSP. That is, both reduce in a fine-grained way to ZWT: APSP

reduces to (Negative Weight Triangle [WW10] and then to) ZWT [VW09], and 3SUM

has a randomized (which suits our purposes) reduction to ZWT in [VW09, P1̌0].

Thus reducing from ZWT reduces from both 3SUM and APSP simultaneously. It

then follows that if either the 3SUM or APSP conjecture are true, then ZWT requires

𝑛3−𝑜(1) time.

Similarly, the Triangle-Collection problem is introduced in [AWY15] as a way to

base hardness on the believable conjecture that at least one of the SETH, 3SUM,

or APSP conjectures are true. To do this, they give fine-grained reductions from all

three of 𝑘-SAT, 3SUM, and APSP so that if any of their conjectures are true, then

Triangle-Collection requires 𝑛3−𝑜(1) time.

In general, it is better to reduce from problems furthest down a chain of reduc-

tions, as assuming those problems to be hard will then be the weakest assumption

required - e.g. assuming Triangle-Collection requires 𝑛3−𝑜(1) time is a weaker assump-

tion than assuming that at least one of 𝑘-SAT, 3SUM, or APSP are hard. It is an

interesting direction to base average-case fine-grained hardness on increasingly weaker

assumptions.

For this reason, it would be desirable to reduce from some very practical DNA

sequencing problems (e.g. EDIT-DISTANCE and LCS) that are reduced to from OV

(and thus 𝑘-SAT). Further, there is mounting evidence that, regardless of the status

36

of 𝑘-SAT’s complexity, these DNA sequencing problems are in fact very likely to be

hard [GI16, AHWW15]. We remark, however, that there is a barrier to representing

these problems with low-degree polynomials [Abb17]. Namely, representing them with

low-degree polynomials would allow for small speedups – i.e. by using the polynomial

method [CW16] – but such speedups (of just shaving some logarithmic factors off

of the runtime) have been show to imply new breakthroughs in circuit lower bounds

[AHWW15].

2.2 Average-Case Fine-Grained Hardness

We now define the notion of average-case complexity that we shall use and describe the

technique we use for our worst-case to average-case reductions. Then, we describe

the problems we conjecture to be hard on average and show reductions from the

worst-case problems described in Section 2.1 in support of these conjectures.

Definition 1. A family of functions ℱ = {𝑓𝑛} is computable in time 𝑡 on average

if there is an algorithm that runs in 𝑡(𝑛) time on the domain of 𝑓𝑛 and, for all

large enough 𝑛, computes 𝑓𝑛 correctly with probability at least 3/4 over the uniform

distribution of inputs in its domain.

For broader definitions that are more useful when one is concerned with whole

classes of problems rather than a handful of specific ones, and for extensive discus-

sions of the merits of the same, we refer the reader to Bogdanov and Trevisan’s

survey [BT06].

To achieve average-case hardness for our fine-grained problems, our main tech-

nique will be to “express" these problems as low-degree polynomials and then use the

random self-reducibility of evaluating these polynomials to attain average-case hard

problems.

We now recall the classic random self-reducibility of evaluating low-degree poly-

nomials, first used to show the average-case hardness of computing the Permanent

when assuming its worst-case hardness [Lip91, FF90]. We can more generally view

37

this as the local correctability of Reed-Muller codes first shown by Gemmell and Su-

dan [GS92] and get better error rates using techniques from this perspective. We

repeat the proof in Section 2.3 in order to accurately assess the running time of the

algorithm involved.

Lemma 1. Consider positive integers 𝑁 , 𝐷, and 𝑝, and an 𝜀 ∈ (0, 1/3) such that

𝐷 > 9, 𝑝 is prime and 𝑝 > 12𝐷. Suppose that for some polynomial 𝑓 : F𝑁
𝑝 → F𝑝 of

degree 𝐷, there is an algorithm 𝐴 running in time 𝑡 such that 𝐴 computes 𝑓 correctly

on average. That is,

Pr
𝑥←F𝑁

𝑝

[𝐴(𝑥) = 𝑓(𝑥)] ≥ 1− 𝜀

Then there is a randomized algorithm 𝐵 that runs in time 𝑂(𝑁𝐷2 log2 𝑝+𝐷3+𝑡𝐷)

such that 𝐵 computes 𝑓 in the worst-case. That is, for any 𝑥 ∈ F𝑁
𝑝 :

Pr [𝐵(𝑥) = 𝑓(𝑥)] ≥ 2

3

Remark 2. The range of 𝜀 being (0, 1/3) is arbitrary to some extent. It could be any

constant smaller than 1/2 at the cost of 𝑝 having to be slightly larger.

Remark 3. An important thing to note here is how 𝐵’s runtime depends on 𝑓 ’s degree

𝐷. Assuming 𝑡𝐷 is the high-order term in the runtime, 𝐵 runs in time 𝑂(𝑡𝐷). So

if we want our reductions to have low overhead, we will need 𝐷 to be rather small.

For our fine-grained purposes, we need to be careful in what we consider “low" and

we will see that we always have 𝐷 polylogarithmic in 𝑁 .

We now introduce three families of polynomials that we conjecture average-case

hard to evaluate and then give evidence for this by reducing to them from the worst-

case problems OV, ZWT, and Triangle-Collection, respectively, and then applying the

random self-reducibility of low-degree polynomials as just described. Another family

of polynomials arising from 3SUM is presented in Section 2.2.4. The landscape of

these reductions is seen in Figure 2-1.

38

Figure 2-1: Arrows represent (fine-grained) reductions and dashed means they’re
randomized. A dashed self-loop is a worst-case to average-case self-reduction. Our
work introduces ℱOV, ℱ3SUM, ℱZWT, and ℱTC and the reductions involving them.

2.2.1 Orthogonal Vectors

For any 𝑛, let 𝑝(𝑛) be the smallest prime number larger than 𝑛2, and 𝑑(𝑛) =
⌈︀
log2 𝑛

⌉︀
(for brevity, we shall write just 𝑝 and 𝑑). We define polynomials 𝑓OV𝑛 : F2𝑛𝑑

𝑝 → F𝑝

over 2𝑛𝑑 variables. We view these variables as representing the input to OV – we

separate the variables into two matrices 𝑈, 𝑉 ∈ F𝑛×𝑑
𝑝 . The polynomial 𝑓OV𝑛 is then

defined as follows:

𝑓OV𝑛(𝑈, 𝑉) =
∑︁
𝑖,𝑗∈[𝑛]

∏︁
ℓ∈[𝑑]

(1− 𝑢𝑖ℓ𝑣𝑗ℓ)

A similar polynomial was used independently by Williams [Wil16] to construct

coMA proof systems for OV with efficient verifiers. Given an OV instance (𝑈, 𝑉) ∈

{0, 1}2𝑛𝑑, 𝑓OV𝑛(𝑈, 𝑉) counts the number of pairs of orthogonal vectors in it – for

39

each pair 𝑖, 𝑗 ∈ [𝑛], the corresponding summand is 1 if ⟨𝑢𝑖, 𝑣𝑗⟩ = 0, and 0 otherwise

(there is no modular wrap-around of the sum as 𝑝 > 𝑛2). Also, 𝑓OV𝑛 has degree at

most 2𝑑, which is rather low.

Define the family of polynomials ℱOV = {𝑓OV𝑛}. We show a worst-case to

average-case reduction from OV to ℱOV that, given an algorithm that computes

𝑓OV𝑛 well on average, decides OV on instances of length 𝑛 without much overhead.

This is stated as the following theorem.

Theorem 1. If ℱOV can be computed in 𝑂(𝑛1+𝛼) time on average for some 𝛼 > 0,

then OV can be decided in ̃︀𝑂(𝑛1+𝛼) time in the worst case.

Proof. Suppose there were an algorithm 𝐴 that ran in 𝑂(𝑛1+𝛼) time and computed

𝑓OV𝑛 correctly on more than a 3/4 fraction of inputs for all large enough 𝑛.

In order to be able to use such an average-case algorithm, however, one has to

be able to write down inputs to run it on. These inputs to 𝑓OV𝑛 are in F2𝑛𝑑
𝑝 , and

so to work with them it is necessary to know 𝑝 = 𝑝(𝑛), the smallest prime number

larger than 𝑛2. Further, 𝑝 would have to be computable from 𝑛 rather efficiently for

a reduction that uses 𝐴 to be efficient. As the following lemma states, this turns out

to be possible to do.

Lemma 2 (Implied by [LO87]). The smallest prime number greater than 𝑚 can be

computed deterministically in ̃︀𝑂(𝑚1/2+𝛼) time for any 𝛼 > 0.

We will then use 𝐴 and this lemma to decide OV as follows. Given an input

(𝑈, 𝑉) ∈ {0, 1}2𝑛𝑑, first compute 𝑝 = 𝑝(𝑛) – this can be done in ̃︀𝑂(𝑛1+𝛼) time

by Lemma 2. Once 𝑝 is known, 𝐴 can be used along with Lemma 1 to compute

𝑓OV𝑛(𝑈, 𝑉) in 𝑂(𝑛(2𝑑)2 log2 𝑝 + (2𝑑)3 + 2𝑑𝑛1+𝛼) = ̃︀𝑂(𝑛1+𝛼) time, and this immedi-

ately indicates membership in OV as observed above.

Corollary 1. If OV requires 𝑛2−𝑜(1) time to decide, ℱOV requires 𝑛2−𝑜(1) time to

compute on average.

Note that our result is then tight under the OV conjecture in the sense that

our polynomial is computable in ̃︀𝑂(𝑛2) time, but in no less (even on average) as-

suming sub-quadratic hardness of OV. That is, we demonstrate a problem that is

40

quadratic-computable but sub-quadratic-hard on average. It should also be noted

that our results can adapted the Moderate Dimension OV problem (as mentioned in

Section 2.1) and thus an appropriately parametrized variant of ℱOV is average-case

hard for the class of all first-order graph problems as defined in [GI16].

2.2.2 3SUM and All-Pairs Shortest Path

Recall from Section 2.1 that both 3SUM and APSP have fine-grained reductions to

ZWT, and so we restrict our attention to ZWT. We now show a family of polynomials

that can count Zero Weight Triangles.

For any 𝑛, let 𝑝(𝑛) denote the smallest prime number larger than 𝑛3 and let

𝑑 = ⌈log(2(2𝑛𝑐 + 1))⌉ + 3 (𝑐 being the constant from the definition of ZWT). We

define the polynomial 𝑓ZWT𝑛 : F𝑛2𝑑
𝑝 → F𝑝 as taking in a set 𝐸 of 𝑛2𝑑 variables where

we split them into 𝑛2 sets, 𝑤𝑖𝑗, of 𝑑 variables each for all 𝑖, 𝑗 ∈ [𝑛]:

𝑓ZWT𝑛(𝐸) =
∑︁

𝑖,𝑗,𝑘∈[𝑛]

∏︁
ℓ∈[𝑑]

(︀
1− (𝑠ℓ (𝑤𝑖𝑗, 𝑤𝑗𝑘)− 𝑠ℓ (𝑤𝑖𝑘, 0 . . . 01))2

)︀

where 𝑠ℓ : F2𝑑
𝑝 → F𝑝 is the polynomial such that if 𝑥, 𝑦 ∈ {0, 1}𝑑, then 𝑠ℓ(𝑥, 𝑦)

equals the ℓth bit of (𝑥 + 𝑦) as long as 𝑥 and 𝑦 represent numbers in [−𝑛𝑐, 𝑛𝑐]. Such

polynomials exist, have degree at most 2𝑑, and are computable in 𝑂(𝑑 log2 𝑝) time –

see Appendix A.4. Further, 𝑤𝑖𝑘 represents the set of linear polynomials that toggle

all the bits in a boolean valued 𝑤𝑖𝑗; so 𝑠ℓ (𝑤𝑖𝑘, 0 . . . 01) effectively takes the one’s

complement of 𝑤𝑖𝑗 and then adds 1, which is exactly the two’s complement of 𝑤𝑖𝑗.

Now, considering a graph on 𝑛 vertices with edges weighted from [−𝑛𝑐, . . . , 𝑛𝑐]. We

use this polynomial to count zero weight triangles in it: For an edge-weight between

nodes 𝑖 and 𝑗 we decompose the value to its bit representation in two’s complement

notation and now have 𝑑 boolean inputs for 𝑤𝑖𝑗. If an edge does not exist between

an 𝑖 and 𝑗, we similarly put the bit decomposition of the value 2𝑛𝑐 + 1 into 𝑤𝑖𝑗 (note

that 𝑖 = 𝑗 is possible and we consider there to not be an edge for this). Conceptually,

41

we now have weights 𝑤𝑖𝑗 corresponding to a complete graph on 𝑛 vertices with the

the non-edges added at weight 2𝑛𝑐 + 1. Note that each triangle in it is zero weight if

and only if it was a zero weight triangle in the original graph. Thus, collecting these

all together we have boolean input 𝐸 ∈ {0, 1}𝑛2𝑑. This reduction certainly takes

sub-cubic time.

Then, given the binary representation of a ZWT instance, the ℓth term in the

product above checks whether the ℓth bit of the sum of 𝑤𝑖𝑗 and 𝑤𝑗𝑘 equals that

of the negation of 𝑤𝑖𝑘. If all 𝑑 bits are equal, then, and only then, the summand

is 1, otherwise it is 0. So the sum counts the number of triples of distinct (𝑖, 𝑗),

(𝑗, 𝑘), and (𝑖, 𝑘) such that 𝑤𝑖𝑗 + 𝑤𝑗𝑘 = −𝑤𝑖𝑘. Also, the degree of 𝑓ZWT𝑛 is at most

4𝑑3 = 𝑂(log3 𝑛).

Define the family of polynomials ℱZWT = {𝑓ZWT𝑛}. The following theorem can

be proved identically to Theorem 1.

Theorem 2. If ℱZWT can be computed in 𝑂(𝑛1.5+𝛼) time on average for some 𝛼 > 0,

then ZWT can be decided in ̃︀𝑂(𝑛1.5+𝛼) time in the worst case.

Corollary 2. If ZWT requires 𝑛3−𝑜(1) time to decide, ℱZWT requires 𝑛3−𝑜(1) time to

compute on average.

Thus, assuming the ZWT conjecture, using the fact that 𝑓ZWT𝑛 has 𝑛3 terms

and each 𝑠ℓ is computable in 𝑂(𝑑) time, we again achieve tightness where ℱZWT

is cubic-computable but sub-cubic-hard. It is also worth noting that the following

corollary frames our result in the more familiar problems of 3SUM and APSP.

Corollary 3. If either 3SUM requires 𝑛2−𝑜(1) time or APSP requires 𝑛3−𝑜(1) time,

then ℱZWT takes 𝑛3−𝑜(1) time to compute on average.

2.2.3 SETH, 3SUM, and All-Pairs Shortest Path

We now give our most encompassing worst-case–to–average-case result. Recall from

Section 2.1 that if any of 𝑘-SAT, 3SUM, or APSP are hard then the Triangle-Collection

problem is also hard [AWY15], thus so would be any polynomial based on it. We can

42

hence focus our attention on Triangle-Collection. More specifically, we will look at a

restricted version of the problem called Triangle-Collection* shown to be equivalent to

Triangle-Collection in [AWY15, Abb17], whose extra structure we will use to construct

low-degree polynomials.

• Triangle-Collection*: Given an undirected tripartite node-colored graph 𝐺 with

𝑛 colors and 𝑚 = 𝑛 log2 𝑛 + 2𝑛 log4 𝑛 nodes and with partitions 𝐴,𝐵,𝐶 of the

form:

– 𝐴 contains 𝑛 log2 𝑛 nodes 𝑎ℓ,𝑖 where 𝑖 ∈ [𝑛], ℓ ∈ [log2 𝑛] and 𝑎ℓ,𝑖 is colored

with color 𝑖.

– 𝐵 (respectively 𝐶) contains 𝑛 log4 𝑛 nodes 𝑏ℓ,𝑖,𝑥 (respectively 𝑐ℓ,𝑖,𝑥) where

𝑖 ∈ [𝑛], ℓ ∈ [log2 𝑛], 𝑥 ∈ [log2 𝑛] and 𝑏ℓ,𝑖,𝑥 (respectively 𝑐ℓ,𝑖,𝑥) is colored with

color 𝑖.

– For each node 𝑎ℓ,𝑖 and colors 𝑗, 𝑘 ∈ [𝑛], there is exactly one edge from 𝐴

to 𝐵 of the form (𝑎ℓ,𝑖, 𝑏ℓ,𝑗,𝑥) and exactly one edge from 𝐴 to 𝐶 of the form

(𝑎ℓ,𝑖, 𝑐ℓ,𝑘,𝑦), for some 𝑥, 𝑦 ∈ [log2 𝑛].

– A node 𝑏ℓ,𝑗,𝑥 can only be connected to nodes of the form 𝑐ℓ,𝑘,𝑦 in 𝐶. (There

no edges across disparate ℓ’s.)

For all triples of distinct colors 𝑖, 𝑗, 𝑘, is there a triangle (𝑢, 𝑣, 𝑤) in 𝐺 where 𝑢

has color 𝑖, 𝑣 has color 𝑗, and 𝑤 has color 𝑘?

We now give a polynomial whose evaluation would allow us to decide Triangle-Collection*.

For any 𝑛, let 𝑝(𝑛) denote the smallest prime number larger than 𝑛3. We define the

polynomial 𝑓TC𝑛 : F𝑚
𝑝 → F𝑝 as taking in a set 𝐸 of 𝑚 = (𝑛 log2 𝑛 + 2𝑛 log4 𝑛)2

variables (corresponding to entries in the adjacency matrix of an input graph to the

above problem):

𝑓TC𝑛(𝐸) =
∑︁

1≤𝑖<𝑗<𝑘≤𝑛

∏︁
ℓ,𝑥,𝑦∈[log2 𝑛]
𝜋∈𝑆{𝑖,𝑗,𝑘}

(︁
1− 𝑒𝑎ℓ,𝜋(𝑖),𝑏ℓ,𝜋(𝑗),𝑥

𝑒𝑎ℓ,𝜋(𝑖),𝑐ℓ,𝜋(𝑘),𝑦
𝑒𝑏ℓ,𝜋(𝑗),𝑥,𝑐ℓ,𝜋(𝑘),𝑦

)︁

43

(Note that for a set 𝑋, 𝑆𝑋 denotes the set of permutations on 𝑋.)

Consider a tripartite graph as defined above with adjacency matrix 𝐸. For each

triple of colors, (𝑖, 𝑗, 𝑘) ∈ [𝑛]3, if there is a corresponding triangle in the graph then

it zeroes out that particular term, otherwise it will evaluate to one. Thus, 𝑓TC𝑛

counts the number of colors not collected by a triangle – i.e. the number of violations

to being a YES instance – and so, for boolean 𝐸, 𝑓TC𝑛(𝐸) = 0 if and only if 𝐸

corresponds to a YES instance of Triangle-Collection*. Moreover, the degree of 𝑓TC𝑛

is at most 18 log6 𝑛.

Define the family of polynomials ℱTC = {𝑓TC𝑛}. The following theorem can be

proved identically to Theorem 1.

Theorem 3. If ℱTC can be computed in 𝑂(𝑛1.5+𝛼) time on average for some 𝛼 > 0,

then TC can be decided in ̃︀𝑂(𝑛1.5+𝛼) time in the worst case.

Corollary 4. If TC requires 𝑛3−𝑜(1) time to decide, ℱTC requires 𝑛3−𝑜(1) time to

compute on average.

Thus, 𝑓TC𝑛 only having 𝑛3 many summands with each being computable in

polylog(𝑛) time, it is easily seen that we again achieve tightness where ℱTC is cubic-

computable but sub-cubic-hard. More recognizably we attain the following.

Corollary 5. If either SETH holds, 3SUM takes 𝑛2−𝑜(1) time, or APSP takes 𝑛3−𝑜(1)

time, then ℱTC takes 𝑛3−𝑜(1) time to compute on average.

Note that this does not subsume the hardness of ℱZWT as, even if SETH fails

and 3SUM and APSP become easy, the ZWT problem may still be hard and yield

hardness for ℱZWT.

2.2.4 CONVOLUTION-3SUM

Here we give another average-case fine-grained hard problem based on the hardness of

3SUM. While Section 2.2.2 already has a polynomial whose average-case hardness is

based on the 3SUM conjecture, we include this one for completeness as it is possible

that either is independently hard even if the other is shown to be easy. We first

44

recall the CONVOLUTION-3SUM (C3SUM) problem introduced by [P1̌0] where it

was shown that 3SUM has a (randomized) fine-grained reduction to C3SUM, thus

allowing us to restrict our attention to it.

• C3SUM: Determine whether, when given three 𝑛-element arrays, 𝐴, 𝐵, and

𝐶, with entries in {−𝑛3, . . . , 𝑛3}, there exist 𝑖, 𝑗 ∈ [𝑛] such that 𝐴[𝑖] + 𝐵[𝑗] =

𝐶[𝑖 + 𝑗].

We now define a family of polynomials that can count solutions to a C3SUM

instance (when given in binary) and refer the reader to Section 2.2.2 for all notation

and discussion due to its similarity to ℱZWT.

For any 𝑛, let 𝑝(𝑛) denote the smallest prime number larger than 𝑛2 and let

𝑑 = ⌈3 log 𝑛⌉+ 3. We define the polynomial 𝑓3SUM𝑛 : F3𝑛𝑑
𝑝 → F𝑝 as taking in sets 𝐴,

𝐵, and 𝐶 of 𝑛𝑑 variables each and where we split each set into 𝑛 groups of 𝑑 variables

– e.g. 𝐴[𝑖] is the 𝑖𝑡ℎ group of 𝑑 variables of the 𝑛𝑑 variables in 𝐴.

𝑓3SUM𝑛(𝐴,𝐵,𝐶) =
∑︁
𝑖,𝑗∈[𝑛]

∏︁
ℓ∈[𝑑]

(︀
1− (𝑠ℓ (𝐴[𝑖], 𝐵[𝑗])− 𝐶[𝑖 + 𝑗]ℓ)

2)︀
From the same arguments in Section 2.2.2, we get the following theorem for

ℱ3SUM = {𝑓3SUM𝑛}.

Theorem 4. If ℱ3SUM can be computed in 𝑂(𝑛1+𝛼) time on average for some 𝛼 > 0,

then 3SUM can be decided in ̃︀𝑂(𝑛1+𝛼) time in the worst case.

Corollary 6. If 3SUM requires 𝑛2−𝑜(1) time to decide, ℱ3SUM requires 𝑛2−𝑜(1) time

to compute on average.

Note that if we did not use C3SUM, we would have had 𝑛3 terms from a more

naïve construction from 3SUM and thus a gap between ℱ3SUM’s computability and

its hardness. But, with our current construction having only 𝑛2 terms, we achieve

tightness where ℱ3SUM is quadratic-computable but sub-quadratic-hard.

45

2.3 Evaluating Low Degree Polynomials

Here we recall and prove Lemma 1.

Lemma 1. Consider positive integers 𝑁 , 𝐷, and 𝑝, and an 𝜀 ∈ (0, 1/3) such that

𝐷 > 9, 𝑝 is prime and 𝑝 > 12𝐷. Suppose that for some polynomial 𝑓 : F𝑁
𝑝 → F𝑝 of

degree 𝐷, there is an algorithm 𝐴 running in time 𝑡 such that 𝐴 computes 𝑓 correctly

on average. That is,

Pr
𝑥←F𝑁

𝑝

[𝐴(𝑥) = 𝑓(𝑥)] ≥ 1− 𝜀

Then there is a randomized algorithm 𝐵 that runs in time 𝑂(𝑁𝐷2 log2 𝑝+𝐷3+𝑡𝐷)

such that 𝐵 computes 𝑓 in the worst-case. That is, for any 𝑥 ∈ F𝑁
𝑝 :

Pr [𝐵(𝑥) = 𝑓(𝑥)] ≥ 2

3

Proof. The algorithm 𝐵 works as follows on input 𝑥:

1. Draw two random points 𝑦1,𝑦2 ∈ F𝑁
𝑝 and define the curve 𝑐(𝑤) = 𝑥 + 𝑤𝑦1 +

𝑤2𝑦2 for 𝑤 ∈ F𝑝.

2. For a value of 𝑚 (< 𝑝) to be determined later, compute (𝐴(𝑐(1)), . . . , 𝐴(𝑐(𝑚)))

to get (𝑧1, . . . , 𝑧𝑚) ∈ F𝑝.

3. Run Berlekamp-Welch on (𝑧1, . . . , 𝑧𝑚). If it succeeds and outputs a polynomial

𝑔, output 𝑔(0). Otherwise output 0.

To see why the above algorithm works, define the polynomial 𝑔(𝑤) = 𝑓(𝑐(𝑤)).

𝑔 is a polynomial of degree 2𝐷 over the single variable 𝑤, with the property that

𝑔(0) = 𝑓(𝑥). So if we had (2𝐷+1) evaluations of 𝑔 at different points in F𝑝, we could

retrieve 𝑔 and compute 𝑓(𝑥). While we may not be able to obtain these evaluations

directly (since they involve computing 𝑓), we do have access to 𝐴, which promises to

be correct about the value of 𝑓 on a random point with probability 2/3.

46

So we replace the values 𝑔(𝑤) = 𝑓(𝑐(𝑤)) with 𝐴(𝑐(𝑤)), which will hopefully be

correct at several points. Now our problem is to retrieve 𝑔 given a set of its alleged

evaluations at 𝑚 points, some of which may be wrong.

We do this by interpreting (𝑔(1), 𝑔(2), . . . , 𝑔(𝑚)) as a Reed-Solomon encoding of

𝑔 and running its decoding algorithm on (𝐴(𝑐(1)), . . . , 𝐴(𝑐(𝑚))), which now corre-

sponds to a corrupt codeword. The Berlekamp-Welch algorithm can do this as long

as less than (𝑚 − 2𝐷)/2 of the 𝑚 values of 𝐴(𝑐(𝑤)) are wrong. We now bound the

probability of too many of these values being wrong.

Let 𝑄𝑤 be an indicator variable such that 𝑄𝑤 = 1 if and only if 𝐴(𝑐(𝑤)) ̸= 𝑓(𝑐(𝑤)).

Let 𝑄 =
∑︀𝑚

𝑤=1 𝑄𝑤. We note at this point the fact that over the randomness of 𝑦1 and

𝑦2, the distributions of 𝑐(𝑤) and 𝑐(𝑤′) for any two distinct 𝑤,𝑤′ ∈ F𝑝 are uniform

and independent. This gives us the following statistics:

E[𝑄] = 𝜀𝑚

Var[𝑄] = 𝑚𝜀(1− 𝜀)

Thus, by the Chebyshev inequality, we have that the probability that more than a 𝛿

(> 𝜀) fraction of 𝐴(𝑐(𝑤))’s disagree with 𝑓(𝑐(𝑤)) is:

Pr [𝑄 > 𝛿𝑚] ≤ Pr [|𝑄− 𝜀𝑚| > (𝛿 − 𝜀)𝑚]

≤ 𝜀(1− 𝜀)

(𝛿 − 𝜀)2𝑚
≤ 1

4(𝛿 − 𝜀)2𝑚

We are interested in 𝛿 = 𝑚−2𝐷
2𝑚

= 1
2
− 𝐷

𝑚
. So if we set, for instance, 𝑚 = 12𝐷, the

bound on the probability above is at most 1/3 if 𝐷 > 9 and 𝜀 < 1/3.

So except with this small probability, the decoding algorithm correctly recovers 𝑔

as 𝑔, and consequently 𝐵 computes 𝑓(𝑥) correctly.

Generating each 𝑐(𝑤) and running 𝐴 on it takes 𝑂(𝑁𝐷 log2 𝑝 + 𝑡) time. The

Berlekamp-Welch algorithm then takes 𝑂(𝑚3) time, and the final evaluation of ̂︀𝑔
takes 𝑂(𝐷 log2 𝑝). Hence, given 𝐴 with the above properties, the running time of 𝐵

47

is:

𝑂(𝑚(𝑁𝐷 log2 𝑝 + 𝑡) + 𝑚3 + 𝐷 log2 𝑝) = 𝑂(𝑁𝐷2 log2 𝑝 + 𝐷3 + 𝑡𝐷)

48

Chapter 3

Proofs of Work

Proofs of Work (PoWs), introduced in [DN92], have shown themselves to be an in-

valuable cryptographic primitive. Originally introduced to combat Denial of Service

attacks and email spam, their key notion now serves as the heart of most modern

cryptocurrencies (when combined with additional desired properties for this applica-

tion).

By quickly generating easily verifiable challenges that require some quantifiable

amount of work, PoWs ensure that adversaries attempting to swarm a system must

have a large amount of computational power to do so. Practical uses aside, PoWs at

their core ask a foundational question of the nature of hardness: Can you prove that a

certain amount of work 𝑡 was completed? In the context of complexity theory for this

theoretical question, it suffices to obtain a computational problem whose (moderately)

hard instances are easy to sample such that solutions are quickly verifiable.

Unfortunately, implementations of PoWs in practice stray from this theoretical

question and, as a consequence, have two main drawbacks. First, they are often

based on heuristic assumptions that have no quantifiable guarantees. One commonly

used PoW is the problem of simply finding a value 𝑠 so that hashing it together with

the given challenge (e.g. with SHA-256) maps to anything with a certain amount

of leading 0’s. This is based on the heuristic belief that SHA-256 seems to behave

unpredictably with no provable guarantees.

Secondly, since these PoWs are not provably secure, their heuristic sense of security

49

stems from, say, SHA-256 not having much discernible structure to exploit. This lack

of structure, while hopefully giving the PoW its heuristic security, limits the ability

to use the PoW in richer ways. That is, heuristic PoWs do not seem to come with a

structure to support any useful properties beyond the basic definition of PoWs.

In this chapter, building on the techniques results in Chapter 2, we address both

of these problems by constructing PoWs that are based on worst-case complexity theo-

retic assumptions in a provable way while also having considerable algebraic structure.

This simultaneously moves PoWs in the direction of modern cryptography by bas-

ing our primitives on well-studied worst-case problems and expands the usability of

PoWs by exploiting our algebraic structure to create, for example, PoWs that can be

proved in Zero Knowledge or that can be distributed across many workers in a way

that is robust to Byzantine failures. Our biggest use of our problems’ structure is

in proving a direct sum theorem to show that our proofs are non-amortizable across

many challenges.

While all of our results and techniques will be analogous for 3SUM and APSP,

we will use OV as our running example for our proofs and results statements. Recall

that OV (defined again in Section 3.1.2) is a well-studied problem that is conjectured

to require 𝑛2−𝑜(1) time in the worst-case [Wil15]. Roughly, we show the following.

Informal Theorem 4. Suppose OV takes 𝑛2−𝑜(1) time to decide for sufficiently large

𝑛. A challenge 𝑐 can be generated in ̃︀𝑂(𝑛) time such that:

• A valid proof 𝜋 to 𝑐 can be computed in ̃︀𝑂(𝑛2) time.

• The validity of a candidate proof to 𝑐 can be verified in ̃︀𝑂(𝑛) time.

• Any valid proof to 𝑐 requires 𝑛2−𝑜(1) time to compute.

This can be scaled to 𝑛𝑘−𝑜(1) hardness for all 𝑘 ∈ N by a natural generalization

of the OV problem to the 𝑘-OV problem, whose hardness is also supported by SETH.

Thus fine-grained complexity theory props up PoWs of any complexity that is desired.

Further, we show that the verification can still be done in ̃︀𝑂(𝑛) time for all of our

𝑛𝑘−𝑜(1) hard PoWs, allowing us to tune hardness. The corresponding PoW for this is

50

interactive but we show how to remove this interaction in the Random Oracle model

in Section 3.5.

We also note that a straightforward application of [BK16b] allows our PoWs to

be distributed amongst many workers in a way that is robust to byzantine failure

or errors and can detect malicious party members. Namely, that a challenge can be

broken up amongst a group of provers so that partial work can be error-corrected into

a full proof.

Further, our PoWs admit zero knowledge proofs such that the proofs can be simu-

lated in very low complexity – i.e. in time comparable to the verification time. While

heuristic PoWs can be proved in zero knowledge as they are NP statements, the exact

polynomial time complexities matter in this regime. We are able to use the algebraic

structure of our problem to attain a notion of zero knowledge that makes sense in the

fine-grained world.

A main lemma which may be of independent interest is a direct sum theorem on

evaluating a specific low-degree polynomial 𝑓OV𝑘.

Informal Theorem 5. Suppose 𝑘-OV takes 𝑛𝑘−𝑜(1) time to decide. Then, for any

polynomial ℓ, any algorithm that computes 𝑓OV𝑘(𝑥𝑖)’s correctly on ℓ uniformaly ran-

dom 𝑥𝑖’s with probability 1/𝑛𝑂(1) takes time ℓ(𝑛) · 𝑛𝑘−𝑜(1).

On Security From Worst-Case Assumptions. We make a point here that if

SHA-256 is secure then it can be made into the aforementioned PoW whereas, if it is

not, then SHA-256 is broken. While tautological, we point out that this is a Win-Lose

situation. That is, either we have a PoW, or a specific instantiation of a heuristic

cryptographic hash function is broken and no new knowledge is gained.

This is in contrast to our provably secure PoWs, in which we either have a PoW,

or we have a breakthrough in complexity theory. For example, if we base a PoW

on the Orthogonal Vectors problem, then either we have a PoW or the Orthogonal

Vectors problem can be solved in sub-quadratic time which has been shown [Wil05]

to be sufficient to break the Strong Exponential Time Hypothesis (SETH), giving a

faster-than-brute-force algorithm for 𝑘-SAT formulas and thus a major insight to the

51

P vs NP problem.

By basing our PoWs on well-studied complexity theoretic problems, we position

our conditional results to be in the desirable position for cryptography and complex-

ity theory: a Win-Win. Orthogonal Vectors, 3SUM, and All-Pairs Shortest Path

are the central problems of fine-grained complexity theory precisely because of their

many quantitative connections to many other computational problems and so break-

ing any of their associated conjectures would give considerable insight into computa-

tion. Breaking a heuristic PoW like SHA-256, however, would simply say that that

specific design for that specific input size happened to not be as secure as we thought.

Related Work

As mentioned earlier, PoWs were introduced by Dwork and Naor [DN92]. Definitions

similar to ours were studied by Jakobsson and Juels [JJ99], Bitansky et al [BGJ+16],

and (under the name Strong Client Puzzles) Stebila et al [SKR+11] (also see the last

paper for some candidate constructions and further references).

We note that, while PoWs are often used in cryptocurrencies, the literature study-

ing them in that context have more properties than the standard notion of a PoW

(e.g. [BK16a]) that are desirable for their specific use within cryptocurrency and

blockchain frameworks. We do not consider these and instead focus on the founda-

tional cryptographic primitive that is a PoW.

Provably secure PoWs have been considered before in [BGJ+16] where PoWs are

achieved from cryptographic assumptions. Namely, they show that if there is a worst-

case hard problem that is non-amortizable and succinct randomized encodings exist,

then PoWs are achievable. In contrast, our PoWs are based on solely on worst-case

assumptions on well-studied problems from fine-grained complexity theory.

Subsequent to our work, Goldreich and Rothblum [GR18] have constructed (im-

plicitly) a PoW protocol based on the worst-case hardness of the problem of counting

𝑡-cliques in a graph (for some constant 𝑡); they show a worst-case to average-case

reduction for this problem, a doubly efficient interactive proof, and that the average-

case problem is somewhat non-amortizable, which are the properties needed to go

52

from worst-case hardness to PoWs.

3.1 Definitions

3.1.1 Proofs of Work

Syntactically, a Proof of Work scheme involves three algorithms:

• Gen(1𝑛) produces a challenge 𝑐.

• Solve(𝑐) solves the challenge 𝑐, producing a proof 𝜋.

• Verify(𝑐,𝜋) verifies the proof 𝜋 to the challenge 𝑐.

Taken together, these algorithms should result in an efficient proof system whose

proofs are hard to find. This is formalized as follows.

Definition 2 (Proof of Work). A (𝑡(𝑛), 𝛿(𝑛))-Proof of Work (PoW) consists of three

algorithms (Gen, Solve,Verify). These algorithms must satisfy the following properties

for large enough 𝑛:

• Efficiency:

– Gen(1𝑛) runs in time ̃︀𝑂(𝑛).

– For any 𝑐← Gen(1𝑛), Solve(𝑐) runs in time ̃︀𝑂(𝑡(𝑛)).

– For any 𝑐← Gen(1𝑛) and any 𝜋, Verify(𝑐,𝜋) runs in time ̃︀𝑂(𝑛).

• Completeness: For any 𝑐← Gen(1𝑛) and any 𝜋 ← Solve(𝑐),

Pr [Verify(𝑐,𝜋) = 𝑎𝑐𝑐𝑒𝑝𝑡] = 1

where the probability is taken over Verify’s randomness.

• Hardness: For any polynomial ℓ, any constant 𝜖 > 0, and any algorithm Solve*ℓ

53

that runs in time ℓ(𝑛) · 𝑡(𝑛)1−𝜖 when given ℓ(𝑛) challenges of size 𝑛 as input,

Pr

⎡⎢⎢⎢⎢⎣∀𝑖 : Verify(𝑐𝑖,𝜋𝑖) = acc

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

(𝑐𝑖 ← Gen(1𝑛))𝑖∈[ℓ(𝑛)]

𝜋 ← Solve*ℓ(𝑐1, . . . , 𝑐ℓ(𝑛)) :

𝜋 = (𝜋1, . . . ,𝜋ℓ(𝑛))

⎤⎥⎥⎥⎥⎦ < 𝛿(𝑛)

where the probability is taken over Gen and Verify’s randomness.

The efficiency requirement above guarantees that the verifier in the Proof of Work

scheme runs in nearly linear time. Together with the completeness requirement, it also

ensures that a prover who actually spends roughly 𝑡(𝑛) time can convince the verifier

that it has done so. The hardness requirement says that any attempt to convince the

verifier without actually spending the prescribed amount of work has only a small

probability of succeeding, and that this remains true even when amortized over several

instances. That is, even a prover who gets to see several independent challenges and

respond to them together will be unable to reuse any work across the challenges, and

is effectively forced to spend the sum of the prescribed amount of work on all of them.

In some of the PoWs we construct, Solve and Verify are not algorithms, but are

instead parties in an interactive protocol. The requirements of such interactive PoWs

are the natural generalizations of those in the definition above, with Verify deciding

whether to accept after interacting with Solve. And the hardness requirement ap-

plies to the numerous interactive protocols being run in any form of composition –

serial, parallel, or otherwise. We will, however, show how to remove interaction in

Section 3.5.

Heuristic constructions of PoWs, such as those based on SHA-256, easily satisfy

efficiency and completeness (although not formally, given their lack of asymptotics),

yet their hardness guarantees are based on nothing but the heuristic assumption that

the PoW itself is a valid PoW.

54

3.1.2 Orthogonal Vectors

We now formally define the 𝑘-Orthogonal Vectors (𝑘-OV) problem (which was men-

tioned briefly in Chapter 2), whose hardness we use to construct our PoW scheme. As

the name suggests, 𝑘-OV is a generalisation of the Orthogonal Vectors (OV) problem

defined and used in Chapter 2.

The properties possessed by OV (and 𝑘-OV) that enable our construction are

also shared by other well-studied problems mentioned earlier, including 3SUM and

APSP as noted in [BRSV17], and an array of other problems [BK16b, GR17, Wil16].

Consequently, while we focus on OV, PoWs based on the hardness of these other

problems can be constructed along the lines of the one here. Further, the security of

these constructions would also follow from the hardness of other problems that reduce

to OV, 3SUM, etc. in a fine-grained manner with little, if any, degradation of security.

Of particular interest, deciding graph properties that are statable in first-order logic

all reduce to (moderate-dimensional) OV [GI16], and so we can obtain PoWs if any

problem statable as a first-order graph property is hard.

All the algorithms we consider henceforth – reductions, adversaries, etc. – are

non-uniform Word-RAM algorithms (with words of size 𝑂(log 𝑛) where 𝑛 will be

clear from context) unless stated otherwise, both in our hardness assumptions and

our constructions. Security against such adversaries is necessary for PoWs to remain

hard in the presence of pre-processing, which is typical in the case of cyrptocurrencies,

for instance, where specialized hardware is often used. In the case of reductions, this

non-uniformity is solely used to ensure that specific parameters determined completely

by instance size (such as the prime 𝑝(𝑛) in Definition 5) are known to the reductions.

Remark 4. All of our reductions, algorithms, and assumptions can easily be made

uniform by having an extra Setup procedure that is allowed to run in 𝑡(𝑛)1−𝜖 for some

𝜖 > 0 for a (𝑡(𝑛), 𝛿(𝑛))-PoW. In our setting, this will just be used to find a prime

on which to base a field extension for the rest of the PoW to satisfy the rest of its

conditions. This makes sense for a PoW scheme to do and, for all the problems we

consider, this can be done be done so that all the conjectures can be made uniformly.

55

We leave everything non-uniform, however, for the sake of exposition.

For convenience, we restate the definition of the OV problem below.

Definition 3 (Orthogonal Vectors). The OV problem on vectors of dimension 𝑑

(denoted OV𝑑) is to determine, given two sets 𝑈 , 𝑉 of 𝑛 vectors from {0, 1}𝑑(𝑛) each,

whether there exist 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 such that ⟨𝑢, 𝑣⟩ = 0 (over Z). If left unspecified,

𝑑 is to be taken to be
⌈︀
log2 𝑛

⌉︀
.

OV is commonly conjectured to require 𝑛2−𝑜(1) time to decide, which many condi-

tional fine-grained hardness results are based on [Wil15], and which has been shown

to be true if the Strong Exponential Time Hypothesis (SETH) holds [Wil05]. This

hardness and the hardness of its generalization to 𝑘-OV of requiring 𝑛𝑘−𝑜(1) time

(which also holds under SETH) are what we base the hardness of our PoWs on. We

now define 𝑘-OV.

Definition 4 (k-Orthogonal Vectors). For an integer 𝑘 ≥ 2, the 𝑘-OV problem on

vectors of dimension 𝑑 is to determine, given 𝑘 sets (𝑈1, . . . , 𝑈𝑘) of 𝑛 vectors from

{0, 1}𝑑(𝑛) each, whether there exist 𝑢𝑠 ∈ 𝑈𝑠 for each 𝑠 ∈ [𝑘] such that over Z,

∑︁
ℓ∈[𝑑(𝑛)]

𝑢1
ℓ · · ·𝑢𝑘

ℓ = 0

We say that such a set of vectors is 𝑘-orthogonal. If left unspecified, 𝑑 is to be taken

to be
⌈︀
log2 𝑛

⌉︀
.

While these problems are conjectured worst-case hard, there are currently no

widely-held beliefs for distributions that it may be average-case hard over. In Chap-

ter 2, however, we defined a related problem that we showed to be average-case hard

when assuming the worst-case hardness of 𝑘-OV. This problem is that of evaluating

the following polynomial, which we write here with more parameters than earlier.

For any prime number 𝑝, we define the polynomial 𝑓OV𝑘
𝑛,𝑑,𝑝 : F𝑘𝑛𝑑

𝑝 → F𝑝 as follows.

Its inputs are parsed in the manner that those of 𝑘-OV are: below, for any 𝑠 ∈ [𝑘]

and 𝑖 ∈ [𝑛], 𝑢𝑠
𝑖 represents the 𝑖th vector in 𝑈𝑠, and for ℓ ∈ [𝑑], 𝑢𝑠

𝑖ℓ represents its ℓth

coordinate.

56

𝑓OV𝑘
𝑛,𝑑,𝑝(𝑈1, . . . , 𝑈𝑘) =

∑︁
𝑖1,...,𝑖𝑘∈[𝑛]

∏︁
ℓ∈[𝑑]

(︀
1− 𝑢1

𝑖1ℓ
· · ·𝑢𝑘

𝑖𝑘ℓ

)︀

When given an instance of 𝑘-OV (from {0, 1}𝑘𝑛𝑑) as input, 𝑓OV𝑘
𝑛,𝑑,𝑝 counts the

number of tuples of 𝑘-orthogonal vectors (modulo 𝑝). Note that the degree of this

polynomial is 𝑘𝑑; for small 𝑑 (e.g. 𝑑 =
⌈︀
log2 𝑛

⌉︀
), this is a fairly low-degree polynomial.

The following definition gives the family of such polynomials parameterized by input

size.

Definition 5 (ℱOV𝑘). Consider an integer 𝑘 ≥ 2. Let 𝑝(𝑛) be the smallest prime

number larger than 𝑛log𝑛, and 𝑑(𝑛) =
⌈︀
log2 𝑛

⌉︀
. ℱOV𝑘 is the family of functions{︀

𝑓OV𝑘
𝑛,𝑑(𝑛),𝑝(𝑛)

}︀
.

Remark 5. We note that most of our results would hold for a much smaller choice

of 𝑝(𝑛) above – anything larger than 𝑛𝑘 would do. The reason we choose 𝑝 to be

this large is to achieve negligible soundness error in interactive protocols we shall be

designing for this family of functions (see Protocol 3.1). Another way to achieve this

is to use large enough extension fields of F𝑝 for smaller 𝑝’s; this is actually preferable,

as the value of 𝑝(𝑛) as defined now is much harder to compute for uniform algorithms.

3.2 Verifying ℱOV𝑘

Our final protocol and its security consists, essentially, of two components – the

hardness of evaluating 𝑓OV𝑘 on random inputs, and the the ability to certify the

correct evaluation of 𝑓OV𝑘 in an efficiently verifiable manner. We explain the former

in the next section; here, we describe the protocol for the latter (Protocol 3.1), which

we will use as a sub-routine in our final PoW protocol. This protocol is a (𝑘 −

1)-round interactive proof that, given 𝑈1, . . . , 𝑈𝑘 ∈ F𝑛𝑑
𝑝 and 𝑦 ∈ F𝑝, proves that

𝑓OV𝑘
𝑛,𝑑,𝑝(𝑈1, . . . , 𝑈𝑘) = 𝑦.

In the special case of 𝑘 = 2, a non-interactive (MA) protocol for OV was shown

in [Wil16] and this MA protocol was used to construct a PoW scheme based on

57

OV, 3SUM, and APSP in [BRSV17], albeit one that only satisfies a weaker hardness

requirement (i.e. non-batchability was not considered or proved). We introduce

interaction to greatly improve the verifier’s efficiency and show how interaction can

be removed in Section 3.5. The following interactive proof is essentially the sum-

check protocol, but in our case we need to pay close attention to the complexity of

the prover and the verifier and so use ideas from [Wil16].

We will set up the following definitions before describing the protocol. For each

𝑠 ∈ [𝑘], consider the univariate polynomials 𝜑𝑠
1, . . . , 𝜑

𝑠
𝑑 : F𝑝 → F𝑝, where 𝜑𝑠

ℓ represents

the ℓth column of 𝑈𝑠 – that is, for 𝑖 ∈ [𝑛], 𝜑𝑠
ℓ(𝑖) = 𝑢𝑠

𝑖ℓ. Each 𝜑𝑠
ℓ has degree at most

(𝑛− 1). 𝑓OV𝑘
𝑛,𝑑,𝑝 can now be written as:

𝑓OV𝑘
𝑛,𝑑,𝑝(𝑈1, . . . , 𝑈𝑘) =

∑︁
𝑖1,...,𝑖𝑘∈[𝑛]

∏︁
ℓ∈[𝑑]

(︀
1− 𝑢1

𝑖1ℓ
· · ·𝑢𝑘

𝑖𝑘ℓ

)︀
=

∑︁
𝑖1,...,𝑖𝑘∈[𝑛]

∏︁
ℓ∈[𝑑]

(︀
1− 𝜑1

ℓ(𝑖1) · · ·𝜑𝑘
ℓ (𝑖𝑘)

)︀
=

∑︁
𝑖1,...,𝑖𝑘∈[𝑛]

𝑞(𝑖1, . . . , 𝑖𝑘)

where 𝑞 is defined for convenience as:

𝑞(𝑖1, . . . , 𝑖𝑘) =
∏︁
ℓ∈[𝑑]

(︀
1− 𝜑1

ℓ(𝑖1) · · ·𝜑𝑘
ℓ (𝑖𝑘)

)︀

The degree of 𝑞 is at most 𝐷 = 𝑘(𝑛 − 1)𝑑. Note that 𝑞 can be evaluated at any

point in F𝑘
𝑝 in time ̃︀𝑂(𝑘𝑛𝑑 log 𝑝), by evaluating all the 𝜑𝑠

ℓ(𝑖𝑠)’s (these polynomials

can be found using fast interpolation techniques for univariate polynomials [Hor72]),

computing each term in the above product and then multiplying them.

For any 𝑠 ∈ [𝑘] and 𝛼1, . . . , 𝛼𝑠−1 ∈ F𝑝, define the following univariate polynomial:

𝑞𝑠,𝛼1,...,𝛼𝑠−1(𝑥) =
∑︁

𝑖𝑠+1,...,𝑖𝑘∈[𝑛]

𝑞(𝛼1, . . . , 𝛼𝑠−1, 𝑥, 𝑖𝑠+1, . . . , 𝑖𝑘)

Every such 𝑞𝑠 has degree at most (𝑛−1)𝑑 – this can be seen by inspecting the def-

inition of 𝑞. With these definitions, the interactive proof is described as Protocol 3.1

58

below. The completeness and soundness of this interactive proof is then asserted by

Theorem 5, which is proven in Section 3.2.

Interactive Proof for ℱOV𝑘:
The inputs to the protocol are (𝑈1, . . . , 𝑈𝑘) ∈ F𝑘𝑛𝑑

𝑝 (a valid input to 𝑓OV𝑘
𝑛,𝑑,𝑝),

and a field element 𝑦 ∈ F𝑝. The polynomials 𝑞 are defined as in the text.

• The prover sends the coefficients of a univariate polynomial 𝑞*1 of degree at
most (𝑛− 1)𝑑.

• The verifier checks that
∑︀

𝑖1∈[𝑛] 𝑞
*
1(𝑖1) = 𝑦. If not, it rejects.

• For 𝑠 from 1 up to 𝑘 − 2:

– The verifier sends a random 𝛼𝑠 ← F𝑝.
– The prover sends the coefficients of a polynomial 𝑞*𝑠+1,𝛼1,...,𝛼𝑠

of degree at
most (𝑛− 1)𝑑.

– The verifier checks that
∑︀

𝑖𝑠+1∈[𝑛] 𝑞
*
𝑠+1,𝛼1,...,𝛼𝑠

(𝑖𝑠+1) = 𝑞*𝑠,𝛼1,...,𝛼𝑠−1
(𝛼𝑠). If

not, it rejects.

• The verifier picks 𝛼𝑘−1 ← F𝑝 and checks that 𝑞*𝑘−1,𝛼1,...,𝛼𝑘−2
(𝛼𝑘−1) =

𝑞𝑘−1,𝛼1,...,𝛼𝑘−2
(𝛼𝑘−1), computed using the fact that 𝑞𝑘−1,𝛼1,...,𝛼𝑘−2

(𝛼𝑘−1) =∑︀
𝑖𝑘∈[𝑛] 𝑞𝑘,𝛼1,...,𝛼𝑘−1

(𝑖𝑘). If not, it rejects.

• If the verifier hasn’t rejected yet, it accepts.

Protocol 3.1: Interactive Proof for ℱOV𝑘.

Theorem 5. For any 𝑘 ≥ 2, let 𝑑 and 𝑝 be as in Definition 5. Protocol 3.1 is a

(𝑘 − 1)-round interactive proof for proving that 𝑦 = ℱOV𝑘(𝑥). This protocol has

perfect completeness and soundness error at most
(︁

𝑘𝑛𝑑
𝑝

)︁
. The prover runs in timẽ︀𝑂(𝑛𝑘𝑑 log 𝑝), and the verifier in time ̃︀𝑂(𝑘𝑛𝑑2 log 𝑝).

As observed earlier, Protocol 3.1 is non-interactive when 𝑘 = 2. We then get the

following corollary for ℱOV.

Corollary 7. For 𝑘 = 2, let 𝑑 and 𝑝 be as in Definition 5. Protocol 3.1 is an MA proof

for proving that 𝑦 = ℱOV(𝑥). This protocol has perfect completeness and soundness

error at most
(︁

2𝑛𝑑
𝑝

)︁
. The prover runs in time ̃︀𝑂(𝑛2), and the verifier in time ̃︀𝑂(𝑛).

Proof of Theorem 5. We show each of the required properties in turn.

59

Completeness. If indeed 𝑦 = 𝑓OV𝑘
𝑛,𝑑,𝑝(𝑈1, . . . , 𝑈𝑘), the prover can make the veri-

fier in the protocol accept by using the polynomials (𝑞1, 𝑞2,𝛼1 , . . . , 𝑞𝑘,𝛼1,...,𝛼𝑘
) in place

of (𝑞*1, 𝑞
*
2,𝛼1

, . . . , 𝑞*𝑘,𝛼1,...,𝛼𝑘
). Perfect completeness is then seen to follow from the defi-

nitions of these polynomials and their relation to 𝑞 and hence 𝑓OV𝑘
𝑛,𝑑,𝑝.

Soundness. Suppose 𝑦 ̸= 𝑓OV𝑘
𝑛,𝑑,𝑝(𝑈1, . . . , 𝑈𝑘). We now analyze the probability

with which a cheating prover could make the verifier accept.

To start with, note that the prover’s 𝑞*1 has to be different from 𝑞1, as otherwise

the check in the second step would fail. Further, as the degree of these polynomials

is less than 𝑛𝑑, the probability that the verifier will then choose an 𝛼1 such that

𝑞*1(𝛼1) = 𝑞1(𝛼1) is less than 𝑛𝑑
𝑝

.

If this event does not happen, then the prover has to again send a 𝑞*2,𝛼1
that is

different from 𝑞2,𝛼1 , which again agree on 𝛼2 with probability less than 𝑛𝑑
𝑝

. This goes

on for (𝑘 − 1) rounds, at the end of which the verifier checks whether 𝑞*𝑘−1(𝛼𝑘−1) is

equal to 𝑞𝑘−1(𝛼𝑘−1), which it computes by itself. If at least one of these accidental

equalities at a random point has not occurred throughout the protocol, the verifier

will reject. The probability that no violations occur over the (𝑘−1) rounds is, by the

union bound, less than 𝑘𝑛𝑑
𝑝

.

Efficiency. Next we discuss details of how the honest prover and the verifier are

implemented, and analyze their complexities. To this end, we will need the following

algorithmic results about computations involving univariate polynomials over finite

fields.

Lemma 3 (Fast Multi-point Evaluation [Fid72]). Given the coefficients of a univari-

ate polynomial 𝑞 : F𝑝 → F𝑝 of degree at most 𝑁 , and 𝑁 points 𝑥1, . . . , 𝑥𝑁 ∈ F𝑝, the

set of evaluations (𝑞(𝑥1), . . . , 𝑞(𝑥𝑁)) can be computed in time 𝑂(𝑁 log3𝑁 log 𝑝).

Lemma 4 (Fast Interpolation [Hor72]). Given 𝑁 + 1 evaluations of a univariate

polynomial 𝑞 : F𝑝 → F𝑝 of degree at most 𝑁 , the coefficients of 𝑞 can be computed in

time 𝑂(𝑁 log3𝑁 log 𝑝).

60

To start with, both the prover and verifier compute the coefficients of all the 𝜑𝑠
ℓ’s.

Note that, by definition, they know the evaluation of each 𝜑𝑠
ℓ on 𝑛 points, given

by {(𝑖, 𝑢𝑠
𝑖ℓ)}𝑖∈[𝑛]. This can be used to compute the coefficients of each 𝜑𝑠

ℓ in timẽ︀𝑂(𝑛 log 𝑝) by Lemma 4. The total time taken is hence ̃︀𝑂(𝑘𝑛𝑑 log 𝑝).

The proof of the following proposition specifies further details of the prover’s

workings.

Proposition 1. The coefficients of the polynomial 𝑞𝑠,𝛼1,...,𝛼𝑠−1 can be computed in

time ̃︀𝑂((𝑛𝑘−𝑠+1𝑑 + 𝑛𝑑2) log 𝑝) given the above preprocessing.

Proof. The procedure to do the above is as follows:

1. Fix some value of 𝑠, 𝛼1, . . . , 𝛼𝑠−1.

2. For each ℓ ∈ [𝑑], compute the evaluation of 𝜑𝑠
ℓ on 𝑛𝑑 points, say {1, . . . , 𝑛𝑑}.

• Since its coefficients are known, the evaluations of each 𝜑𝑠
ℓ on these 𝑛𝑑

points can be computed in time ̃︀𝑂(𝑛𝑑 log 𝑝) by Lemma 3, for a total of̃︀𝑂(𝑛𝑑2 log 𝑝) for all the 𝜑𝑠
ℓ’s.

3. For each setting of 𝑖𝑠+1, . . . , 𝑖𝑘, compute the evaluations of the polynomial

𝜌𝑖𝑠+1,...,𝑖𝑘(𝑥) = 𝑞(𝛼1, . . . , 𝛼𝑠−1, 𝑥, 𝑖𝑠+1, . . . , 𝑖𝑘), on the points {1, . . . , 𝑛𝑑}.

• First substitute the constants 𝛼1, . . . , 𝛼𝑠−1, 𝑖𝑠+1, . . . , 𝑖𝑘 into the definition

of 𝑞.

• This requires computing, for each ℓ ∈ [𝑑] and 𝑠′ ∈ [𝑘]∖{𝑠}, either 𝜑𝑠′

ℓ (𝛼𝑠) or

𝜑𝑠′

ℓ (𝑖𝑠). All of this can be done in time ̃︀𝑂(𝑘𝑛𝑑 log 𝑝) by direct polynomial

evaluations since the coefficients of the 𝜑𝑠′

ℓ ’s are known.

• This reduces 𝑞 to a product of 𝑑 univariate polynomials of degree less

than 𝑛, whose evaluations on the 𝑛𝑑 points can now be computed in timẽ︀𝑂(𝑘𝑛𝑑 log 𝑝) by multiplying the constants computed in the above step with

the evaluations of 𝜑𝑠′

ℓ on these points, and subtracting from 1.

• The product of the evaluations can now be computed in time ̃︀𝑂(𝑛𝑑2 log 𝑝)

to get what we need.

61

4. Add up the evaluations of 𝜌𝑖𝑠+1,...,𝑖𝑘 pointwise over all settings of (𝑖𝑠+1, . . . , 𝑖𝑘).

• There are 𝑛𝑘−𝑠 possible settings of (𝑖𝑠+1, . . . , 𝑖𝑘), and for each of these we

have 𝑛𝑑 evaluations. All the additions hence take ̃︀𝑂(𝑛𝑘−𝑠+1𝑑 log 𝑝) time.

5. This gives us 𝑛𝑑 evaluations of 𝑞𝑠,𝛼1,...,𝛼𝑠−1 , which is a univariate polynomial of

degree at most (𝑛−1)𝑑. So its coefficients can be computed in time ̃︀𝑂(𝑛𝑑 log 𝑝)

by Lemma 4.

It can be verified from the intermediate complexity computations above that all these

operations together take ̃︀𝑂((𝑛𝑘−𝑠+1𝑑 + 𝑛𝑑2) log 𝑝) time. This proves the proposition.

Recall that what the honest prover has to do is compute 𝑞1, 𝑞2,𝛼1 , . . . , 𝑞𝑘,𝛼1,...,𝛼𝑘−1

for the 𝛼𝑠’s specified by the verifier. By the above proposition, along with the pre-

processing, the total time the prover takes is:

̃︀𝑂(𝑘𝑛𝑑 log 𝑝 + (𝑛𝑘𝑑 + 𝑛𝑑2) log 𝑝) = ̃︀𝑂(𝑛𝑘𝑑 log 𝑝)

The verifier’s checks in steps (2) and (3) can each be done in ̃︀𝑂(𝑛 log 𝑝) time using

Lemma 3. Step (4), finally, can be done by using the above proposition with 𝑠 = 𝑘

in time ̃︀𝑂(𝑛𝑑2 log 𝑝). Even along with the preprocessing, this leads to a total time of̃︀𝑂(𝑘𝑛𝑑2 log 𝑝).

Remark 6. Note the Prover’s work of finding coefficients of polynomials is mainly

done by evaluating the polynomial on many points and interpolating. Similarly to

[BK16b], this opens the door to distributing the Prover’s work. Namely, the individual

evaluations can be split amongst a group of workers which can then be recombined

to find the final coefficients. Further, since the evaluations of a polynomial is a

Reed-Solomon code, this allows for error correction in the case that the group of

provers make errors or have some malicious members. Thus, the Prover’s work can

62

be distributed in a way that is robust to Byzantine errors and can identify misbehaving

members.

3.3 The PoW Protocol

We now present Protocol 3.2, which we show to be a Proof of Work scheme assuming

the hardness of 𝑘-OV.

Proof of Work based on hardness of 𝑘-OV:

• Gen(1𝑛):

– Output a random 𝑐 ∈ F𝑘𝑛𝑑
𝑝 .

• (Solve,Verify) work as follows given 𝑐:

– Solve computes 𝑧 = 𝑓OV𝑘
𝑛,𝑑,𝑝(𝑐) and outputs it.

– Solve and Verify run Protocol 3.1 with input (𝑐, 𝑧), Solve as prover, and
Verify as verifier.

– Verify accepts iff the verifier in the above instance of Protocol 3.1 accepts.

Protocol 3.2: Proof of Work based on the hardness of 𝑘-OV.

Theorem 6. For some 𝑘 ≥ 2, suppose 𝑘-OV takes 𝑛𝑘−𝑜(1) time to decide for all but

finitely many input lengths for any 𝑑 = 𝜔(log 𝑛). Then, Protocol 3.2 is an (𝑛𝑘, 𝛿)-

Proof of Work scheme for any function 𝛿(𝑛) > 1/𝑛𝑜(1).

Remark 7. As is, this will be an interactive Proof of Work protocol. In the special

case of 𝑘 = 2, Corollary 7 gives us a non-interactive PoW. If we want to remove

interaction for general 𝑘-OV, however, we could use the MA proof in [Wil16] at the

cost of verification taking time ̃︀𝑂(𝑛𝑘/2) as was done in [BRSV17]. To keep verification

time at ̃︀𝑂(𝑛), we instead show how to remove interaction in the Random Oracle model

in Section 3.5. This will allow us to tune the gap between the parties – we can choose

𝑘 and thus the amount of work, 𝑛𝑘−𝑜(1), that must be done by the prover while always

only needing ̃︀𝑂(𝑛) time for verification.

63

Remark 8. We can also exploit this PoW’s algebraic structure on the Prover’s side.

Using techniques from [BK16b], the Prover’s work can be distributed amongst a group

of provers. While, cumulatively, they must complete the work required of the PoW,

they can each only do a portion of it. Further, this can be done in a way robust to

Byzantine errors amongst the group. See Remark 6 for further details.

We will use Theorem 5 to argue for the completeness and soundness of Protocol 3.2.

In order to prove the hardness, we will need lower bounds on how well the problem that

Solve is required to solve can be batched. We first define what it means for a function

to be non-batchable in the average-case in a manner compatible with the hardness

requirement. Note that this requirement is stronger than being non-batchable in the

worst-case.

Definition 6. Consider a function family ℱ = {𝑓𝑛 : 𝒳𝑛 → 𝒴𝑛}, and a family of

distributions 𝒟 = {𝐷𝑛}, where 𝐷𝑛 is over 𝒳𝑛. ℱ is not (ℓ, 𝑡, 𝛿)-batchable on average

over 𝒟 if, for any algorithm Batch that runs in time ℓ(𝑛)𝑡(𝑛) when run on ℓ(𝑛) inputs

from 𝒳𝑛, when it is given as input ℓ(𝑛) independent samples from 𝐷𝑛, the following

is true for all large enough 𝑛:

Pr
𝑥𝑖←𝐷𝑛

[︀
Batch(𝑥1, . . . , 𝑥ℓ(𝑛)) = (𝑓𝑛(𝑥1), . . . , 𝑓𝑛(𝑥ℓ(𝑛)))

]︀
< 𝛿(𝑛)

We will be concerned with the case where the batched time 𝑡(𝑛) is less than the

time it takes to compute 𝑓𝑛 on a single instance. This sort of statement is what

a direct sum theorem for ℱ ’s hardness would guarantee. Theorem 7, then, claims

that we achieve this non-batchability for ℱOV𝑘 and, as ℱOV𝑘 is one of the things

that Solve is required to evaluate, we will be able to show the desired hardness of

Protocol 3.2. We prove Theorem 7 via a direct sum theorem in Appendix B.1, and

prove a weaker version for illustrative purposes in Section 3.4.

Theorem 7. For some 𝑘 ≥ 2, suppose 𝑘-OV takes 𝑛𝑘−𝑜(1) time to decide for all but

finitely many input lengths for any 𝑑 = 𝜔(log 𝑛). Then, for any constants 𝑐, 𝜖 > 0

and 𝛿 < 𝜖/2, ℱOV𝑘 is not (𝑛𝑐, 𝑛𝑘−𝜖, 1/𝑛𝛿)-batchable on average over the uniform

distribution over its inputs.

64

We now put all the above together to prove Theorem 6 as follows.

Proof of Theorem 6. We prove that Protocol 3.2 satisfies the various requirements

demanded of a Proof of Work scheme assuming the hardness of 𝑘-OV.

Efficiency:

• Gen(1𝑛) simply samples 𝑘𝑛𝑑 uniformly random elements of F𝑝. As 𝑑 = log2 𝑛

and 𝑝 ≤ 2𝑛log𝑛 (by Bertrand-Chebyshev’s Theorem), this takes ̃︀𝑂(𝑛) time.

• Solve computes 𝑓OV𝑘
𝑛,𝑑,𝑝(𝑐), which can be done in ̃︀𝑂(𝑛𝑘) time. It then runs

the prover in an instance of Protocol 3.1, which can be done in ̃︀𝑂(𝑛𝑘) time by

Theorem 5. So in all it takes takes ̃︀𝑂(𝑛𝑘) time.

• Verify runs the verifier in an instance of Protocol 3.1, taking ̃︀𝑂(𝑛) time, again

by Theorem 5.

Completeness: This follows immediately from the completeness of Protocol 3.1 as

an interactive proof for ℱOV𝑘, as stated in Theorem 5, as this is the protocol that

Solve and Verify engage in.

Hardness: We proceed by contradiction. Suppose there is a polynomial ℓ, an (inter-

active) algorithm Solve*, and a constant 𝜖 > 0 such that Solve* runs in time ℓ(𝑛)𝑛𝑘−𝜖

and makes Verify accept on ℓ(𝑛) independent challenges generated by Gen(1𝑛) with

probability at least 𝛿(𝑛) > 1/𝑛𝑜(1) for infinitely many input lengths 𝑛.

For each of these input lengths, let the set of challenges (which are 𝑓OV inputs)

produced by Gen(1𝑛) be
{︀
𝑐1, . . . , 𝑐ℓ(𝑛)

}︀
, and the corresponding set of solutions output

by Solve* be
{︀
𝑧1, . . . , 𝑧ℓ(𝑛)

}︀
. So Solve* succeeds as a prover in Protocol 3.1 for all the

instances {(𝑐𝑖, 𝑧𝑖)} with probability at least 𝛿(𝑛).

By the negligible soundness error of Protocol 3.1 guaranteed by Theorem 5, in

order to do this, Solve* has to use the correct values 𝑓OV𝑘
𝑛,𝑑,𝑝(𝑐𝑖) for all the 𝑧𝑖’s with

probability negligibly close to 𝛿(𝑛) and definitely more than, say, 𝛿(𝑛)/2. In particu-

lar, with this probability, it has to explicitly compute 𝑓OV𝑘
𝑛,𝑑,𝑝 at 𝑐1, . . . , 𝑐ℓ(𝑛), all of

which are independent uniform points in F𝑘𝑛𝑑
𝑝 for all of these infinitely many input

65

lengths 𝑛. But this is exactly what Theorem 7 says is impossible under our assump-

tions. So such a Solve* cannot exist, and this proves the hardness of Protocol 3.2.

We have thus proven all the properties necessary and hence Protocol 3.2 is indeed

an (𝑛𝑘, 𝛿)-Proof of Work under the hypothesised hardness of 𝑘-OV for any 𝛿(𝑛) >

1/𝑛𝑜(1).

3.4 A Direct Sum Theorem for ℱOV

A direct sum theorem for a problem roughly states that solving 𝑚 independent in-

stances of a problem takes 𝑚 times as long as a single instance. The converse of

this is attaining a non-trivial speed-up when given a batch of instances. In this sec-

tion we prove a direct sum theorem for the problem of evaluating ℱOV and thus its

non-batchability.

Direct sum theorems are typically elusive in complexity theory and so our results,

which we prove for generic problems with a certain set of properties, may be of inde-

pendent interest to the study of hardness amplification. That our results show that

batch-evaluating our multivariate low-degree polynomials is hard may be particularly

surprising since batch-evaluation for univariate low-degree polynomials is known to be

easy [Fid72, Hor72] and, further, [BK16b, GR17, Wil16] show that batch-evaluating

multivariate low-degree polynomials (including our own) is easy to delegate. For more

rigorous definitions of direct sum and direct product theorems, see [She12].

We now prove the following weaker version of Theorem 7 on ℱOV’s non-batchability

(Theorem 7 is proven in Appendix B.1 using an extension of the techniques employed

here). The notion of non-batchability used below is defined in Definition 6 in Sec-

tion 3.3.

Theorem 8. For some 𝑘 ≥ 2, suppose 𝑘-OV takes 𝑛𝑘−𝑜(1) time to decide for all but

finitely many input lengths for any 𝑑 = 𝜔(log 𝑛). Then, for any constants 𝑐, 𝜖 > 0,

ℱOV𝑘 is not (𝑛𝑐, 𝑛𝑘−𝜖, 7/8)-batchable on average over the uniform distribution over

its inputs.

66

Throughout this section, ℱ , ℱ ′ and 𝒢 are families of functions {𝑓𝑛 : 𝒳𝑛 → 𝒴𝑛},

{𝑓 ′𝑛 : 𝒳 ′𝑛 → 𝒴 ′𝑛} and
{︁
𝑔𝑛 : 𝒳𝑛 → 𝒴𝑛

}︁
, and 𝒟 = {𝐷𝑛} is a family of distributions

where 𝐷𝑛 is over 𝒳𝑛.

Theorem 8 is the result of two properties possessed by ℱOV𝑘. We define these

properties below, prove a more general lemma about functions that have these prop-

erties, and use it to prove this theorem.

Definition 7. ℱ is said to be (𝑠, ℓ)-downward reducible to ℱ ′ in time 𝑡 if there is a

pair of algorithms (Split,Merge) satisfying:

• For all large enough 𝑛, 𝑠(𝑛) < 𝑛.

• Split on input an 𝑥 ∈ 𝒳𝑛 outputs ℓ(𝑛) instances from 𝒳 ′𝑠(𝑛).

Split(𝑥) = (𝑥1, . . . , 𝑥ℓ(𝑛))

• Given the value of ℱ ′ at these ℓ(𝑛) instances, Merge can reconstruct the value

of ℱ at 𝑥.

Merge(𝑥, 𝑓 ′𝑠(𝑛)(𝑥1), . . . , 𝑓
′
𝑠(𝑛)(𝑥ℓ(𝑛))) = 𝑓𝑛(𝑥)

• Split and Merge together run in time at most 𝑡(𝑛).

If ℱ ′ is the same as ℱ , then ℱ is said to be downward self-reducible.

Definition 8. ℱ is said to be ℓ-robustly reducible to 𝒢 in time 𝑡 if there is a pair of

algorithms (Split,Merge) satisfying:

• Split on input an 𝑥 ∈ 𝒳𝑛 (and randomness 𝑟) outputs ℓ(𝑛) instances from 𝒳𝑛.

Split(𝑥; 𝑟) = (𝑥1, . . . , 𝑥ℓ(𝑛))

• For such a tuple (𝑥𝑖)𝑖∈[ℓ(𝑛)] and any function 𝑔* such that 𝑔*(𝑥𝑖) = 𝑔𝑛(𝑥𝑖) for at

67

least 2/3 of the 𝑥𝑖’s, Merge can reconstruct the function value at 𝑥 as:

Merge(𝑥, 𝑟, 𝑔*(𝑥1), . . . , 𝑔
*(𝑥ℓ(𝑛))) = 𝑓𝑛(𝑥)

• Split and Merge together run in time at most 𝑡(𝑛).

• Each 𝑥𝑖 is distributed according to 𝐷𝑛, and the 𝑥𝑖’s are pairwise independent.

The above is a more stringent notion than the related non-adaptive random self-

reducibility as defined in [FF93]. We remark that to prove what we need, it can be

shown that it would have been sufficient if the reconstruction above had only worked

for most 𝑟’s.

Lemma 5. Suppose ℱ , ℱ ′ and 𝒢 have the following properties:

• ℱ is (𝑠𝑑, ℓ𝑑)-downward reducible to ℱ ′ in time 𝑡𝑑.

• ℱ ′ is ℓ𝑟-robustly reducible to 𝒢 over 𝒟 in time 𝑡𝑟.

• 𝒢 is (ℓ𝑎, 𝑡𝑎, 7/8)-batchable on average over 𝒟, and ℓ𝑎(𝑠𝑑(𝑛)) = ℓ𝑑(𝑛).

Then ℱ can be computed in the worst-case in time:

𝑡𝑑(𝑛) + ℓ𝑑(𝑛)𝑡𝑟(𝑠𝑑(𝑛)) + ℓ𝑟(𝑠𝑑(𝑛))ℓ𝑑(𝑛)𝑡𝑎(𝑠𝑑(𝑛))

We note, that the condition ℓ𝑎(𝑠𝑑(𝑛)) = ℓ𝑑(𝑛) above can be relaxed to ℓ𝑎(𝑠𝑑(𝑛)) ≤

ℓ𝑑(𝑛) at the expense of a factor of 2 in the worst-case running time obtained for ℱ .

We now show how to prove Theorem 8 using Lemma 5, and then prove the lemma

itself.

Proof of Theorem 8. Fix any 𝑘 ≥ 2. Suppose, towards a contradiction, that for

some 𝑐, 𝜖 > 0, ℱOV𝑘 is (𝑛𝑐, 𝑛𝑘−𝜖, 7/8)-batchable on average over the uniform distri-

bution. In our arguments we will refer to the following function families:

• ℱ is 𝑘-OV with vectors of dimension 𝑑 =
(︀

𝑘
𝑘+𝑐

)︀2
log2 𝑛.

• ℱ ′ is 𝑘-OV with vectors of dimension log2 𝑛.

68

• 𝒢 is ℱOV𝑘 (over F𝑘𝑛𝑑
𝑝 for some 𝑝 that definitely satisfies 𝑝 > 𝑛).

Let 𝑚 = 𝑛𝑘/(𝑘+𝑐). Note the following two properties :

• 𝑛
𝑚𝑐/𝑘 = 𝑚

• 𝑑 =
(︀

𝑘
𝑘+𝑐

)︀2
log2 𝑛 = log2𝑚

We now establish the following relationships among the above function families.

Proposition 2. ℱ is (𝑚,𝑚𝑐)-downward reducible to ℱ ′ in time ̃︀𝑂(𝑚𝑐+1).

Split𝑑, when given an instance (𝑈1, . . . , 𝑈𝑘) ∈ {0, 1}𝑘(𝑛×𝑑), first divides each 𝑈𝑖

into 𝑚𝑐/𝑘 partitions 𝑈𝑖1, . . . , 𝑈𝑖𝑚𝑐/𝑘 ∈ {0, 1}𝑚×𝑑. It then outputs the set of tuples{︀
(𝑈1𝑗1 , . . . , 𝑈𝑘𝑗𝑘) | 𝑗𝑖 ∈ [𝑚𝑐/𝑘]

}︀
. Each 𝑈𝑖𝑗 is in {0, 1}𝑚×𝑑 and, as noted earlier, 𝑑 =

log2𝑚. So each tuple in the set is indeed an instance of ℱ ′ of size 𝑚. Further, there

are (𝑚𝑐/𝑘)𝑐 = 𝑚𝑐 of these.

Note that the original instance has a set of 𝑘-orthogonal vectors if and only if at

least one of the 𝑚𝑐 smaller instances produced does. So Merge𝑑 simply computes the

disjunction of the ℱ ′ outputs to these instances.

Both of these can be done in time 𝑂(𝑚𝑐 · 𝑘 ·𝑚𝑑 + 𝑚𝑐) = ̃︀𝑂(𝑚𝑐+1).

Proposition 3. ℱ ′ is 12𝑘𝑑-robustly reducible to 𝒢 over the uniform distribution in

time ̃︀𝑂(𝑚).

Notice that for any 𝑈1, . . . , 𝑈𝑘 ∈ {0, 1}𝑚×𝑑, we have that 𝑘-OV(𝑈1, . . . , 𝑈𝑘) =

𝑓OV𝑘
𝑚(𝑈1, . . . , 𝑈𝑘). So it is sufficient to show such a robust reduction from 𝒢 to itself.

We do this now.

Given input 𝑥 ∈ F𝑘𝑛𝑑
𝑝 , Split𝑟 picks two uniformly random 𝑥1,𝑥2 ∈ F𝑘𝑛𝑑

𝑝 and

outputs the set of vectors {𝑥 + 𝑡𝑥1 + 𝑡2𝑥2 | 𝑡 ∈ {1, . . . , 12𝑘𝑑}}. Recall that our choice

of 𝑝 is much larger than 12𝑘𝑑 and hence this is possible. The distribution of each of

these vectors is uniform over F𝑘𝑛𝑑
𝑝 , and they are also pairwise independent as they are

points on a random quadratic curve through 𝑥.

Define the univariate polynomial 𝑔𝑥,𝑥1,𝑥2(𝑡) = 𝑓OV𝑘
𝑚(𝑥 + 𝑡𝑥1 + 𝑡2𝑥2). Note that

its degree is at most 2𝑘𝑑. When Merge𝑟 is given (𝑦1, . . . , 𝑦12𝑘𝑑) that are purported

to be the evaluations of 𝑓OV𝑘
𝑚 on the points produced by Split, these can be seen

69

as purported evaluations of 𝑔𝑥,𝑥1,𝑥2 on {1, . . . , 12𝑘𝑑}. This can, in turn, be treated

as a corrupt codeword of a Reed-Solomon code, which under these parameters has

distance 10𝑘𝑑.

The Berlekamp-Welch algorithm can be used to decode any codeword that has

at most 5𝑘𝑑 corruptions, and if at least 2/3 of the evaluations are correct, then at

most 4𝑘𝑑 evaluations are wrong. Hence Merge𝑟 uses the Berlekamp-Welch algorithm

to recover 𝑔𝑥,𝑥1,𝑥2 , which can be evaluated at 0 to obtain 𝑓OV𝑘
𝑛(𝑥).

Thus, Split𝑟 takes ̃︀𝑂(12𝑘𝑑 · 𝑘𝑚𝑑) = ̃︀𝑂(𝑚) time to compute all the vectors it

outputs. Merge𝑟 takes ̃︀𝑂((12𝑘𝑑)3) time to run Berlekamp-Welch, and ̃︀𝑂(12𝑘𝑑) time

to evaluate the resulting polynomial at 0. So in all both algorithms take ̃︀𝑂(𝑚) time.

By our assumption at the beginning, 𝒢 is (𝑛𝑐, 𝑛𝑘−𝜖, 7/8)-batchable on average over

the uniform distribution. Together with the above propositions, this satisfies all

the requirements in the hypothesis of Lemma 5, which now tells us that ℱ can be

computed in the worst-case in time:

̃︀𝑂(𝑚𝑐+1 + 𝑚𝑐 ·𝑚 + 12𝑘𝑑 ·𝑚𝑐 ·𝑚𝑘−𝜖) = ̃︀𝑂(𝑚𝑐+1 + 𝑚𝑐+𝑘−𝜖)

= ̃︀𝑂(𝑛𝑘(𝑐+1)/(𝑘+𝑐) + 𝑛𝑘(𝑘+𝑐−𝜖)/(𝑘+𝑐))

= ̃︀𝑂(𝑛𝑘−𝜖′)

for some 𝜖′ > 0. But this is what the hypothesis of the theorem says is not possible.

So ℱOV𝑘 cannot be (𝑛𝑐, 𝑛𝑘−𝜖, 7/8)-batchable on average, and this argument applies

for any 𝑐, 𝜖 > 0.

Proof of Lemma 5. Given the hypothesised downward reduction (Split𝑑, Merge𝑑),

robust reduction (Split𝑟,Merge𝑟) and batch-evaluation algorithm Batch for ℱ , 𝑓𝑛 can

be computed as follows (for large enough 𝑛) on an input 𝑥 ∈ 𝒳𝑛:

• Run Split𝑑(𝑥) to get 𝑥1, . . . , 𝑥ℓ𝑑(𝑛) ∈ 𝒳 ′𝑠𝑑(𝑛).

• For each 𝑖 ∈ [ℓ𝑑(𝑛)], run Split𝑟(𝑥𝑖; 𝑟𝑖) to get 𝑥𝑖1, . . . , 𝑥𝑖ℓ𝑟(𝑠𝑑(𝑛)) ∈ 𝒳𝑠𝑑(𝑛).

70

• For each 𝑗 ∈ [ℓ𝑟(𝑠𝑑(𝑛))], run Batch(𝑥1𝑗, . . . , 𝑥ℓ𝑑(𝑛)𝑗) to get the outputs 𝑦1𝑗, . . . , 𝑦ℓ𝑑(𝑛)𝑗 ∈

𝒴𝑠𝑑(𝑛).

• For each 𝑖 ∈ [ℓ𝑑(𝑛)], run Merge𝑟(𝑥𝑖, 𝑟𝑖, 𝑦𝑖1, . . . , 𝑦𝑖ℓ𝑟(𝑠𝑑(𝑛))) to get 𝑦𝑖 ∈ 𝒴 ′𝑠𝑑(𝑛).

• Run Merge𝑑(𝑥, 𝑦1, . . . , 𝑦ℓ𝑑(𝑛)) to get 𝑦 ∈ 𝒴𝑛, and output 𝑦 as the alleged 𝑓𝑛(𝑥).

We will prove that with high probability, after the calls to Batch, enough of the

𝑦𝑖𝑗’s produced will be equal to the respective 𝑔𝑠𝑑(𝑛)(𝑥𝑖𝑗)’s to be able to correctly recover

all the 𝑓 ′𝑠𝑑(𝑛)(𝑥𝑖)’s and hence 𝑓𝑛(𝑥).

For each 𝑗 ∈ [ℓ𝑟(𝑠𝑑(𝑛))], define 𝐼𝑗 to be the indicator variable that is 1 if Batch(𝑥1𝑗, . . . , 𝑥ℓ𝑑(𝑛)𝑗)

is correct and 0 otherwise. Note that by the properties of the robust reduction of ℱ ′

to 𝒢, for a fixed 𝑗 each of the 𝑥𝑖𝑗’s is independently distributed according to 𝐷𝑠𝑑(𝑛)

and further, for any two distinct 𝑗, 𝑗′, the tuples (𝑥𝑖𝑗) and (𝑥𝑖𝑗′) are independent.

Let 𝐼 =
∑︀

𝑗 𝐼𝑗 and 𝑚 = ℓ𝑟(𝑠𝑑(𝑛)). By the aforementioned properties and the

correctness of Batch, we have the following:

E[𝐼] ≥ 7

8
𝑚

Var[𝐼] ≤ 7

64
𝑚

Note that as long as Batch is correct on more than a 2/3 fraction of the 𝑗’s, Merge𝑟

will get all of the 𝑦𝑖’s correct, and hence Merge𝑑 will correctly compute 𝑓𝑛(𝑥). The

probability that this does not happen is bounded using Chebyshev’s inequality as:

Pr

[︂
𝐼 ≤ 2

3
𝑚

]︂
≤ Pr

[︂
|𝐼 − E[𝐼]| ≥

(︂
7

8
− 2

3

)︂
𝑚

]︂
≤ Var[𝐼]

(5𝑚/24)2

≤ 63

25 ·𝑚
<

3

𝑚

As long as 𝑚 > 9, this probability of failure is less than 1/3, and hence 𝑓𝑛(𝑥) is

computed correctly in the worst-case with probability at least 2/3. If it is the case

71

that ℓ𝑟(𝑠𝑑(𝑛)) = 𝑚 happens to be less than 9, then instead of using Merge𝑟 directly

in the above algorithm, we would use Merge′𝑟 that runs Merge𝑟 several times so as to

get more than 9 samples in total and takes the majority answer from all these runs.

The time taken is 𝑡𝑑(𝑛) for the downward reduction, 𝑡𝑟(𝑠𝑑(𝑛)) for each of the

ℓ𝑑(𝑛) robust reductions on instances of size 𝑠𝑑(𝑛), and ℓ𝑑(𝑛)𝑡𝑎(𝑠𝑑(𝑛)) for each of

the ℓ𝑟(𝑠𝑑(𝑛)) calls to Batch on sets of ℓ𝑑(𝑛) = ℓ𝑎(𝑠𝑑(𝑛)) instances, summing up to the

total time stated in the lemma.

3.5 Removing Interaction

In this section we show how to remove the interaction in Protocol 3.2 via the Fiat-

Shamir heuristic [FS86] and thus prove security of our non-interactive PoW in the

Random Oracle model.

Remark 9. Recent papers have constructed hash functions for which provably allow

the Fiat-Shamir heuristic to go through [KRR17, CCRR18]. Both of these construc-

tions require a variety of somewhat non-standard sub-exponential security assump-

tions: [KRR17] uses sub-exponentially secure indistinguishability obfuscation, sub-

exponentially secure input-hiding point function obfuscation, and sub-exponentially

secure one-way functions; while [CCRR18] needs symmetric encryption schemes with

strong guarantees against key recovery attacks (they specifically propose two instan-

tiating assumptions that are variants on the discrete-log assumption and the learning

with errors assumption). While for simplicity we present our work in the context of

the random oracle model, [KRR17, CCRR18] give evidence that our scheme can be

made non-interactive in the plain model.

We also note that our use of a Random Oracle here is quite different from its

possible direct use in a Proof of Work similar to those currently used, for instance, in

the cryptocurrency blockchains. There, the task is to find a pre-image to 𝐻 such that

its image starts (or ends) with at least a certain number of 0’s. In order to make this

only moderately hard for PoWs, the security parameter of the chosen instantiation of

72

the Random Oracle (which is typically a hash function like SHA-256) is necessarily

not too high. In our case, however, there is no such need for such a task to be

feasible, and this security parameter can be set very high, so as to be secure even

against attacks that could break the above kind of PoW.

It is worth noting that because of this use of the RO and the soundness properties

of the interactive protocol, the resulting proof of work is effectively unique in the sense

that it is computationally infeasible to find two accepting proofs. This is markedly

different from proof of work described above, where random guessing for the same

amount of time is likely to yield an alternate proof.

In what follows, we take 𝐻 to be a random oracle that outputs an element of F𝑝,

where 𝑝 is as in Definition 5 and 𝑛 will be clear from context. Informally, as per

the Fiat-Shamir heuristic, we will replace all of the verifier’s random challenges in the

interactive proof (Protocol 3.1) with values output by 𝐻 so that secure challenges can

be gotten without interaction. Using the definitions of the polynomials 𝑞(𝑖1, . . . , 𝑖𝑘)

and 𝑞𝑠,𝛼1,...,𝛼𝑠−1(𝑥) from Section 3.3, the non-interactive proof scheme for ℱOV𝑘 is

described as Protocol 3.3.

Overloading the definition, we now consider Protocol 3.2 as our PoW as before

except that we now use the non-interactive Protocol 3.3 as the the basis of our Solve

and Verify algorithms. The following theorem states that this substitution gives us a

non-interactive PoW in the Random Oracle model.

Theorem 9. For some 𝑘 ≥ 2, suppose 𝑘-OV takes 𝑛𝑘−𝑜(1) time to decide for all but

finitely many input lengths for any 𝑑 = 𝜔(log 𝑛). Then, Protocol 3.2, when using

Protocol 3.3 in place of Protocol 3.1, is a non-interactive (𝑛𝑘, 𝛿)-Proof of Work for

𝑘-OV in the Random Oracle model for any function 𝛿(𝑛) > 1/𝑛𝑜(1).

Efficiency and completeness of our now non-interactive Protocol 3.2 are easily seen

to follow identically as in the proof of Theorem 6 in Section 3.3. Hardness also follow

identically to the proof of Theorem 6’s hardness except that the proof there required

the soundness of Protocol 3.1, the interactive proof of ℱOV𝑘 that was previously used

to implement Solve and Verify. To complete the proof of Theorem 9, then, we prove

73

Non-Interactive Proof for ℱOV𝑘:
The inputs to the protocol are 𝑥 = (𝑈1, . . . , 𝑈𝑘) ∈ F𝑘𝑛𝑑

𝑝 (a valid input to
𝑓OV𝑘

𝑛,𝑑,𝑝), and a field element 𝑦 ∈ F𝑝. The polynomials 𝑞 are defined as
in the text.

Prover(𝑥, 𝑦):

• Compute coefficients of 𝑞1. Let 𝜏1 = (𝑞1).
• For 𝑠 from 1 to 𝑘 − 2:

– Compute 𝛼𝑠 = 𝐻(𝑥, 𝑦, 𝜏𝑠).
– Compute coefficients of 𝑞𝑠+1 = 𝑞𝑠+1,𝛼1,...,𝛼𝑠 , with respect

to 𝑥.
– Set 𝜏𝑠+1 = (𝜏𝑠, 𝛼𝑠, 𝑞𝑠+1).

• Output 𝜏𝑘−1

Verifier(𝑥, 𝑦, 𝜏*):

Given 𝜏* = (𝑞1, 𝛼1, 𝑞2, . . . , 𝛼𝑘−2, 𝑞𝑘−1), do the following:

• Check
∑︀

𝑖1∈[𝑛] 𝑞1(𝑖1) = 𝑦. If check fails, reject.
• For 𝑠 from 1 up to 𝑘 − 2:

– Check that 𝛼𝑠 = 𝐻(𝑥, 𝑦, 𝑞1, 𝛼1, . . . , 𝛼𝑠−1, 𝑞𝑠).
– Check that

∑︀
𝑖𝑠+1∈[𝑛] 𝑞𝑠+1(𝑖𝑠+1) = 𝑞𝑠(𝛼𝑠). If check fails,

reject.

• Pick 𝛼𝑘−1 ← F𝑝.
• Check that 𝑞𝑘−1(𝛼𝑘−1) =

∑︀
𝑖𝑘∈[𝑛] 𝑞𝑘,𝛼1,...,𝛼𝑘−1

(𝑖𝑘). If check
fails, reject.

If verifier has yet to reject, accept.

Protocol 3.3: A Non-Interactive Proof for ℱOV𝑘

the following lemma that Protocol 3.3 is also sound.

Lemma 6. For any 𝑘 ≥ 2, if Protocol 3.1 is sound as an interactive proof, then

Protocol 3.3 is sound as a non-interactive proof system in the Random Oracle model.

Proof. Let 𝑃 be a cheating prover for the non-interactive proof (Protocol 3.3) that

breaks soundness with non-negligible probability 𝜀(𝑛). We will construct a prover,

𝑃 ′, that then also breaks soundness in the interactive proof (Protocol 3.1) with non-

negligible probability.

74

Suppose 𝑃 makes at most 𝑚 = poly(𝑛) queries to the random oracle, 𝐻; call them

𝜌1, . . . , 𝜌𝑚, and call the respective oracle answers 𝛽1, . . . , 𝛽𝑚.

For each 𝑠 ∈ [𝑘 − 2], in order for the check on 𝛼𝑠 to pass with non-negligible

probability, the prover 𝑃 must have queried the point (𝑥, 𝑦, 𝑞1, 𝛼1, . . . , 𝑞𝑠). Hence,

when 𝑃 is able to make the verifier accept, except with negligible probability, there

are 𝑗1, . . . , 𝑗𝑘−2 ∈ [𝑚] such that the query 𝜌𝑗𝑠 is actually (𝑥, 𝑦, 𝑞1, 𝛼1, . . . , 𝑞𝑠), and 𝛽𝑗𝑠

is 𝛼𝑠.

Further, for any 𝑠 < 𝑠′, note that 𝛼𝑠 is part of the query whose answer is 𝛼𝑠′ . So

again, when 𝑃 is able to make the verifier accept, except with negligible probability,

𝑗1 < 𝑗2 < · · · < 𝑗𝑘−2. The interactive prover 𝑃 ′ now works as follows:

• Select (𝑘 − 1) of the 𝑚 query indices, and guess these to be the values of

𝑗1 < · · · < 𝑗𝑘−1.

• Run 𝑃 until it makes the 𝑗th
1 query. To all other queries, respond uniformly at

random as an actual random oracle would.

• If 𝜌𝑗1 is not of the form (𝑥, 𝑦, 𝑞1), abort. Else, sent 𝑞1 to the verifier.

• Set the response to this query 𝛽𝑗1 to be the message 𝛼1 sent by the verifier.

• Resume execution of 𝑃 until it makes the 𝑗th
2 query from which 𝑞2 can be

obtained, and so on, proceeding in the above manner for each of the (𝑘 − 1)

rounds of the interactive proof.

As the verifier’s messages 𝛼1, . . . , 𝛼𝑘−2 are chosen completely at random, the oracle

that 𝑃 ′ is simulating for 𝑃 is identical to the actual random oracle. So 𝑃 would still

be producing accepting proofs with probability 𝜀(𝑛). By the earlier arguments, with

probability nearly 𝜀(𝑛), there are (𝑘 − 1) oracle queries of 𝑃 that contain all the 𝑞𝑠’s

that make up the proof that it eventually produces. Whenever this is the case, if 𝑃 ′

guesses the positions of these oracle queries correctly, the transcript of the interactive

proof that it produces is the same as the proof produced by 𝑃 , and is hence an

accepting transcript.

Hence, when all of the above events happen, 𝑃 succeeds in fooling the verifier.

The probability of this happening is Ω(𝜀(𝑛)/𝑚𝑘−1), which is still non-negligible as 𝑘

75

is a constant. This contradicts the soundness of the interactive proof, proving our

lemma.

3.6 Zero-Knowledge Proofs of Work

In this section we show that the algebraic structure of our protocols can easily be

exploited with mainstream cryptographic techniques to yield new protocols with de-

sirable properties. In particular, we show that our Proof of Work scheme can be

combined with ElGamal encryption and a zero-knowledge proof of discrete logarithm

equality to get an non-repudiatable, non-transferable Proof of Work from the Deci-

sional Diffie-Hellman assumption on Schnorr groups.

It should be noted that while general transformations are known for zero-knowledge

protocols, many such transformations involve generic reductions with (relatively) high

overhead. In the Proof of Work regime, we are chiefly concerned with the exact com-

plexity of the prover and verifier. Even efficient transformations that go through

circuit satisfiability must be adapted to this setting where no efficient deterministic

verification circuit is known. That all said, the chief aim of this section is to exhibit

the ease with which known cryptographic techniques can be used in conjunction the

algebraic structure of the aforementioned protocols.

For simplicity of presentation, we demonstrate a protocol for ℱOV2, however the

techniques can easily be adapted to the protocol for general ℱOV𝑘.

Preliminaries. We begin by introducing a notion of honest verifier zero-knowledge

scaled down to our setting. As the protocols under consideration have polynomial time

provers, they are, in the traditional sense, trivially zero-knowledge. However, this is

not a meaningful notion of zero-knowledge in this setting, because we are concerned

with the exact complexity of the verifier. In order to achieve a meaningful notion of

zero-knowledge, we must restrict ourselves to considering simulators of comparable

complexity to the verifier (in this case, running in quasi-linear time). Similar notions

76

are found in [Pas03, BDSKM17], and [MP06] studies an interesting strenghtening of

this notion..

Definition 9. An interactive protocol, Π = ⟨𝑃, 𝑉 ⟩, for a function family, ℱ = {𝑓𝑛},

is T(n)-simulatable, if for any 𝑓𝑛 ∈ ℱ there exists a simulator, 𝒮, such that any 𝑥 in

the domain of 𝑓𝑛 the following distributions are computationally indistinguishable,

View𝑃,𝑉 (𝑥) 𝒮(𝑥),

where View𝑃,𝑉 (𝑥) denotes the distribution interactions between (honest) 𝑃 and 𝑉 on

input 𝑥 and 𝒮 is randomized algorithm running in time 𝑂(𝑇 (𝑛)).

Given the exposition above it would be meaningful to consider such a definition

where we instead simply require the distributions to be indistinguishable with respect

to distinguishers running in time 𝑂(𝑇 (𝑛)). However, given that our protocol satisfies

the stronger, standard notion of computational indistinguishability, we will stick with

that.

Recall that El Gamal encryption consists of the following three algorithms for a

group 𝐺 of order 𝑝𝜆 with generator 𝑔.

Gen(𝜆; 𝑦) = (sk = 𝑦, pk = (𝑔, 𝑔𝑦)).

Enc(𝑚, (𝑎, 𝑏); 𝑟) = (𝑎𝑟,𝑚𝑏𝑟).

Dec((𝑐, 𝑑), 𝑦) = 𝑑𝑐−𝑦

El Gamal is a semantically secure cryptosystem (encryptions of different messages

are computationally indistinguishable) if the Decisional Diffie-Hellman assumption

(DHH) holds for the group 𝐺. Recall that DDH on 𝐺 with generator 𝑔 states that

the following two distributions are compuationally indistinguishable:

• (𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) where 𝑎, 𝑏 are chosen uniformly,

• (𝑔𝑎, 𝑔𝑏, 𝑔𝑐) where 𝑎, 𝑏, 𝑐 are chosen uniformly.

77

Protocol. Let Z𝑝 be a Schnorr group such of size 𝑝 = 𝑞𝑚+1 such that 𝑝 = Θ(𝑛log𝑛)

and 𝑞 > 𝑛2 are prime, and DDH holds with generator 𝑔. Let (E,D) denote an

ElGamal encryption system on 𝐺. In what follows, we will take 𝑅𝑈,𝑉 (or 𝑅* for the

honest prover) to be 𝑞 (or 𝑞1) as defined in Section 3.2. The protocol is described as

Protocol 3.4.

Zero-Knowledge Proof of Work protocol:

• Challenge is issued as before: (𝑈, 𝑉)← Z2𝑛𝑑
𝑞 .

• Prover generates a secret key 𝑥 ← Z𝑝−1, and sends encryptions of the
coefficients of the challenge response over the subgroup of size 𝑞 to Verifier
with the public key (𝑔, ℎ = 𝑔𝑥) (and also sends the public key):

E(𝑅*(·);𝑆(·)) = E(𝑚𝑟*0; 𝑠0), . . . ,E(𝑚𝑟*𝑛𝑑−1; 𝑠𝑛𝑑−1)

= (𝑔𝑠0 , 𝑔𝑚𝑟*0ℎ𝑥𝑠0), . . . , (𝑔𝑠𝑛𝑑−1 , 𝑔𝑚𝑟*𝑛𝑑−1ℎ𝑥𝑠𝑛𝑑−1).

Prover additionally draws 𝑡← Z𝑝−1 and sends 𝑎1 = 𝑔𝑡, 𝑎2 = ℎ𝑡.

• Verifier draws random 𝑧 ← Z𝑞 and challenge 𝑐← Z*𝑝 and sends to Prover.

• Prover sends 𝑤 = 𝑡 + 𝑐𝑆(𝑧) to verifier.

• Verifier evaluates 𝑦 = 𝑓OV𝑉 (𝜑1(𝑧), . . . , 𝜑𝑑(𝑧)) to get 𝑔𝑚𝑦. Then, homomor-
phically evaluates E(𝑅*;𝑆) on 𝑧 so that E(𝑅*(𝑧);𝑆(𝑧)) equals(︁

(𝑔𝑠0)(𝑔𝑠1)𝑧 · · · (𝑔𝑠𝑛𝑑−1)𝑧
𝑛𝑑−1

, (𝑔𝑚𝑟*0ℎ𝑠0)(𝑔𝑚𝑟*1ℎ𝑠1)𝑧 · · · (𝑔𝑚𝑟*𝑛𝑑−1ℎ𝑠𝑛𝑑−1)𝑧
𝑛𝑑−1
)︁

= (𝑢1, 𝑢2)

Then, Verifier accepts if and only if

𝑔𝑤 = 𝑎1(𝑢1)
𝑐 & ℎ𝑤 = 𝑎2(𝑢2/𝑔

𝑚𝑦)𝑐.

Protocol 3.4: Zero-Knowledge Proof of Work protocol based on the hardness of OV
and the DDH assumption in Schnorr groups.

Remark 10. Note that the above protocol is public coin. Therefore, we can apply the

Fiat-Shamir heuristic, and use a random oracle on partial transcripts to make the

protocol non-interactive.

78

More explicitly, let 𝐻 be a random oracle. Then:

• Prover computes

(𝑔, ℎ),

E(𝑅*;𝑆),

𝑎1 = 𝑔𝑡, 𝑎2 = ℎ𝑡,

𝑧 = 𝐻(𝑈, 𝑉, 𝑔, ℎ,E(𝑅*;𝑆), 𝑎1, 𝑎2),

𝑐 = 𝐻(𝑈, 𝑉, 𝑔, ℎ,E(𝑅*;𝑆), 𝑎1, 𝑎2, 𝑧),

𝑤 = 𝑡 + 𝑐𝑆(𝑧)

and sends (𝑔, ℎ,E(𝑅*;𝑆), 𝑎1, 𝑎2, 𝑤).

• Verifier calls random oracle twice to get

𝑧 = 𝐻(𝑈, 𝑉, 𝑔, ℎ,E(𝑅*;𝑆), 𝑎1, 𝑎2), 𝑐 = 𝐻(𝑈, 𝑉, 𝑔, ℎ,E(𝑅*;𝑆), 𝑎1, 𝑎2, 𝑧).

Then, the verifier homomorphically evaluates E(𝑅*;𝑆)(𝑧) = (𝑢1, 𝑢2), it then

computes the value 𝑦 = 𝑓OV𝑉 (𝜑1(𝑧), . . . , 𝜑𝑑(𝑧)). Finally, accepts if and only if

𝑔𝑤 = 𝑎1(𝑢1)
𝑐 & ℎ𝑤 = 𝑎2(𝑢2/𝑔

𝑚𝑦)𝑐.

Theorem 10. Suppose OV takes 𝑛2 time to decide for all but finitely many input

lengths for any 𝑑 = 𝜔(log 𝑛) and the DDH assumption holds in Schnorr groups, then

Protocol 3.4 is a �̃�(𝑛)-simulatable (𝑛2, 𝛿)-interactive Proof of Work scheme for any

function 𝛿(𝑛) > 1/𝑛𝑜(1).

Proof. We show that Protocol 3.4 has all the necessary properties in turn.

Completeness: From before, if 𝑅* ≡ 𝑅𝑈,𝑉 as is the case for an honest prover, then

for any 𝑧 ∈ Z𝑞 we have 𝑅*(𝑧) = 𝑅𝑈,𝑉 (𝑧) = 𝑓OV𝑉 (𝜑1(𝑧), . . . , 𝜑𝑑(𝑧)). Moreover

𝑔𝑤 = 𝑔𝑡+𝑐𝑆(𝑧) = 𝑔𝑡(𝑔𝑆(𝑧))𝑐 = 𝑎1

(︁
(𝑔𝑠0)(𝑔𝑠1)𝑧 · · · (𝑔𝑠𝑛𝑑−1)𝑧

𝑛𝑑−1
)︁𝑐

,

79

and

ℎ𝑤 = ℎ𝑡+𝑐𝑆(𝑧)

= ℎ𝑡(𝑔0ℎ𝑆(𝑧))𝑐

= 𝑎2

(︁
(𝑔𝑚𝑟*0ℎ𝑠0)(𝑔𝑚𝑟*1ℎ𝑠1)𝑧 · · · (𝑔𝑚𝑟*𝑛𝑑−1ℎ𝑠𝑛𝑑−1)𝑧

𝑛𝑑−1

𝑔−𝑚𝑓OV𝑉 (𝜑1(𝑧),...,𝜑𝑑(𝑧))
)︁𝑐

.

Hardness: Suppose a cheating prover runs in subquadratic time and succeeds in

convincing the verifier. Then, by the hardness of Protocol 3.2, with probability at

least (1− 𝛿(𝑛)) for some 𝛿 that is 1/𝑛𝑜(1), we have that 𝑅* ̸≡ 𝑅𝑈,𝑉 , in which case for

random 𝑧, 𝑅*(𝑧) ̸= 𝑓OV𝑉 (𝜑1(𝑧), . . . , 𝜑𝑑(𝑧)) with overwhelming probability. Suppose

this is the case in what follows, namely: 𝑅*(𝑧) = 𝑦* ̸= 𝑦 = 𝑓OV𝑉 (𝜑1(𝑧), . . . , 𝜑𝑑(𝑧)).

In particular,

log𝑔 𝑢1 ̸= logℎ(𝑢2/𝑔
𝑚𝑓OV𝑉 (𝜑1(𝑧),...,𝜑𝑑(𝑧))).

Note that 𝑢1, 𝑢2/𝑔
𝑚𝑓OV𝑉 (𝜑1(𝑧),...,𝜑𝑑(𝑧)) can be calculated from the Prover’s first message.

As is standard, we will fix the prover’s first message and (assuming 𝑦 ̸= 𝑦*)

rewind any two accepting transcripts with distinct challenges to show that log𝑔 𝑢1 =

logℎ 𝑢2/𝑔
𝑚𝑦. Fix 𝑎1, 𝑎2 as above and let (𝑐, 𝑤), (𝑐′, 𝑤′) be the two transcripts. Recall

that if a transcript is accepted, 𝑔𝑤 = 𝑎1𝑢
𝑐
1 and ℎ𝑤 = 𝑎2(𝑢2/𝑔

𝑚𝑦)𝑐. Then,

𝑔𝑤−𝑤
′
= 𝑢𝑐−𝑐′

1 ⇒ log𝑔 𝑢1 =
𝑤 − 𝑤′

𝑐− 𝑐′
= logℎ 𝑢2/𝑔

𝑚𝑦 ⇐ ℎ𝑤−𝑤′
= (𝑢2/𝑔

𝑚𝑦)𝑐−𝑐
′
.

Therefore, for any 𝑧 such that 𝑢1 ̸= 𝑢2/𝑔
𝑚𝑦, there can be at most one 𝑐 for which a

prover can convince the verifier. Such a 𝑐 is chosen with negligible probability.

Thus, the cheating prover, who only succeeds when 𝑅* ̸≡ 𝑅𝑈,𝑉 or when a 𝑧 is

chosen such that 𝑢1 = 𝑢2/𝑔
𝑚𝑦 or when the above bad 𝑐 is chosen otherwise, only does

so with probability negligibly more than 𝛿(𝑛).

�̃�(𝑛𝑑)-simulation: Given the verifier’s challenge 𝑧, 𝑐, (which can simply be sampled

uniformly, as above) we can efficiently simulate the transcript with respect to an

honest prover as follows:

80

• Draw public key (𝑔, ℎ).

• Compute the ElGamal Encryption E𝑔,ℎ(𝑅′;𝑆) where 𝑅′ is the polynomial with

constant term 𝑓OV𝑉 (𝜑1(𝑧), . . . , 𝜑𝑑(𝑧)) and zeros elsewhere.

• Draw random 𝑤.

• Compute 𝑎1 = 𝑔𝑤

𝑔𝑐𝑆(𝑧) and 𝑎2 = ℎ𝑤

ℎ𝑐𝑆(𝑧) .

• Output ((𝑔, ℎ),E𝑔,ℎ(𝑅′;𝑆), 𝑎1, 𝑎2, 𝑧, 𝑐, 𝑤).

Notice that due to the semantic security of ElGamal, the transcript output is compu-

tationally indistinguishable from that of an actual transcript with the honest prover.

Moreover, the simulator runs in �̃�(𝑛𝑑) time – this is the time taken to compute 𝑅′,

encrypt, evaluate 𝑆 and exponentiate. Thus, the protocol is �̃�(𝑛𝑑)-simulatable.

Efficiency: The honest prover runs in time �̃�(𝑛2), because the 𝑛𝑑 encryptions can

be performed in time polylog(𝑛) each. The verifier takes �̃�(𝑛𝑑) time as well. Note

that the homomorphic evaluation requires 2𝑛𝑑 exponentiations by 𝑧, . . . , 𝑧𝑛𝑑−1, each

of which takes 𝑂(log(𝑝)) = polylog(𝑛) multiplications, followed by 𝑑 = polylog(𝑛)

multiplications.

81

82

Chapter 4

Cryptography Against Bounded

Depth

In this chapter, we present constructions of a number of cryptographic primitives

that are secure against low-depth circuits (and are also computable by such circuits).

Our results are grouped into two classes. The first is AC0, which is the class of

functions computable by constant-depth polynomial-sized circuits consisting of AND,

OR, and NOT gates of unbounded fan-in, and the second is NC1, the class of functions

computable by logarithmic-depth polynomial-sized circuits consisting of AND, OR, and

NOT gates of fan-in 2. Our constructions for the former are unconditionally secure

and build upon known lower bounds for this AC0, while those for the latter rely on

some minimal worst-case assumptions. Alternatively, these classes can be thought

of as functions computable by machines that have polynomially many processors

in parallel, where the resource we care about is the number of sequential levels of

computation that is performed.

We note that, in both cases, we mean the non-uniform versions of these classes.

Note that this also covers the case of adversaries that are randomized circuits with

these respective restrictions. This is because for any such randomized adversary 𝒜

there is a non-uniform adversary 𝒜′ that performs as well as 𝒜 – 𝒜′ is simply 𝒜

hard-coded with the randomness that worked best for it.

83

Constructions against AC0 Adversaries

We construct one-way functions (OWFs), pseudo-random generators (PRGs), weak

pseudo-random functions (weak PRFs), symmetric-key encryption (SKE), and collision-

resistant hash functions (CRHFs) that are computable in AC0 and are unconditionally

secure against arbitrary AC0 circuits. While some constructions for OWFs and PRGs

against AC0 were already known [Hås86, Bra10], and the existence of weak PRFs and

SKE, being minicrypt primitives, is not that surprising, the possibility of uncondi-

tionally secure CRHFs against AC0 is somewhat surprising, and we consider this to be

our primary contribution in this section. We also present a candidate construction for

public-key encryption, but we are unable to prove its unconditional security against

AC0 circuits.

As we saw earlier, Håstad [Has87] constructed one-way permutations secure against

AC0 circuits based on the hardness of computing PARITY. When allowed polynomial

running time, we have black-box constructions of pseudorandom generators [HILL99]

and (weak) pseudorandom functions [GGM86] from one-way functions. But because

these reductions are not implementable in AC0, getting primitives computable in AC0

requires more effort.

Our constructions against AC0 adversaries are primarily based on the theorem of

Braverman [Bra10] (and its recent sharpening by Tal [Tal14]) regarding the pseudo-

randomness of polylog-wise independent distributions against constant depth circuits.

We use this to show that AC0 circuits cannot distinguish between the distribution

(𝐴,𝐴k), where 𝐴 is a random “sparse” matrix of dimension poly(𝑛) × 𝑛 and k is a

uniformly random secret vector, from the distribution (𝐴, 𝑟), where 𝑟 is a uniformly

random vector. Sparse here means that each row of 𝐴 has at most polylog(𝑛) many

ones.

(This is shown as follows. It turns out that with high probability, a matrix chosen

in this manner is such that any set of polylog(𝑛) rows is linearly independent (Lemma

12). Note that when a set of rows of 𝐴 is linearly independent, the corresponding set

of bits in 𝐴k is uniformly distributed. This implies that if all polylog(𝑛)-sized sets

84

of rows of 𝐴 are linearly independent, then 𝐴k is polylog(𝑛)-wise independent. This

fact, along with the theorems regarding pseudo-randomness mentioned above prove

the indistinguishability by AC0.)

We also crucially use the fact, from [AB84], that the inner product of an arbitrary

vector with a sparse vector can be computed in constant depth.

OWFs and PRGs. This enables us to construct PRGs in NC0 with constant multi-

plicative stretch and in AC0 with polynomial multiplicative stretch. The construction

is to fix a sparse matrix 𝐴 with the linear independence properties mentioned above,

and the PRG output on seed k is 𝐴k. Pseudo-randomness follows from the indistin-

guishability arguments above. This is stated in the following informal restatement of

Theorem 21 (along with Remark 11). We need to show that there exist such matrices

𝐴 in which any polylog-sized set of rows are linearly independent, and yet are sparse.

As we show in Section 4.1.3, there are bipartite expander graphs whose adjacency

matrices have these properties.

Theorem 11 (Informal). For any constant 𝑐, there exists a family of Boolean circuits{︁
𝐶𝑛 : {0, 1}𝑛 → {0, 1}𝑛

𝑐
}︁

such that for any 𝑛, each output bit of 𝐶𝑛 depends on at

most 𝑂(𝑐) input bits, and for large enough 𝑛, AC0 circuits cannot distinguish the

output distribution 𝐶𝑛(𝑈𝑛) from 𝑈𝑛𝑐.

We note that similar techniques have been used in the past to construct PRGs

that fool circuit families of a fixed constant depth – see, for instance, [Vio12].

Weak PRFs against AC0. A Pseudo-Random Function family (PRF) is a collec-

tion of functions such that a function chosen at random from this collection is indis-

tinguishable from a function chosen at random from the set of all functions (with the

appropriate domain and range), based on just a polynomial number of evaluations

of the respective functions. In a Strong PRF, the distinguisher is allowed to specify

(even adaptively) the input points at which it wants the function to be evaluated. In

a Weak PRF, the distinguisher is given function evaluations at input points chosen

uniformly at random.

85

We construct Weak PRFs against AC0 that are unconditionally secure. In our

construction, each function in the family is described by a vector k. The computation

of the pseudo-random function proceeds by mapping its input 𝑥 to a sparse vector 𝑎

and computing the inner product ⟨𝑎,k⟩ over F2. Given polynomially many samples

of the form (𝑎, ⟨𝑎,k⟩), one can write this as (𝐴,𝐴k), where 𝐴 is a matrix with

random sparse rows. Our mapping of 𝑥’s to 𝑎’s is such that this is indistinguishable

from (𝐴, 𝑟) where 𝑟 is uniformly random, via the arguments mentioned earlier in this

section. The following is an informal restatement of Theorem 22.

Theorem 12 (Informal). There is a Weak Pseudo-Random Function family secure

against AC0 adversaries and is such that both sampling a function at random and

evaluating it can be performed in AC0.

We note that while our construction only gives us quasi-polynomial security (that

is, an adversary might be able to achieve an inverse quasi-polynomial advantage in

telling our functions from random) as opposed to exponential security, we show that

this is an inherent limitation of weak PRFs computable in AC0. Roughly speaking, due

to the work of [LMN93], we know that a constant fraction of the Fourier mass of any

function on 𝑛 inputs computable in AC0 is concentrated on Fourier coefficients upto

some polylog(𝑛). So there is at least one coefficient in the case of such a function that

is at least Ω
(︀

1
2polylog(𝑛)

)︀
in absolute value, whereas in a random function any coefficient

would be exponentially small. So, by guessing and estimating a Fourier coefficient of

degree at most polylog(𝑛) (which can be done in AC0), one can distinguish functions

computed in AC0 from a random function with some Ω
(︀

1
2polylog(𝑛)

)︀
advantage. See

Observation 1 for more details.

Symmetric Key Encryption against AC0. In the case of polynomial-time ad-

versaries and constructions, weak PRFs generically yield symmetric key encryption

schemes, and this continues to hold in our setting. However, we present an alterna-

tive construction that has certain properties that make it useful in the construction of

collision-resistant hash functions later on. The key in our scheme is again a random

vector k. The encryption of a bit 𝑏 is a sparse vector 𝑐 such that ⟨𝑐,k⟩ = 𝑏 over F2.

86

(Similar schemes, albeit without the sparsity, have been employed in the past in the

leakage-resilience literature - see [GR12] and references therein.)

Encryption is performed by rejection sampling to find such a 𝑐, and decryption

is performed by computing ⟨𝑐,k⟩, which can be done in constant depth owing to the

sparsity of 𝑐. We reduce the semantic security of this construction to the indistin-

guishability of the distributions (𝐴,𝐴k) and (𝐴, 𝑟) mentioned earlier. Note that this

scheme is additively homomorphic, a property that will be useful later. The following

is an informal restatement of Theorem 23.

Theorem 13 (Informal). There is a Symmetric Key Encryption scheme that is secure

against AC0 adversaries and is such that key generation, encryption and decryption

are all computable in (randomized) AC0.

Collision Resistance against AC0. Our most important construction against AC0,

which is what our encryption scheme was designed for, is that of Collision Resistant

Hash Functions. Note that while there are generic transformations from additively

homomorphic encryption schemes to CRHFs ([IKO05]), these transformations do not

work in AC0 and hence do not yield the construction we desire.

Our hash functions are described by matrices where each column is the encryption

of a random bit under the above symmetric encryption scheme. Given such a matrix

𝑀 that consists of encryptions of the bits of a string 𝑚, the evaluation of the function

on input 𝑥 is 𝑀𝑥. Note that we wish to perform this computation in constant depth,

and this turns out to be possible to do correctly for most keys because of the sparsity

of our ciphertexts.

Finding a collision for a given key 𝑀 is equivalent to finding a vector 𝑢 such that

𝑀𝑢 = 0. By the additive homomorphism of the encryption scheme, and the fact

that 0⃗ is a valid encryption of 0, this implies that ⟨𝑚,𝑢⟩ = 0. But this is non-trivial

information about 𝑚, and so should violate semantic security. However showing that

this is indeed the case turns out to be somewhat non-trivial.

In order to do so, given an AC0 adversary 𝐴 that finds collisions for the hash

function with some non-negligible probability, we will need to construct another AC0

87

adversary, 𝐵, that breaks semantic security of the encryption scheme. The most

straightforward attempt at this would be as follows. 𝐵 selects messages 𝑚0 and 𝑚1

at random and sends them to the challenger who responds with 𝑀 = Enc(𝑚𝑏). 𝐵

then forwards this to 𝐴 who would then return, with non-negligible probability, a

vector 𝑢 such that ⟨𝑢,𝑚𝑏⟩ = 0. If 𝐵 could compute ⟨𝑢,𝑚0⟩ and ⟨𝑢,𝑚1⟩, 𝐵 would

then be able to guess 𝑏 correctly with non-negligible advantage. The problem with

this approach is that 𝑢, 𝑚0 and 𝑚1 might all be of high Hamming weight, and this

being the case, 𝐵 would not be able to compute the above inner products.

The solution to this is to choose 𝑚0 to be a sparse vector and 𝑚1 to be a random

vector and repeat the same procedure. This way, 𝐵 can compute ⟨𝑢,𝑚0⟩, and while

it still cannot check whether ⟨𝑢,𝑚1⟩ = 0, it can instead check whether 𝑀𝑢 = 0⃗

and use this information. If it turns out that 𝑀𝑢 = 0⃗ and ⟨𝑢,𝑚0⟩ ≠ 0, then 𝐵

knows that 𝑏 = 1, due to the additive homomorphism of the encryption scheme.

Also, when 𝑏 = 1, since 𝑚0 is independent of 𝑚1, the probability that 𝐴 outputs

𝑢 such that ⟨𝑢,𝑚0⟩ ̸= 0 is non-negligible. Hence, by guessing 𝑏 = 1 when this

happens and by guessing 𝑏 at random otherwise, 𝐵 can gain non-negligible advantage

against semantic security. This achieves the desired contradiction and demonstrates

the collision resistance of our construction. The following is an informal restatement

of Theorem 25.

Theorem 14 (Informal). There is a family of Collision Resistant Hash Functions

that is secure against AC0 adversaries and is such that both sampling a hash function

at random and evaluating it can be performed in (randomized) AC0.

Candidate Public Key Encryption against AC0 We also propose a candidate

Public Key Encryption scheme whose security we cannot show. It is similar to the

LPN-based cryptosystem in [Ale03]. The public key is a matrix of the form 𝑀 =

(𝐴,𝐴k) where 𝐴 is a random 𝑛× 𝑛 matrix and k, which is also the secret key, is a

random sparse vector of length 𝑛. To encrypt 0, we choose a random sparse vector

𝑟 and output 𝑐𝑇 = 𝑟𝑇𝑀 , and to encrypt 1 we just output a random vector 𝑐𝑇 of

length (𝑛 + 1). Decryption is simply the inner product of 𝑐 and the vector (k 1)𝑇 ,

88

and can be done in AC0 because k is sparse.

Constructions against NC1 Adversaries

We construct one-way functions (OWFs), pseudo-random generators (PRGs), addi-

tively homomorphic public-key encryption (PKE), and collision-resistant hash func-

tions (CRHFs) that are computable in NC1 and are secure against NC1 adversaries,

based on the worst-case assumption that ⊕L/poly ̸⊆ NC1. An important tool we use

for these constructions is the notion of randomized encodings of functions introduced

in [IK00].

A randomized encoding of a function 𝑓 is a randomized function 𝑓 that is such

that for any input 𝑥, the distribution of 𝑓(𝑥) reveals 𝑓(𝑥), but nothing more about

𝑥. We know through the work of [IK00, AIK04] that there are randomized encod-

ings for the class ⊕L/poly that can be computed in (randomized) NC0. Randomized

encodings naturally offer a flavor of worst-to-average case reductions as they reduce

the problem of evaluating a function on a given input to deciding some property of

the distribution of its encoding. Our starting point is the observation, implicit in

[AIK04, AR15], that they can be used to generically construct infinitely-often one-

way functions and pseudo-random generators with additive stretch, computable in

NC0 and secure against NC1 adversaries (assuming, again, that ⊕L/poly ̸⊆ NC1). We

start with the following general theorem.

Theorem 15 (Informal). Let 𝒞1 and 𝒞2 be two classes such that 𝒞2 ̸⊆ 𝒞1 and 𝒞2 has

perfect randomized encodings computable in 𝒞1. Then, there are OWFs and PRGs

that are computable in 𝒞1 and are secure against arbitrary adversarial functions in

𝒞1.

Informally, the argument for Theorem 15 is the following: Let 𝐿 be the language

in 𝒞2 but not 𝒞1. The PRG is a function that takes an input 𝑟 and outputs the

randomized encoding of the indicator function for membership in 𝐿 on the input 0𝜆,

using 𝑟 as the randomness (where 𝜆 is a security parameter). Any adversary that

can distinguish the output of this function from random can be used to decide if a

89

given 𝑥 is in the language 𝐿 by computing the randomized encoding of 𝑥 and feeding

it to the adversary. This gives us a PRG with a non-zero additive stretch (and also

a OWF) if the randomized encoding has certain properties (they need to be perfect)

— see Section 4.3.1 for details.

While we have one way functions and pseudorandom generators, a black-box con-

struction of public key cryptosystems from randomized encodings seems elusive.

Our first contribution in this work is to use the algebraic structure of the ran-

domized encodings for ⊕L/poly to construct an additively homomorphic public key

encryption scheme secure against NC1 circuits (assuming that ⊕L/poly ̸⊆ NC1).

Additively Homomorphic Public-Key Encryption. The key attribute of the

randomized encodings of [IK00, AIK04] for ⊕L/poly is that the encoding is not a

structureless string. Rather, the randomized encodings of computations are matrices

whose rank corresponds to the result of the computation. Our public-key encryption

construction uses two observations:

• Under the assumption ⊕L/poly ̸⊆ NC1, there exist, for an infinite number of

values of 𝑛, distributions 𝐷𝑛
0 and 𝐷𝑛

1 over 𝑛 × 𝑛 matrices of rank (𝑛 − 1) and

𝑛, respectively, that are indistinguishable to NC1 circuits.

• It is possible to sample a matrix 𝑀 from 𝐷𝑛
0 along with the non-zero vector k

in its kernel. The sampling can be accomplished in NC1 or even ACC0[2].

The public key in our scheme is such a matrix 𝑀 , and the secret key is the

corresponding k. Encryption of a bit 𝑏 is a vector 𝑟𝑇𝑀 + 𝑏𝑡𝑇 , where 𝑟 is a random

vector1 and 𝑡 is a vector such that ⟨𝑡,k⟩ = 1. In effect, the encryption of 0 is a random

vector in the row-span of 𝑀 while the encryption of 1 is a random vector outside.

Decryption of a ciphertext �⃗� is simply the inner product ⟨�⃗�,k⟩. Semantic security

against NC1 adversaries follows from the fact that 𝐷𝑛
0 and 𝐷𝑛

1 are indistinguishable

to NC1 circuits. In particular, (1) We can indistinguishably replace the public key by

1We maintain the convention that all vectors are by default column vectors. For a vector 𝑟, the
notation 𝑟𝑇 denotes the row vector that is the transpose of 𝑟.

90

a random full rank matrix 𝑀 ′ chosen from 𝐷1
𝑛; and (2) with 𝑀 ′ as the public key,

encryptions of 0 are identically distributed to the encryptions of 1. The following is

an informal restatement of Theorem 27.

Theorem 16 (Informal). If ⊕L/poly ̸= NC1, there is a public-key encryption scheme

secure against NC1 adversaries where key generation, encryption and decryption are

all computable in (randomized) ACC0[2].

The scheme above is additively homomorphic, and thus, collision-resistant hash

functions (CRHF) against NC1 follow immediately from the known generic transfor-

mations [IKO05] which work in NC1.

Theorem 17 (Informal). If ⊕L/poly ̸= NC1, then there is a family of collision-

resistant hash functions that is secure against NC1 adversaries where both sampling

hash functions and evaluating them can be performed in (randomized) ACC0[2].

We remark that in a recent work, Applebaum and Raykov [AR15] construct

CRHFs against polynomial-time adversaries under the assumption that there are

average-case hard functions with perfect randomized encodings. Their techniques

also carry over to our setting and imply, for instance, the existence of CRHFs against

NC1 under the assumption that there is a language that is average-case hard for NC1

that has perfect randomized encodings that can be computed in NC1. This does not

require any additional structure on the encodings apart from perfectness, but does

require average-case hardness in place of our worst-case assumptions.

We now briefly describe the relation between our results and the related work on

randomized encodings [IK00, AIK04], and move on to describing the results in detail.

Relation to Randomized Encodings and Cryptography in NC0. Random-

ized encodings of Ishai and Kushilevitz [IK00, AIK04] are a key tool in our results

against NC1 adversaries. Using randomized encodings, Applebaum, Ishai and Kushile-

vitz [AIK04] showed how to convert several cryptographic primitives computable in

logspace classes into ones that are computable in NC0. The difference between their

work and ours is two-fold: (1) Their starting points are cryptographic schemes secure

91

against arbitrary polynomial-time adversaries, which rely on average-case hardness

assumptions, whereas in our work, the focus is on achieving security either with no

unproven assumptions or only worst-case assumptions; of course, our schemes are not

secure against polynomial-time adversaries, but rather, limited adversarial classes;

(2) In the case of public-key encryption, they manage to construct key generation

and encryption algorithms that run in NC0, but the decryption algorithm retains its

high complexity. In contrast, in this work, we can construct public key encryption

(against NC1 adversaries) where the encryption algorithm can be computed in NC0

and the key generation and decryption in ACC0[2].

Related Work

Arguably, the big bang of public-key cryptography was the result of Merkle [Mer78]

who constructed a key exchange protocol where the honest parties run in linear time

𝑂(𝑛) and security is obtained against adversaries that run in time 𝑜(𝑛2). His as-

sumption was the existence of a random function that both the honest parties and

the adversary can access. Later, the assumption was improved to strong one-way

functions [BGI08]. This is, indeed, a fine-grained cryptographic protocol in our sense.

The study of 𝜖-biased generators [AGHP93, MST06] is related to this work. In

particular, 𝜖-biased generators with exponentially small 𝜖 give us almost 𝑘-wise inde-

pendent generators for large 𝑘, which in turn fool AC0 circuits by a result of Braver-

man [Bra10]. This and other techniques have been used in the past to construct

PRGs that fool circuits of a fixed constant depth, with the focus generally being on

optimising the seed length [Vio12, TX13].

Maurer [Mau92] introduced the bounded storage model, which considers adver-

saries that have a bounded amount of space and unbounded computation time. There

are many results known here [DM04, Vad04, AR99, CM97] and in particular, it is

possible to construct Symmetric Key Encryption and Key Agreement protocols un-

conditionally in this model[CM97].

92

4.1 Definitions and Preliminaries

In this section we establish notation that shall be used throughout the rest of this

chapter and recall the notion of randomized encodings of functions. We state and

prove some results about certain kinds of random matrices that turn out to be useful

in Section 4.2. In Section 4.1.1, we present formal definitions of a complexity theoretic

notion of adversaries with restricted computational power and also of several standard

cryptographic primitives against such restricted adversaries (as opposed to the usual

definitions, which are specific to probabilistic polynomial time adversaries).

Notation. For a distribution 𝐷, by 𝑥← 𝐷 we denote 𝑥 being sampled according to

𝐷. Abusing notation, we denote by 𝐷(𝑥) the probability mass of 𝐷 on the element 𝑥.

For a set 𝑆, by 𝑥← 𝑆, we denote 𝑥 being sampled uniformly from 𝑆. We also denote

the uniform distribution over 𝑆 by 𝑈𝑆, and the uniform distribution over {0, 1}𝜆 by

𝑈𝜆. We use the notion of total variational distance between distributions, given by:

∆(𝐷1, 𝐷2) =
1

2

∑︁
𝑥

|𝐷1(𝑥)−𝐷2(𝑥)|

For distributions 𝐷1 and 𝐷2 over the same domain, by 𝐷1 ≡ 𝐷2 we mean that the

distributions are the same, and by 𝐷1 ≈ 𝐷2, we mean that ∆(𝐷1, 𝐷2) is a negligible

function of some parameter that will be clear from the context. Abusing notation,

we also sometimes use random variables instead of their distributions in the above

expressions.

For any 𝑛 ∈ N, we denote by ⌊𝑛⌋2 the greatest power of 2 that is not more than 𝑛.

For any 𝑛, 𝑘, and 𝑑 ≤ 𝑘, we denote by 𝑆𝑝𝑅𝑘,𝑑 the uniform distribution over the set

of vectors in {0, 1}𝑘 with exactly 𝑑 non-zero entries, and by 𝑆𝑝𝑀𝑛,𝑘,𝑑 the distribution

over the set of matrices in {0, 1}𝑛×𝑘 where each row is distributed independently

according to 𝑆𝑝𝑅𝑘,𝑑.

We identify strings in {0, 1}𝑛 with vectors in F𝑛
2 in the natural manner. For a string

(vector) 𝑥, ‖𝑥‖ denotes its Hamming weight. Finally, we note that all arithmetic

computations (such as inner products, matrix products, etc.) in this chapter will be

93

over F2, unless specified otherwise.

4.1.1 Bounded Adversaries

Definition 10 (Function Family). A function family is a family of (possibly ran-

domized) functions ℱ = {𝑓𝜆}𝜆∈N, where for each 𝜆, 𝑓𝜆 has domain 𝐷𝑓
𝜆 and co-domain

𝑅𝑓
𝜆.

In most of our considerations, 𝐷𝑓
𝜆 and 𝑅𝑓

𝜆 will be {0, 1}𝑑
𝑓
𝜆 and {0, 1}𝑟

𝑓
𝜆 for some

sequences {𝑑𝑓𝜆}𝜆∈N and {𝑟𝑓𝜆}𝜆∈N. Wherever function families are seen to act as adver-

saries to cryptographic objects, we shall use the terms adversary and function family

interchangeably.

The following are some examples of natural classes of function families. These

are in the vein of classes like FP and FNP, which are defined starting from P and

NP, respectively. For the sake of brevity, we refer to classes of function families as

function classes. Also, we will abuse taxonomy and use the same name for a class of

languages and its corresponding class of functions (we would, for instance, simply say

P instead of FP for the class of deterministic polynomial-time computable functions).

Definition 11 (AC0). The class of (non-uniform) AC0 function families is the set of

all function families ℱ = {𝑓𝜆} for which there is a polynomial 𝑝 and constant 𝑑 such

that for each 𝜆, 𝑓𝜆 can be computed by a (randomized) circuit of size 𝑝(𝜆), depth 𝑑

and unbounded fan-in using AND, OR and NOT gates.

Definition 12 (AC0[2]). The class of (non-uniform) AC0[2] function families is the

set of all function families ℱ = {𝑓𝜆} for which there is a polynomial 𝑝 and constant

𝑑 such that for each 𝜆, 𝑓𝜆 can be computed by a (randomized) circuit of size 𝑝(𝜆),

depth 𝑑 and unbounded fan-in using AND, OR, NOT and PARITY gates.

Definition 13 (NC1). The class of (non-uniform) NC1 function families is the set of

all function families ℱ = {𝑓𝜆} for which there is a polynomial 𝑝 and constant 𝑐 such

that for each 𝜆, 𝑓𝜆 can be computed by a (randomized) circuit of size 𝑝(𝜆), depth

𝑐 log(𝜆) and fan-in 2 using AND, OR and NOT gates

94

Definition 14 (⊕L/poly). ⊕L/poly is the set of all Boolean function families ℱ =

{𝑓𝜆} for which there is a constant 𝑐 such that for each 𝜆, there is a Non-Deterministic

Turing Machine 𝑀𝜆 such that for each input 𝑥 of length 𝜆, 𝑀𝜆(𝑥) uses at most 𝑐 log(𝜆)

space, and 𝑓𝜆(𝑥) is equal to the PARITY of the number of accepting paths of 𝑀𝜆(𝑥).

Definition 15 (BPP). The class of BPP function families is the set of all function

families ℱ = {𝑓𝜆} for which there is a randomized polynomial-time algorithm 𝐵ℱ

such that for each 𝜆 and 𝑥, 𝑓𝜆(𝑥) ≡ 𝐵ℱ(1𝜆, 𝑥).

Next, we generalize the standard definitions of several standard cryptographic

primitives to talk about security against different classes of adversaries. In the fol-

lowing definitions, 𝒞1 and 𝒞2 are two function classes, and 𝑙, 𝑠 : N → N are some

functions. Implicit (and hence left unmentioned) in each definition are the following

conditions:

• Computability, which says that the function families that are part of the prim-

itive are in the class 𝒞1. Additional restrictions are specified when they apply.

• Non-triviality, which says that the security condition in each definition is not

vacuously satisfied – that there is at least one function family in 𝒞2 whose input

space corresponds to the output space of the appropriate function family in the

primitive.

Definition 16 (One-Way Function). Let ℱ =
{︁
𝑓𝜆 : {0, 1}𝜆 → {0, 1}𝑙(𝜆)

}︁
be a func-

tion family. ℱ is a 𝒞1-One-Way Function (OWF) against 𝒞2 if:

• Computability: For each 𝜆, 𝑓𝜆 is deterministic.

• One-wayness: For any 𝒢 =
{︁
𝑔𝜆 : {0, 1}𝑙(𝜆) → {0, 1}𝜆

}︁
∈ 𝒞2, there is a negli-

gible function negl such that for any 𝜆 ∈ N:

Pr
𝑥←𝑈𝜆

[𝑓𝜆(𝑔𝜆(𝑦)) = 𝑦 | 𝑦 ← 𝑓𝜆(𝑥)] ≤ negl(𝜆)

For a function class 𝒞, we sometimes refer to a 𝒞-OWF or an OWF against 𝒞. In

both these cases, both 𝒞1 and 𝒞2 from the above definition are to be taken to be 𝒞.

95

To be clear, this implies that there is a family ℱ ∈ 𝒞 that realizes the primitive and

is secure against all 𝒢 ∈ 𝒞.

We shall adopt this abbreviation also for other primitives defined in the above

manner.

Definition 17 (Pseudo-Random Generator). Let ℱ =
{︁
𝑓𝜆 : {0, 1}𝜆 → {0, 1}𝑙(𝜆)

}︁
be

a function family. ℱ is a 𝒞1-Pseudo-Random Generator (PRG) against 𝒞2 if:

• Computability: For each 𝜆, 𝑓𝜆 is deterministic.

• Expansion: 𝑙(𝜆) > 𝜆 for all 𝜆. 𝑎(𝜆) = (𝑙(𝜆)− 𝜆) is called the additive stretch

of the PRG, and 𝑚(𝜆) = 𝑙(𝜆)
𝜆

is called its multiplicative stretch.

• Pseudo-randomness: For any 𝒢 =
{︁
𝑔𝜆 : {0, 1}𝑙(𝜆) → {0, 1}

}︁
∈ 𝒞2, there is a

negligible function negl such that for any 𝜆 ∈ N:⃒⃒⃒⃒
Pr

𝑥←𝑈𝜆

[𝑔𝜆(𝑓𝜆(𝑥)) = 1]− Pr
𝑦←𝑈𝑙(𝜆)

[𝑔𝜆(𝑦) = 1]

⃒⃒⃒⃒
≤ negl(𝜆)

Definition 18 (Collision Resistant Hashing). Let 𝒦𝑒𝑦𝐺𝑒𝑛 = {KeyGen𝜆 : ∅→ 𝐾𝜆}

and ℰ𝑣𝑎𝑙 =
{︁
Eval𝜆 : 𝐾𝜆 × {0, 1}𝜆 → {0, 1}𝑙(𝜆)

}︁
be function families. For a function

𝑠 : N→ N, (𝒦𝑒𝑦𝐺𝑒𝑛, ℰ𝑣𝑎𝑙) is a 𝒞1-Collision Resistant Hash Family (CRHF) against

𝒞2 with compression 𝑠 if:

• Computability: For each 𝜆, Eval𝜆 is deterministic.

• Compression: For all large enough 𝜆, 𝑙(𝜆) ≤ 𝜆
𝑠(𝜆)

< 𝜆.

• Collision Resistance: For any 𝒢 =
{︁
𝑔𝜆 : 𝐾𝜆 → {0, 1}𝜆 × {0, 1}𝜆

}︁
∈ 𝒞2, there

is a negligible function negl such that for any 𝜆 ∈ N:

Pr
𝑘←KeyGen𝜆

[Eval𝜆(𝑘, 𝑥) = Eval𝜆(𝑘, 𝑦) | (𝑥, 𝑦)← 𝑔𝜆(𝑘)] ≤ negl(𝜆)

Definition 19 (Weak Pseudo-Random Functions). Let𝒦𝑒𝑦𝐺𝑒𝑛 = {KeyGen𝜆 : ∅→ 𝐾𝜆}

and ℰ𝑣𝑎𝑙 =
{︁
Eval𝜆 : 𝐾𝜆 × {0, 1}𝜆 → {0, 1}𝑙(𝜆)

}︁
be function families. (𝒦𝑒𝑦𝐺𝑒𝑛, ℰ𝑣𝑎𝑙)

is a Weak 𝒞1-Pseudo-Random Function Family (Weak PRF) against 𝒞2 if:

96

• Computability: For each 𝜆, Eval𝜆 is deterministic.

• Pseudo-randomness: Let 𝐹𝑙,𝜆 be the set of all functions from {0, 1}𝜆 to

{0, 1}𝑙(𝜆). For any 𝒢 =

{︂
𝑔𝜆 :

(︁
{0, 1}𝜆 × {0, 1}𝑙(𝜆)

)︁𝑛(𝜆)
→ {0, 1}

}︂
∈ 𝒞2 and any

function 𝑛 : N→ N, there is a negligible function negl such that for any 𝜆 ∈ N:⃒⃒⃒⃒
⃒⃒ Pr

𝑘←KeyGen𝜆
𝑥1,...,𝑥𝑛(𝜆)←𝑈𝜆

[𝑔𝜆 ({(𝑥𝑖,Eval𝜆(𝑘, 𝑥𝑖))}) = 1]

− Pr
𝑓←𝐹𝑙,𝜆

𝑥1,...,𝑥𝑛(𝜆)←𝑈𝜆

[𝑔𝜆 ({(𝑥𝑖, 𝑓(𝑥𝑖))}) = 1]

⃒⃒⃒⃒
⃒⃒⃒ ≤ negl(𝜆)

The adjective Weak in the above definition is present because the adversary gets

evaluations of the PRF or a random function on randomly chosen input values. In the

standard definition of a PRF, the adversary is allowed to choose inputs at which to

receive functions evaluations. While this is a natural definition for polynomial-time

adversaries, it is unclear how to extend this definition to other classes of adversaries,

especially to classes like AC0.

Definition 20 (Symmetric Key Encryption). Let 𝒦𝑒𝑦𝐺𝑒𝑛 = {KeyGen𝜆 : ∅→ 𝐾𝜆},

ℰ𝑛𝑐 = {Enc𝜆 : 𝐾𝜆 × {0, 1} → 𝐶𝜆}, and 𝒟𝑒𝑐 = {Dec𝜆 : 𝐾𝜆 × 𝐶𝜆 → {0, 1}} be function

families. (𝒦𝑒𝑦𝐺𝑒𝑛, ℰ𝑛𝑐,𝒟𝑒𝑐) is a 𝒞1-Symmetric Key Encryption Scheme against 𝒞2
if:

• Correctness: There is a negligible function negl such that for any 𝜆 ∈ N and

any 𝑏 ∈ {0, 1}:

Pr

⎡⎣Dec𝜆 (𝑘, 𝑐) = 𝑏

⃒⃒⃒⃒
⃒⃒ 𝑘 ← KeyGen𝜆

𝑐← Enc𝜆(𝑘, 𝑏)

⎤⎦ ≥ 1− negl(𝜆)

• Semantic Security: For any functions 𝑛0, 𝑛1 : N → N, and any family 𝒢 ={︁
𝑔𝜆 : 𝐶

𝑛0(𝜆)+𝑛1(𝜆)+1
𝜆 → {0, 1}

}︁
∈ 𝒞2, there is a negligible function negl′ such that

97

for any 𝜆 ∈ N:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣𝑔𝜆
(︀{︀

𝑐0𝑖
}︀
,
{︀
𝑐1𝑖
}︀
, 𝑐
)︀

= 𝑏

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

𝑘 ← KeyGen𝜆, 𝑏← 𝑈1

𝑐01, . . . , 𝑐
0
𝑛0(𝜆)

← Enc𝜆(𝑘, 0)

𝑐11, . . . , 𝑐
1
𝑛1(𝜆)

← Enc𝜆(𝑘, 1)

𝑐← Enc𝜆(𝑘, 𝑏)

⎤⎥⎥⎥⎥⎥⎥⎦ ≤
1

2
+ negl′(𝜆)

Definition 21 (Public Key Encryption). Let𝒦𝑒𝑦𝐺𝑒𝑛 = {KeyGen𝜆 : ∅→ 𝑆𝐾𝜆 × 𝑃𝐾𝜆},

ℰ𝑛𝑐 = {Enc𝜆 : 𝑃𝐾𝜆 × {0, 1} → 𝐶𝜆}, and 𝒟𝑒𝑐 = {Dec𝜆 : 𝑆𝐾𝜆 × 𝐶𝜆 → {0, 1}} be

function families. (𝒦𝑒𝑦𝐺𝑒𝑛, ℰ𝑛𝑐,𝒟𝑒𝑐) is a 𝒞1-Public Key Encryption scheme against

𝒞2 if:

• Correctness: There is a negligible function negl such that for any 𝜆 ∈ N and

any 𝑏 ∈ {0, 1}:

Pr

⎡⎣Dec𝜆 (sk, 𝑐) = 𝑏

⃒⃒⃒⃒
⃒⃒ (sk, pk)← KeyGen𝜆

𝑐← Enc𝜆(pk, 𝑏)

⎤⎦ ≥ 1− negl(𝜆)

• Semantic Security: For any 𝒢 = {𝑔𝜆 : 𝑃𝐾𝜆 × 𝐶𝜆 → {0, 1}} ∈ 𝒞2, there is a

negligible function negl′ such that for any 𝜆 ∈ N:

Pr

⎡⎣𝑔𝜆 (pk, 𝑐) = 𝑏

⃒⃒⃒⃒
⃒⃒ (pk, sk)← KeyGen𝜆, 𝑏← 𝑈1

𝑐← Enc𝜆(pk, 𝑏)

⎤⎦ ≤ 1

2
+ negl′(𝜆)

4.1.2 Constant-Depth Circuits

Here we state a few known results on the computational power of constant depth

circuits that shall be useful in our constructions against AC0 adversaries.

Theorem 18 (Hardness of Parity, [Hås14]). For any circuit 𝐶 with 𝑛 inputs, size 𝑠

and depth 𝑑,

Pr
𝑥←{0,1}𝑛

[𝐶(𝑥) = PARITY(𝑥)] ≤ 1

2
+ 2−Ω(𝑛/(log 𝑠)𝑑−1)

98

Theorem 19 (Partial Independence, [Bra10, Tal14]). Let 𝐷 be a 𝑘-wise independent

distribution over {0, 1}𝑛. For any circuit 𝐶 with 𝑛 inputs, size 𝑠 and depth 𝑑,⃒⃒⃒⃒
Pr
𝑥←𝐷

[𝐶(𝑥) = 1]− Pr
𝑥←{0,1}𝑛

[𝐶(𝑥) = 1]

⃒⃒⃒⃒
≤ 𝑠

2Ω(𝑘1/(3𝑑+3))

Theorem 20 (Polylog Hamming Weight, [AB84, RW91]). For any constant 𝑐 and

for any function 𝑡 : N → N such that 𝑡(𝜆) = 𝑂(log𝑐 𝜆), the family ℋ𝑡 = {ℎ𝑡
𝜆} is in

AC0, where ℎ𝑡
𝜆 takes inputs from {0, 1}𝜆 and is defined as:

ℎ𝑡
𝜆(𝑥) = 1⇔ ‖𝑥‖ = 𝑡(𝜆)

Lemma 7 (Polylog Parities). For any constant 𝑐 and for any function 𝑡 : N → N

such that 𝑡(𝜆) = 𝑂(log𝑐 𝜆), there is an AC0 family 𝒢𝑡 = {𝑔𝑡𝜆} such that for any 𝜆,

• 𝑔𝑡𝜆 takes inputs from {0, 1}𝜆.

• For any 𝑥 ∈ {0, 1}𝜆 such that ‖𝑥‖ ≤ 𝑡(𝜆), 𝑔𝑡𝜆(𝑥) = PARITY(𝑥).

Proof. Denote the family promised by Theorem 20 for function 𝑡′ by ℋ𝑡′ =
{︀
ℎ𝑡′

𝜆

}︀
.

Then, for any 𝑡 satisfying the hypothesis for Lemma 7, a family 𝒢𝑡 = {𝑔𝑡𝜆} that

proves the lemma can be computed as:

𝑔𝑡𝜆(𝑥) =

⎧⎨⎩ ⋀︁
𝑜𝑑𝑑 𝑖≤𝑡(𝜆)

ℎ𝑖
𝜆(𝑥)

⎫⎬⎭

Lemma 8 (Polylog Inner Products). For any constant 𝑐 and for any function 𝑡 :

N → N such that 𝑡(𝜆) = 𝑂(log𝑐 𝜆), there is an AC0 family ℐ𝑡 = {𝑖𝑝𝑡𝜆} such that for

any 𝜆,

• 𝑖𝑝𝑡𝜆 takes inputs from {0, 1}𝜆 × {0, 1}𝜆.

• For any 𝑥, 𝑦 ∈ {0, 1}𝜆 such that min(‖𝑥‖ , ‖𝑦‖) ≤ 𝑡(𝜆), 𝑖𝑝𝑡𝜆(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩.

Proof. This follows from Lemma 7 and the fact that ⟨𝑥, 𝑦⟩ = PARITY(𝑥1∧𝑦1, . . . , 𝑥𝜆∧

𝑦𝜆).

99

4.1.3 Graphs and Linear Codes

In this section we describe and prove some properties of a sampling procedure for

random matrices. While it is not necessary to do so, the proofs in this section are

most easily presented in terms of properties of random bipartite graphs. Most of the

analysis is as suggested in Gallager’s early work [Gal62] on Low-Density Parity Check

codes, but we repeat it here to make dependencies on certain parameters explicit and

to be able to easily derive certain lemmas that we need.

Notation. We denote a bipartite (undirected) graph with vertex sets 𝐿 and 𝑅 and

set of edges 𝐸 between 𝐿 and 𝑅 by 𝐺(𝐿∪𝑅,𝐸). The adjacency matrix of this graph,

denoted A𝐺, is a {0, 1}-matrix of dimension |𝐿|× |𝑅|. Its rows are labeled by vertices

in 𝐿 and columns by vertices in 𝑅 such that A𝐺[𝑢, 𝑣] is 1 if and only if (𝑢, 𝑣) ∈ 𝐸.

Given a {0, 1}-matrix 𝑀 , G𝑀 denotes the bipartite graph whose adjacency matrix is

𝑀 .

Given a bipartite graph 𝐺(𝐿 ∪ 𝑅,𝐸), for any vertex 𝑢, 𝑁(𝑢) denotes the set of

neighbors of 𝑢. For a set 𝑆 ⊆ 𝐿 (or 𝑆 ⊆ 𝑅), 𝑁(𝑆) denotes the set of neighbors of

vertices in 𝑆, that is, 𝑁(𝑆) =
⋃︀

𝑢∈𝑆 𝑁(𝑢). And 𝑈(𝑆) denotes the set of vertices that

are neighbors of a unique vertex in 𝑆, that is, 𝑈(𝑆) = {𝑣 | |𝑁(𝑣) ∩ 𝑆| = 1}.

Definition 22 (Bipartite Expander). An (𝑛, 𝑘, 𝑑, 𝛾, 𝛼)-bipartite expander is a bipar-

tite graph 𝐺(𝐿 ∪𝑅,𝐸) where:

• |𝐿| = 𝑛 and |𝑅| = 𝑘.

• The degree of any vertex in 𝐿 is 𝑑.

• For every 𝑆 ⊆ 𝐿 with |𝑆| ≤ 𝛾𝑛, |𝑁(𝑆)| ≥ 𝛼 |𝑆|.

We describe the following two sampling procedures that we shall use later. SRSamp

and SMSamp abbreviate Sparse Row Sampler and Sparse Matrix Sampler, respec-

tively. SRSamp(𝑘, 𝑑, 𝑟) samples unformly at random a vector from {0, 1}𝑘 with ex-

actly 𝑑 non-zero entries, using 𝑟 for randomness – it chooses a set of 𝑑 distinct indices

between 0 to 𝑘−1 (via rejection sampling) and outputs the vector in which the entries

100

at those indices are 1 and the rest are 0. When we don’t specifically need to argue

about the randomness, we drop the explicitly written 𝑟. SMSamp(𝑛, 𝑘, 𝑑) samples

an 𝑛 × 𝑘 matrix whose rows are samples from SRSamp(𝑘, 𝑑, 𝑟) using randomly and

independently chosen 𝑟’s.

Construction 4.1.1 Sparse row and matrix sampling.
SRSamp(𝑘, 𝑑, 𝑟): Samples a vector with exactly 𝑑 non-zero entries.

1. If 𝑟 is not specified or |𝑟| < 𝑑2 ⌈log(𝑘)⌉, sample 𝑟 ← {0, 1}𝑑
2⌈log(𝑘)⌉ anew.

2. For 𝑙 ∈ [𝑑] and 𝑗 ∈ [𝑑], set 𝑢𝑙
𝑗 = 𝑟((𝑙−1)𝑑+𝑗−1)⌈log(𝑘)⌉+1 . . . 𝑟((𝑙−1)𝑑+𝑗)⌈log(𝑘)⌉.

3. If there is no 𝑙 such that for all distinct 𝑗1, 𝑗2 ∈ [𝑑], 𝑢𝑙
𝑗1
̸= 𝑢𝑙

𝑗2
, output 0𝑘.

4. Else, let 𝑙0 be the least such 𝑙.

5. For 𝑖 ∈ [𝑘], set 𝑣𝑖 = 1 if there is a 𝑗 ∈ [𝑑] such that 𝑢𝑙0
𝑗 = 𝑖 (when interpreted in

binary), or 𝑣𝑖 = 0 otherwise.

6. Output 𝑣 = (𝑣1, . . . , 𝑣𝑘).

SMSamp(𝑛, 𝑘, 𝑑): Samples a matrix where each row has 𝑑 non-zero entries.

1. For 𝑖 ∈ [𝑛], sample 𝑟𝑖 ← {0, 1}𝑑
2⌈log(𝑘)⌉ and 𝑎𝑖 ← SRSamp(𝑘, 𝑑, 𝑟𝑖).

2. Output the 𝑛× 𝑘 matrix whose 𝑖-th row is 𝑎𝑖.

For any fixed 𝑘 and 𝑑 < 𝑘, note that the function 𝑆𝑘,𝑑 : {0, 1}𝑑
2⌈log(𝑘)⌉ → {0, 1}𝑘

given by 𝑆𝑘,𝑑(𝑥) = SRSamp(𝑘, 𝑑, 𝑥) can be easily seen to be computed by a circuit

of size 𝑂((𝑑3 + 𝑘𝑑2) log(𝑘)) and depth 8. And so the family 𝒮 =
{︀
𝑆𝜆,𝑑(𝜆)

}︀
is in

AC0. When, in our constructions, we require computing SRSamp(𝑘, 𝑑, 𝑥), this is

to be understood as being performed by the circuit for 𝑆𝑘,𝑑 that is given as input

the prefix of 𝑥 of length 𝑑2 ⌈log(𝑘)⌉. So if the rest of the construction is computed

by polynomial-sized constant depth circuits, the calls to SRSamp do not break this

property.

Recall that we denote by 𝑆𝑝𝑅𝑘,𝑑 the uniform distribution over the set of vectors

in {0, 1}𝑘 with exactly 𝑑 non-zero entries, and by 𝑆𝑝𝑀𝑛,𝑘,𝑑 the distribution over the

set of matrices in {0, 1}𝑛×𝑘 where each row is sampled independently according to

𝑆𝑝𝑅𝑘,𝑑. The following lemma states that the above sampling procedures produce

something close to these distributions.

101

Lemma 9 (Uniform Sparse Sampling). For any 𝑛, and 𝑑 = log2(𝑘), there is a negli-

gible function 𝜈 such that for any 𝑘 that is a power of two, when 𝑟 ← {0, 1}log
5(𝑘),

1. ∆(SRSamp(𝑘, 𝑑, 𝑟), 𝑆𝑝𝑅𝑘,𝑑) ≤ 𝜈(𝑘)

2. ∆(SMSamp(𝑛, 𝑘, 𝑑), 𝑆𝑝𝑀𝑛,𝑘,𝑑) ≤ 𝑛𝜈(𝑘)

Proof. (1) implies (2) because SMSamp(𝑛, 𝑘, 𝑑) and 𝑆𝑝𝑀𝑛,𝑘,𝑑 simply consist of 𝑛 in-

dependent samples from SRSamp(𝑘, 𝑑, 𝑟) and 𝑆𝑝𝑅𝑘,𝑑, respectively.

SRSamp(𝑘, 𝑑, 𝑟) parses 𝑟 into 𝑑 sets of 𝑑 elements from [𝑘] and outputs 0𝑘 when

all of these have at least one collision. The probability that any one set has a pair

which collide is at most 𝑑2

𝑘
, by the union bound. So the probability that all sets

have at least one pair which collide is at most
(︁

𝑑2

𝑘

)︁𝑑
, which is a negligible function

of 𝑘 when 𝑑 = log2(𝑘). Further, conditioned on this not happening, the output of

SRSamp(𝑘, 𝑑, 𝑟) is distributed according to 𝑆𝑝𝑅𝑘,𝑑. So its distance from 𝑆𝑝𝑅𝑘,𝑑 is

exactly the probability that it outputs 0𝑘.

The following lemma says that if we sample matrices using SMSamp, they will be

adjacency matrices of bipartite expanders with very high probability. It will be used

later to argue about certain linear algebraic properties of such matrices that find use

in our contructions.

Lemma 10 (Sampling expanders). For any constant 𝑐 > 0, any 𝑛 ≤ 𝑘𝑐, 𝑑 = log2(𝑘),

𝛼 = 3𝑑
4
, and 𝛾 = 𝑘

log3(𝑘)𝑛
, there is a negligible function 𝜈 such that for any 𝑘 that is a

power of two,

Pr
A𝐺←SMSamp(𝑛,𝑘,𝑑)

[𝐺 is not an (𝑛, 𝑘, 𝑑, 𝛾, 𝛼)-expander] ≤ 𝜈(𝑘)

Proof. The proof of this Lemma is a probabilistic argument. By Lemma 9, the output

of SMSamp(𝑛, 𝑘, 𝑑) for our parameters is negligibly close to 𝑆𝑝𝑀𝑛,𝑘,𝑑. So it is sufficient

to prove the theorem when A𝐺 is sampled according to 𝑆𝑝𝑀𝑛,𝑘,𝑑. This corresponds

to a distribution over graphs with vertex sets 𝐿 and 𝑅 such that |𝐿| = 𝑛, |𝑅| = 𝑘,

and for each vertex in 𝐿, a set of 𝑑 of its 𝑘 possible edges are chosen uniformly at

random to be added to the graph. So each vertex in 𝐿 has degree exactly 𝑑.

102

By definition, a bipartite graph 𝐺(𝐿 ∪ 𝑅,𝐸) where the degree of any vertex in

𝐿 is 𝑑 is not an (𝑛, 𝑘, 𝑑, 𝛾, 𝛼)-expander if and only if there exist sets 𝑆 ⊆ 𝐿 and

𝑇 ⊆ 𝑅 such that |𝑆| ≤ 𝛾𝑛, |𝑇 | = 𝛼 |𝑆| such that 𝑁(𝑆) ⊆ 𝑇 . We shall now estimate

the probability that there exists such an 𝑆, 𝑇 in a graph whose adjacency matrix

is randomly generated according to 𝑆𝑝𝑀𝑛,𝑘,𝑑, given that 𝑘 is a power of 2 (so that

⌈log(𝑘)⌉ = log(𝑘)).

Given vertex sets 𝐿 and 𝑅, pick any pair of sets 𝑆 ⊆ 𝐿 and 𝑇 ⊆ 𝑅. Let |𝑆| = 𝑠

and |𝑇 | = 𝑡. The probability that all neighbours of 𝑆 are in 𝑇 is given by:

Pr [𝑁(𝑆) ⊆ 𝑇] = Pr [∀𝑢 ∈ 𝑆 : all 𝑑 edges chosen connect to vertices in 𝑇]

≤ Pr [∀𝑢 ∈ 𝑆 : 𝑑 independently chosen vertices of 𝑅 are all in 𝑇]

≤
(︂
𝑡

𝑘

)︂𝑑𝑠

The probability that there exist such an 𝑆 and 𝑇 such that |𝑆| ≤ 𝛾𝑛 and |𝑇 | =

𝛼|𝑆|, is bounded as follows:

Pr [∃𝑆, 𝑇 : |𝑆| ≤ 𝛾𝑛, |𝑇 | = 𝛼|𝑆|, 𝑁(𝑆) ⊆ 𝑇] ≤
𝛾𝑛∑︁
𝑠=1

(︂
𝑛

𝑠

)︂(︂
𝑘

𝛼𝑠

)︂
Pr [𝑁(𝑆) ⊆ 𝑇]

≤
𝛾𝑛∑︁
𝑠=1

(︂
𝑛

𝑠

)︂(︂
𝑘

𝛼𝑠

)︂(︁𝛼𝑠
𝑘

)︁𝑑𝑠
≤

𝛾𝑛∑︁
𝑠=1

(︂
𝑛𝑒

𝑠

(︂
𝑘𝑒

𝛼𝑠

)︂𝛼 (︁𝛼𝑠
𝑘

)︁𝑑)︂𝑠

where the last inequality follows from the fact that
(︂
𝑛

𝑘

)︂
≤
(︀
𝑛𝑒
𝑘

)︀𝑘.

Now we consolidate the terms in the above expression, and use the fact that

1 ≤ 𝑠 ≤ 𝛾𝑛. Further, as all terms are positive, extending the sum to infinity provides

103

an upper bound.

𝛾𝑛∑︁
𝑠=1

(︂
𝑛𝑒

𝑠

(︂
𝑘𝑒

𝛼𝑠

)︂𝛼 (︁𝛼𝑠
𝑘

)︁𝑑)︂𝑠

=

𝛾𝑛∑︁
𝑠=1

(︂
𝑛𝑒𝛼+1

𝑠

(︁𝛼𝑠
𝑘

)︁𝑑−𝛼)︂𝑠

≤
∞∑︁
𝑠=1

(︂
𝑛𝑒𝛼+1

(︁𝛼𝛾𝑛
𝑘

)︁𝑑−𝛼)︂𝑠

We now set the parameters as specified in the hypothesis: 𝑑 = log2(𝑘), 𝛾𝑛 = 𝑘
log3(𝑘)

,

𝛼 = 3𝑑
4
, and 𝑛 ≤ 𝑘𝑐 for some constant 𝑐 to get:

∞∑︁
𝑠=1

(︂
𝑛𝑒𝛼+1

(︁𝛼𝛾𝑛
𝑘

)︁𝑑−𝛼)︂𝑠

≤
∞∑︁
𝑠=1

(︃
𝑘𝑐𝑒

(︂
3𝑒3 log2(𝑘)

4

𝑘

𝑘 log3(𝑘)

)︂ 1
4
log2(𝑘)

)︃𝑠

For large enough 𝑘, the term inside the paranthesis is smaller than 1
2
. For such 𝑘,

the following holds:

∞∑︁
𝑠=1

(︃
𝑘𝑐𝑒

(︂
3𝑒3

4 log(𝑘)

)︂ 1
4
log2(𝑘)

)︃𝑠

≤ 2𝑘𝑐𝑒

(︂
3𝑒3

4 log(𝑘)

)︂ 1
4
log2(𝑘)

Asymptotically, the following relation may be seen by moving all terms to the

exponent:

2𝑘𝑐𝑒

(︂
3𝑒3

4 log(𝑘)

)︂ 1
4
log2(𝑘)

= 𝑒𝑥𝑝

[︂
1 + 𝑐 log(𝑘) +

(︂
3

4
log2(𝑘) + 1

)︂
log(𝑒)− 1

4
log2(𝑘) log

(︂
4

3
log(𝑘)

)︂]︂
= 2−Ω(log2(𝑘) log log(𝑘))

As noted at the beginning, this is also an upper bound on the probability that

a graph sampled with SMSamp(𝑛, 𝑘, 𝑑) conditioned on none of its calls to SRSamp

failing is not an (𝑛, 𝑘, 𝑑, 𝛾, 𝛼)-expander for these parameters. As the probability of

any call to SRSamp failing was also seen to be negligible, this shows the existence of

a negigible function 𝜈 as required.

Expander codes are linear codes that are constructed by taking the adjacency

104

matrix of a bipartite expander as the parity check matrix of the linear code. We

describe the following property of such codes.

Lemma 11. Let 𝐺 be an (𝑛, 𝑘, 𝑑, 𝛾, 𝛼) expander. If 𝛼 > 𝑑/2, the [𝑛, (𝑛 − 𝑘)]2 code

whose parity check matrix is A𝐺 has minimum distance greater than 𝛾𝑛.

Proof. Recall that for any 𝑆 ⊆ 𝐿, 𝑈(𝑆) is the set of vertices in 𝑅 that have exactly

one neighbour in 𝑆. We first show that in an (𝑛, 𝑘, 𝑑, 𝛾, 𝛼)-expander with 𝛼 > 𝑑/2,

𝑈(𝑆) is non-empty for all 𝑆 of size at most 𝛾𝑛.

This is because for any 𝑆 ⊆ 𝐿 of size at most 𝛾𝑛, 𝐺 being an expander implies

that |𝑁(𝑆)| ≥ 𝛼 |𝑆| > 𝑑 |𝑆| /2. We know that all vertices in 𝑆 have degree at most

𝑑, and so the number of outgoing edges from 𝑆 is at most 𝑑 |𝑆|. If 𝑈(𝑆) is empty,

this implies that all vertices in 𝑁(𝑆) have at least 2 edges from 𝑆, implying that the

number of edges from 𝑆 to 𝑁(𝑆) is at least 2 |𝑁(𝑆)| > 𝑑 |𝑆|, which is a contradiction.

Consider any non-zero codeword 𝑥 in the [𝑛, (𝑛 − 𝑘)]2 code that has A𝐺 as its

parity check matrix. The fact that 𝑥 belongs to the code implies that the rows

indexed by non-zero positions in 𝑥 sum to 0⃗𝑇 . But if 𝑥 ≤ 𝛾𝑛, the fact that 𝑈(𝑆) is

non-empty implies that there is at least one column such that exactly one of these

rows is non-zero in that column, which implies that the sum of all these rows cannot

be 0⃗𝑇 . So ‖𝑥‖ > 𝛾𝑛, and the distance of the code is more than 𝛾𝑛.

The following is implied immediately by Lemmas 10 and 11 and says that with

high probability the output of SMSamp defines a code with high distance.

Lemma 12 (Sampling codes). For any constant 𝑐 > 0, set 𝑛 = 𝑘𝑐, and 𝑑 = log2(𝑘).

For a matrix H, let 𝛿(H) denote the minimum distance of the code whose parity check

matrix is H. Then, there is a negligible function 𝜈 such that for any 𝑘 that is a power

of two,

Pr
H←SMSamp(𝑛,𝑘,𝑑)

[︂
𝛿(H) ≥ 𝑘

log3(𝑘)

]︂
≥ 1− 𝜈(𝑘)

Recall that a 𝛿-wise independent distribution over 𝑛 bits is one whose marginal

distribution on any set of 𝛿 bits is the uniform distribution.

105

Lemma 13 (Distance and Independence). Let H (of dimension 𝑛× 𝑘) be the parity

check matrix of an [𝑛, (𝑛− 𝑘)]2 linear code of minimum distance more than 𝛿. Then,

the distribution of H𝑥 is 𝛿-wise independent when 𝑥 is chosen uniformly at random

from {0, 1}𝑘.

Proof. The distance of the [𝑛, (𝑛− 𝑘)]2 code being more than 𝛿 implies that there is

no non-zero vector 𝑦 in {0, 1}𝑛 such that 𝑦𝑇H = 0⃗𝑇 and ‖�⃗�‖ ≤ 𝛿. In particular, this

implies that any set of 𝛿 rows of H are linearly independent. Hence, the restriction

of ℎ(𝑥) = H𝑥 to any set of 𝛿 bits is a full rank linear transformation, and if 𝑥

is distributed uniformly at random, then so are these bits. This implies that the

distribution of H𝑥 is 𝛿-wise independent.

The following is immediately implied by Lemmas 12, 13 and Theorem 19. It

effectively says that AC0 circuits cannot distinguish between (𝐴,𝐴𝑠) and (𝐴, 𝑟) when

𝐴 is sampled using SRSamp and 𝑠 and 𝑟 are chosen uniformly at random.

Lemma 14. For any polynomial 𝑛, there is a negligible function negl such that for

any Boolean family 𝒢 = {𝑔𝜆} ∈ AC0, and for any 𝑘 that is a power of 2, when

𝐴← SMSamp(𝑛(𝑘), 𝑘, log2(𝑘)), 𝑠← {0, 1}𝑘 and 𝑟 ← {0, 1}𝑛(𝑘),

|Pr [𝑔𝜆(𝐴,𝐴𝑠) = 1]− Pr [𝑔𝜆(𝐴, 𝑟) = 1]| ≤ negl(𝜆)

4.1.4 Randomized Encodings

The notion of randomized encodings of functions was introduced by Ishai and Kushile-

vitz [IK00] in the context of secure multi-party computation. Roughly, a randomized

encoding of a deterministic function 𝑓 is another deterministic function ̂︀𝑓 that is

easier to compute by some measure, and is such that for any input 𝑥, the distribu-

tion of ̂︀𝑓(𝑥, 𝑟) (when 𝑟 is chosen uniformly at random) reveals the value of 𝑓(𝑥) and

nothing more. This reduces the computation of 𝑓(𝑥) to determining some property

of the distribution of ̂︀𝑓(𝑥, 𝑟). Hence, randomized encodings offer a flavor of worst-

to-average case reduction — from computing 𝑓(𝑥) from 𝑥 to that of computing 𝑓(𝑥)

from random samples of ̂︀𝑓(𝑥, 𝑟).

106

We work with the following definition of Perfect Randomized Encodings from

[App14]. We note that constructions of such encodings for ⊕L/poly which are com-

putable in NC0 were presented in [IK00].

Definition 23 (Perfect Randomized Encodings). Let 𝑓 : {0, 1}𝑛 → {0, 1}𝑡 be a

deterministic function. We say that the deterministic function ̂︀𝑓 : {0, 1}𝑛×{0, 1}𝑚 →

{0, 1}𝑠 is a Perfect Randomized Encoding (PRE) of 𝑓 if the following conditions are

satisfied.

• Input independence: For every 𝑥, 𝑥′ ∈ {0, 1}𝑛 such that 𝑓(𝑥) = 𝑓(𝑥′), the

random variables ̂︀𝑓(𝑥, 𝑈𝑚) and ̂︀𝑓(𝑥′, 𝑈𝑚) are identically distributed.

• Output disjointness: For every 𝑥, 𝑥′ ∈ {0, 1}𝑛 such that 𝑓(𝑥) ̸= 𝑓(𝑥′),

Supp(̂︀𝑓(𝑥, 𝑈𝑚)) ∩ Supp(̂︀𝑓(𝑥′, 𝑈𝑚)) = 𝜑.

• Uniformity: For every 𝑥, ̂︀𝑓(𝑥, 𝑈𝑚) is uniform on its support.

• Balance: For every 𝑥, 𝑥′ ∈ {0, 1}𝑛,
⃒⃒⃒
Supp(̂︀𝑓(𝑥, 𝑈𝑚))

⃒⃒⃒
=
⃒⃒⃒
Supp(̂︀𝑓(𝑥′, 𝑈𝑚))

⃒⃒⃒
• Stretch preservation: 𝑠− (𝑛 + 𝑚) = 𝑡− 𝑛

Additionally, the PRE is said to be surjective if it also has the following property.

• Surjectivity: For every 𝑦 ∈ {0, 1}𝑠, there exist 𝑥 and 𝑟 such that ̂︀𝑓(𝑥, 𝑟) = 𝑦.

We naturally extend the definition of PREs to function families – a family ̂︀ℱ ={︁̂︀𝑓𝜆}︁ is a PRE of another family ℱ = {𝑓𝜆} if for all large enough 𝜆, ̂︀𝑓𝜆 is a PRE of 𝑓𝜆.

Note that this notion only makes sense for deterministic functions, and the functions

and families we assume or claim to have PREs are to be taken to be deterministic.

4.2 Cryptography Against AC0

In this section, we present some constructions of primitives unconditionally secure

against AC0 adversaries that are computable in AC0. This is almost the largest com-

plexity class (after AC0 with MOD gates) for which we can hope to get such uncon-

ditional results owing to a lack of better lower bounds. The randomized encoding

construction of [IK00] along with the lower bounds of [FSS84, Ajt83, Hås86] and

107

Theorem 26 implies the existence of One-Way Functions against AC0. In this section,

we present Pseudo-Random Generators with much better stretch than what is im-

plied by Theorem 26, and constructions of Weak PRFs, Symmetric Key Encryption,

and Collision Resistant Hash Functions. We end with a candidate for Public Key

Encryption against AC0 that we are unable to prove secure, but also do not have an

attack against.

4.2.1 High-Stretch Pseudo-Random Generators

We present here a construction of Pseudo-Random Generators against AC0 with arbi-

trary polynomial stretch that can be computed in AC0. In fact, the same techniques

can be used to obtain constant stretch generators computable in NC0 — see Remark

11 for details.

The key idea behind the construction is the following: [Bra10] implies that for

any constant 𝜖, an 𝑛𝜖-wise independent distribution will fool AC0 circuits of arbitrary

constant depth. So, being able to sample such distributions in AC0 suffices to construct

good PRGs. Expander codes provide one such construction. If 𝐻 is the parity-check

matrix of a code with large distance 𝑑, then the distribution 𝐻�⃗� is 𝑑-wise independent

for �⃗� being a uniformly random vector (by Lemma 13). For expander codes, the 𝐻

is sparse and hence we can compute the product 𝐻�⃗�.

Construction 4.2.1 AC0-PRG against AC0

For any polynomial 𝑙, we define the family ℱ 𝑙 =
{︁
𝑓 𝑙
𝜆 : {0, 1}𝜆 → {0, 1}𝑙(𝜆)

}︁
as follows.

Lemma 12 implies for large 𝜆, there is an [𝑙(𝜆), (𝑙(𝜆)−𝜆)]2 linear code with minimum
distance at least 𝜆

log3(𝜆)
whose parity check matrix has log2(𝜆) non-zero entries in each

row. Denote this parity check matrix by H𝑙,𝜆. The dimensions of H𝑙,𝜆 are 𝑙(𝜆)× 𝜆.

𝑓 𝑙
𝜆(�⃗�) = H𝑙,𝜆�⃗�

Theorem 21 (PRGs against AC0). For any polynomial 𝑙, the family ℱ 𝑙 from Con-

struction 4.2.1 is an AC0-PRG with multiplicative stretch
(︁

𝑙(𝜆)
𝜆

)︁
.

108

Proof. For any 𝑙, the most that needs to be done to compute 𝑓 𝑙
𝜆(𝑥) is computing the

product H𝑙,𝜆�⃗�. We know that each row of H𝑙,𝜆 contains at most log2(𝜆) non-zero

entries. Hence, by Lemma 8, ℱ 𝑙 is in AC0. The multiplicative stretch being
(︁

𝑙(𝜆)
𝜆

)︁
is

also easily verified.

For pseudo-randomness, we observe that the product H𝑙,𝜆�⃗� is Ω
(︁

𝜆
log3(𝜆)

)︁
-wise

independent, by Lemmas 13. And hence, Theorem 19 implies that this distribution

is pseudo-random to adversaries in AC0.

Remark 11. For any constant 𝑐, NC0-PRGs against AC0 that provide a multiplicative

stretch of 𝑘𝑐−1 can be obtained by noting that if we strengthen the hypothesis of

Lemma 10 by setting 𝑑 = 8𝑐, 𝛼 = 6𝑐, and 𝛾 = 𝜔(polylog(𝑘))
𝑛

, the lemma still holds, except

that the negligible function is now replaced with an inverse polynomial function, which

is still smaller than 1 for large enough 𝑘. As all we need for Construction 4.2.1 is

that a matrix of the necessary form exists, this suffices to construct a PRG that is

computable in NC0 using the same techniques.

4.2.2 Weak Pseudo-Random Functions

In this section, we describe our construction of Weak Pseudo-Random Functions

against AC0 computable in AC0 (Construction 4.2.2). Roughly, we know that for a

sparse matrix 𝐻 , (𝐻 ,𝐻k) is indistinguishable from (𝐻 , 𝑟) where 𝑟 and k are chosen

uniformly at random. We choose the key of the PRF to be a random vector k. On an

input �⃗�, the strategy is to use the input �⃗� to generate a sparse vector 𝑦 and then take

the inner product ⟨𝑦,k⟩. The security of this construction would stem from the fact

that after getting a lot of these random input-output pairs we can construct a sparse

matrix 𝐻 whose rows are the 𝑦’s and then apply the above indistinguishability.

Theorem 22 (PRFs against AC0). The pair of families (𝒦𝑒𝑦𝑔𝑒𝑛, ℰ𝑣𝑎𝑙) defined in

Construction 4.2.2 is a Weak AC0-PRF against AC0.

The intuitive reason one would think Construction 4.2.2 might be pseudo-random

is that a collection of random function values from a randomly sampled key seems to

contain the same information as (𝐻 ,𝐻k) where k is sampled uniformly at random

109

Construction 4.2.2 AC0-PRF against AC0

Let ℐ𝑡 = {𝑖𝑝𝑡𝜆} be the inner product family with threshold promise 𝑡 described in
Lemma 8. Define families 𝒦𝑒𝑦𝑔𝑒𝑛 = {KeyGen𝜆} and ℰ𝑣𝑎𝑙 = {Eval𝜆} as follows.
KeyGen𝜆:

1. Output a random vector k← {0, 1}⌊𝜆⌋2 .

Eval𝜆(k, 𝑟):
1. Compute 𝑦 ← SRSamp(⌊𝜆⌋2 , log2(⌊𝜆⌋2), 𝑟).

2. Output 𝑖𝑝
log2(𝜆)
⌊𝜆⌋2

(k,𝑦).

and 𝐻 is sampled using SMSamp: a matrix with sparse rows. We know from Lemma

12 that except with negligible probability, 𝐻 is going to be the parity check matrix of

a code with large distance, and when it is, the arguments from Section 4.2.1 show that

(𝐻 ,𝐻k) is indistinguishable from (𝐻 , 𝑟), where 𝑟 is sampled uniformly at random.

The only fact that prevents this from functioning as a proof is that what the ad-

versary gets is not (𝑦, ⟨𝑦,k⟩) where 𝑦 is an output of SRSamp, but rather (𝑟, ⟨𝑦,k⟩),

where 𝑟 is randomness that when used in SRSamp gives 𝑦. One way to show that

this is still pseudo-random is to reduce the case where the input is (𝑦, ⟨𝑦, �⃗�⟩) to the

case where the input is (r, ⟨𝑦, �⃗�⟩) using an AC0-reduction. To do this, one would need

an AC0 circuit that would, given 𝑦, sample from a distribution close to the uniform

distribution over 𝑟’s that cause SRSamp to output 𝑦 when used as randomness. We

implement this proof strategy below. To prove Theorem 22, we first show that there

exists an AC0 circuit that would, given 𝑦, sample from a distribution close to the uni-

form distribution over r’s that cause SRSamp to output 𝑦 when used as randomness.

Lemma 15 (Inverting SRSamp). For any constant 𝑐, there exists another constant

𝑐′ and a polynomial 𝑠 such that for any 𝑘 that is a power of 2 and 𝑑 = Θ(log𝑐(𝑘)),

there is a (randomised) circuit 𝐶𝑖𝑛𝑣
𝑘,𝑑 of size at most 𝑠(𝑘) and depth 𝑐′, and a negligible

function 𝜈 such that for any 𝑦 ∈ {0, 1}𝑘 that has exactly 𝑑 non-zero entries,

∆(𝐶𝑖𝑛𝑣
𝑘,𝑑 (𝑦), 𝑈𝑅𝑦) ≤ 𝜈(𝑘)

110

where 𝑅𝑦 = {r | SRSamp(𝑘, 𝑑, r) = 𝑦}.

Proof. For any 𝑘 that is a power of 2 and any 𝑑, given input 𝑦 of length 𝑘 and with

exactly 𝑑 non-zero entries, consider the following inverting procedure:

1. Let 𝑧 = (𝑧1, . . . , 𝑧𝑑), where the 𝑧𝑗’s are the indices (written as strings in

{0, 1}log(𝑘)) of non-zero entries in 𝑦.

2. Permute the elements of 𝑧 at random. Let 𝑧′ be the result of this operation.

3. Generate 𝑑 sets {𝑣𝑖 = (𝑣𝑖1, . . . , 𝑣𝑖𝑑)}𝑖∈[𝑑], where each 𝑣𝑖𝑗 ∈ {0, 1}log(𝑘). If there

is no 𝑖 ∈ [𝑑] such that there are no collisions among the elements of 𝑣𝑖, output

𝑣 = (𝑣1, . . . , 𝑣𝑑).

4. Otherwise, replace the first r𝑖 that has no collisions with 𝑧′ and output 𝑣 =

(𝑣1, . . . , 𝑣𝑖−1, 𝑧
′, 𝑣𝑖+1, . . . , 𝑣𝑑).

We first describe why this samples from a favourable distribution and then how

to sample from a distribution negligibly close to this in AC0. If none of the r𝑖’s are

free of collisions, then the output of this procedure when used as randomness will

actually not cause SRSamp to output 𝑦. But the probability that this happens is at

most
(︁

𝑑2

𝑘

)︁𝑑
(see proof of Lemma 9).

Conditioned on the above not happening, we claim that the distribution of outputs

is uniform over 𝑅𝑦. It is clear by the definition of SRSamp that for any 𝑣′ that is output

by this procedure, 𝑣 ∈ 𝑅𝑦, and also that any 𝑣 ∈ 𝑅𝑦 is output by this procedure with

non-zero probability.

Consider any 𝑣′ = (𝑣′1, . . . , 𝑣
′
𝑑) ∈ 𝑅𝑦. Let 𝑧 be as described in the above procedure.

The fact that 𝑣′ is in 𝑅𝑦 implies that there is some 𝑖 ∈ [𝑑] such that 𝑣′𝑖 is some

permutation of 𝑧 and for all 𝑗 < 𝑖, r′𝑗 contains a collision. The probability that 𝑣′ is

output by the above procedure is the probability that all of the following three events

happen:

1. 𝑣′1, . . . , 𝑣
′
𝑖−1, 𝑣

′
𝑖+1, . . . , 𝑣

′
𝑑 are sampled in step 3 of the procedure when a random

𝑣 is sampled.

111

2. 𝑣𝑖 is sampled to be free of collisions.

3. 𝑧′ is equal to 𝑣′𝑖.

Note that all three of these events are independent, and their probabilities do not

depend on the value of 𝑖 or that of any of the 𝑣′𝑗s. Hence, conditioned on outputting

a 𝑣′ ∈ 𝑅𝑦, the above procedure outputs a uniformly random element from 𝑅𝑦, and so

the distance of its output distribution from the uniform distribution over 𝑅𝑦 is at most

the probability that it fails, which is
(︁

𝑑2

𝑘

)︁𝑑
, which is negligible when 𝑑 = Θ(log𝑐(𝑘))

for some constant 𝑐.

Now we explain why each of the steps above can be performed by a constant depth

circuit in the case where 𝑑 = 𝑂(log𝑐(𝑘)) for some 𝑐, with a negligible probability of

failure. Recall that the input is a string 𝑦 of length 𝑘 that has exactly 𝑑 non-zero

entries.

1. To compute 𝑧, let 𝐻𝑎𝑚𝑗−1,𝑙−1 be the constant depth circuit that computes that

takes inputs of length (𝑙 − 1) and checks whether the Hamming weight of its

input is (𝑗 − 1). By Theorem 20, such a circuit exists for 𝑗 ≤ 𝑑 = 𝑂(log𝑐(𝑘)).

Note that out of all 𝑙 ∈ [𝑑], exactly one of (𝑦𝑙 ∧𝐻𝑎𝑚𝑗−1,𝑙−1(𝑦1 . . . 𝑦𝑙−1)) is true.

So 𝑧𝑗 can be computed as follows:

𝑧𝑗 =
⋁︁
𝑙∈[𝑑]

[𝑙 ∧ (𝑦𝑙 ∧𝐻𝑎𝑚𝑗−1,𝑙−1(𝑦1 . . . 𝑦𝑙−1))]

where by (𝑙∧𝜑), we mean the log(𝑘)-bit string whose 𝑖th bit is equal to the 𝑖th

bit of 𝑙 if 𝜑 is true, and is 0 otherwise.

2. While it is not clear how to sample uniformly from the set of all permutations of

a given tuple of elements in constant depth, it turns out to be possible to sample

from a distribution sufficiently close to this when there are only 𝑂(log𝑐(𝑘))

elements that are all distinct.

• Choose 𝑑 numbers 𝑝1, . . . , 𝑝𝑑 ∈ [𝑘]. The probability that two of them are

equal is at most
(︁

𝑑2

𝑘

)︁
.

112

• Repeat this process at most 𝑑 times, till a set of 𝑝1, . . . , 𝑝𝑑 are chosen

without collisions. If no such set is found, output 𝑧′ = 𝑧 itself.

• Note that all this - checking whether there are any collisions and picking

the first set without any - can be done in parallel in constant depth, and

the probability that the above step fails is at most
(︁

𝑑2

𝑘

)︁𝑑
.

• Compute the string 𝑠 ∈ {0, 1}𝑘 where 𝑠𝑖 = 1 iff there is a 𝑗 such that 𝑝𝑗 = 𝑖.

Also compute 𝑜 ∈ {0, 1}𝑘 log(𝑘) where 𝑜𝑖 = 𝑗 if 𝑝𝑗 = 𝑖, and 𝑜𝑗 = 0log(𝑘)

otherwise.

• Compute the permuted string 𝑧′ as:

𝑧′𝑗 =
⋁︁
𝑙∈[𝑑]

[𝑜𝑙 ∧ (𝑠𝑙 ∧𝐻𝑎𝑚𝑗−1,𝑙−1(𝑠1 . . . 𝑠𝑙−1))]

3. As noted in the point above, steps 3 and 4 of the procedure, which involve

finding and replacing with 𝑧′ a set that has no collisions, can also be done in

constant depth.

The above randomised circuit computes the same distribution as the inversion pro-

cedure described above except with probability at most
(︁

𝑑2

𝑘

)︁𝑑
. So the distance of the

distribution produced from the uniform distribution over 𝑅𝑦 is at most 𝑂
(︂(︁

𝑑2

𝑘

)︁𝑑)︂
=

𝑂

(︂(︁
log2𝑐(𝑘)

𝑘

)︁log𝑐(𝑘))︂
, which is negligible.

Proof of Theorem 22. 𝒦𝑒𝑦𝐺𝑒𝑛 and ℰ𝑣𝑎𝑙 are both in AC0 because KeyGen𝜆 simply

outputs random strings, and Eval𝜆 first calls SRSamp, which can be done in constant

depth and outputs a vector with at most log2(𝜆) non-zero entries, and then computes

inner product of this sparse vector with another vector using 𝑖𝑝
log2(𝜆)
⌊𝜆⌋2

, which can again

be done in constant depth as noted in Lemma 8. Non-triviality is also easily seen to

be satisfied.

Consider any AC0 family 𝒢 =
{︁
𝑔𝜆 : {0, 1}(𝜆+1)𝑛(𝜆) → {0, 1}

}︁
, where 𝑛 is some

polynomial. To simplify presentation, we prove pseudo-randomness when 𝜆 is a power

of 2; the other case may be proven very similarly.

113

We show that any pair of consecutive distributions among the following are in-

distinguishable by AC0 adversaries for large enough 𝜆. Below, 𝑘, �⃗�𝑖 ← {0, 1}𝜆,

𝑦𝑖 ← 𝑆𝑝𝑅𝜆,log2(𝜆), 𝑤𝑖 ← 𝑅𝑦𝑖 , 𝑧𝑖 ← 𝐶𝑖𝑛𝑣
𝜆,log2(𝜆)

(𝑦𝑖), r𝑖 ← {0, 1}𝜆−log
5(𝜆), and 𝑏𝑖 ← {0, 1}.

𝐷1: {(�⃗�𝑖,Eval𝜆(𝑘, �⃗�𝑖))}𝑖∈[𝑛(𝜆)]

𝐷2: {(𝑤𝑖||r𝑖,Eval𝜆(𝑘, 𝑤𝑖))}𝑖∈[𝑛(𝜆)]

𝐷3: {(𝑤𝑖||r𝑖, ⟨𝑘, 𝑦𝑖⟩)}𝑖∈[𝑛(𝜆)]

𝐷4: {(𝑧𝑖||r𝑖, ⟨𝑘, 𝑦𝑖⟩)}𝑖∈[𝑛(𝜆)]

𝐷5: {(𝑧𝑖||r𝑖, 𝑏𝑖)}𝑖∈[𝑛(𝜆)]

𝐷6: {(𝑤𝑖||r𝑖, 𝑏𝑖)}𝑖∈[𝑛(𝜆)]

𝐷7: {(�⃗�𝑖, 𝑏𝑖)}𝑖∈[𝑛(𝜆)]

𝐷1 and 𝐷2 are statistically close because 𝑤𝑖 is uniformly distributed over strings

that do not cause SRSamp(𝜆, log2(𝜆), 𝑤𝑖) to fail, which is shown to be a negligible

fraction in Lemma 9. 𝐷3 is simply a re-writing of 𝐷2 because of how Eval𝜆 works.

𝐷3 and 𝐷4 are statistically close by Lemma 15. 𝐷4 and 𝐷5 are indistinguishable

by AC0 adversaries because Lemma 14 says that {(𝑦𝑖, ⟨𝑘, 𝑦𝑖⟩)} and {(𝑦𝑖, 𝑏𝑖)} are indis-

tinguishable by AC0, and 𝐷4 and 𝐷5 can be sampled using samples from these two

distributions, respectively, in AC0, as shown in Lemma 15.

𝐷5 and 𝐷6 are statistically close by Lemma 15. 𝐷6 and 𝐷7 are statistically close

for the same reason as 𝐷1 and 𝐷2.

𝐷1 is the distribution of random evaluations of Construction 4.2.2, and 𝐷7 is

the distribution of random evaluations of a random function. So we have shown

that 𝑔𝜆 cannot distinguish between these, which proves the pseudo-randomness of

Construction 4.2.2 against AC0 adversaries.

Remark 12. Note that this construction cannot be a strong PRF for any reason-

able definition of that notion. If the adversary is able to select the inputs for

function evaluations, it could easily distinguish a function from Construction 4.2.2

114

from a random function by choosing �⃗�1, �⃗�2, �⃗�3 such that SRSamp(𝜆, log2 𝜆, �⃗�1) +

SRSamp(𝜆, log2 𝜆, �⃗�2) = SRSamp(𝜆, log2 𝜆, �⃗�3) and then checking if 𝑓(�⃗�1) + 𝑓(�⃗�2) =

𝑓(�⃗�3).

Construction 4.2.2 of Weak PRFs achieves only quasi-polynomial security - that

is, there is no guarantee that some AC0 adversary may not have an inverse quasi-

polynomial advantage in distinguishing between the PRF and a random function. Due

to the seminal work of Linial-Mansour-Nisan [LMN93] and subsequent improvements

in [Tal14], we know that this barrier is inherent and we cannot hope for exponential

security, as detailed in Observation 1.

Observation 1. For any set of Boolean functions, all of which are computable by

circuits of size 𝑚 and depth 𝑑, there is a circuit of size 𝑝𝑜𝑙𝑦(𝑚) and depth 𝑂(𝑑) which

can distinguish a random function from this set from a random function with an

advantage of 1

𝑚Ω(log𝑑−1 𝑚)
given only function evaluations on randomly chosen inputs.

Proof. By [LMN93], any Boolean function 𝑓 computed by a circuit of size 𝑚 and

depth 𝑑 has over a constant fraction of its Fourier mass on coefficients of degree

𝑂(log𝑑−1𝑚). So, there is a Fourier Coefficient of degree ≤ 𝑂(log𝑑−1𝑚) with over
1

𝑚Ω(log𝑑−1 𝑚)
Fourier mass.

This gives us a simple AC0 attack - try to guess this Fourier coefficient and estimate

the correlation using two samples - r1, r2 ← {0, 1}𝜆.

𝐴((r1, 𝑓(r1)), (r2, 𝑓(r2)):

1. Guess a Fourier coefficient 𝑠 of degree ≤ 𝑂(log𝑑−1𝑚)

2. If (𝜒𝑠(r1)⊕ 𝑓(r1)) = (𝜒𝑠(r2)⊕ 𝑓(r2)) Output 1 else 0.

For a random function, this adversary would output 1 exactly with probability

1/2. On the other hand, let ̂︀𝑓(𝑠) = E [𝑓(𝑥)⊕ 𝜒𝑠(𝑥)] be the Fourier coefficient. Then

the probability of two samples being equal would be (1−
̂︀𝑓(𝑠)
2

)2 + (1+
̂︀𝑓(𝑠)
2

)2 = 1
2

+
̂︀𝑓(𝑠)2
2

.

So, in expectation over 𝑠, the distinguishing advantage of this adversary would be

E𝑠

[︁ ̂︀𝑓(𝑠)2
]︁

= Ω(1

𝑚Ω(log𝑑−1)𝑚
).

115

4.2.3 Symmetric Key Encryption

In this section, we present a Symmetric Key Encryption scheme against AC0 com-

putable in AC0, which is also additively homomorphic - a property that shall be useful

in constructing Collision Resistant Hash Functions later on.

In Section 4.2.2, we saw a construction of Weak PRFs. And Weak PRFs give us

Symmetric Key Encryption generically (where Enc(k, 𝑏) = (r,PRF(k, r) ⊕ 𝑏)). For

the Weak PRF construction from Section 4.2.2, this implied scheme also happens to

be additively homomorphic. But it has the issue that the last bit of the ciphertext is

an almost unbiased bit and hence it is not feasible to do more than polylog(𝜆) homo-

morphic evaluations on collections of ciphertexts in AC0. So, we construct a different

Symmetric Key Encryption scheme that does not suffer from this drawback and is

still additively homomorphic. Then we will use this scheme to construct Collision

Resistant Hash Functions. This scheme is described in Construction 4.2.3. In this

scheme we choose the ciphertext by performing rejection sampling in parallel. For

encrypting a bit 𝑏, we sample a ciphertext c such that c is sparse and ⟨c,k⟩ = 𝑏. This

ensures that the we have an additively homomorphic scheme where all the bits are

sparse.

Construction 4.2.3 AC0-Symmetric Key Encryption against AC0

Let ℐ𝑡 = {𝑖𝑝𝑡𝜆} be the inner product family with threshold promise 𝑡 described in
Lemma 8. Define families 𝒦𝑒𝑦𝐺𝑒𝑛 = {KeyGen𝜆}, ℰ𝑛𝑐 = {Enc𝜆}, and 𝒟𝑒𝑐 = {Dec𝜆}
as below.
KeyGen𝜆:

1. Output k← {0, 1}⌊𝜆⌋2 .

Enc𝜆(k, 𝑏):
1. For 𝑖 ∈ [𝜆], sample c𝑖 ← SRSamp(⌊𝜆⌋2 , log2(⌊𝜆⌋2)).
2. Choose the first 𝑖 such that ⟨c𝑖,k⟩ = 𝑏.

3. If such an 𝑖 exists, output c𝑖, else output 0⌊𝜆⌋2 .

Dec𝜆(k, c):

1. Output 𝑖𝑝
log2(𝜆)
⌊𝜆⌋2

(k, c).

116

Theorem 23 (Symmetric Encryption Against AC0). The tuple composed of the fam-

ilies (𝒦𝑒𝑦𝑔𝑒𝑛, ℰ𝑛𝑐,𝒟𝑒𝑐) defined in Construction 4.2.3 is an AC0-Symmetric-Key Bit-

Encryption Scheme against AC0.

The key idea behind the proof is showing that for most keys, encryption via

rejection sampling for a randomly chosen bit 𝑏, that is,

𝐷1 = {(𝑏,Enc𝜆(k, 𝑏)) | 𝑏← {0, 1}}

is statistically close to the distribution where we pick the encryption randomness r

first and then the bit is the inner product, that is,

𝐷2 =
{︀

(⟨r,k⟩, r) | r← SRSamp(𝜆, log2 𝜆)
}︀

The second distribution is similar to the weak PRF distribution whose security we

have already proved. We implement this strategy below.

We begin by establishing some properties of the encryption scheme. This first

lemma says that most keys generated by KeyGen𝜆 are balanced. It follows easily from

the Chernoff bound when applied to the Hamming weight of a random string of length

𝜆.

Lemma 16. For the family 𝒦𝑒𝑦𝐺𝑒𝑛 = KeyGen𝜆 defined in Construction 4.2.3, for

any 𝜆,

Pr
k←KeyGen𝜆

[︂
‖k‖ ∈

(︂
𝜆

2
−
√
𝜆 log2 𝜆,

𝜆

2
+
√
𝜆 log2 𝜆

)︂]︂
> 1− negl(𝜆)

The following lemma states that for a vector k that is almost balanced, its inner

product with a random sparse vector is almost unbiased.

Lemma 17. For k of length 𝜆 such that ‖k‖ ∈
(︁

𝜆
2
−
√
𝜆 log2 𝜆, 𝜆

2
+
√
𝜆 log2 𝜆

)︁
,

⃒⃒⃒⃒
Pr

r←SRSamp(𝜆,log2(𝜆))
[⟨r,k⟩ = 0]− Pr

r←SRSamp(𝜆,log2(𝜆))
[⟨r,k⟩ = 1]

⃒⃒⃒⃒
< negl(𝜆)

117

Proof. Let 𝑛 = ‖k‖ and 𝑚 = 𝜆−‖k‖. Below, r is sampled using SRSamp(𝜆, log2(𝜆)).

In the inner product ⟨r,k⟩, we start with an almost balanced k, the randomness

r is used to choose log2 𝜆 coordinates of the key and then we xor these. We want to

show that his output is almost unbiased.

The number of possibilities for ⟨r,k⟩ = 0 is
∑︀

𝑖 is even

(︂
𝑛

𝑖

)︂(︂
𝑚

𝑑− 𝑖

)︂
. That is number

of ones chosen is even. This gives us:

Pr
r

[⟨r,k⟩ = 0]− Pr
r

[⟨r,k⟩ = 1] =

∑︀
𝑖+𝑗=𝑑(−1)𝑖

(︂
𝑛

𝑖

)︂(︂
𝑚

𝑗

)︂
(︂
𝑚 + 𝑛

𝑑

)︂

We want to show that this is negligible. The way we do this is by considering the

generating function of the term and interpreting it differently. So, consider the gen-

erating function of
∑︀

𝑖+𝑗=𝑑(−1)𝑖
(︂
𝑛

𝑖

)︂(︂
𝑚

𝑗

)︂
. It is (1− 𝑥)𝑛(1 + 𝑥)𝑚 with the coefficient

of 𝑥𝑑 being the required value. Without loss of generality say 𝑚 ≥ 𝑛. We get an

identity by rewriting (1− 𝑥)𝑚(1 + 𝑥)𝑛 = (1− 𝑥2)𝑛(1 + 𝑥)𝑚−𝑛 and then looking at the

coefficient of 𝑥𝑑. It is -
∑︀

𝑖≤𝑑/2(−1)𝑖
(︂
𝑛

𝑖

)︂(︂
𝑚− 𝑛

𝑑− 2𝑖

)︂
. So we get the identity:

∑︁
𝑖+𝑗=𝑑

(−1)𝑖
(︂
𝑛

𝑖

)︂(︂
𝑚

𝑗

)︂
=
∑︁
𝑖≤𝑑/2

(−1)𝑖
(︂
𝑛

𝑖

)︂(︂
𝑚− 𝑛

𝑑− 2𝑖

)︂

We know that
∑︀

𝑖≤𝑑/2(−1)𝑖
(︂
𝑛

𝑖

)︂(︂
𝑚− 𝑛

𝑑− 2𝑖

)︂
< 𝑑

(︂
𝑛

𝑑/2

)︂(︂
𝑚− 𝑛

𝑑

)︂
. We want to show

that this is negligible compared to
(︂
𝑚 + 𝑛

𝑑

)︂
.

𝑑

(︂
𝑛

𝑑/2

)︂(︂
𝑚− 𝑛

𝑑

)︂
(︂
𝑚 + 𝑛

𝑑

)︂ <
𝑑
(︁√

𝑛𝑒
𝑑

)︁𝑑 (︁
𝑛𝑒
𝑑/2

)︁𝑑/2
(︀
2𝑛
𝑑

)︀𝑑 <

(︂
𝑒3/2

𝑑

)︂𝑑

which is negligible.

The following lemma states that the rejection sampling performed in Enc𝜆 fails

only with negligible probability for balanced keys. It follows from the statement of

118

Lemma 17 that each ⟨r𝑖,k⟩ is an independent coin flip with negligible bias. Hence

the probability that none of them would equal 𝑏 is exponentially small.

Lemma 18. For every 𝑏 ∈ {0, 1} and any vector k of length 𝜆 such that ‖k‖ ∈(︁
𝜆
2
−
√
𝜆 log2 𝜆, 𝜆

2
+
√
𝜆 log2 𝜆

)︁
,

Pr
r1,...,r𝜆←SRSamp(𝜆,log2(𝜆))

[∀𝑖 : ⟨r𝑖,k⟩ ≠ 𝑏] < negl(𝜆)

The following lemma states that for keys that are almost balanced in Hamming

weight, the distribution of random bits with their encryptions under a key is similar

to the distribution of inner products of random sparse vectors with the key with the

sparse vectors.

Lemma 19. For any k ∈ {0, 1}𝜆 such that ‖k‖ ∈
(︁

𝜆
2
−
√
𝜆 log2 𝜆, 𝜆

2
+
√
𝜆 log2 𝜆

)︁
,

define the following distributions:

• 𝐷1 = {(𝑏,Enc𝜆(𝑏,k)) | 𝑏← {0, 1}}

• 𝐷2 =
{︀

(⟨r,k⟩, r) | r← SRSamp(𝜆, log2 𝜆)
}︀

Then,

∆(𝐷1, 𝐷2) < negl(𝜆)

Proof. It follows from the definition of Enc𝜆 and Lemma 18 that the when conditioned

on ⟨r,k⟩ = 𝑏, the distributions of r and Enc𝜆(k, 𝑏) are negligibly close. According to

Lemma 17, ⟨r,k⟩ is almost unbiased, and its distribution is negligibly close to that

of 𝑏. These two facts together imply that 𝐷1 and 𝐷2 are negligibly close.

The semantic security definition is presented as a game in Figure 4-1. Here we

choose a non-adaptive notion of security because it is a bit-encryption scheme and

for the given adversary model considered - AC0 adversaries, adaptivity can only be

very limited because it increases depth. We also define two other games as shown in

the same figure. The advantage of the adversary in each game is:
⃒⃒
Pr [𝑏′ = 𝑏]− 1

2

⃒⃒
.

The following claims state that the advantage of AC0 adversaries in all these games

are comparable, a fact that will be useful in proving Theorem 23.

119

Game 1 - Semantic Security

Ch Adv

k← KeyGen𝜆

{︀
c0𝑖
}︀
𝑖
← Enc𝜆 (k, 0){︀

c1𝑖
}︀
𝑖
← Enc𝜆(k, 1)

𝑏← {0, 1} c = Enc𝜆(k, 𝑏)

𝑏′

Game 2 - Random Samples

Ch Adv

k← KeyGen𝜆,

{𝑏𝑖}𝑖 ← {0, 1} {(𝑏𝑖,Enc𝜆(k, 𝑏𝑖))}𝑖

𝑏← {0, 1} c = Enc𝜆(k, 𝑏)

𝑏′

Game 3 - Assumption

Ch Adv

k← KeyGen𝜆,

{r𝑖}𝑖 ← SRSamp {(⟨k, r𝑖⟩, r𝑖)}𝑖

𝑏← {0, 1} c = Enc𝜆(k, 𝑏)

𝑏′

Figure 4-1: Security Games

Claim 1. For any adversary 𝒜 ∈ AC0 with advantage 𝜖(𝜆) in the Game 1, we can

construct an adversary ℬ ∈ AC0 that has advantage
(︀
𝜖(𝜆)− 2−𝜆(𝑛0(𝜆) + 𝑛1(𝜆))

)︀
in

Game 2.

Proof. The adversary 𝐵 takes (𝑛1(𝜆)+𝑛2(𝜆))𝜆 samples and then selects 𝑛0(𝜆) samples

with 𝑏 = 0 and 𝑛1(𝜆) samples with 𝑏 = 1 and feeds them to 𝐴 along with the challenge

𝑏. The way it does this is it for every sample required, it takes 𝜆 samples from the

set of samples it has and selects the first one that has the required bit 𝑏 encrypted.

It can do this for all the required bits in parallel and constant depth. The only case

when 𝐵 diverges from 𝐴 is when all of some set of 𝜆 samples are of 𝑏. Happens with

probability 2𝜆. We take a union bound over the (𝑛0(𝜆) + 𝑛1(𝜆)) samples.

Claim 2. Any adversary 𝒜 ∈ AC0 has comparable advantage in Game 2 and Game

3.

Proof. The input distributions - {(𝑏𝑖,Enc𝜆(k, 𝑏𝑖))}𝑖 and {(⟨k, r𝑖⟩, r𝑖)}𝑖 have negligible

statistical distance. Because from Lemma 19 we know that for balanced keys the

120

distributions {(𝑏𝑖,Enc𝜆(k, 𝑏𝑖))} and {(⟨k, r𝑖⟩, r𝑖)} have negligible statistical distance.

Hence the input distributions which are 𝑚(𝜆) independent copies of the distributions

also have negligible statistical distance. We also know from Lemma 16 that the key

is balanced except with negligible probability. And hence any adversary cannot have

a non-negligible difference in the advantage.

Proof of Theorem 23. It is easy to see that 𝒦𝑒𝑦𝐺𝑒𝑛 ∈ AC0. Enc𝜆 can be computed

in constant depth because SRSamp can, the inner product in step 2 is with an output

of SRSamp, which is sparse, and the first 𝑖 such that ⟨r𝑖,k⟩ = 𝑏 can also be found in

constant depth. Dec𝜆 can be computed in constant depth as stated in Lemma 8. So

computability is satisfied. Non-triviality is also easily seen to be satisfied.

Correctness follows from Lemma 18, which implies that if the key generated by

KeyGen𝜆 is balanced, the ciphertext is generated correctly by Enc𝜆 except with neg-

ligible probability. Lemma 16 says that the key is unbalanced only with negligible

probability. Also, for any k and any ciphertext c generated by Enc𝜆, Dec𝜆(k, c) is

actually equal to ⟨k, c⟩ because the are outputs of Enc𝜆 are always sparse. So ex-

cept with negligible probability over the randomness in the generation of keys and

encryption, decryption is correct.

Due to Claims 1 and 2, it is sufficient to prove that any AC0 adversary has negligible

advantage in Game 3 to prove semantic security. We prove this for the case where

𝜆 is a power of 2; the proof for the other case then follows immediately from the

observation that ⌊𝜆⌋2 = Θ(𝜆).

Essentially in the form of samples, the adversary gets (𝑅,𝑅k) where 𝑅 ←

SMSamp(𝑚(𝜆), 𝜆, log2 𝜆) and k ← {0, 1}𝜆. Let the challenge be (r⋆, 𝑏), where 𝑏 ←

{0, 1} and r⋆ ← Enc𝜆(k, 𝑏). Consider the matrix

⎛⎝ 𝑅 𝑅k

r⋆ 𝑏

⎞⎠. This is indistinguish-

able from

⎛⎝ 𝑅 r

r⋆ r′

⎞⎠ where r ← {0, 1}𝜆, r′ ← {0, 1}, and r⋆ ← SRSamp(𝜆, log2(𝜆))

for AC0 circuits from Lemmas 14 and 19. Any adversary that has non-negligible

advantage in Game 3 can be used to distinguish these two distributions. Hence no

adversary has non-negligible advantage in Game 3.

121

We further claim that the adversary cannot distinguish between encryptions of two

messages of its own choosing. We formalize this using the security game in Theorem

24.

Theorem 24. No AC0 adversary has non-negligible advantage against the Symmetric

Key Encryption scheme from Construction 4.2.3 in the Multibit Semantic Security

game given below.

1. k← KeyGen𝜆

2. (𝑚0,𝑚1, state)← 𝒜1 where |𝑚0| = |𝑚1| = poly(𝜆).

3. 𝑏′ = 𝒜2(Enc𝜆(k,𝑚𝑏), state) where 𝑏← {0, 1}.

4. Adversary wins if 𝑏 = 𝑏′.

Proof. The way we prove this is by a sequence of hybrids. Consider 𝑚′
𝑖 to be the

message obtained by concatenating the first 𝑖 bits of 𝑚0 and the last 𝑛 − 𝑖 bits of

𝑚1.

𝑚′
𝑖(𝑥) =

⎧⎪⎨⎪⎩𝑚0(𝑥) if 𝑥 ≤ 𝑖

𝑚1(𝑥) if 𝑥 > 𝑖

In hybrid 𝑖, the adversary has to distinguish the Enc(k,𝑚′
𝑖) from Enc(k,𝑚′

𝑖+1). The

advantage the adversary has in distinguishing between Enc(k,𝑚0) and Enc(k,𝑚1) is

at most the sum of advantages in each of the hybrids. We show that the adversary

has negligible advantage in each of the hybrids from the fact that the messages 𝑚′
𝑖

and 𝑚′
𝑖+1 differ only in one bit.

If there exists an AC0 adversary 𝐴 that has a non-negligible advantage in dis-

tinguishing between Enc(k,𝑚′
𝑖) and Enc(k,𝑚′

𝑖+1) we use the adversary to construct

an adversary 𝐵 that has non-negligible advantage in the Single bit semantic security

game. Let c be the challenge. We use the encryptions {c0𝑖 } of 0 and {c1𝑖 } of 1 to

122

construct the input -

c⋆(𝑗) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c If 𝑗 = 𝑖 + 1

Enc(k,𝑚0(𝑗)) If 𝑗 ≤ 𝑖

Enc(k,𝑚1(𝑗)) If 𝑗 > 𝑖 + 1

c⋆ has the same distribution as
{︀
𝑚′

𝑖,𝑚
′
𝑖+1

}︀
and hence we can use this adversary

to distinguish in the one-bit semantic security game.

Hence the advantage in each of the hybrids is negligible.

4.2.4 Collision Resistant Hash Functions

To construct Collision Resistant Hash Functions (CRHFs), we use the additive ho-

momorphism of the Symmetric Key Encryption scheme constructed in Section 4.2.3.

Each function in the family of hash functions is given by a matrix whose columns are

ciphertexts from the encryption scheme, and evaluation is done by treating the input

as a column vector and computing its product with this matrix (effectively computing

a linear combination of ciphertexts). To find collisions, the adversary needs to come

up with a vector in the kernel of this matrix. We show that constant depth circuits

of polynomial size cannot do this for most such matrices. This is because the all-zero

vector is a valid encryption of 0 in our encryption scheme, and as this scheme is

additively homomorphic, finding a subset of ciphertexts that sum to zero is roughly

the same as finding a subset of the corresponding messages that sum to 0, and this

is a violation of semantic security.

Theorem 25 (CRHFs Against AC0). For any polylogarithmic function 𝑠, the pair of

families (𝒦𝑒𝑦𝐺𝑒𝑛𝑠, ℰ𝑣𝑎𝑙𝑠), from Construction 4.2.4 is an AC0-CRHF with compres-

sion 𝑠.

Proof. Throughout this proof, it will be useful to think of the hash function index

𝑀 as a matrix whose columns are the 𝑚𝑖’s, and whose rows are the 𝑟𝑗’s. What

Eval𝑠𝜆(𝑀 , �⃗�) effectively does now is compute the product 𝑀 �⃗�. As in the construction,

123

Construction 4.2.4 AC0-CRHFs against AC0

Let ℐ𝑡 = {𝑖𝑝𝑡𝜆} be the inner product family with threshold promise 𝑡 described in
Lemma 8. Let (𝒦𝑒𝑦𝐺𝑒𝑛𝐸𝑛𝑐, ℰ𝑛𝑐𝐸𝑛𝑐) be the SKE scheme from Construction 4.2.3.
Let 𝑙(𝜆) =

⌊︁
𝜆

𝑠(𝜆)

⌋︁
2
.

For any 𝑠 : N → N such that 𝑠(𝜆) = 𝑂(log𝑐(𝜆)) for some constant 𝑐, we define the
families 𝒦𝑒𝑦𝐺𝑒𝑛𝑠 = {KeyGen𝑠𝜆} and ℰ𝑣𝑎𝑙𝑠 = {Eval𝑠𝜆} as follows.

KeyGen𝑠𝜆:
1. Sample k← KeyGen𝐸𝑛𝑐

𝑙(𝜆) , and 𝑏1, . . . , 𝑏𝜆 ← {0, 1}.

2. Output 𝑀 = (𝑚1, . . . ,𝑚𝜆), where 𝑚𝑖 ← Enc𝐸𝑛𝑐
𝑙(𝜆) (k, 𝑏𝑖).

Eval𝑠𝜆(𝑀 , �⃗�):
1. Note that 𝑀 = (𝑚1, . . . ,𝑚𝜆), where each 𝑚𝑖 is of length 𝑙(𝜆).

2. For 𝑗 ∈ [𝑙(𝜆)], let 𝑟𝑗 = (𝑚1𝑗, . . . ,𝑚𝜆𝑗) (the 𝑗th bit of each 𝑚𝑖).

3. Output (ℎ1, . . . , ℎ𝑙(𝜆)) , where ℎ𝑗 = 𝑖𝑝
4𝑠(𝜆) log2(𝜆)
𝜆 (𝑟𝑗, �⃗�).

let 𝑙(𝜆) =
⌊︁

𝜆
𝑠(𝜆)

⌋︁
2
.

We first observe that we can actually compute both the function families 𝒦𝑒𝑦𝐺𝑒𝑛𝑠

and ℰ𝑣𝑎𝑙𝑠 in AC0. This is easy to observe for KeyGen𝑠𝜆 because of Construction 4.2.3

being in AC0, and for Eval𝑠𝜆 because of Lemma 8. Non-triviality and compression are

easily seen to be satisfied.

Observe about that since we choose 𝑏1, . . . , 𝑏𝜆 and k at random, the distribution

of the matrices 𝑀 is negligibly close to that of the transpose of matrices sampled

from 𝑆𝑝𝑀𝜆,𝑙(𝜆),log2(𝑙(𝜆)), by Lemmas 16, 19, and 9. Now we use a Chernoff bound to

see that every row will also have less than
(︁

2𝜆 log2(𝑙(𝜆))
𝑙(𝜆)

)︁
≤ 4𝑠(𝜆) log2(𝜆) Hamming

weight with all but negligible probability. So, except with negligible probability,

Eval𝑠𝜆(𝑀 , �⃗�) = 𝑀 �⃗�.

Hence, to prove security, it is sufficient to show that for an adversary in AC0, for

most such 𝑀 , it is hard to find an �⃗� ∈ {0, 1}𝜆, �⃗� ̸= 0 such that 𝑀 �⃗� = 0, except with

negligible probability. This is because our hash function is linear with high probability

and when it is, finding a collision is the same as finding a non-zero pre-image for 0𝑙(𝜆).

If possible, let 𝒜 be an adversary given 𝑀 of dimension 𝑙(𝜆)× 𝜆 whose columns

are sampled from KeyGen𝑠𝜆, can actually find a vector in the kernel. We will use

124

this adversary to break the semantic security of Construction 4.2.3. Say there is a

polynomial 𝑝 such that

Pr
𝑀←KeyGen𝑠𝜆

[𝑀 · 𝒜(𝑀) = 0] ≥ 1

𝑝(𝜆)

We know from Theorem 24 that the symmetric encryption scheme is semantically

secure even for chosen multi-bit messages.

From the given adversary 𝒜 that breaks the collision resistant hash function, we

construct an adversary 𝐵 that breaks the multibit semantic security. 𝐵 works as

follows:

1. It chooses 𝑚0 ← {0, 1}𝜆 and 𝑚1 ← SRSamp(𝜆, 1) and sends them to the

challenger

2. Upon receiving ciphertext 𝑀 from the challenger, it computes �⃗� = 𝒜(𝑀).

3. If 𝑀 �⃗� = 0 and ⟨�⃗�,𝑚1⟩ ≠ 0, it sets 𝑏′ = 0.

4. Else, it sets 𝑏′ at random.

We need to show that this adversary breaks multibit semantic security with a

polynomial advantage and that it can be computed in AC0. That it can be computed

in AC0 is easy to see because SRSamp and 𝒜 can, and the inner product in step 3 is

with 𝑚1, which has at most one non-zero entry.

Note that by the correctness of Construction 4.2.3, the probability that Enc𝐸𝑛𝑐
𝑙(𝜆)

produces a ciphertext that does not decrypt correctly is negligible. This means that

except with negligible probability, if c is an encryption of 𝑚 under key k, then

⟨c,k⟩ = 𝑚; in this case the construction is additively homomorphic - if c1 and c2

are encryptions of 𝑚1 and 𝑚2 under the same key, then (c1⊕ c2) is an encryption of

(𝑚1 ⊕𝑚2). Then the following arguments follow except with negligible probability.

If 𝑏 = 1 (𝑚1 was encrypted), then 𝑀 �⃗� = 0 implies that ⟨𝑚1, �⃗�⟩ = 0 and hence

𝐵 will always output a random bit 𝑏′ and hence gains or loses no advantage.

On the other hand, if 𝑏 = 0 (𝑚0 was encrypted), then the distribution of 𝑀 is

the same as that generated by KeyGen𝑠𝜆. In this case, the adversary 𝒜 will generate

125

a vector �⃗� ̸= 0 in the kernel of 𝑀 with probability at least 1
𝑝(𝜆)

. Conditioned on this

happening, if it turns out that ⟨𝑚1, �⃗�⟩ ≠ 0, then 𝐵 will guess 𝑏 correctly as 0. If this

does not happen, then again 𝐵 guess randomly and loses nothing. So we would be

done if we can show that in this case the inner product ⟨𝑚1, �⃗�⟩ is non-zero with some

inverse polynomial probability.

When 𝑏 = 0, 𝑚1 - the sparse vector - is sampled independently from 𝑀 and

hence from �⃗�. As observed earlier, by Lemmas 16 and 19, the distribution of 𝑀𝑇

is negligibly close to that of SMSamp(𝜆, 𝑙(𝜆), log2(𝑙(𝜆))). So Lemma 12 implies that

except with negligible probability, the code whose parity check matrix is 𝑀𝑇 has

distance at least 𝜆
log3 𝜆

. In this case, ‖�⃗�‖0 ≥
𝜆

log3 𝜆
.

Since the Hamming weight of 𝑚1 is 1, the probability of the ⟨𝑚1, �⃗�⟩ being non-zero

is simply ‖�⃗�‖0
𝜆
≥ 1

log3 𝜆
. So, 𝐵 achieves non-negligible advantage (almost 1

𝑝(𝜆) log3(𝜆)
)

in the multibit semantic security game, which contradicts the semantic security of

Construction 4.2.3 that was established in Theorem 24, which is a contradiction.

This completes the argument, demonstrating the collision resistance of Construction

4.2.4.

4.2.5 Candidate Public Key Encryption Scheme

In Lemma 14 we showed that the distribution (𝐴,𝐴k) where 𝐴 was sampled as

a sparse matrix and k was a random binary string is indistinguishable from (𝐴, r)

where r is also a random string, for a wide range of parameters. We need atleast

one of the two 𝐴 or k to be sparse to enable computation in AC0. If we make the

analogous assumption with the key being sparse, that is (𝐴,𝐴k) is indistinguishable

from (𝐴, r) where 𝐴 ← {0, 1}𝜆×𝜆, k ← SRSamp(𝜆, log2 𝜆) and r ← {0, 1}𝜆, this

allows us to construct a Public Key Encryption scheme against AC0 computable in

AC0.

This is presented in Construction 4.2.5, and is easily seen to be secure under

Assumption 1. This candidate is very similar to the LPN based cryptosystem due to

Alekhnovich [Ale03]. Note that while the correctness of decryption in Construction

4.2.5 is not very good, this may be easily amplified by repetition without losing

126

security, as the error is one-sided.

Assumption 1. The two distributions 𝐷1 = (𝐴,𝐴k) where 𝐴 ← {0, 1}𝜆×𝜆, k ←

SRSamp(𝜆, log2 𝜆) and 𝐷2 = (𝐴, r) where r ← {0, 1}𝜆 are indistinguishable by AC0

adversaries with non-negligible advantage.

Construction 4.2.5 Public key encryption
Let ℐ𝑡 = {𝑖𝑝𝑡𝜆} be the inner product family with threshold promise 𝑡 described in
Lemma 8. Define families 𝒦𝑒𝑦𝐺𝑒𝑛 = {KeyGen𝜆}, ℰ𝑛𝑐 = {Enc𝜆}, and 𝒟𝑒𝑐 = {Dec𝜆}
as below.
KeyGen𝜆:

1. Sample 𝐴← {0, 1}𝜆×𝜆−1, k← SRSamp(𝜆− 1, log2 𝜆)

2. Output (pk, sk) = ((𝐴,𝐴k) ,k ∘ 1).

Enc𝜆(pk, 𝑏):
1. If 𝑏 = 0, sample �⃗�← SRSamp(𝜆, log2 𝜆) and output �⃗�𝑇pk

2. Else if 𝑏 = 1, output �⃗�← {0, 1}𝜆

Dec𝜆(sk, c):

1. Output 𝑖𝑝
log2(𝜆)
⌊𝜆⌋2

(sk, c).

The most commonly used proof technique in this chapter — showing 𝑘-wise inde-

pendence for a large 𝑘 cannot be used to prove the security of this scheme. Due to

the sparsity of the key, the distribution (𝐴,𝐴k) is not 𝑘-wise independent.

4.3 Cryptography Against NC1

In this section, we describe some constructions of cryptographic primitives against

bounded adversaries starting from worst-case hardness assumptions. In Section 4.3.1,

we describe a set of generic conditions involving Randomized Encodings that imply

One-Way Functions and Pseudo-Random Generators against such adversaries; the

intended application of this theorem is to construct such primitives against NC1 un-

der the assumption that this class does not contain the class ⊕L/poly. Under the

same assumption, in Section 4.3.2, we construct Public-Key Encryption and Collision

Resistant Hash Functions against NC1.

127

4.3.1 OWFs from worst-case assumptions

The existence of Perfect Randomized Encodings (PREs) can be leveraged to construct

One-Way Functions and Pseudo-Random Generators against bounded adversaries

starting from a function that is hard in the worst-case for these adversaries. We

describe this construction below.

Remark 13 (Infinitely often primitives). For a class 𝒞, the statement ℱ = {𝑓𝜆} ̸∈ 𝒞

implies that for any family 𝒢 = {𝑔𝜆} in 𝒞, there are an infinite number of values of 𝜆

such that 𝑓𝜆 ̸≡ 𝑔𝜆. Using such a worst case assumption, we only know how to obtain

primitives whose security holds for an infinite number of values of 𝜆, as opposed to

holding for all large enough 𝜆. Such primitives are called infinitely-often, and all

primitives constructed in this section and Section 4.3 are infinitely-often primitives.

On the other hand, if we assume that for every 𝒢 ∈ 𝒞, there exists 𝜆0 such that

for all 𝜆 > 𝜆0, 𝑓𝜆 ̸≡ 𝑔𝜆 we can achieve the regular stronger notion of security (that

holds for all large enough security parameters) in each case by the same techniques.

Theorem 26 (OWFs, PRGs from PREs). Let 𝒞1 and 𝒞2 be two function classes

satisfying the following conditions:

1. Any function family in 𝒞2 has a surjective PRE computable in 𝒞1.

2. 𝒞2 ̸⊆ 𝒞1.

3. 𝒞1 is closed under a constant number of compositions.

4. 𝒞1 is non-uniform or randomized.

5. 𝒞1 can compute arbitrary thresholds.

Then:

1. There is a 𝒞1-OWF against 𝒞1.

2. There is a 𝒞1-PRG against 𝒞1 with non-zero additive stretch.

Theorem 26 in effect shows that the existence of a language with PREs outside 𝒞1
implies the existence of one way functions and pseudorandom generators computable

in 𝒞1 secure against 𝒞1. Instances of classes that satisfy its hypothesis (apart from

128

𝒞2 ̸⊆ 𝒞1) include NC1 and ⊕L/poly (following known constructions of Randomized En-

codings for this class [IK00]). Note that this theorem does not provide constructions

against AC0 because AC0 cannot compute arbitrary thresholds.

Proof. Let ℱ =
{︁
𝑓𝜆 : {0, 1}𝑛(𝜆) → {0, 1}

}︁
be a function family in 𝒞2 that is not in

𝒞1, and let ̂︀ℱ =
{︁̂︀𝑓𝜆 : {0, 1}𝑛(𝜆) × {0, 1}𝑚(𝜆) → {0, 1}𝑠(𝜆)

}︁
be its PRE that is in 𝒞1.

We define the family 𝒢 =
{︁
𝑔𝜆 : {0, 1}𝑚(𝜆) → {0, 1}𝑠(𝜆)

}︁
as:

𝑔𝜆(𝑥) = ̂︀𝑓𝜆(0𝑛(𝜆), 𝑥)

We claim that 𝒢 is both a 𝒞1-OWF and a 𝒞1-PRG against 𝒞1 with non-zero

additive stretch. In both cases, computability and non-triviality are easily seen to be

satisfied. The non-zero additive stretch follows from the stretch-preserving property

of ̂︀𝑓𝜆, which guarantees that (𝑠(𝜆)−𝑚(𝜆)) = 1.

We now show the pseudorandomness of 𝒢 against adversaries in 𝒞1. It is eas-

ily shown by standard arguments that this implies that 𝒢 is also one-way against

adversaries in 𝒞1.

Suppose there is a family 𝒜 =
{︁
𝑎𝜆 : {0, 1}𝑠(𝜆) → {0, 1}

}︁
in 𝒞1 such that 𝑎𝜆 dis-

tinguishes between the output of 𝑔𝜆 and the uniform distribution with non-negligible

advantage. We show how to use 𝒜 to show that ℱ ∈ 𝒞1, which is a contradiction.

The advantage 𝑎𝜆 has in distinguishing between the output of 𝑔𝜆 and the uniform

distribution is given by:⃒⃒⃒⃒
Pr

𝑥←𝑈𝜆

[𝑎𝜆(𝑔𝜆(𝑥)) = 1]− Pr
𝑦←𝑈𝑠(𝜆)

[𝑎𝜆(𝑦) = 1]

⃒⃒⃒⃒
=

⃒⃒⃒⃒
Pr

𝑥←𝑈𝜆

[︁
𝑎𝜆(̂︀𝑓𝜆(0𝑛(𝜆), 𝑥)) = 1

]︁
− Pr

𝑦←𝑈𝑠(𝜆)

[𝑎𝜆(𝑦) = 1]

⃒⃒⃒⃒

which is assumed to be non-negligible. Due to the surjectivity of ̂︀𝑓𝜆, the uniform

distribution over {0, 1}𝑠(𝜆) is the same as the equal convex combination of the distri-

butions of ̂︀𝑓𝜆(0𝑛(𝜆), 𝑟) and ̂︀𝑓𝜆(𝑧1, 𝑟) for any 𝑧1 such that 𝑓𝜆(𝑧1) = 1. So we can rewrite

129

the above advantage as:⃒⃒⃒⃒
Pr

𝑥←𝑈𝜆

[︁
𝑎𝜆(̂︀𝑓𝜆(0𝑛(𝜆), 𝑥)) = 1

]︁
−
(︂

1

2
Pr

𝑥←𝑈𝜆

[︁
𝑎𝜆(̂︀𝑓𝜆(0𝑛(𝜆), 𝑥)) = 1

]︁
+

1

2
Pr

𝑥←𝑈𝜆

[︁
𝑎𝜆(̂︀𝑓𝜆(𝑧1, 𝑥)) = 1

]︁)︂⃒⃒⃒⃒
=

1

2

⃒⃒⃒⃒
Pr

𝑥←𝑈𝜆

[︁
𝑎𝜆(̂︀𝑓𝜆(0𝑛(𝜆), 𝑥)) = 1

]︁
− Pr

𝑥←𝑈𝜆

[︁
𝑎𝜆(̂︀𝑓𝜆(𝑧1, 𝑥)) = 1

]︁⃒⃒⃒⃒

which is non-negligible. Denote the probability Pr𝑥←𝑈𝜆

[︁
𝑎𝜆(̂︀𝑓𝜆(0𝑛(𝜆), 𝑥)) = 1

]︁
by 𝑝,

and denote Pr𝑥←𝑈𝜆

[︁
𝑎𝜆(̂︀𝑓𝜆(𝑧1, 𝑥)) = 1

]︁
by 𝑞.

To decide 𝑓𝜆(𝑧) = 𝑓𝜆(0𝑛(𝜆)) given 𝑧, by the input independence property of ̂︀𝑓𝜆, it

is sufficient to determine whether Pr𝑥←𝑈𝜆

[︁
𝑎𝜆(̂︀𝑓𝜆(𝑧, 𝑥)) = 1

]︁
is less than

(︀
𝑝+𝑞
2

)︀
. This

may be done by taking several samples from 𝑎𝜆(̂︀𝑓𝜆(𝑧, 𝑥)) and using the threshold

function to check whether more than a
(︀
𝑝+𝑞
2

)︀
fraction of these are 1. The fact that 𝑝

and 𝑞 are non-negligibly separated implies that some 𝑝𝑜𝑙𝑦(𝜆) samples should suffice

to be able to do this with exponentially small failure probability.

By the hypothesis, the function family that performs all these operations is in 𝒞1,

and the non-uniformity of 𝒞1 implies that 𝑓𝜆(0𝑛(𝜆)) can be used as non-uniform advice

to actually decide 𝑓𝜆, and as noted earlier in the chapter, the randomness involved

above can be traded for non-uniformity. This implies that ℱ is in 𝒞1, which is a

contradiction. This proves the pseudo-randomness of 𝒢 for adversaries in 𝒞1 (though

only in the weak sense mentioned in Remark 13).

4.3.2 PKE and CRHF against NC1

In Theorem 26 we saw that we can construct one way functions and PRGs with a

small stretch generically from Perfect Randomised Encodings (PREs) starting from

worst-case hardness assumptions. We do not know how to construct Public Key

Encryption (PKE) in a similar black-box fashion. In this section, we use certain

algebraic properties of a specific construction of PREs for functions in ⊕L/poly due to

Ishai-Kushilevitz [IK00] to construct Public Key Encryption and Collision Resistant

Hash Functions against NC1 that are computable in ACC0[2] under the assumption

130

that ⊕L/poly ̸⊆ NC1. We state the necessary implications of their work here. We start

by describing sampling procedures for some relevant distributions in Construction

4.3.1.

Construction 4.3.1 Sampling distributions from [IK00]
Let 𝑀𝑛

0 and 𝑀𝑛
1 be the following 𝑛× 𝑛 matrices:

𝑀 0 =

⎛⎜⎜⎜⎜⎜⎝
0 · · · 0 0
1 0 0

0 1
.

... 0
0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎠ ,𝑀 1 =

⎛⎜⎜⎜⎜⎜⎝
0 · · · 0 1
1 0 0

0 1
.

... 0
0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎠
LSamp(𝑛):

1. Output an 𝑛× 𝑛 upper triangular matrix where all entries in the diagonal are
1 and all other entries in the upper triangular part are chosen at random.

RSamp(𝑛):
1. Sample at random �⃗� ← {0, 1}𝑛−1.
2. Output the following 𝑛× 𝑛 matrix:⎛⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 1
. 𝑟

... 0
0 · · · 0 1
0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎠

In the randomized encodings of [IK00], the output of the encoding of a function

𝑓 on input 𝑥 is a matrix 𝑀 sampled identically to 𝑅1𝑀
𝜆
0𝑅2 when 𝑓(𝑥) = 0 and

identically to 𝑅1𝑀
𝜆
1𝑅2 when 𝑓(𝑥) = 1, where 𝑅1 ← LSamp(𝜆) and 𝑅2 ← RSamp(𝜆).

Notice that 𝑅1𝑀
𝜆
1𝑅2 is full rank, while 𝑅1𝑀

𝜆
0𝑅2 has rank (𝜆− 1). The public key

in our encryption scheme is a sample 𝑀 from 𝑅1𝑀
𝜆
0𝑅2, and the secret key is a

vector k in the kernel of 𝑀 . An encryption of 0 is a random vector in the row-span

of 𝑀 (whose inner product with k is hence 0), and an encryption of 1 is a random

vector that is not in the row-span of 𝑀 (whose inner product with k is non-zero).

Decryption is simply inner product with k. (This is very similar to the cryptosystem

131

in [ABW10] albeit without the noise that is added there.)

Security follows from the fact that under our hardness assumption 𝑀 is indistin-

guishable from 𝑅1𝑀
𝜆
1𝑅2 (see Theorem 28), which has an empty kernel, and so when

used as the public key results in identical distributions of encryptions of 0 and 1.

Construction 4.3.2 Public Key Encryption
Let 𝜆 be the security parameter. Let 𝑀𝜆

0 be the 𝜆 × 𝜆 matrix described in Con-
struction 4.3.1. Define the families 𝒦𝑒𝑦𝐺𝑒𝑛 = {KeyGen𝜆}, ℰ𝑛𝑐 = {Enc𝜆}, and
𝒟𝑒𝑐 = {Dec𝜆} as follows.
KeyGen𝜆:

1. Sample 𝑅1 ← LSamp(𝜆) and 𝑅2 ← RSamp(𝜆).

2. Let k = (𝑟 1)𝑇 be the last column of 𝑅2.

3. Compute 𝑀 = 𝑅1𝑀
𝜆
0𝑅2.

4. Output (pk = 𝑀 , sk = k).

Enc𝜆(pk = 𝑀 , 𝑏):
1. Sample 𝑟 ∈ {0, 1}𝜆.
2. Let �⃗�𝑇 = (0 . . . 0 1), of length 𝜆.

3. Output 𝑐𝑇 = 𝑟𝑇𝑀 + 𝑏𝑡𝑇 .

Dec𝜆(sk = k, 𝑐):
1. Output ⟨𝑐,k⟩.

In randomized encodings, encoding is efficient while decoding is not. But notice

that this is not an issue in our case, as our scheme never tries to decode any encoding

- we rely on the correctness of the randomized encoding only for its implication of

Theorem 28.

Theorem 27 (Public Key Encryption Against NC1). Assume ⊕L/poly ̸⊆ NC1. Then,

the tuple of families (𝒦𝑒𝑦𝑔𝑒𝑛, ℰ𝑛𝑐,𝒟𝑒𝑐) defined in Construction 4.3.2 is an ACC0[2]-

Public Key Encryption Scheme against NC1.

Before beginning with the proof, we describe some properties of the construc-

tion. We first begin with two sampling procedures that correspond to sampling from̂︀𝑓(𝑥, ·) when 𝑓(𝑥) = 0 or 𝑓(𝑥) = 1 as described earlier. We describe these again in

Construction 4.3.3.

132

Construction 4.3.3 Sampling procedures
ZeroSamp(𝑛): ̂︀𝑓(𝑥, 𝑟) where 𝑓(𝑥) = 0

1. Sample 𝑅1 ← LSamp(𝑛) and 𝑅2 ← RSamp(𝑛).

2. Output 𝑅1𝑀 0𝑅2.

OneSamp(𝑛): ̂︀𝑓(𝑥, 𝑟) where 𝑓(𝑥) = 1

1. Sample 𝑅1 ← LSamp(𝑛) and 𝑅2 ← RSamp(𝑛).

2. Output 𝑅1𝑀 1𝑅2.

Theorem 28 ([IK00, AIK04]). For any boolean function family ℱ = {𝑓𝜆} in ⊕L/poly,

there is a polynomial 𝑛 such that for any 𝜆, 𝑓𝜆 has a PRE ̂︀𝑓𝜆 such that the distri-

bution of ̂︀𝑓𝜆(𝑥) is identical to ZeroSamp(𝑛(𝜆)) when 𝑓𝜆(𝑥) = 0 and is identical to

OneSamp(𝑛(𝜆)) when 𝑓𝜆(𝑥) = 1.

This implies that the inability to compute some function in ⊕L/poly tranlates to

the inability to distinguish between samples from ZeroSamp and OneSamp. In partic-

ular, the following lemma follows immediately from the observation that ZeroSamp

and OneSamp can be computed in NC1.

Lemma 20. If ⊕L/poly ̸⊆ NC1, then there is a polynomial 𝑛 and a negligible function

negl such that for any family ℱ = {𝑓𝜆} in NC1, for an infinite number of values of 𝜆,⃒⃒⃒⃒
Pr

𝑀←ZeroSamp(𝑛(𝜆))
[𝑓𝜆(𝑀) = 1]− Pr

𝑀←OneSamp(𝑛(𝜆))
[𝑓𝜆(𝑀) = 1]

⃒⃒⃒⃒
≤ negl(𝜆)

Now we are in a position to use the indistinguishability result in Lemma 20 to

prove Theorem 27.

Proof of Theorem 27. To prove the theorem, we need to show that the functions

in the construction are computable in ACC0[2] and that they are secure against NC1

adversaries. It is straightforward to see that 𝒦𝑒𝑦𝐺𝑒𝑛, ℰ𝑛𝑐, and 𝒟𝑒𝑐 are in ACC0[2],

as multiplication of any constant number of matrices can be done in constant depth

with PARITY gates, and LSamp and RSamp simply involve sampling random bits.

Non-triviality is also easily seen to be satisfied.

133

Let 𝑡 be as described in Construction 4.3.2. For any (𝑀 ,k)← KeyGen𝜆, note that

𝑀 = 𝑅1𝑀
𝜆
0𝑅2, and k = (𝑟 1)𝑇 is the last column of 𝑅2. It can be verified easily that

𝑀k = 𝑅1(𝑀
𝜆
0𝑅2𝑠) = 0⃗, and that ⟨⃗𝑡,k⟩ = 1. So for any 𝑏, Dec𝜆(k,Enc𝜆(𝑀 , 𝑏)) =

⟨𝑀𝑇 �⃗� + 𝑏𝑡,k⟩ = �⃗�𝑇𝑀k + 𝑏⟨⃗𝑡,k⟩ = 𝑏. This proves correctness.

To prove semantic security, we need to show that the distributions (pk,Enc𝜆(pk, 0))

and (pk,Enc(pk, 1)) are indistinguishable to adversaries in NC1. Note that by the

action of KeyGen𝜆 and Enc𝜆,

(pk,Enc𝜆(pk, 0)) = (𝑀 , �⃗�𝑇𝑀 |𝑀 ← ZeroSamp(𝜆), �⃗� ← {0, 1}𝜆)

For any adversary in NC1, we know by Lemma 20 that there are an infinite number

of values of 𝜆 for which:

(𝑀 , �⃗�𝑇𝑀 |𝑀 ← ZeroSamp(𝜆), �⃗�) ≈ (𝑀 , �⃗�𝑇𝑀 |𝑀 ← OneSamp(𝜆), �⃗�)

But the output of OneSamp is always full rank. Hence the distribution of �⃗�𝑇𝑀 is

uniform over {0, 1}𝜆. Then,

(𝑀 , �⃗�𝑇𝑀 |𝑀 ← OneSamp(𝜆), �⃗�) = (𝑀 , �⃗�𝑇𝑀 + �⃗�𝑇 |𝑀 ← OneSamp(𝜆), �⃗�)

For the same adversary and the same infinite set of values of 𝜆 as before,

(𝑀 , �⃗�𝑇𝑀 + �⃗�𝑇 |𝑀 ← OneSamp(𝜆), �⃗�) ≈ (𝑀 , �⃗�𝑇𝑀 + �⃗�𝑇 |𝑀 ← ZeroSamp(𝜆), �⃗�)

which is the distribution of (pk,Enc𝜆(pk, 1)). This proves the indistinguishability

necessary for semantic security.

Remark 14. The computation of the PRE from [IK00] can be moved to NC0 by

techniques noted in [IK00] itself. Using similar techniques with Construction 4.3.2

gives us a Public Key Encryption scheme with encryption in NC0 and decryption

and key generation in ACC0[2]. The impossibility of decryption in NC0, as noted in

[AIK04], continues to hold in our setting.

134

Remark 15. (This was pointed out to us by Abhishek Jain.) The above PKE scheme

has what are called, in the terminology of [PVW08], “message-lossy” public keys -

in this case, this is simply M when sampled from OneSamp, as in the proof above.

Such schemes may be used, again by results from [PVW08], to construct protocols

for Oblivious Transfer where the honest parties are computable in NC1 and which

are secure against semi-honest NC1 adversaries under the same assumptions (that

⊕L/poly ̸⊆ NC1).

Note that again, due to the linearity of decryption, Construction 4.3.2 is additively

homomorphic - if 𝑐1 and 𝑐2 are valid encryptions of 𝑚1 and 𝑚2, (𝑐1 ⊕ 𝑐2) is a valid

encryption of (𝑚1⊕𝑚2). Further, the size of ciphertexts does not increase when this

operation is performed. Now we can use the generic transformation from additively

homomorphic encryption to collision resistance due to [IKO05], along with the ob-

servation that all operations involved in the transformation can still be performed in

ACC0[2], to get the following.

Theorem 29. Assume ⊕L/poly ̸⊆ NC1. Then, for any constant 𝑐 < 1 and function 𝑠

such that 𝑠(𝑛) = 𝑂(𝑛𝑐), there exists an ACC0[2]-CRHF against NC1 with compression

𝑠.

135

136

Chapter 5

Conclusion and Future Directions

So far we have described our attempts to construct fine-grained cryptographic objects

in a number of different settings, starting from various worst-case hardness assump-

tions (an in some cases no assumptions). We believe this line of research could be

the way forward towards weakening, and eventually removing, the computational as-

sumptions necessary for doing cryptography. There are many interesting questions

to be asked here, the answers to which stand to several yield useful insights and

implications, whichever way they may go.

In this section, we briefly review some of the work that has been done in this area

since the work in this thesis, present some directions onward, and pose a number of

questions that we believe are significant.

5.1 Subsequent Work

Subsequently and in parallel to our work, a number of others have explored questions

that are directly or indirectly related to fine-grained cryptography. Here we briefly

describe a few of them.

Goldreich and Rothblum, in a series of recent papers, broadly study fine-grained

average-case reductions for problems within P and interactive proofs for some of

these problems, both of which are relevant to our study. In [GR17], building on ideas

from Williams [Wil16], they construct doubly-efficient interactive proofs for problems

137

that are “locally-characterizable”. Roughly, a language is locally-characterizable if

membership in it can be determined by a conjunction of a polynomial number of

predicates that each take logarithmically many bits, and are applied to different pre-

determined parts of the input. Essentially, these are problems that can be reduced to

the evaluation of a low-degree polynomial in the bits of the input, and this includes

the problems that we use in our constructions such as OV, 3SUM, etc. (and their

complements). A doubly-efficient interactive proof is one in which the prover runs in

polynomial time, and the verifier in near-linear time. Their constructions enable the

use of other plausibly moderately hard problems that are locally-characterizable to

be used to construct Proofs of Work along the lines of our work.

In [GR18], they generalize our average-case reductions, define a hierarchy of classes

of counting problems that also have the flavour of the locally characterizable sets,

and show that in each of these classes, solving any problem in the worst-case can be

reduced in near-linear time to solving some other problem in the class on average.

Finally, in [GR18], they partially answer Question 5, showing a fine-grained reduction

from the problem of counting the number of 𝑡-cliques in a graph to itself on average.

Using our average-case reduction and the structure of the problems that we reduce

to, Carmosino et al [CIS18] show uniform derandomisation results for BPP based on

SETH and other conjectures from fine-grained complexity.

Campanelli and Gennaro [CG18] study fine-grained secure computation against

low-depth circuits. They present constructions of fully homomorphic encryption and

verifiable computation computable in and secure against NC1 starting from the worst-

case assumption we start with in this setting – that NC1 is not contained in ⊕L/poly.

5.2 Towards Fine-Grained One-Way Functions

In this section, to illustrate the kinds of objects, approaches, and difficulties fine-

grained cryptography might involve, we define a notion of fine-grained one-way func-

tion (OWF), discuss a natural approach to realizing it, show a structural barrier to

basing this approach on certain problems, and outline as an open problem a way to

138

circumventing this barrier. A fine-grained OWF would capture the same concept as

a standard OWF – easy to compute yet hard to invert – but with a more fine-grained

interpretation of “easy" and “hard".

Definition 24. We say a function 𝑓 : {0, 1}* → {0, 1}* is (𝑡, 𝜖)-one-way if it can be

computed in 𝑂(𝑡(𝑛)1−𝛿) time for some 𝛿 > 0, but for any 𝛿′ > 0, any 𝑂(𝑡(𝑛)1−𝛿
′
)-time

algorithm 𝐴, and all sufficiently large 𝑛,

Pr
𝑥←{0,1}𝑛

[︀
𝐴(𝑓(𝑥)) ∈ 𝑓−1(𝑓(𝑥))

]︀
≤ 𝜖(𝑛, 𝛿′)

The primary question we ask and discuss in this section is the following. We

consider this to be the most significant open problem at present in the area of fine-

grained cryptography. Though one-way functions by themselves are not immediately

applicable in practice, they are among the simplest cryptographic primitives, and

trying to construct them seems like the way ahead towards understanding what we

have to work with and constructing more sophisticated primitives.

Question 1. Can we construct fine-grained one-way functions based on the worst-case

hardness of well-studied problems from fine-grained complexity?

We discuss possibilities for the above question starting from the OV problem, as

it leads to some other questions that are interesting in their own right. One approach

to constructing such OWFs (that has perhaps been part of folklore for decades) is

as follows. Take one of our hard-on-average to evaluate polynomials – e.g. 𝑓OV𝑛 –

and suppose there was an input-output sampling algorithm 𝑆 ≡ (𝑆1, 𝑆2) that runs in

sub-quadratic time in 𝑛 such that, on uniform input 𝑟, 𝑆1(𝑟) is distributed uniformly

over the appropriate domain, and 𝑆2(𝑟) = 𝑓OV𝑛(𝑆1(𝑟)). By our results it can be seen

that 𝑆1 is (𝑛2, 3/4)-one-way if we assume the OV conjecture (strengthened to assume

hardness for all sufficiently large input sizes).

139

5.2.1 Barriers and NSETH

However, as stated, there turn out to be certain barriers to this approach. For in-

stance, if 𝑆(𝑟) = (𝑥, 𝑦), then 𝑟 would be a certificate that 𝑓OV𝑛(𝑥) = 𝑦 that can be

verified in sub-quadratic time. In particular, if 𝑥 ∈ {0, 1}2𝑛𝑑 is a NO instance of OV,

then 𝑟 is a certificate for this that is verifiable in deterministic sub-quadratic time –

i.e. that 𝑓OV𝑛(𝑥) = 0.

Further, tracing this back through the reduction of 𝑘-SAT to OV (see [Wil15]),

this gives us a certificate for NO instances of 𝑘-SAT (for any 𝑘) that are verifiable

in 𝑂(2𝑛(1−𝜖)) time for some 𝜖 > 0 – i.e. short and quickly verifiable certificates for

CNF-UNSAT instances. Interestingly, the impossibility of this was recently conjec-

tured and formalized as NSETH (the Non-deterministic Strong Exponential Time

Hypothesis) in [CGI+16], where it was noted that its falsification would yield break-

throughs in both circuit complexity and proof complexity.

An alternative view of matters would be that this presents another approach to

breaking NSETH. In fact, something weaker would suffice for this purpose – one only

needs a sampler that runs in sub-quadratic time and samples (𝑥, 𝑓OV𝑘
𝑛(𝑥)) for some

𝑘 such that the distribution of 𝑥 has {0, 1}𝑘𝑛𝑑 in its support.

Note that while a sampler based on OV would, because of its relation to 𝑘-SAT,

break NSETH, a sampler based on ZWT would only yield quick non-deterministic

certification for APSP instances (the reduction to ZWT from 3SUM is randomized).

As APSP (and also 3SUM) is known to have small co-nondeterministic complex-

ity [CGI+16], the above barrier does not show up here. Still, ℱOV is much simpler

algebraically and so seems to hold more hope for constructing a fine-grained OWF in

this manner. We now discuss ways in which we may still salvage a sampler for ℱOV.

5.2.2 A Way Around

There are visible ways to skirt this NSETH barrier: Suppose that the sampler 𝑆

was not perfect – that with some small probability over 𝑟 it outputs (𝑥, 𝑦) such

that 𝑓OV𝑛(𝑥) ̸= 𝑦. Immediately, NSETH no longer applies, as now an 𝑟 such that

140

𝑆(𝑟) = (𝑥, 𝑦) may no longer be a sound certificate that 𝑓OV𝑛(𝑥) = 𝑦. And, as

explained below, such a sampler still gives us a fine-grained distributional OWF based

on the hardness of OV as long as the probability that it is wrong is small enough.

Informally, a distributional OWF is a function 𝑓 such that 𝑓(𝑥) is easy to compute,

but for most 𝑦’s it is hard to sample a (close to) uniformly random 𝑥 such that

𝑓(𝑥) = 𝑦. A distributional OWF might not be a OWF itself, but it is known how to

derive a OWF from any distributional OWF [IL89]. And further, this transformation

works with quasi-linear overhead using constructions of hash functions from [IKOS08].

We claim that 𝑆1 is now a fine-grained distributional OWF. Intuitively, if it were

not, then we would, for many 𝑥’s, be able to sub-quadratically sample 𝑟 almost

uniformly from those obeying 𝑆1(𝑟) = 𝑥. But, since the probability over 𝑟 is low

that 𝑆 errs, the 𝑟 we sampled is likely a non-erring one. That is, it is likely that

we would have sub-quadratically obtained an 𝑟 that gives us 𝑆2(𝑟) = 𝑓OV𝑛(𝑥) and

thus we likely can sub-quadratically compute 𝑓OV𝑛(𝑥). So if 𝑓OV𝑛 is actually hard

to compute on average, then such a distributional inverter cannot exist.

While, as mentioned earlier, such an erring sampler would no longer give efficiently

verifiable certificates for NO instances of OV, it turns out that it would still yield a

coAM protocol for OV with sub-quadratic verification.

First we note that we get an AM protocol with a sub-quadratic time verifier that

takes input (𝑥, 𝑦) and proves that 𝑓OV𝑛(𝑥) = 𝑦, and is complete and sound for most

values of 𝑥. Since the sampler is wrong with only with a very small probability over

𝑟, most values of 𝑥’s have the property that most values of 𝑟 satisfying 𝑆1(𝑟) = 𝑥

also satisfy 𝑆2(𝑟) = 𝑓OV𝑛(𝑥). In the protocol with input (𝑥, 𝑦), the verifier simply

asks the prover to prove that for most 𝑟’s such that 𝑆1(𝑟) = 𝑥, it is also the case that

𝑆2(𝑟) = 𝑦. If 𝑆1 is indeed distributed uniformly, then this comes down to proving

a lower bound on the number of 𝑟’s such that 𝑆1(𝑟) = 𝑥 and 𝑆2(𝑟) = 𝑦, and this

can be done in AM using the protocol from [GS86], in a single round (verifier sends

a message and prover responds) and with the verifier running in sub-quadratic time.

With a little more analysis and appropriate setting of parameters, this protocol can

be shown to work even if 𝑆1 is only close to uniform.

141

Further, from this protocol one can get a protocol that works for all values of

𝑥 by following the approach in the proof of Lemma 1 – given an input (𝑥, 𝑦), the

verifier runs the random self-reduction for 𝑥 and, for each evaluation query to 𝑓OV𝑛

that comes up in its course, it asks the prover for the answer along with an AM proof

of its correctness. Thus, done all at once, this gives a single-round coAM protocol for

OV with a sub-quadratic time verifer (this is when 𝑦 = 0). This in turns leads to a

single-round coAM protocol for 𝑘-SAT with a verifier that runs in ̃︀𝑂(2𝑛(1−𝜖)) time for

some 𝜖 > 0.

The impossibility of the existence of such a protocol could be conjectured as a sort

of AM[2]SETH. Williams [Wil16] gives a non-interactive MA protocol that comes close

to breaking this conjecture, but standard approaches for converting MA protocols to

AM protocols [Bab85] seem to incur a prohibitively large overhead in our fine-grained

setting.

Question 2. Is it possible to construct a single-round coAM protocol for OV (or for

ℱOV) with a sub-quadratic time verifier (or for 𝑘-SAT with a 2(1−𝛿)𝑛-time verifier for

some constant 𝛿 > 0)?

5.3 Other Open Problems

In fine-grained cryptography for low-depth circuits, the major problem left conspicu-

ously open by our work (despite considerable effort) is the following.

Question 3. Construct a public-key encryption scheme for AC0.

In Section 4.2.5 we presented a candidate construction for the above that we have

not been able to prove secure, but also not been able to break. It would be very

interesting to see either of these done. Proving this construction secure necessarily

involves answering the following question, which seems interesting in its own right, in

the affirmative.

Question 4. Show some fixed polylog-wise independent distribution that fools AC0

circuits of arbitrary depth.

142

In all of our fine-grained worst-case to average-case reductions, we start from well-

studied problems of independent interest like OV and 3SUM, and reduce to problems

tailored to allow our reductions. While such a reduction would be a sufficient starting

point for cryptography, a reduction to the original problems themselves would be

of greater interest to those interested in algorithms for these problems and their

complexities. As noted earlier, such a reduction has been successfully carried out for

the 𝑘-CLIQUE problem by Goldreich and Rothblum [GR18].

Question 5. Show a fine-grained worst-case to average-case reduction from OV (or

3SUM, APSP, etc.) to itself.

Standard OWFs are sufficient for secret-key cryptography as they are equivalent

to Pseudo-Random Generators and Pseudo-Random Functions [HILL99, GGM86].

One can ask to what extent similar equivalences hold in the fine-grained world and

what fine-grained cryptography can be accomplished from fine-grained OWFs. More

generally, one can ask the following.

Question 6. Which generic cryptographic results translate over to fine-grained cryp-

tography and are there any that hold only in the fine-grained world?

Finally, we ask the less theoretical question of whether the heuristic falsifiability

of conjectures that follows from our average-case reductions can actually be utilized.

Question 7. Can we heuristically falsify any of the big worst-case fine-grained con-

jectures about 𝑘-SAT, APSP, 3SUM, etc.? Are there other ways in which we can

develop techniques for practice to influence theory and give concrete and parameteri-

zable evidence for theoretical conjectures?

143

144

Appendix A

Appendices to Chapter 2

A.1 An Average-Case Time Hierarchy

In this section, we present an infinite collection of generalizations of ℱOV that we

conjecture form an average-case time hierarchy. That is, for every rational number 𝑘

the collection contains a function ℱOV𝑘 such that ℱOV𝑘 is computable in ̃︀𝑂(𝑛𝑘) time,

but (we conjecture) requires 𝑛𝑘−𝑜(1) time to compute even on average. This conjecture

is supported by SETH. We describe these generalizations below and indicate how this

follows from SETH for integer values of 𝑘 ≥ 2 and note that this can be extended to

all rational numbers using standard padding techniques.

• k-Orthogonal Vectors: For an integer 𝑘 ≥ 2, the 𝑘-OV problem on vectors of

dimension 𝑑 is to determine, given 𝑘 sets (𝑈1, . . . , 𝑈𝑘) of 𝑛 vectors from {0, 1}𝑑(𝑛)

each, whether there exist 𝑢𝑖 ∈ 𝑈𝑖 for each 𝑖 such that over Z,

∑︁
ℓ∈[𝑑(𝑛)]

𝑢1ℓ · · ·𝑢𝑘ℓ = 0

(As with OV, if left unspecified, 𝑑 is to be taken to be
⌈︀
log2 𝑛

⌉︀
.)

Similar to how it implies the hardness of OV, (the randomized version of) SETH

also implies that for any integer 𝑘 ≥ 2, any randomized algorithm for 𝑘-OV requires

𝑛𝑘−𝑜(1) time – the proof is a natural generalization of that for OV shown in [Wil15].

145

We next take the same approach we did for OV and define for any integer 𝑘 ≥ 2

a family of polynomials ℱOV𝑘 =
{︀
𝑓OV𝑘

𝑛

}︀
, where with 𝑝 being the smallest prime

number larger than 𝑛𝑘 and 𝑑 =
⌈︀
log2(𝑛)

⌉︀
, 𝑓OV𝑘

𝑛 : F𝑘𝑛𝑑
𝑝 → F𝑝 is defined as:

𝑓OV𝑘
𝑛(𝑈1, . . . , 𝑈𝑘) =

∑︁
𝑢1∈𝑈1,...,𝑢𝑘∈𝑈𝑘

∏︁
ℓ∈[𝑑]

(1− 𝑢1ℓ · · ·𝑢𝑘ℓ)

Similarly to the case with 𝑓OV𝑛, when the input to 𝑓OV𝑘
𝑛 is a 𝑘-OV instance from

{0, 1}𝑘𝑛𝑑, 𝑓OV𝑘
𝑛(𝑈1, . . . , 𝑈𝑘) counts the number of sets of “orthogonal” vectors in it.

Note that the degree of 𝑓OV𝑘
𝑛 is at most 𝑘𝑑. And also that by simply evaluating each

summand and adding them up, the polynomial can be evaluated in ̃︀𝑂(𝑛𝑘) time. The

following theorem can again be proven in a manner identical to Theorem 1.

Theorem 30. For any integer 𝑘 ≥ 2, if ℱOV𝑘 can be computed in 𝑂(𝑛𝑘/2+𝛼) time

on average for some 𝛼 > 0, then 𝑘-OV can be decided in ̃︀𝑂(𝑛𝑘/2+𝛼) time in the worst

case.

Corollary 8. Suppose for every 𝑘 ≥ 2, 𝑘-OV requires 𝑛𝑘−𝑜(1) time to decide. Then

for every such 𝑘, ℱOV𝑘 requires 𝑛𝑘−𝑜(1) to compute on average but can be computed

in the worst case in ̃︀𝑂(𝑛𝑘) time.

Thus, we can attain the hierarchy from an infinite number of conjectures, one

for each 𝑘, but, as noted earlier, the entire hierarchy is also implied by the single

assumption SETH. We note that for 𝑘-OV (and all other problems) we could naïvely

express 𝑘-OV with a polynomial via a multilinear extension, yet this polynomial would

have exponentially many terms and degree 𝑛. Already the degree is too high for our

purposes but not by much: we may not be too disappointed with 𝑛(𝑘−1)−𝑜(1) average-

case hardness that degree 𝑛 would still afford us. The main problem then is that the

naïve polynomial may take exponential time to compute and so the upper bound is

very far from the lower bound. The tightness of our hierarchy is a key feature then

in capturing the hardness of our problems as well as for use in applications such as

in those in Chapter 3.

146

Remark 16. We can also attain two semi-tight hierarchies from generalizations of the

3SUM problem. That is, if we assume the 𝑘-SUM conjecture proposed in [AL13], we

get hardness for two infinite hierarchies, with one based on generalizing ℱZWT and

one from generalizing ℱ3SUM (the proper generalizations can be based on problems

found in [AL13]). These hierarchies, however, are loose, in that the 𝑘-SUM conjecture

gives us
(︀
𝑛⌈𝑘/2⌉−𝑜(1)

)︀
hardness at the 𝑘𝑡ℎ level but, to our knowledge, our generalized

polynomials are only ̃︀𝑂(𝑛𝑘−1) computable (as they have 𝑛𝑘−1 many terms).

A.2 On the Heuristic Falsifiability of Conjectures

The Proof of Work protocol we construct in Chapter 3 – we take the case of the

(𝑛2, 1/𝑛𝑜(1))-PoW from OV throughout this section for simplicity – yields a win-win

in the domain of algorithms and complexity. Namely, either we have a PoW or we

have the existence of a provably sub-quadratic prover that can convince the verifer

with sufficient probability which will in turn yield breakthroughs: a randomized sub-

quadratic time algorithm for OV and thus a randomized 2𝑛(1−𝜖) time algorithm for

𝑘-SAT for some 𝜖 > 0. In particular, because the hardness of the PoW is over

random instances, even a prover that can be empirically demonstrated to be sub-

quadratic in practice will give heuristic evidence that the conjectured hardness of OV

or 𝑘-SAT is false. In other words, if the above PoW is empirically (after working

out the constants hidden by Big-Oh notation) insecure, then (randomized) SETH is

heuristically falsified.

This notion of heuristic falsifiability sits directly at the intersection of average-case

and fine-grained complexity that we study: Without average-case results, a worst-case

conjecture could not be broken without a full proof that an algorithm works on all

inputs, and, without fine-grained results, a fine-grained conjecture on complexity like

SETH could not be feasibly be broken. Thus, it is precisely average-case fine-grained

hardness that allows us to discuss the heuristic falsifiability of conjectures. While

theory and practice can often influence each other indirectly, this marks an interesting

connection, akin to the hard-sciences, in which empirical evidence can give concrete

147

and parameterizable theoretical evidence.

Remark 17. We note that while some may try to claim that SETH is already being

falsified in practice – e.g. that we might seem to run in 2
√
𝑛 time on practical inputs

– there are two main points in which this is different from our heuristic falsifiability.

One point is that, from our worst-case to average-case reductions, our notion would

be heuristically breaking the worst-case version of SETH and achieve a complexity

theoretic claim, as opposed to heuristically breaking an average-case notion of SETH

on “nature’s distribution" of “practical" inputs, which would only be a heuristic claim

on how we perform in practice. Secondly, claims of breaking even such an average-

case notion of SETH in practice cannot be given too much confidence to since the

input sizes must remain very small to be feasible and so not many “data points"

can be gathered to see the true shape of the exponential curve. In contrast, our

heuristic falsifiability reduces to a quadratic time problem, so that many more “data

points" can be gathered for runtimes on much larger input sizes, giving us much more

confidence as to if we heuristically break the OV conjecture and thus SETH.

To put this observation in more concrete terms, we consider the notion of falsifiable

assumptions introduced by Naor [Nao03]: Informally, an assumption 𝐴 is efficiently

falsifiable if there is an efficiently samplable distribution of challenges and an efficient

verifier of solutions to these challenges such that, if and only if 𝐴 is false (we consider

the “only if" case), there is an efficient algorithm which causes the verifier to accept

with high probability over the challenge distribution.

In our case, any algorithm that solves ℱOV in sub-quadratic time falsifies the

conjectured hardness of ℱOV and thus OV and thus SETH. The sampler simply

uniformly draws a set of inputs for 𝑓OV𝑛, and the verifier simply evaluates 𝑓OV𝑛 on

the instances and compares with the sub-quadratic prover’s answer.

Further, the problem underlying the PoW (to output a polynomial for a given

𝑓OV𝑛 instance) is falsifiable with the added property that both the sampler and the

verifier run in sub-quadratic time. Thus to heuristically falsify SETH, a challenger

may deploy PoW challenges out into the world and, if they’re often prematurely

solved, we gather empirical evidence against SETH. Note that this can similarly be

148

done for 3SUM and APSP as their polynomials can also be used for PoWs.

We note that interesting applications of heuristic falsifiability may be inherent to

the intersection of average-case complexity and fine-grained complexity: One of the

only other works we are aware of that considered average-case fine-grained analysis,

[GH16], immediately yields results that notions of heuristic falsifiability can apply to.

That is, [GH16] shows that fine-grained problems related to DNA sequencing are actu-

ally easy when given a batch of correlated instances; thus, this analysis is average-case

over a specific distribution of correlated instances for a fine-grained problem. This

distribution for which easiness is achieved, however, is motivated to be “realistic" by

the correlation of the instances attempting to match current evolutionary theory and

how mutations occur within a phylogenetic tree. Thus, if a distribution over corre-

lated instances matches well a theory of evolution yet [GH16]’s algorithm consistently

under-performs on real-life data, this may suggest our current theory of evolution is

wrong. Again, we can (efficiently) test a hypothesis in a concretely parameterizable

way and gather evidence against it.

We find it interesting that combining average-case and fine-grained complexity

seems to almost immediately bear interesting fruit in the context of heuristic falsi-

fiability. We pose it as an open question to find more ways in which the “scientific

method" can be introduced into the highly theoretical field of complexity theory so

that conjectures can tested to give concrete parameters for our confidences for them.

A.3 A Tighter Reduction for ℱOV

We show that sub-quadratic algorithms cannot compute 𝑓OV𝑛 on even a 1/ polylog(𝑛)-

fraction of inputs, assuming OV is hard on the worst case. Moreover, the techniques

yield a tradeoff between adversarial complexity and provable hardness: less time

implies lower success probability. Similar results can be achieved for our other poly-

nomials, but we do not present them here.

Recall that the worst-case to average-case reduction used in Section 2.2 (as Lemma 1)

works roughly as follows for a function 𝑓 . Given an input 𝑥, the reduction produces

149

a set of inputs 𝑦1, . . . , 𝑦𝑚 such that (𝑓(𝑥), 𝑓(𝑦1), . . . , 𝑓(𝑦𝑚)) is a Reed-Solomon code-

word. Then we said that if an algorithm is correct on a (1 − 𝛿) fraction of inputs,

then it is correct on close to a (1 − 𝛿) fraction of the 𝑦𝑖’s, and so only about a 𝛿

fraction of this codeword is erroneous. As long as 𝛿 is somewhat smaller than 1/2, we

can correct these errors to recover the whole codeword and hence 𝑓(𝑥). But notice

that if 𝛿 is more than 1/2, then there is no hope of correcting the codeword, and the

reduction will not work.

Because of this, the approach used in Section 2.2 is limited in that it cannot show,

for instance, that sub-quadratic algorithms cannot compute 𝑓OV𝑛 on more than a 1/3

fraction of inputs. One thing that can be done even if more than half the codeword is

corrupted, however, is list decoding. And the Reed-Solomon code turns out to have

rather efficient list decoding algorithms [Sud97, GS99]. This fact was used by Cai,

Pavan, and Sivakumar [CPS99] to show rather strong average-case hardness results

for the Permanent using its downward self-reducibility properties.

We use their techniques to prove that sub-quadratic algorithms cannot compute

𝑓OV𝑛 on even a 1/ polylog(𝑛) fraction of inputs. The primary issue that one has

to deal with when using list decoding instead of decoding is that it will yield many

candidate polynomials. The insight of [CPS99], building on previous work regarding

enumerative counting, is that downward self-reducibility can be used to isolate the

true polynomial via recursion. And 𝑓OV𝑛 turns out to have the properties necessary

to do this. And, although we do not show it here, the same methodology works for

𝑓OV𝑘
𝑛 and 𝑓ZWT𝑛.

Before we begin, we will present a few Lemmas from the literature to make certain

bounds explicit.

First, we present an inclusion-exclusion bound from [CPS99] on the polynomials

consistent with a fraction of 𝑚 input-output pairs, (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚). We include

a laconic proof here with the given notation for convenience.

Lemma 21 ([CPS99]). For any polynomial 𝑞 over F𝑝, define Graph(𝑞) := {(𝑖, 𝑞(𝑖)) | 𝑖 ∈

[𝑝]}. Let 𝑐 > 2, 𝛿/2 ∈ (0, 1), and 𝑚 ≤ 𝑝 such that 𝑚 > 𝑐2(𝑑−1)
𝛿2(𝑐−2) for some 𝑑. Finally,

let 𝐼 ⊆ [𝑝] such that |𝐼| = 𝑚. Then, for any set 𝑆 = {(𝑖, 𝑦𝑖) | 𝑖 ∈ 𝐼}, there are less

150

than ⌈𝑐/𝛿⌉ polynomials 𝑞 of degree at most 𝑑 that satisfy |Graph(𝑞) ∩ 𝑆| ≥ 𝑚𝛿/2.

Corollary 9. Let 𝑆 be as in Lemma 21 with 𝐼 = {𝑚 + 1, . . . , 𝑝}, for any 𝑚 < 𝑝.

Then for 𝑚 > 9𝑑/𝛿2, there are at most 3/𝛿 polynomials, 𝑞, of degree at most 𝑑 such

that |Graph(𝑞) ∩ 𝑆| ≥ 𝑚𝛿/2.

Proof. Reproduced from [CPS99] for convenience; see original for exposition.

Suppose, for contradiction, that there exists at least ⌈𝑐/𝛿⌉ such polynomials. Con-

sider a subset of exactly 𝑁 = ⌈𝑐/𝛿⌉ such polynomials, ℱ . Define S𝑓 := {(𝑖, 𝑓(𝑖)) ∈

Graph(𝑓) ∩ 𝑆}, for each 𝑓 ∈ ℱ .

𝑚 ≥

⃒⃒⃒⃒
⃒⋃︁
𝑓∈ℱ

𝑆𝑓

⃒⃒⃒⃒
⃒ ≥∑︁

𝑓∈ℱ

|𝑆𝑓 | −
∑︁

𝑓,𝑓 ′∈ℱ :𝑓 ̸=𝑓 ′

|𝑆𝑓 ∩ 𝑆𝑓 ′ |

≥ 𝑁
𝑚𝛿

2
− 𝑁(𝑁 − 1)(𝑑− 1)

2

>
𝑁

2

(︂
𝑚𝛿 − 𝑐(𝑑− 1)

𝛿

)︂
≥ 𝑐

2𝛿

(︂
𝑚𝛿 − 𝑐(𝑑− 1)

𝛿

)︂
=

𝑐𝑚

2
− 𝑐2(𝑑− 1)

2𝛿2

= 𝑚 +
1

2

(︂
(𝑐− 2)𝑚− 𝑐2(𝑑− 1)

𝛿2

)︂
> 𝑚.

Now, we give a theorem based on an efficient list-decoding algorithm, related to

Sudan’s, from Roth and Ruckenstein. [RR00]

Lemma 22 ([RR00]). List decoding for [𝑛, 𝑘]-Reed-Solomon (RS) codes over F𝑝 given

a code word with almost 𝑛−
√

2𝑘𝑛 errors (for 𝑘 > 5), can be performed in

𝑂
(︁
𝑛3/2𝑘−1/2 log2 𝑛 + (𝑛− 𝑘)2

√︀
𝑛/𝑘 + (

√
𝑛𝑘 + log 𝑞)𝑛 log2(𝑛/𝑘)

)︁
operations over F𝑞.

Plugging in specific parameters and using efficient list decoding, we get the fol-

lowing corollary which will be useful below.

151

Corollary 10. For parameters 𝑛 ∈ N and 𝛿 ∈ (0, 1), list decoding for [𝑚, 𝑘]-RS codes

over F𝑝 where 𝑚 = Θ(𝑑 log 𝑛/𝛿2), 𝑘 = Θ(𝑑), 𝑝 = 𝑂(𝑛2), and 𝑑 = Ω(log 𝑛) can be

performed in time

𝑂

(︃
𝑑2 log5/2 𝑛Arith(𝑛)

𝛿5

)︃
,

where Arith(𝑛) is a time bound on arithmetic operations over prime fields size 𝑂(𝑛).

Finally, we present a more explicitly parametrized variant of ℱOV, 𝒢OV = {𝑔OV𝑛,𝑑,𝑝}𝑛,𝑑,𝑝∈Z3 ,

where

𝑔OV𝑛,𝑑,𝑝 : F2𝑛𝑑
𝑝 → F𝑝

such that

𝑔OV𝑛,𝑑,𝑝

⎛⎜⎜⎜⎝𝑈 =

⎡⎢⎢⎢⎣
𝑢1

...

𝑢𝑛

⎤⎥⎥⎥⎦ ,𝑉 =

⎡⎢⎢⎢⎣
𝑣1

...

𝑣𝑛

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ :=

∑︁
(𝑢𝑖,𝑣𝑗)∈𝑈×𝑉

∏︁
ℓ∈[𝑑]

(1− 𝑢𝑖ℓ𝑣𝑗ℓ).

Theorem 31. If there is an algorithm that runs in time 𝑡(𝑛, 𝑑, 𝑝) for 𝑔OV𝑛,𝑑,𝑝 with

success probability 𝛿 on the uniform distribution, then there is an algorithm that runs

in time

𝑡′(𝑛, 𝑑, 𝑝) = 𝑂(𝑛1+𝛾 + 𝑡𝑑 log2 𝑛/𝛿2 + 𝑑2/𝛿5 log7/2 𝑛Arith(𝑛2))

for 𝑔OV𝑑 with failure probility at most 𝜀 < 4𝛿 log 𝑛/𝑑 for any input. Arith(𝑛) is

defined to be time bound on arithmetic operations over prime fields of size 𝑂(𝑛).

Before jumping into the proof, we observe the following corollary that essentially

provides a tradeoff between runtime and hardness. Moreover, it gives a tighter hard-

ness result on algorithms allowed to run in slightly quadratic time.

Corollary 11. Assume 𝑡 = Ω(𝑑/𝛿3 log3 𝑛). If OV takes time Ω(𝑛2−𝑜(1)) time to

decide, then any algorithm for 𝒢OV that runs in time 𝑡 with success probility 𝛿 on the

uniform distribution must obey

𝑡/𝛿2 = Ω(𝑛2−𝑜(1)).

152

In particular, assuming OV takes time Ω(𝑛2−𝑜(1)), any algorithm for 𝒢OV running

in time 𝑡 = 𝑂(𝑛2−𝜀), cannot succeed on a 1/𝑛𝛾 fraction of the instances for any 𝛾

such that 0 < 𝛾 < 𝜀/2.

Proof. Let (𝑈, 𝑉) ∈ {0, 1}2𝑛×𝑑 be an instance of boolean-valued orthogonal vectors.

Now, consider splitting these lists in half, 𝑈 = (𝑈0, 𝑈1) and 𝑉 = (𝑉0, 𝑉1), such that

(𝑈𝑎, 𝑉𝑏) ∈ {0, 1}𝑛×𝑑 for 𝑎, 𝑏 ∈ {0, 1}. Then, define the following four sub-problems:

𝐴1 = (𝑈0, 𝑉0), 𝐴2 = (𝑈0, 𝑉1), 𝐴3 = (𝑈1, 𝑉0), 𝐴4 = (𝑈1, 𝑉1).

Notice that given solutions to 𝒢OV𝑑 on 𝐴1, 𝐴2, 𝐴3, 𝐴4 we can trivially construct a

solution to OV𝑑 on (𝑈, 𝑉).

Now, draw random 𝐵,𝐶 ∈ F𝑛×𝑑
𝑝 and consider the following degree 4 polynomial

in 𝑥:

𝐷(𝑥) =
4∑︁

𝑖=1

𝛿𝑖(𝑥)𝐴𝑖 + (𝐵 + 𝑥𝐶)
4∏︁

𝑖=1

(𝑥− 𝑖),

where 𝛿𝑖 is the unique degree 3 polynomial over F𝑝 that takes value 1 at 𝑖 ∈ {1, 2, 3, 4}

and 0 on all other values in {1, 2, 3, 4}. Notice that 𝐷(𝑖) = 𝐴𝑖 for 𝑖 = 1, 2, 3, 4.

Let 𝑚 > 8𝑑/𝛿2 log 𝑛. 𝐷(5), 𝐷(6), . . . , 𝐷(𝑚 + 4). By the properties of 𝒜 and

because the 𝐷(𝑖)’s are pairwise independent, 𝒜(𝐷(𝑖)) = 𝑔OV(𝐷(𝑖)) for 𝛿𝑚/2 𝑖’s with

probability > 1− 4
𝛿𝑚

= 1− 1/ polylog(𝑛), by a Chebyshev bound.

Now, because 𝛿𝑚/2 >
√

16𝑑𝑚, we can run the list decoding algorithm of Roth

and Ruckenstein, [RR00], to get a list of all polynomials with degree ≤ 8𝑑 that agree

with at least 𝛿𝑚/2 of the values. By Corollary 9, there are at most 𝐿 = 3/𝛿 such

polynomials.

By a counting argument, there can be at most 4𝑑
(︀
𝐿
2

)︀
= 𝑂(𝑑𝐿2) points in F𝑝 on

which any two of the 𝐿 polynomials agree. Because 𝑝 > 𝑛2 > 4𝑑
(︀
𝐿
2

)︀
, we can find

such a point, 𝑗, by brute-force in 𝑂(𝐿 · 𝑑𝐿2 log3(𝑑𝐿2) log 𝑝) time, via batch univariate

evaluation [Fid72]. Now, to identify the correct polynomial 𝑔OV(𝐷(·)), one only

needs to determine the value 𝑔OV(𝐷(𝑗)). To do so, we can recursively apply the

above reduction to 𝐷(𝑗) until the number of vectors, 𝑛, is constant and 𝑔OV can be

153

evaluated in time 𝑂(𝑑 log 𝑝).

Because each recursive iteration cuts 𝑛 in half, the depth of recursion is log(𝑛).

Additionally, because each iteration has error probability < 4/(𝛿𝑚), taking a union

bound over the log(𝑛) recursive steps yields an error probability that is 𝜀 < 4 log 𝑛/(𝛿𝑚).

As noted above, we can find the prime 𝑝 in time 𝑂(𝑛1+𝛾), for any constant 𝛾 > 0,

by binary searching {𝑛2 + 1, . . . , 2𝑛2} with calls to [LO87]. Taking 𝑚 = 8𝑑 log 𝑛/𝛿2,

Roth and Ruckenstein’s algorithm takes time 𝑂(𝑑2/𝛿5 log5/2 𝑛Arith(𝑛2)), by Corol-

lary 10, in each recursive call. The brute force procedure takes time 𝑂(𝑑/𝛿3 log3(𝑑/𝛿2) log 𝑛),

which is dominated by list decoding time. Reconstruction takes time 𝑂(log 𝑛) in each

round, and is also dominated.

𝑡′ = 𝑂(𝑛1+𝛾 + 𝑡𝑑 log2 𝑛/𝛿2 + 𝑑2/𝛿5 log7/2 𝑛Arith(𝑛2)),

with error probability 𝜀 < 4 log 𝑛𝛿/𝑑.

A.4 Polynomials Computing Sums

In this section we write down polynomials that compute the bits of the sum of a pair

of numbers that are given to them in bits. Without loss of generality, we will represent

numbers in the two’s complement form. In both cases where such representations are

required (3SUM and ZWT), there are apriori bounds on the sizes of the numbers that

come up – these are either numbers in the input or sums of pairs of these numbers.

So we can assume that we always have enough bits to be able to represent these

numbers. Under this assumption, addition in the two’s complement representation is

the same as adding unsigned numbers in the standard place-value representation (and

ignoring the final carry). So we will present the polynomials {𝑠ℓ}ℓ∈[𝑑] that correspond

to unsigned addition (and are easier to describe) and these are the polynomials that

will be used.

We label the bits of a 𝑑-bit number from 1 to 𝑑 starting from the least significant

154

bit. We then translate the semantics of the ripple-carry adder into polynomials. The

polynomial 𝑠1 : F2𝑑
𝑝 → F𝑝 corresponding to the first bit of the sum is:

𝑠1(𝑥, 𝑦) = 𝑥1(1− 𝑦1) + (1− 𝑥1)𝑦1

The carry from this operation is given by the following polynomial:

𝑐1(𝑥, 𝑦) = 𝑥1𝑦1

For every other ℓ, this pair of polynomials can be computed from earlier polyno-

mials and the inputs as follows (hiding the arguments 𝑥 and 𝑦 for convenience):

𝑠ℓ = (1− 𝑥ℓ)(1− 𝑦ℓ)𝑐ℓ−1 + (1− 𝑥ℓ)𝑦ℓ(1− 𝑐ℓ−1) + 𝑥ℓ(1− 𝑦ℓ)(1− 𝑐ℓ−1) + 𝑥ℓ𝑦ℓ𝑐ℓ−1

𝑐ℓ = 𝑥ℓ𝑦ℓ(1− 𝑐ℓ−1) + 𝑥ℓ(1− 𝑦ℓ)𝑐ℓ−1 + (1− 𝑥ℓ)𝑦ℓ𝑐ℓ−1 + 𝑥ℓ𝑦ℓ𝑐ℓ−1

It can now be seen that 𝑑𝑒𝑔(𝑠ℓ) = 𝑑𝑒𝑔(𝑐ℓ) = 𝑑𝑒𝑔(𝑐ℓ−1) + 2. Along with the fact

that 𝑑𝑒𝑔(𝑐1) = 2, this implies that 𝑑𝑒𝑔(𝑠ℓ) = 2ℓ ≤ 2𝑑.

These polynomials can also be computed very easily by evaluating them in order.

Given 𝑐ℓ−1, both 𝑠ℓ and 𝑐ℓ take only a constant number of operations to compute.

Hence all the 𝑠ℓ’s can be computed is 𝑂(𝑑 log2 𝑝) time.

A.5 Isolating Orthogonal Vectors

In this section, we describe a randomized reduction from OV to uOV (unique-OV),

which is the Orthogonal Vectors problem with the promise that there is at most one

pair of orthogonal vectors in the given instance.

While interesting by itself, such a reduction is also relevant to the rest of our work

for the following reason. Recall that the polynomial 𝑓OV𝑛 is defined over the field F𝑝

where 𝑝 > 𝑛2. The reason 𝑝 had to be more than 𝑛2 was so that 𝑓OV𝑛 would count

the number of orthogonal vectors when given a boolean input, and this number could

be as large as 𝑛2. If we wanted a polynomial that did this for uOV, this restriction

155

on the characteristic of the field wouldn’t exist. 𝑝 would have still to be Ω(𝑑) for

the random self-reduction to work, but this is much smaller than 𝑛2 in our setting,

and this could possibly allow applications of our results that would not be viable

otherwise.

Recall that an important reason for believing that there is no sub-quadratic al-

gorithm for OV is that such an algorithm would break SETH due to a fine-grained

reduction from 𝑘-SAT [Wil05]. If all one wanted was a similar reason to believe that

uOV was hard, one could attempt to reduce 𝑘-SAT to uOV. A natural approach to

doing so would be to first reduce 𝑘-SAT to unique-𝑘-SAT and then apply the reduction

from [Wil05], as it translates the number of satisfying assignments to the number of

orthogonal vectors.

However, the isolation lemma for 𝑘-SAT due to Valiant and Vazirani [VV85] turns

out to not work for this purpose because it blows up the number of variables in

the 𝑘-SAT instance it operates on, and the resulting reduction would not be fine-

grained enough to provide the requisite lower bounds for uOV based on SETH. One

way to circumvent this is that Calabro et al. [CIKP03] provide an alternative that

does preserve the number of variables and shows that SETH implies an analogous

conjecture for unique-𝑘-SAT, and this can be used in the first step of the reduction

so that the reduction chain would go from 𝑘-SAT to unique-𝑘-SAT to uOV.

We instead start with OV itself and apply techniques from [VV85] directly to it, so

a reduction chain of 𝑘-SAT to OV to uOV can be achieved. Throughout this section,

we will use OV𝑑 (uOV𝑑) to denote the OV (respectively uOV) problem over vectors of

dimension 𝑑. We start by describing a search-to-decision reduction for OV/uOV.

Lemma 23. If, for some 𝑐, 𝑐′ ≥ 1, there is an (𝑛𝑐𝑑𝑐
′
)-time algorithm for OV𝑑, then

there is an 𝑂(𝑛𝑐𝑑𝑐
′
)-time algorithm that finds a pair of orthogonal vectors in any OV𝑑

instance (if it exists) except with negligible probability. Further, the same is true for

uOV𝑑.

Proof. Let 𝐴 be an algorithm for deciding OV𝑑 that has negligible error and runs in

time 𝑛𝑐𝑑𝑐
′ . Given a YES instance (𝑈, 𝑉) of OV𝑑, where 𝑈 and 𝑉 have 𝑛 vectors each,

156

our search algorithm starts by dividing 𝑈 and 𝑉 into halves (𝑈0, 𝑈1) and (𝑉0, 𝑉1),

where each half has roughly ⌊𝑛/2⌋ vectors. Since there was a pair of orthogonal

vectors in (𝑈, 𝑉), at least one of (𝑈0, 𝑉0), (𝑈0, 𝑉1), (𝑈1, 𝑉0), and (𝑈1, 𝑉1) must contain

a pair of orthogonal vectors. Run 𝐴 on all four of these to identify one that does,

and recurse on that one until the instance size reduces to a constant, at which point

try all pairs of vectors and find an orthogonal pair. If at some point in this process

𝐴 says that none of the four sub-instances contains a pair of orthogonal vectors, or if

at the end there are no orthogonal pairs, give up and fail.

Since the size of the instances reduces by a constant factor each time, the number

of calls made to 𝐴 is 𝑂(log 𝑛). So since 𝐴 makes mistakes with negligible probability,

by union bound, the whole search algorithm fails only with a negligible probability.

Copying over inputs to run 𝐴 on takes only linear time in the input size. Accounting

for this, the running time of the algorithm is:

𝑇 (𝑛) ≤ 8
(︁𝑛

2

)︁𝑐
𝑑𝑐

′
+ 8

(︁𝑛
4

)︁𝑐
𝑑𝑐

′
+ · · ·+ 8 ·𝑂(𝑑𝑐

′
)

≤ 8𝑛𝑐𝑑𝑐
′

(︃
∞∑︁
𝑘=0

1

2𝑐𝑘

)︃
= 𝑂(𝑛𝑐𝑑𝑐

′
)

It can be seen that the same proof goes through for uOV𝑑 as well.

Theorem 32. If, for some 𝑐, 𝑐′ ≥ 1, there is an (𝑛𝑐𝑑𝑐
′
)-time algorithm for uOV𝑑′,

then there is an ̃︀𝑂(𝑛𝑐𝑑𝑐
′
)-time algorithm for OV𝑑, where 𝑑′ = 𝑑 + 4 log 𝑛 + 2.

The reduction is along the lines of that from SAT to unique-SAT from [VV85],

and makes use of the following lemma, which is a special case of the one used there.

Lemma 24. Let 𝑆 ⊆ {0, 1}𝑑 × {0, 1}𝑑 be a set such that 2𝑘−1 ≤ |𝑆| < 2𝑘 for some

𝑘. With constant probability over randomly chosen 𝑀 0,𝑀 1 ∈ {0, 1}(𝑘+1)×𝑛 and

𝑏 ∈ {0, 1}(𝑘+1), there is a unique (𝑥,𝑦) ∈ 𝑆 such that 𝑀 0𝑥 + 𝑏 = 𝑀 1𝑦 (over F2).

The above lemma follows from the observation that over all 𝑀 0, 𝑀 1 and 𝑏, the

set

{ℎ𝑀0,𝑀1,𝑏(𝑥,𝑦) = 𝑀 0𝑥 + 𝑏−𝑀 1𝑦}

157

is a universal family of hash functions. We refer the reader to [VV85] for the proof.

Proof of Theorem 32. Let 𝐴 be an 𝑂(𝑛𝑐𝑑𝑐
′
)-time search algorithm for uOV𝑑′ –

such an algorithm exists by our hypothesis and Lemma 23. We would like to use it

to decide an instance (𝑈, 𝑉) of OV𝑑. What are the instances of uOV𝑑′ that we could

run 𝐴 on to help us in our task?

Suppose we knew that in (𝑈, 𝑉) there were exactly 𝑚 pairs of orthogonal vectors.

Let 𝑘 be such that 2𝑘−1 ≤ 𝑚 < 2𝑘. Lemma 24 says that if we choose 𝑀 0,𝑀 1 ∈

{0, 1}(𝑘+1)×𝑑 and 𝑏 ∈ {0, 1}(𝑘+1) at random, then with some constant probability, there

is exactly one pair of vectors 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 such that ⟨𝑢,𝑣⟩ = 0 and 𝑀 0𝑢+𝑏 = 𝑀 1𝑣.

If we could somehow encode the latter condition as part of the orthogonal vector

problem, we could hope to get a uOV instance from (𝑈, 𝑉).

Consider the encoding schemes 𝐸0 and 𝐸1 described next. For any vector 𝑥,

𝐸0(𝑥) is a vector twice as long as 𝑥, where each 0 in 𝑥 is replaced by “0 1” and each

1 is replaced by “1 0”. 𝐸1(𝑥) is similar, but here a 0 is replaced by “1 0” and a 1 is

replaced by “0 1”. The property of these encodings that make them useful for us is

that ⟨𝐸0(𝑥), 𝐸1(𝑦)⟩ = 0 if and only if 𝑥 = 𝑦.

Putting ideas from the above two paragraphs together, consider the process where

we pick 𝑀 0,𝑀 1, 𝑏 at random, and to each 𝑢 ∈ 𝑈 , we append the vector 𝐸0(𝑀 0𝑢+𝑏),

and to each 𝑣 ∈ 𝑉 , we append 𝐸1(𝑀 1𝑣). Let the entire resulting instance be (𝑈 ′, 𝑉 ′).

For any 𝑢′ ∈ 𝑈 and 𝑣′ ∈ 𝑉 , ⟨𝑢′,𝑣′⟩ = ⟨𝑢,𝑣⟩ + ⟨𝐸0(𝑀 0𝑢 + 𝑏), 𝐸1(𝑀 1𝑣)⟩ = 0 if

and only if ⟨𝑢,𝑣⟩ = 0 and 𝑀 0𝑢 + 𝑏 = 𝑀 1𝑣. So it follows that with some constant

probability, (𝑈 ′, 𝑉 ′) has a unique pair of orthogonal vectors.

Generalising slightly, if we knew that an instance (𝑈, 𝑉) had either between 2𝑘−1

and 2𝑘 pairs of orthogonal vectors or none, then to decide which is the case, all we

need to do is to do the above conversion to (𝑈 ′, 𝑉 ′), pad the vectors with 0’s to get

them to dimension 𝑑′, and run 𝐴 on it. If there were no orthogonal vectors, 𝐴 can

never return a valid answer, and in the other case, with a constant probability there

will be a unique pair of orthogonal vectors that 𝐴 will find. This can be repeated,

say, log2 𝑛 times to get a negligible probability of failure.

But we do not actually know much about the number of pairs of orthogonal vectors

158

in an instance that is given to us. This is easy to deal with, though – simply run the

above algorithm for all possible values of 𝑘, from 0 to 2 log 𝑛. If there are indeed some

pairs of orthogonal vectors, then one of these values of 𝑘 was the right one to use and

the corresponding iteration would give us a pair of orthogonal vectors, except with

negligible probability. If there are no orthogonal vectors, then we will never find such

a pair.

Each (𝑈 ′, 𝑉 ′) takes at most 𝑂(𝑛𝑑 log 𝑛) time to prepare, and an execution of 𝐴

takes 𝑂(𝑛𝑐𝑑𝑐
′
) time. This is done log2 𝑛 times for each value of 𝑘, which is from

[2 log 𝑛]. So the total time taken by the above algorithm is 𝑂(log3 𝑛(𝑛𝑑 log 𝑛 +

𝑛𝑐𝑑𝑐
′
)) = ̃︀𝑂(𝑛𝑐𝑑𝑐

′
).

159

160

Appendix B

Appendices to Chapter 3

B.1 A Stronger Direct Sum Theorem for ℱOV

In this section, we prove a stronger direct sum theorem (and, thus, non-batchable

evaluation) for ℱOV𝑘. That is, we prove Theorem 7.

In particular, it is sufficient to define a notion of batchability for parametrized

families of functions with a monotonicity constraint. In our case, monotonicity will

essentially say “adding more vectors of the same dimension and field size does not

make the problem easier.” This is a natural property of most algorithms. Namely, it

is the case if for any fixed 𝑑, 𝑝, ℱOV𝑘
𝑛,𝑑,𝑝 is (𝑛, 𝑡, 𝛿)− 𝑏𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒.

Instead, we generalize batchability in a parametrized fashion for ℱOV𝑘
𝑛,𝑑,𝑝.

Definition 25. A parametrized class, ℱ𝜌, is not (ℓ, 𝑡, 𝛿)-batchable on average over

𝒟𝜌, a parametrized family of distributions if, for any fixed parameter 𝜌 and algorithm

Batch𝜌 that runs in time ℓ(𝜌)𝑡(𝜌) when it is given as input ℓ(𝜌) independent samples

from 𝐷𝜌, the following is true for all large enough 𝑛:

Pr
𝑥𝑖←𝐷𝜌

[︀
Batch(𝑥1, . . . , 𝑥ℓ(𝜌)) = (𝑓𝜌(𝑥1), . . . , 𝑓𝜌(𝑥ℓ(𝜌)))

]︀
< 𝛿(𝜌).

Remark 18. We use a more generic parameterization of ℱ𝜌 by 𝜌 rather than just 𝑛

since we need the batch evaluation procedure to have the property that it should still

run quickly as 𝑛 shrinks, as we use downward self-reducibility of ℱOV𝑘
𝑛,𝑑,𝑝, even when

161

𝑝 and 𝑑 remain the same.

We now show how a generalization of the list decoding reduction of [BRSV17]

yields strong batch evaluation bounds. Before we begin, we will present a few Lemmas

from the literature to make certain bounds explicit.

First, we present an inclusion-exclusion bound from [CPS99] on the polynomials

consistent with a fraction of 𝑚 input-output pairs, (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚). We include

a laconic proof here with the given notation for convenience.

Lemma 25 ([CPS99]). Let 𝑞 be a polynomial over F𝑝, and define Graph(𝑞) :=

{(𝑖, 𝑞(𝑖)) | 𝑖 ∈ [𝑝]}. Let 𝑐 > 2, 𝛿/2 ∈ (0, 1), and 𝑚 ≤ 𝑝 such that 𝑚 > 𝑐2(𝑑−1)
𝛿2(𝑐−2) for some

𝑑. Finally, let 𝐼 ⊆ [𝑝] such that |𝐼| = 𝑚. Then, for any set 𝑆 = {(𝑖, 𝑦𝑖) | 𝑖 ∈ 𝐼}, there

are less than ⌈𝑐/𝛿⌉ polynomials 𝑞 of degree at most 𝑑 that satisfy |Graph(𝑞) ∩ 𝑆| ≥

𝑚𝛿/2.

Corollary 12. Let 𝑆 be as in Lemma 25 with 𝐼 = {𝑚 + 1, . . . , 𝑝}, for any 𝑚 < 𝑝.

Then for 𝑚 > 9𝑑/𝛿2, there are at most 3/𝛿 polynomials, 𝑞, of degree at most 𝑑 such

that |Graph(𝑞) ∩ 𝑆| ≥ 𝑚𝛿/2.

Proof. Reproduced from [CPS99] for convenience; see original for exposition.

Suppose there exist at least ⌈𝑐/𝛿⌉ such polynomials. Consider a subset of exactly

𝑁 = ⌈𝑐/𝛿⌉ such polynomials, ℱ . Define S𝑓 := {(𝑖, 𝑓(𝑖)) ∈ Graph(𝑓) ∩ 𝑆}, for each

𝑓 ∈ ℱ .

𝑚 ≥

⃒⃒⃒⃒
⃒⋃︁
𝑓∈ℱ

𝑆𝑓

⃒⃒⃒⃒
⃒ ≥∑︁

𝑓∈ℱ

|𝑆𝑓 | −
∑︁

𝑓,𝑓 ′∈ℱ :𝑓 ̸=𝑓 ′

|𝑆𝑓 ∩ 𝑆𝑓 ′ |

≥ 𝑁
𝑚𝛿

2
− 𝑁(𝑁 − 1)(𝑑− 1)

2
>

𝑁

2

(︂
𝑚𝛿 − 𝑐(𝑑− 1)

𝛿

)︂
≥ 𝑐

2𝛿

(︂
𝑚𝛿 − 𝑐(𝑑− 1)

𝛿

)︂
=

𝑐𝑚

2
− 𝑐2(𝑑− 1)

2𝛿2

= 𝑚 +
1

2

(︂
(𝑐− 2)𝑚− 𝑐2(𝑑− 1)

𝛿2

)︂
> 𝑚.

162

Now, we give a theorem based on an efficient list-decoding algorithm, related to

Sudan’s, from Roth and Ruckenstein. [RR00]

Lemma 26 ([RR00]). List decoding for [𝑛, 𝑘] Reed-Solomon (RS) codes over F𝑝 given

a code word with almost 𝑛−
√

2𝑘𝑛 errors (for 𝑘 > 5), can be performed in

𝑂
(︁
𝑛3/2𝑘−1/2 log2 𝑛 + (𝑛− 𝑘)2

√︀
𝑛/𝑘 + (

√
𝑛𝑘 + log 𝑞)𝑛 log2(𝑛/𝑘)

)︁
operations over F𝑞.

Plugging in specific parameters and using efficient list decoding, we get the fol-

lowing corollary which will be useful below.

Corollary 13. For parameters 𝑛 ∈ N and 𝛿 ∈ (0, 1), list decoding for [𝑚, 𝑘] RS

over F𝑝 where 𝑚 = Θ(𝑑 log 𝑛/𝛿2), 𝑘 = Θ(𝑑), 𝑝 = 𝑂(𝑛2), and 𝑑 = Ω(log 𝑛) can be

performed in time

𝑂

(︃
𝑑2 log5/2 𝑛Arith(𝑛)

𝛿5

)︃
,

where Arith(𝑛) is a time bound on arithmetic operations over prime fields size 𝑂(𝑛).

Theorem 33. For some 𝑘 ≥ 2, suppose 𝑘-OV takes 𝑛𝑘−𝑜(1) time to decide for all but

finitely many input lengths for any 𝑑 = 𝜔(log 𝑛). Then, for any positive constants

𝑐, 𝜖 > 0 and 0 < 𝛿 < 𝜀/2, ℱOV𝑘 is not

(𝑛𝑐poly(𝑑, log(𝑝)), 𝑛𝑘−𝜖poly(𝑑, log(𝑝)), 𝑛−𝛿poly(𝑑, log(𝑝)))

-batchable on average over the uniform distribution over its inputs.

Proof. Let 𝑘 = 2𝑐′ + 𝑐 and 𝑝 > 𝑛𝑘. Suppose for the sake of contradiction that

ℱOV𝑛,𝑑,𝑝 is (𝑛𝑐poly(𝑑, log(𝑝)), 𝑛2𝑐′+𝑐−𝜖poly(𝑑, log(𝑝)), 𝑛−𝑐
′
poly(𝑑, log(𝑝)))-batchable on

average over the uniform distribution.

Let 𝑚 = 𝑛𝑘/(𝑘+𝑐), as before. By Proposition 2, 𝑘-OV with vectors of dimension

𝑑 = (𝑘
𝑘+𝑐

))2 log2 𝑛 is (𝑚,𝑚𝑐)-downward reducible to 𝑘-OV with vectors of dimension

log2(𝑛), in time �̃�(𝑚𝑐+1).

163

For each 𝑗 ∈ [𝑚𝑐] 𝑋𝑗 = (𝑈 𝑗1, . . . , 𝑈 𝑗𝑘) ∈ {0, 1}𝑘𝑚𝑑 is the instance of boolean-

valued orthogonal vectors from the above reduction. Now, consider splitting these

lists in half, 𝑈 𝑗𝑖 = (𝑈 𝑗𝑖
0 , 𝑈 𝑗𝑖

1) (𝑖 ∈ [𝑘]), such that (𝑈 𝑗1
𝑎1
, . . . , 𝑈 𝑗𝑘

𝑎𝑘
) ∈ {0, 1}𝑘𝑚𝑑/2 for

𝑎 ∈ {0, 1}𝑘. Interpret 𝑎 as binary number in {0, . . . , 2𝑘 − 1}. Then, define the

following 2𝑘 sub-problems:

𝐴𝑎 = ((𝑈 𝑗1
𝑎1
, . . . , 𝑈 𝑗𝑘

𝑎𝑘
)),∀𝑎 ∈ {0, . . . , 2𝑘 − 1}

Notice that given solutions to 𝑓OV𝑘
𝑑 on {𝐴𝑎}𝑎∈{0,1}𝑘 we can trivially construct a

solution to OV𝑘
𝑑 on 𝑋𝑗.

Now, draw random 𝐵𝑗, 𝐶𝑗 ∈ F𝑘𝑚𝑑/2
𝑝 and consider the following degree 2𝑘 polyno-

mial in 𝑥:

𝐷𝑗(𝑥) =
2𝑘∑︁
𝑖=1

𝛿𝑖(𝑥)𝐴𝑖−1 + (𝐵𝑗 + 𝑥𝐶𝑗)
2𝑘∏︁
𝑖=1

(𝑥− 𝑖),

where 𝛿𝑖 is the unique degree 2𝑘 − 1 polynomial over F𝑝 that takes value 1 at 𝑖 ∈ [2𝑘]

and 0 on all other values in [2𝑘]. Notice that 𝐷𝑗(𝑖) = 𝐴𝑖−1 for 𝑖 ∈ [2𝑘].

Let 𝑟 > 2𝑘+1𝑑/𝛿2 log𝑚. 𝐷𝑗(2
𝑘 + 1), 𝐷𝑗(6), . . . , 𝐷𝑗(𝑟 + 2𝑘). By the properties of

Batch and because the 𝐷𝑗(·)’s are independent, 𝐷1(𝑖), . . . , 𝐷𝑚𝑐(𝑖) are independent for

any fixed 𝑖. Thus,

Batch(𝐷1(𝑖), . . . , 𝐷𝑚𝑐(𝑖)) = 𝑓OV𝑘(𝐷1(𝑖)), . . . , 𝑓OV
𝑘(𝐷𝑚𝑐(𝑖))

for 𝛿𝑟/2 𝑖’s with probability at least 1− 4
𝛿𝑟

= 1− 1/ polylog(𝑚), by Chebyshev.

Now, because 𝛿𝑟/2 >
√

16𝑑𝑟, we can run the list decoding algorithm of Roth and

Ruckenstein, [RR00], to get a list of all polynomials with degree ≤ 2𝑘+1𝑑 that agree

with at least 𝛿𝑟/2 of the values. By Corollary 12, there are at most 𝐿 = 3/𝛿 such

polynomials.

By a counting argument, there can be at most 2𝑘𝑑
(︀
𝐿
2

)︀
= 𝑂(𝑑𝐿2) points in F𝑝 on

which any two of the 𝐿 polynomials agree. Because 𝑝 > 𝑛𝑘 > 2𝑘𝑑
(︀
𝐿
2

)︀
, we can find

such a point, ℓ, by brute-force in 𝑂(𝐿 · 𝑑𝐿2 log3(𝑑𝐿2) log 𝑝) time, via batch univariate

evaluation [Fid72]. Now, to identify the correct polynomials 𝑓OV𝑘(𝐷𝑗(·)), one only

164

needs to determine the value 𝑓OV𝑘(𝐷𝑗(ℓ)). To do so, we can recursively apply the

above reduction to all the 𝐷𝑗(ℓ)s until the number of vectors, 𝑚, is constant and

𝑓OV𝑘 can be evaluated in time 𝑂(𝑑 log 𝑝).

Because each recursive iteration cuts 𝑚 in half, the depth of recursion is log(𝑚).

Additionally, because each iteration has error probability < 4/(𝛿𝑟), taking a union

bound over the log(𝑚) recursive steps yields an error probability that is 𝜀 < 4 log𝑚/(𝛿𝑟).

We can find the prime 𝑝 via 𝑂(log𝑚) random guesses in {𝑚𝑘 + 1, . . . , 2𝑚𝑘} with

overwhelming probability. By Corollary 13, taking 𝑟 = 8𝑑 log𝑚/𝛿2, Roth and Ruck-

enstein’s algorithm takes time 𝑂(𝑑2/𝛿5 log5/2𝑚Arith(𝑚𝑘)) in each recursive call. The

brute force procedure takes time 𝑂(𝑑/𝛿3 log3(𝑑/𝛿2) log𝑚), which is dominated by

list decoding time. Reconstruction takes time 𝑂(log𝑚) in each round, and is also

dominated. Thus the total run time is

𝑇 = 𝑂(𝑚𝑐(𝑚𝑘−𝜀𝑑 log2𝑚/𝛿2 + 𝑑2/𝛿5 log7/2𝑚Arith(𝑚𝑘))),

with error probability 𝜀 < 4 log𝑚𝛿/𝑑.

165

166

Bibliography

[AB84] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant
depth computations. In Proceedings of the 16th Annual ACM Sympo-
sium on Theory of Computing, April 30 - May 2, 1984, Washington,
DC, USA, pages 471–474, 1984.

[Abb17] Amir Abboud. Personal communication, 2017.

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryp-
tography from different assumptions. In Leonard J. Schulman, editor,
Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages
171–180. ACM, 2010.

[ABW15a] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the
current clique algorithms are optimal, so is valiant’s parser. In Founda-
tions of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium
on, pages 98–117. IEEE, 2015.

[ABW15b] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams.
Quadratic-time hardness of LCS and other sequence similarity measures.
CoRR, abs/1501.07053, 2015.

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz.
On basing one-way functions on np-hardness. In Kleinberg [Kle06], pages
701–710.

[AGHP93] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Ad-
dendum to "simple construction of almost k-wise independent random
variables". Random Struct. Algorithms, 4(1):119–120, 1993.

[AHWW15] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams,
and Ryan Williams. Simulating branching programs with edit distance
and friends or: A polylog shaved is a lower bound made. arXiv preprint
arXiv:1511.06022, 2015.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
nco. In FOCS 2004: 45th Annual IEEE Symposium on Foundations of
Computer Science: proceedings: 17-19 October, 2004, Rome, Italy, page
166. IEEE Computer Society Press, 2004.

167

[Ajt83] M. Ajtai. âĹŚ11-formulae on finite structures. Annals of Pure and
Applied Logic, 24(1):1 – 48, 1983.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In Gary L. Miller, editor, Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996, pages 99–108. ACM, 1996.

[AL13] Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-sum
conjecture. In International Colloquium on Automata, Languages, and
Programming, pages 1–12. Springer Berlin Heidelberg, 2013.

[Ale03] Michael Alekhnovich. More on average case vs approximation com-
plexity. In Foundations of Computer Science, 2003. Proceedings. 44th
Annual IEEE Symposium on, pages 298–307. IEEE, 2003.

[App14] Benny Applebaum. Cryptography in nc 0. In Cryptography in Constant
Parallel Time, pages 33–78. Springer, 2014.

[AR99] Yonatan Aumann and Michael O Rabin. Information theoretically se-
cure communication in the limited storage space model. In Advances in
CryptologyâĂŤCRYPTOâĂŹ99, pages 65–79. Springer, 1999.

[AR15] Benny Applebaum and Pavel Raykov. On the relationship between sta-
tistical zero-knowledge and statistical randomized encodings. Electronic
Colloquium on Computational Complexity (ECCC), 22:186, 2015.

[AWW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Con-
sequences of faster alignment of sequences. In International Colloquium
on Automata, Languages, and Programming, pages 39–51. Springer,
2014.

[AWY15] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu.
Matching triangles and basing hardness on an extremely popular
conjecture. Manuscript: https://dl.dropboxusercontent.com/u/
14999836/publications/MatchTria.pdf, 2015.

[Bab85] László Babai. Trading group theory for randomness. In Sedgewick
[Sed85], pages 421–429.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branch-
ing programs recognize exactly those languages in nc1. In Hartmanis
[Har86], pages 1–5.

[Bar17] Boaz Barak. The complexity of public-key cryptography. In Yehuda
Lindell, editor, Tutorials on the Foundations of Cryptography., pages
45–77. Springer International Publishing, 2017.

168

https://dl.dropboxusercontent.com/u/14999836/publications/MatchTria.pdf
https://dl.dropboxusercontent.com/u/14999836/publications/MatchTria.pdf

[BB15] Andrej Bogdanov and Christina Brzuska. On basing size-verifiable one-
way functions on np-hardness. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part I, volume 9014 of Lecture Notes in Computer Science, pages
1–6. Springer, 2015.

[BDSKM17] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin.
Non-malleable codes from average-case hardness: Ac0, decision trees,
and streaming space-bounded tampering. Cryptology ePrint Archive,
Report 2017/1061, 2017. https://eprint.iacr.org/2017/1061.

[BDT16] Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight
hardness results for maximum weight rectangles. arXiv preprint
arXiv:1602.05837, 2016.

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lip-
ton. Cryptographic primitives based on hard learning problems. In
Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO ’93,
13th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture
Notes in Computer Science, pages 278–291. Springer, 1993.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscat-
ing programs. In Joe Kilian, editor, Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lec-
ture Notes in Computer Science, pages 1–18. Springer, 2001.

[BGI08] Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key
cryptography on strong one-way functions. In Ran Canetti, editor, The-
ory of Cryptography, Fifth Theory of Cryptography Conference, TCC
2008, New York, USA, March 19-21, 2008., volume 4948 of Lecture
Notes in Computer Science, pages 55–72. Springer, 2008.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod
Vaikuntanathan, and Brent Waters. Time-lock puzzles from randomized
encodings. In Sudan [Sud16], pages 345–356.

[BGL16] Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A di-
chotomy for regular expression membership testing. arXiv preprint
arXiv:1611.00918, 2016.

[BHvM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfi-
ability, volume 185. ios press, 2009.

169

https://eprint.iacr.org/2017/1061

[BI14] Arturs Backurs and Piotr Indyk. Edit distance cannot be com-
puted in strongly subquadratic time (unless SETH is false). CoRR,
abs/1412.0348, 2014.

[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower
bounds for string problems and dynamic time warping. In Foundations
of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on,
pages 79–97. IEEE, 2015.

[BK16a] Alex Biryukov and Dmitry Khovratovich. Egalitarian computing. In
Thorsten Holz and Stefan Savage, editors, 25th USENIX Security Sym-
posium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.,
pages 315–326. USENIX Association, 2016.

[BK16b] Andreas Björklund and Petteri Kaski. How proofs are prepared at
camelot. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, pages 391–400. ACM, 2016.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-
testing/correcting with applications to numerical problems. J. Comput.
Syst. Sci., 47(3):549–595, 1993.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–
864, 1984.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, edi-
tors, CCS ’93, Proceedings of the 1st ACM Conference on Computer
and Communications Security, Fairfax, Virginia, USA, November 3-5,
1993., pages 62–73. ACM, 1993.

[Bra10] Mark Braverman. Polylogarithmic independence fools AC0 circuits. J.
ACM, 57(5), 2010.

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasude-
van. Average-case fine-grained hardness. In Hamed Hatami, Pierre
McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Mon-
treal, QC, Canada, June 19-23, 2017, pages 483–496. ACM, 2017.

[BRSV18] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasude-
van. Proofs of work from worst-case assumptions. IACR Cryptology
ePrint Archive, 2018:559, 2018. To appear in CRYPTO 2018.

[BT03] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case
reductions for NP problems. In 44th Symposium on Foundations of

170

Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA,
USA, Proceedings, pages 308–317. IEEE Computer Society, 2003.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foun-
dations and Trends in Theoretical Computer Science, 2(1), 2006.

[BT16] Arturs Backurs and Christos Tzamos. Improving viterbi is hard:
Better runtimes imply faster clique algorithms. arXiv preprint
arXiv:1607.04229, 2016.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) LWE. In Rafail Ostrovsky, editor,
FOCS, pages 97–106. IEEE, 2011. Invited to SIAM Journal on Com-
puting.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D Rothblum. Fiat-
shamir and correlation intractability from strong kdm-secure encryption.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 91–122. Springer, 2018.

[CFK+15] M. Cygan, F.V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms.
Springer International Publishing, 2015.

[CG18] Matteo Campanelli and Rosario Gennaro. Fine-grained secure compu-
tation. IACR Cryptology ePrint Archive, 2018:297, 2018.

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin,
Ramamohan Paturi, and Stefan Schneider. Nondeterministic extensions
of the strong exponential time hypothesis and consequences for non-
reducibility. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, Cambridge, MA, USA, January 14-
16, 2016, pages 261–270, 2016.

[CIKP03] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamo-
han Paturi. The complexity of unique k-sat: An isolation lemma for
k-cnfs. In 18th Annual IEEE Conference on Computational Complexity
(Complexity 2003), 7-10 July 2003, Aarhus, Denmark, page 135, 2003.

[CIS18] Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. Fine-
grained derandomization: From problem-centric to resource-centric
complexity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018,
Prague, Czech Republic, volume 107 of LIPIcs, pages 27:1–27:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

171

[CM97] Christian Cachin and Ueli Maurer. Unconditional security
against memory-bounded adversaries. In Advances in Cryptolo-
gyâĂŤCRYPTO’97, pages 292–306. Springer, 1997.

[CPS99] Jin-yi Cai, Aduri Pavan, and D. Sivakumar. On the hardness of perma-
nent. In Christoph Meinel and Sophie Tison, editors, STACS 99, 16th
Annual Symposium on Theoretical Aspects of Computer Science, Trier,
Germany, March 4-6, 1999, Proceedings, volume 1563 of Lecture Notes
in Computer Science, pages 90–99. Springer, 1999.

[CW16] Timothy M Chan and Ryan Williams. Deterministic apsp, orthogonal
vectors, and more: Quickly derandomizing razborov-smolensky. In Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 1246–1255. Society for Industrial and Applied
Mathematics, 2016.

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and
Krzysztof Pietrzak. Proofs of space. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II, volume 9216 of Lecture Notes in Computer
Science, pages 585–605. Springer, 2015.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[DHW10] Holger Dell, Thore Husfeldt, and Martin Wahlén. Exponential time
complexity of the permanent and the tutte polynomial. In International
Colloquium on Automata, Languages, and Programming, pages 426–437.
Springer, 2010.

[DM04] Stefan Dziembowski and Ueli Maurer. On generating the initial key in
the bounded-storage model. In Advances in Cryptology-EUROCRYPT
2004, pages 126–137. Springer, 2004.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combat-
ting junk mail. In Ernest F. Brickell, editor, Advances in Cryptology -
CRYPTO ’92, 12th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 16-20, 1992, Proceedings, volume 740
of Lecture Notes in Computer Science, pages 139–147. Springer, 1992.

[DPW09] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-
malleable codes. IACR Cryptology ePrint Archive, 2009:608, 2009.

[DVV16] Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasude-
van. Fine-grained cryptography. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August

172

14-18, 2016, Proceedings, Part III, volume 9816 of Lecture Notes in
Computer Science, pages 533–562. Springer, 2016.

[FF90] J Feigenbaum and L Fortnow. On the random-self-reducibility of com-
plete sets. University of Chicago Technical Report, pages 90–22, 1990.

[FF93] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of com-
plete sets. SIAM J. Comput., 22(5):994–1005, 1993.

[FGHK15] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and
Alexander S. Kulikov. A better-than-3n lower bound for the circuit
complexity of an explicit function. Electronic Colloquium on Computa-
tional Complexity (ECCC), 22:166, 2015.

[Fid72] Charles M. Fiduccia. Polynomial evaluation via the division algorithm:
The fast fourier transform revisited. In Fischer et al. [FZUR72], pages
88–93.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, edi-
tor, Advances in Cryptology - CRYPTO ’86, Santa Barbara, California,
USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer Sci-
ence, pages 186–194. Springer, 1986.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, cir-
cuits, and the polynomial-time hierarchy. Mathematical Systems Theory,
17(1):13–27, 1984.

[FZUR72] Patrick C. Fischer, H. Paul Zeiger, Jeffrey D. Ullman, and Arnold L.
Rosenberg, editors. Proceedings of the 4th Annual ACM Symposium on
Theory of Computing, May 1-3, 1972, Denver, Colorado, USA. ACM,
1972.

[Gal62] Robert G. Gallager. Low-density parity-check codes. IRE Trans. Infor-
mation Theory, 8(1):21–28, 1962.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, pages 169–178, 2009.

[GGH94] Mikael Goldmann, Per Grape, and Johan Håstad. On average time
hierarchies. Inf. Process. Lett., 49(1):15–20, 1994.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 40–49. IEEE Computer Society, 2013.

173

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[GH16] Shafi Goldwasser and Dhiraj Holden. On the fine grained complexity of
polynomial time problems given correlated instances. In Innovations in
Theoretical Computer Science (ITCS), 2016.

[GI16] Jiawei Gao and Russell Impagliazzo. Orthogonal vectors is hard for
first-order properties on sparse graphs. Electronic Colloquium on Com-
putational Complexity (ECCC), 23:53, 2016.

[GK15] Alexander Golovnev and Alexander S. Kulikov. Weighted gate elimi-
nation: Boolean dispersers for quadratic varieties imply improved cir-
cuit lower bounds. Electronic Colloquium on Computational Complexity
(ECCC), 22:170, 2015.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how
to play mental poker keeping secret all partial information. In Harry R.
Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H.
Landweber, editors, Proceedings of the 14th Annual ACM Symposium
on Theory of Computing, May 5-7, 1982, San Francisco, California,
USA, pages 365–377. ACM, 1982.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems (extended abstract). In
Sedgewick [Sed85], pages 291–304.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signa-
ture scheme secure against adaptive chosen-message attacks. SIAM J.
Comput., 17(2):281–308, 1988.

[GO95] Anka Gajentaan and Mark H Overmars. On a class of 𝑂(𝑛2) problems in
computational geometry. Computational geometry, 5(3):165–185, 1995.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic
Techniques. Cambridge University Press, 2001.

[GR12] Shafi Goldwasser and Guy N. Rothblum. How to compute in the pres-
ence of leakage. In 53rd Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-
23, 2012, pages 31–40, 2012.

[GR15] Shafi Goldwasser and Guy N. Rothblum. How to compute in the pres-
ence of leakage. SIAM J. Comput., 44(5):1480–1549, 2015.

[GR17] Oded Goldreich and Guy Rothblum. Simple doubly-efficient interactive
proof systems for locally-characterizable sets. Electronic Colloquium on
Computational Complexity Report TR17-018, February 2017.

174

[GR18] Oded Goldreich and Guy N. Rothblum. Counting t-cliques: Worst-
case to average-case reductions and direct interactive proof systems.
Electronic Colloquium on Computational Complexity (ECCC), 25:46,
2018.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins
in interactive proof systems. In Proceedings of the eighteenth annual
ACM symposium on Theory of computing, pages 59–68. ACM, 1986.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for poly-
nomials. Information processing letters, 43(4):169–174, 1992.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-
solomon and algebraic-geometry codes. IEEE Trans. Information The-
ory, 45(6):1757–1767, 1999.

[Har86] Juris Hartmanis, editor. Proceedings of the 18th Annual ACM Sympo-
sium on Theory of Computing, May 28-30, 1986, Berkeley, California,
USA. ACM, 1986.

[Hås86] Johan Håstad. Almost optimal lower bounds for small depth circuits.
In Hartmanis [Har86], pages 6–20.

[Has87] Johan Hastad. One-way permutations in nc 0. Information Processing
Letters, 26(3):153–155, 1987.

[Hås14] Johan Håstad. On the correlation of parity and small-depth circuits.
SIAM J. Comput., 43(5):1699–1708, 2014.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM J. Com-
put., 28(4):1364–1396, 1999.

[Hor72] Ellis Horowitz. A fast method for interpolation using preconditioning.
Information Processing Letters, 1(4):157–163, 1972.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new
representation with applications to round-efficient secure computation.
In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 294–304. IEEE, 2000.

[IKO05] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient condi-
tions for collision-resistant hashing. In Theory of Cryptography, Second
Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA,
February 10-12, 2005, Proceedings, pages 445–456, 2005.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryp-
tography with constant computational overhead. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 433–
442. ACM, 2008.

175

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essen-
tial for complexity based cryptography (extended abstract). In 30th
Annual Symposium on Foundations of Computer Science, Research Tri-
angle Park, North Carolina, USA, 30 October - 1 November 1989, pages
230–235. IEEE Computer Society, 1989.

[IR88] Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In Advances in Cryptology - CRYPTO
’88, 8th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 21-25, 1988, Proceedings, pages 8–26, 1988.

[JJ99] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding
protocols. In Bart Preneel, editor, Secure Information Networks: Com-
munications and Multimedia Security, IFIP TC6/TC11 Joint Working
Conference on Communications and Multimedia Security (CMS ’99),
September 20-21, 1999, Leuven, Belgium, volume 152 of IFIP Confer-
ence Proceedings, pages 258–272. Kluwer, 1999.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy, Second Edition. CRC Press, 2014.

[Kle06] Jon M. Kleinberg, editor. Proceedings of the 38th Annual ACM Sym-
posium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006.
ACM, 2006.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From
obfuscation to the security of fiat-shamir for proofs. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part II, volume 10402 of Lecture
Notes in Computer Science, pages 224–251. Springer, 2017.

[Lev86] Leonid A. Levin. Average case complete problems. SIAM J. Comput.,
15(1):285–286, 1986.

[Lip91] Richard Lipton. New directions in testing. Distributed Computing and
Cryptography, 2:191–202, 1991.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth cir-
cuits, fourier transform, and learnability. Journal of the ACM (JACM),
40(3):607–620, 1993.

[LO87] Jeffrey C Lagarias and Andrew M. Odlyzko. Computing 𝜋 (x): An
analytic method. Journal of Algorithms, 8(2):173–191, 1987.

[Mau92] Ueli M Maurer. Conditionally-perfect secrecy and a provably-secure
randomized cipher. Journal of Cryptology, 5(1):53–66, 1992.

176

[Mce78] Robert J Mceliece. A public-key cryptosystem based on algebraic. Cod-
ing Thv, 4244:114–116, 1978.

[Mer78] Ralph C. Merkle. Secure communications over insecure channels. Com-
mun. ACM, 21(4):294–299, 1978.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynominal-
tuples for efficient signature-verification and message-encryption. In
Christoph G. Günther, editor, Advances in Cryptology - EUROCRYPT
’88, Workshop on the Theory and Application of of Cryptographic Tech-
niques, Davos, Switzerland, May 25-27, 1988, Proceedings, volume 330
of Lecture Notes in Computer Science, pages 419–453. Springer, 1988.

[MMV11] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock
puzzles in the random oracle model. In Phillip Rogaway, editor, Ad-
vances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, vol-
ume 6841 of Lecture Notes in Computer Science, pages 39–50. Springer,
2011.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In Kleinberg
[Kle06], pages 306–315.

[MST06] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On epsilon-biased
generators in nc0. Random Struct. Algorithms, 29(1):56–81, 2006.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Annual
International Cryptology Conference, pages 96–109. Springer, 2003.

[NP85] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the sub-
graph problem. Commentationes Mathematicae Universitatis Carolinae,
26(2):415–419, 1985.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput.
Syst. Sci., 49(2):149–167, 1994.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application
to protocol composition. In Eli Biham, editor, Advances in Cryptol-
ogy - EUROCRYPT 2003, International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8,
2003, Proceedings, volume 2656 of Lecture Notes in Computer Science,
pages 160–176. Springer, 2003.

[P1̌0] Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic prob-
lems. In Proceedings of the Forty-second ACM Symposium on Theory
of Computing, STOC ’10, pages 603–610, New York, NY, USA, 2010.
ACM.

177

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In Advances in Cryptol-
ogy - CRYPTO 2008, 28th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 554–
571, 2008.

[Rab79] Michael O Rabin. Digitalized signatures and public-key functions as in-
tractable as factorization. Technical report, MASSACHUSETTS INST
OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE, 1979.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, pages 169–177.
Academic Press, 1978.

[Raz87] A. A. Razborov. Lower bounds on the size of bounded depth circuits
over a complete basis with logical addition. Mathematical notes of the
Academy of Sciences of the USSR, 41(4):333–338, 1987.

[RR00] Ron M. Roth and Gitit Ruckenstein. Efficient decoding of reed-solomon
codes beyond half the minimum distance. IEEE Trans. Information
Theory, 46(1):246–257, 2000.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun.
ACM, 21(2):120–126, 1978.

[RST15] Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-
case depth hierarchy theorem for boolean circuits. Electronic Colloquium
on Computational Complexity (ECCC), 22:65, 2015.

[RSW00] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles
and timed-release crypto. Technical Report MIT/LCS/TR-684, MIT,
2000.

[RW91] Prabhakar Ragde and Avi Wigderson. Linear-size constant-depth
polylog-treshold circuits. Inf. Process. Lett., 39(3):143–146, 1991.

[RZ04] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In
European Symposium on Algorithms, pages 580–591. Springer, 2004.

[Sed85] Robert Sedgewick, editor. Proceedings of the 17th Annual ACM Sym-
posium on Theory of Computing, May 6-8, 1985, Providence, Rhode
Island, USA. ACM, 1985.

[She12] Alexander A Sherstov. Strong direct product theorems for quantum
communication and query complexity. SIAM Journal on Computing,
41(5):1122–1165, 2012.

178

[SKR+11] Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy, Colin Boyd,
and Juan Manuel González Nieto. Stronger difficulty notions for client
puzzles and denial-of-service-resistant protocols. In Aggelos Kiayias, ed-
itor, Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track
at the RSA Conference 2011, San Francisco, CA, USA, February 14-18,
2011. Proceedings, volume 6558 of Lecture Notes in Computer Science,
pages 284–301. Springer, 2011.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds
for boolean circuit complexity. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 77–82, 1987.

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-
correction bound. J. Complexity, 13(1):180–193, 1997.

[Sud16] Madhu Sudan, editor. Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, Cambridge, MA, USA,
January 14-16, 2016. ACM, 2016.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfusca-
tion: deniable encryption, and more. In David B. Shmoys, editor, Sym-
posium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 475–484. ACM, 2014.

[Tal14] Avishay Tal. Tight bounds on the fourier spectrum of ac0. Electronic
Colloquium on Computational Complexity (ECCC), 21:174, 2014.

[TX13] Luca Trevisan and Tongke Xue. A derandomized switching lemma and
an improved derandomization of AC0. In Proceedings of the 28th Con-
ference on Computational Complexity, CCC 2013, K.lo Alto, California,
USA, 5-7 June, 2013, pages 242–247, 2013.

[Vad04] Salil P Vadhan. Constructing locally computable extractors and
cryptosystems in the bounded-storage model. Journal of Cryptology,
17(1):43–77, 2004.

[Vio12] Emanuele Viola. The complexity of distributions. SIAM Journal on
Computing, 41(1):191–218, 2012.

[VV85] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting
unique solutions. In Proceedings of the 17th Annual ACM Symposium
on Theory of Computing, May 6-8, 1985, Providence, Rhode Island,
USA, pages 458–463, 1985.

[VW09] Virginia Vassilevska and Ryan Williams. Finding, minimizing, and
counting weighted subgraphs. In In Proceedings of the Fourty-First An-
nual ACM Symposium on the Theory of Computing, pages 455–464,
2009.

179

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction
and its implications. Theor. Comput. Sci., 348(2-3):357–365, 2005.

[Wil15] Virginia Vassilevska Williams. Hardness of easy problems: Basing hard-
ness on popular conjectures such as the strong exponential time hypoth-
esis. In Proc. International Symposium on Parameterized and Exact
Computation, pages 16–28, 2015.

[Wil16] Ryan Williams. Strong ETH breaks with merlin and arthur: Short non-
interactive proofs of batch evaluation. In 31st Conference on Computa-
tional Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan,
pages 2:1–2:17, 2016.

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equiv-
alences between path, matrix and triangle problems. 2013 IEEE
54th Annual Symposium on Foundations of Computer Science,
00(undefined):645–654, 2010.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions
(extended abstract). In 23rd Annual Symposium on Foundations of
Computer Science, Chicago, Illinois, USA, 3-5 November 1982, pages
80–91. IEEE Computer Society, 1982.

180

	Introduction
	Fine-Grained Cryptography
	Cryptography Against Bounded Running Time
	Average-Case Hardness
	Proofs of Work

	Cryptography Against Bounded Circuit Depth
	Cryptography against AC0
	Cryptography against NC1

	Average-Case Fine-Grained Hardness
	Worst-Case Conjectures
	Average-Case Fine-Grained Hardness
	Orthogonal Vectors
	3SUM and All-Pairs Shortest Path
	SETH, 3SUM, and All-Pairs Shortest Path
	CONVOLUTION-3SUM

	Evaluating Low Degree Polynomials

	Proofs of Work
	Definitions
	Proofs of Work
	Orthogonal Vectors

	Verifying FOVk
	The PoW Protocol
	A Direct Sum Theorem for FOV
	Removing Interaction
	Zero-Knowledge Proofs of Work

	Cryptography Against Bounded Depth
	Definitions and Preliminaries
	Bounded Adversaries
	Constant-Depth Circuits
	Graphs and Linear Codes
	Randomized Encodings

	Cryptography Against AC0
	High-Stretch Pseudo-Random Generators
	Weak Pseudo-Random Functions
	Symmetric Key Encryption
	Collision Resistant Hash Functions
	Candidate Public Key Encryption Scheme

	Cryptography Against NC1
	OWFs from worst-case assumptions
	PKE and CRHF against NC1

	Conclusion and Future Directions
	Subsequent Work
	Towards Fine-Grained One-Way Functions
	Barriers and NSETH
	A Way Around

	Other Open Problems

	Appendices to chap:time
	An Average-Case Time Hierarchy
	On the Heuristic Falsifiability of Conjectures
	A Tighter Reduction for FOV
	Polynomials Computing Sums
	Isolating Orthogonal Vectors

	Appendices to chap:pow
	A Stronger Direct Sum Theorem for FOV

