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Abstract

We show a general connection between various types of statistical zero-knowledge
(SZK) proof systems and (unconditionally secure) secret sharing schemes. Viewed
through the SZK lens, we obtain several new results on secret-sharing:

∙ Characterizations: We obtain an almost-characterization of access structures for
which there are secret-sharing schemes with an efficient sharing algorithm (but
not necessarily efficient reconstruction). In particular, we show that for every
language 𝐿 ∈ SZKL (the class of languages that have statistical zero knowledge
proofs with log-space verifiers and simulators), a (monotonized) access structure
associated with 𝐿 has such a secret-sharing scheme. Conversely, we show that
such secret-sharing schemes can only exist for languages in SZK.

∙ Constructions: We show new constructions of secret-sharing schemes with effi-
cient sharing and reconstruction for access structures that are in P, but are not
known to be in NC, namely Bounded-Degree Graph Isomorphism and constant-
dimensional lattice problems. In particular, this gives us the first combinatorial
access structure that is conjectured to be outside NC but has an efficient secret-
sharing scheme. Previous such constructions (Beimel and Ishai; CCC 2001)
were algebraic and number-theoretic in nature.

∙ Limitations: We show that universally-efficient secret-sharing schemes, where
the complexity of computing the shares is a polynomial independent of the com-
plexity of deciding the access structure, cannot exist for all (monotone languages
in) P, unless there is a polynomial 𝑞 such that P ⊆ DSPACE(𝑞(𝑛)).
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Chapter 1

Introduction

Secret-sharing [33, 9], a foundational primitive in information-theoretic cryptography,

enables a dealer to distribute shares of a secret to 𝑛 parties such that only some

predefined authorized sets of parties will be able to reconstruct the secret from their

shares. Moreover, the shares of any unauthorized set of parties should reveal no

information about the secret, even if the parties are computationally unbounded.

The (monotone) collection of authorized sets is called an access structure.

We call a secret-sharing scheme efficient if both the sharing algorithm (executed

by the dealer) and reconstruction algorithm (executed by the parties) run in time

polynomial in 𝑛. Associating sets 𝑆 ⊆ [𝑛] with their characteristic vectors 𝑥𝑆 ∈

{0, 1}𝑛, we can define a language 𝐿𝒜 associated with an access structure 𝒜.1 Namely,

𝐿𝒜 is simply the set of all 𝑥𝑆 such that 𝑆 ∈ 𝒜. For an access structure 𝒜 to have an

efficient secret sharing scheme, it must be the case that the language 𝐿𝒜 is computable

in polynomial time.

A major open question in information-theoretic cryptography is:

𝑄1: Characterize access structures with efficient secret-sharing schemes.

Indeed, this question has been widely studied [33, 9, 7, 22, 23], culminating with the

result of Karchmer and Wigderson [23] who showed efficient secret sharing schemes for

1More formally, we have to speak of a family of access structures {𝒜𝑛}𝑛∈N, one for every 𝑛. We
abuse notation slightly and denote 𝒜, consisting of subsets of 𝑛 parties, as the access structure.
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various log-space classes.2 We refer the reader to Beimel’s survey [4] for more details.

In any event, it is wide open whether all of mP, the class of languages recognized by

monotone polynomial-size circuits, has efficient secret sharing schemes.

Restricting the reconstruction algorithm to be a linear function of the shares

gives us a special kind of secret-sharing scheme called a linear secret-sharing scheme.

The Karchmer-Wigderson secret sharing scheme [23] for log-space classes is a linear

secret-sharing scheme. We also know that linear and even the slightly more general

quasi-linear schemes [23, 5] cannot exist for access structures outside NC, the class of

languages computable by boolean circuits of polylogarithmic depth. Finally, Beimel

and Ishai [5] showed non-linear secret-sharing schemes for two specific access struc-

tures associated to algebraic problems (related to computing quadratic residuosity

and co-primality) which are in P but are believed not to be in NC.

We will also study secret-sharing schemes (which we call semi-efficient) where the

dealer is efficient, namely runs in time polynomial in 𝑛, however the reconstruction

algorithm need not be efficient. Aside from their theoretical interest, such secret-

sharing schemes may find use in scenarios where sharing happens in the present (and

thus has to be efficient) but reconstruction happens in a future where computational

resources might be cheaper. This also justifies our desire to achieve information-

theoretic (unconditional) security since not only the honest parties, but also the

adversary gains more computational resources with time.

Beimel and Ishai [5] show a semi-efficient secret-sharing scheme for the language of

quadratic residuosity modulo a composite, which is believed not to be in P. However,

quite surprisingly, a characterization of access structures with semi-efficient secret-

sharing schemes also appears to be open:

𝑄2: Characterize access structures with semi-efficient secret-sharing schemes.

As a parenthetical remark, we note that a different interpretation of efficiency is

sometimes used in the secret-sharing literature. Namely, a secret-sharing scheme is

termed efficient [24, 12, 10] if the total length of the 𝑛 shares is polynomial in 𝑛.
2We use this as a short-hand to say “secret sharing schemes for access structures 𝒜 whose asso-

ciated language 𝐿𝒜 can be recognized in log-space”.
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Let us call this notion size efficiency. This makes no reference to the complexity

of either the sharing or the reconstruction algorithms. In this work, we use the

strong interpretation of efficient, namely where both the sharing and reconstruction

algorithms run in time poly(𝑛) and that of semi-efficient where only the sharing

algorithm needs to run in time poly(𝑛). We note that either of these two notions is

stronger than size efficiency.

It is against this backdrop that we begin our study. Our main contribution is

to develop an interactive proof lens to study these questions. As concrete results

of this connection, we obtain an almost-characterization of access structures with

semi-efficent secret-sharing schemes (almost solving 𝑄2), new combinatorial access

structures conjectured to lie outside NC which have efficient secret-sharing schemes

(extending [5]), and limitations on an ambitious notion of universally efficient secret-

sharing. We describe our results in detail below.

1.1 Our Results

(All results stated here were originally published in [36].)

Our central tool is a special type of two-message interactive proof system (that we

call Special Interactive Proofs). Roughly speaking, the restriction on the proof system

for a language 𝐿 (aside from the fact that it has two messages) is that the verifier

uses a special procedure to accept or reject. In particular, the verifier 𝑉 on input 𝑥

and a uniformly random bit 𝑏, comes up with a message 𝑚 to send to the prover.

The prover wins (the verifier accepts) if he can guess the bit 𝑏, given 𝑚. If 𝑥 ∈ 𝐿, the

prover should have a distinguishing (and therefore an accepting) strategy. However, if

𝑥 /∈ 𝐿, the verifier messages for bits 0 and 1 should be statistically indistinguishable.

Before we proceed, we must clarify what it means to have a secret sharing scheme

for a language 𝐿 which is not necessarily monotone. We follow the approach of Beimel

and Ishai [5] and define a (monotonized) access structure on 2𝑛 parties {𝑃𝑖,0, 𝑃𝑖,1}𝑖∈[𝑛]
associated with 𝐿 (more precisely, 𝐿 ∩ {0, 1}𝑛): for every 𝑖, the pair of parties

{𝑃𝑖,0, 𝑃𝑖,1} is in the access structure, as is every set of parties {𝑃1,𝑥1 , 𝑃2,𝑥2 , . . . , 𝑃𝑛,𝑥𝑛}

11



for all 𝑥 ∈ 𝐿. These are the minimal sets that make up the access structure 𝒜𝐿. Note

that the complexity of deciding whether a set 𝑆 ∈ 𝒜𝐿 is precisely the complexity of

deciding the language 𝐿.

Our research in this direction was motivated by the fact that if, for some language

𝐿, 𝒜𝐿 has a semi-efficient secret sharing scheme, then 𝐿 has a special interactive

proof: the verifier simply shares a random bit 𝑏 according to the sharing algorithm

and sends the prover the shares corresponding to the input, and the prover has to

guess 𝑏. The honest prover runs the reconstruction algorithm, and completeness and

soundness are guaranteed by correctness and privacy of the secret sharing scheme,

respectively. We then investigated the circumstances under which the converse might

also hold. We were able to show the following:

Theorem 1.1 (Informal). Let 𝐿 be a language and let 𝒜𝐿 be the associated access

structure. If 𝐿 has a special interactive proof with a log-space verifier, then 𝒜𝐿 has

a semi-efficient secret-sharing scheme. Conversely, if 𝒜𝐿 has a semi-efficient secret-

sharing scheme, then 𝐿 has a special interactive proof.

Our proof goes through the notion of partial garbling schemes, defined and studied

in the work of Ishai and Wee [21].

Characterizing Semi-Efficient Secret-Sharing. Using Theorem 1.1, we charac-

terize access structures that have semi-efficient secret-sharing schemes: we show that

all languages in SZKL, the class of languages with statistical zero knowledge proof

systems [32] where the verifier and simulator run in log-space, have semi-efficient

secret-sharing schemes. This follows from the observation, using a result of Sahai

and Vadhan [32], that 𝐿 has a special interactive proof with a log-space verifier if

and only if 𝐿 ∈ SZKL. Conversely, it is easy to see that if a language 𝐿 has a semi-

efficient secret-sharing scheme, then 𝐿 ∈ SZK, the class of languages with statistical

zero knowledge proof systems with polynomial-time verifier and simulator. Together,

this almost characterizes languages with semi-efficient secret-sharing schemes.

The class SZKL, which is contained in SZK, and hence in AM ∩ coAM, contains

several problems of both historical and contemporary significance to cryptography,
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such as Quadratic Residosity, Discrete Logarithm, and the Approximate Closest Vec-

tor Problem, as well as other well-studied problems like Graph Isomorphism. For

further details, including those about complete problems and about prospects of bas-

ing cryptography on the worst-case hardness of SZKL, see [13]. As a result of these

containments, our characterization captures as a special case the Beimel-Ishai secret-

sharing scheme for the language of quadratic residuosity modulo composites [5].

We also show a version of this theorem for efficient (as opposed to semi-efficient)

secret-sharing schemes. In particular:

Theorem 1.2 (Informal). Let 𝐿 be a language and let 𝒜𝐿 be the associated ac-

cess structure. If 𝐿 has a special interactive proof with a log-space verifier and a

polynomial-time prover, then 𝒜𝐿 has an efficient secret-sharing scheme. Conversely,

if 𝒜𝐿 has an efficient secret-sharing scheme, then 𝐿 has a special interactive proof

with a polynomial-time prover.

Constructions of Efficient Secret-Sharing Schemes. We show new construc-

tions of efficient secret-sharing schemes for languages that are in P but are not known

to be in NC, namely Bounded-Degree Graph Isomorphism [29, 2], and lattice Short-

est and Closest Vector problems in constant dimensions [27, 19]. Our constructions

arise from special interactive proofs for these languages together with an application of

Theorem 1.2. In particular, our construction for Bounded-Degree Graph Isomorphism

gives us the first efficient secret-sharing scheme for a combinatorial access structure

conjectured to be in P ∖ NC (The results of Beimel and Ishai were for algebraic ac-

cess structures associated to quadratic residuosity modulo primes and co-primality).

Moreover, our interactive proofs and secret-sharing schemes are simple, natural and

easy to describe.

Limitations on Universally Efficient Secret-Sharing Schemes. Consider secret

sharing schemes that are defined not for a given access structure, but uniformly

for some class of access structures. The sharing algorithm in such a case gets a

description of the access structure, in the form of a circuit or a Turing machine that

decides membership in the access structure. Typically, the sharing algorithm runs

13



for as much time as the Turing machine (and therefore as much time as required

to decide membership). However, there is no a-priori reason why this should be the

case. Indeed, one can reasonably require that the sharing algorithm runs in some fixed

polynomial time 𝑡(𝑛), even though the access structure may take arbitrary polynomial

time to decide. (We allow the reconstruction algorithm to run in arbitrary polynomial

time to make up for the deficiency of the sharing algorithm). As a side-effect, the

size of the shares is bounded by 𝑡(𝑛), independent of the complexity of deciding the

language. Can such succinct universally efficient secret-sharing schemes exist?

Our definition is inspired by the recent progress on (computationally secure) suc-

cinct randomized encodings [8, 28, 11, 26]. Indeed, these works show, assuming

indistinguishability obfuscation [3, 16], that P has computationally secure succinct

randomized encoding schemes. One could also reasonably ask: Can such succinct

randomized encodings exist unconditionally for all of P? It was observed in [8] that

this cannot be the case under certain complexity-theoretic assumptions about speed-

ing up non-deterministic algorithms.

Using our interactive proof characterization, we show that unconditionally secure

succinct universally efficient secret-sharing schemes (and succinct randomized encod-

ings) cannot exist for all languages in P, unless there is a fixed polynomial 𝑞 such that

P ⊆ DSPACE(𝑞(𝑛)) (the class of languages computable by a deterministic single-tape

Turing machine with 𝑞(𝑛) space). We remind the reader that P ̸= DSPACE(𝑞(𝑛)) for

any fixed 𝑞, although non-containment either way is not known.

1.2 Related Work

In this work, we insist on statistical (or unconditional) security from our secret-sharing

schemes. A number of works relax this to computational security and achieve stronger

positive results. Settling for computational security and assuming the existence of

one-way functions, Yao [40] and [37] showed an efficient secret-sharing scheme for

all monotone languages in P recognized by polynomial-sized monotone circuits. We

mention that even here, we are far from a characterization as there are monotone

14



languages in P that cannot be recognized by polynomial-sized monotone circuits [31,

34].

Komargodski, Naor and Yogev [25] also exploit the relaxation to computational

security, and show secret-sharing schemes for all of monotone NP, where the sharing

algorithm is polynomial-time, and the reconstruction algorithm is polynomial-time

given the NP witness. Their result relies on strong computational assumptions related

to indistinguishability obfuscation [3, 16].

1.3 Organisation

Chapter 2 contains definitions of various objects and some simple lemmas about secret

sharing, randomised encodings, and statistical zero knowledge that will be useful

in the remainder of the presentation. The main theorem (Theorem 3.1) is stated

and proved in Chapter 3. Some constructions of efficient secret sharing schemes for

various access structures, as implied by our main theorem, are presented in Chapter 4.

Chapter 5 talks about the implausibility of a strong notion of uniform secret sharing.

Chapter 6 points out some open problems relevant to the current study that follow

from our and others’ work. Proofs of some lemmas that were deemed too long to

include in the main text may be found in the appendices.
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Chapter 2

Preliminaries and Definitions

Notation. Given a set 𝑆, we denote by 2𝑆 the set of all subsets of 𝑆. Let 𝐴 =

(𝑎1, . . . , 𝑎𝑛) and 𝐵 = {𝑖1, . . . , 𝑖𝑚} ⊆ [𝑛]; 𝐴𝐵 is used to denote the tuple (𝑎𝑖1 , . . . , 𝑎𝑖𝑚).

We use languages and Boolean functions interchangeably. Given a language 𝐿, we

overload 𝐿 to also denote the corresponding Boolean function, namely, 𝐿(𝑥) = 0 if

𝑥 /∈ 𝐿 and 𝐿(𝑥) = 1 otherwise. Given a randomized algorithm 𝐴, we denote by 𝐴(𝑥)

the random variable arising from running 𝐴 on 𝑥, and by 𝐴(𝑥; 𝑟) the output when 𝐴

is run on 𝑥 with randomness 𝑟.

Given a distribution 𝐷 over a finite set 𝑋 and an 𝑥 ∈ 𝑋, we denote by 𝐷(𝑥)

the probability mass 𝐷 places on 𝑥, and for a subset 𝑆 ⊆ 𝑋, 𝐷(𝑆) =
∑︀

𝑥∈𝑆 𝐷(𝑥).

𝑥← 𝐷 indicates that 𝑥 is a sample drawn according to the distribution 𝐷. For a set

𝑆, 𝑥← 𝑆 indicates that 𝑥 is drawn uniformly at random from 𝑆.

We use the notion of statistical distance (also called total variation distance or ℓ1

distance) between distributions, defined as follows.

Definition 2.1 (Statistical Distance). The statistical distance between two distribu-

tions 𝐷1 and 𝐷2 over the domain 𝑋 is defined as

𝑑(𝐷1, 𝐷2) =
1

2

∑︁
𝑥∈𝑋

|𝐷1(𝑥)−𝐷2(𝑥)| = max
𝑆⊆𝑋

(𝐷1(𝑆)−𝐷2(𝑆))

Of particular interest to us is the following relationship of statistical distance to the

17



advantage of any unbounded procedure in distinguishing between two distributions

given a uniform prior.

Fact 2.1. Given distributions 𝐷1, 𝐷2 over a domain 𝑋, for functions 𝑓 : 𝑋 → {0, 1},

we have:

max
𝑓

Pr [𝑓(𝑥) = 𝑏 : 𝑏← {0, 1}, 𝑥← 𝐷𝑏] =
1

2
+
𝑑(𝐷1, 𝐷2)

2

2.1 Complexity Classes

Before anything else, we shall briefly define the following complexity classes that are

referred to occasionally in the rest of the document. To start with, P is the class of

languages decidable in deterministic polynomial time.

Definition 2.2 (P). P is the class of languages 𝐿 for which there exists a deterministic

polynomial-time Turing machine 𝑀 such that for any input 𝑥, 𝑥 ∈ 𝐿⇔𝑀(𝑥) = 1.

NC𝑘 is the class of languages decidable by circuits of depth 𝑂((log 𝑛)𝑘). A language

is in NC if it is in NC𝑘 for some 𝑘.

Definition 2.3 (NC𝑘). For any 𝑘 ∈ N∪{0}, NC𝑘 is the class of languages 𝐿 for which

there exists a family of boolean circuits {𝐶𝑛}𝑛∈N such that:

∙ There is a constant 𝑐 such that for all 𝑛, 𝐶𝑛 has depth at most 𝑐(log 𝑛)𝑘.

∙ For any input 𝑥 of length 𝑛, 𝑥 ∈ 𝐿⇔ 𝐶𝑛(𝑥) = 1

BPP is the class of languages decidable by probabilistic polynomial-time Turing

machines. Note that in the below definition, the constants 2
3

and 1
3

may be improved

to 1− 2−𝑛 and 2−𝑛, respectively, by repetition.

Definition 2.4 (BPP). BPP is the class of languages 𝐿 for which there exists a

probabilistic polynomial-time Turing machine 𝑀 such that for any input 𝑥:

∙ 𝑥 ∈ 𝐿 =⇒ Pr [𝑀(𝑥) = 1] ≥ 2
3

∙ 𝑥 /∈ 𝐿 =⇒ Pr [𝑀(𝑥) = 1] ≤ 1
3

18



DSPACE(𝑝(𝑛)) is the class of languages decidable by deterministic Turing machines

running with space 𝑝(𝑛).

Definition 2.5 (DSPACE). For any positive-valued function 𝑝, DSPACE(𝑝(𝑛)) is the

class of languages 𝐿 for which there exists a deterministic Turing machine 𝐿 such

that for any input 𝑥:

∙ 𝑥 ∈ 𝐿⇔𝑀(𝑥) = 1

∙ 𝑀 uses at most 𝑝(|𝑥|) cells on its work tape.

And finally, SZK consists of languages that have Statistical Zero Knowledge (SZK)

proofs, which are interactive proofs with some additional properties, as described

below.

Definition 2.6 (SZK). A language 𝐿 is in SZK if there exist a tuple of Turing ma-

chines (𝑃, 𝑉, 𝑆), where the verifier 𝑉 and simulator 𝑆 run in probabilistic polynomial

time, satisfying the following:

∙ (𝑃, 𝑉 ) is an interactive proof for 𝐿 with negligible completeness and soundness

errors.

∙ Let (𝑃, 𝑉 )(𝑥) denote the distribution of transcripts of the interaction between

𝑃 and 𝑉 on input 𝑥. For any 𝑥 ∈ 𝐿 of large enough size,

𝑑(𝑆(𝑥), (𝑃, 𝑉 )(𝑥)) ≤ 𝑛𝑒𝑔𝑙(|𝑥|)

The above is actually a definition of honest-verifier Statistical Zero Knowledge,

but we know from [32] that any language with an honest-verifier SZK proof also has

an SZK proof against cheating verifiers. So this follows as a definition of SZK as well.

Refer [35] for more extensive definitions and explanations.

SZKL is the same as SZK, but with the verifier and simulator running with only

logarithmic space. In this case too the above definition is only for honest verifiers,

but as this would only define a larger class, and we show positive results for this class,

we will work with this definition.
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2.2 Secret Sharing

Definition 2.7 (Access Structure). Given a set of parties 𝑃 = {𝑃1, . . . , 𝑃𝑛}, an access

structure 𝒜 is a monotone collection of subsets of 𝑃 . That is, if 𝑆 ∈ 𝒜 and 𝑇 ⊇ 𝑆,

then 𝑇 ∈ 𝒜.

In the context of a secret-sharing scheme, the access structure consists of all

subsets of parties that are allowed to reconstruct a secret shared among them. Of

course, as the access structure is monotone, it suffices to specify its minimal elements.

Along the lines of [5], we associate with every language 𝐿 an family of access structures

{𝒜𝐿,𝑛}𝑛∈N where 𝒜𝐿,𝑛 is defined for 2𝑛 parties. As will be evident from the definition

below, the complexity of deciding whether a set 𝑆 ∈ 𝒜𝐿,𝑛 is exactly the hardness of

deciding the language.

Definition 2.8 (Access Structure associated with Language 𝐿). For a language 𝐿,

its associated access structure 𝒜𝐿,𝑛 for 2𝑛 parties 𝒫𝑛 = {𝑃𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} is defined by

the following minimal elements:

∙ ∀𝑖 : {𝑃𝑖,0, 𝑃𝑖,1} ∈ 𝒜𝐿,𝑛

∙ ∀𝑥 ∈ 𝐿 ∩ {0, 1}𝑛 : {𝑃1,𝑥1 , . . . , 𝑃𝑛,𝑥𝑛} ∈ 𝒜𝐿,𝑛

We use the following definition of secret sharing schemes.

Definition 2.9 (Statistical Secret Sharing). An (𝜖, 𝛿)-Secret Sharing Scheme for 𝑛

parties 𝒫 = {𝑃1, . . . , 𝑃𝑛} and a domain of secrets 𝐷 under access structure 𝒜 ⊆ 2𝒫

is a pair of algorithms (𝑆,𝑅), where

∙ 𝑆 is the randomized sharing algorithm that takes as input a secret 𝑠 ∈ 𝐷 and

outputs a sequence of shares (𝑠1, 𝑠2, . . . , 𝑠𝑛); and

∙ 𝑅 is the deterministic reconstruction algorithm that takes as input a subset

of parties 𝐵 ⊆ [𝑛] and the corresponding subset of shares (𝑠𝑖)𝑖∈𝐵 and outputs

either a secret 𝑠 or a special symbol ⊥.

We require (𝑆,𝑅) to satisfy the following conditions:
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1. Correctness : For any 𝐵 ∈ 𝒜 and any 𝑠 ∈ 𝐷, the reconstruction algorithm 𝑅

works: Pr [𝑅(𝐵, 𝑆(𝑠)𝐵) = 𝑠] ≥ 1− 𝜖(𝑛)

2. Privacy : For any 𝐵 /∈ 𝒜 and any 𝑠, 𝑠′ ∈ 𝐷: 𝑑(𝑆(𝑠)𝐵, 𝑆(𝑠′)𝐵) ≤ 𝛿(𝑛).

The scheme is said to be semi-efficient if 𝑆 is computable in 𝑝𝑜𝑙𝑦(𝑛) time, and it is

said to be efficient if both 𝑆 and 𝑅 are computable in 𝑝𝑜𝑙𝑦(𝑛) time.

Unless otherwise specified, the domain of secrets for all schemes we talk about in

this work shall be {0, 1}, which is without loss of generality.

Remark 2.1. When we talk about access structures associated with promise prob-

lems, we require no guarantees from a secret sharing scheme for sets corresponding

to inputs that do not satisfy the promise (even though technically they are not part of

the associated access structure, and so privacy would otherwise be expected to hold).

While much of the literature on secret sharing schemes studies the size of the shares

(and call schemes that produce shares of size poly(𝑛) efficient), we use a stronger

interpretation of efficiency. Namely, in all our exposition, the sharing algorithm 𝑆 is

required to run in time polynomial in 𝑛. Thus, we will not discuss the sizes of the

shares produced by the schemes, which is always poly(𝑛).

2.3 Partial Randomized Encodings

We use the notion of partial randomized encodings (defined as partial garbling schemes

in [21]). They are essentially randomized encodings [20] where part of the input is

allowed to be public.

Definition 2.10 (Partial Randomized Encodings). An (𝜖, 𝛿)-partial randomized en-

coding (PRE) of a (bi-variate) function 𝑓 : {0, 1}* × {0, 1}* → {0, 1}* is a pair of

(randomized) functions (𝐸𝑓 , 𝐷𝑓 ), called the encoding and decoding functions, respec-

tively, that satisfy the following conditions for all 𝑛, 𝑛′:
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1. Correctness : ∀(𝑥, 𝑧) ∈ {0, 1}𝑛 × {0, 1}𝑛′ :

Pr [𝐷𝑓 (𝑥,𝐸𝑓 (𝑥, 𝑧)) = 𝑓(𝑥, 𝑧)] ≥ 1− 𝜖(𝑛)

Note that the decoder gets the first half of the input, namely the public part 𝑥,

in addition to the randomized encoding 𝐸𝑓 (𝑥, 𝑧).

2. Privacy : ∀𝑥 ∈ {0, 1}𝑛 and ∀𝑧1, 𝑧2 ∈ {0, 1}𝑛
′ :

𝑓(𝑥, 𝑧1) = 𝑓(𝑥, 𝑧2) =⇒ 𝑑(𝐸𝑓 (𝑥, 𝑧1), 𝐸𝑓 (𝑥, 𝑧2)) ≤ 𝛿(𝑛)

Furthermore:

∙ (𝐸𝑓 , 𝐷𝑓 ) is local (or locally computable) if 𝐸𝑓 can be decomposed into a set of

functions {𝐸(𝑖)
𝑓 (𝑥𝑖, 𝑧)}𝑖∈[|𝑥|], where 𝐸(𝑖)

𝑓 depends only on the 𝑖th bit of 𝑥 and on

𝑧.

∙ (𝐸𝑓 , 𝐷𝑓 ) is perfect if 𝜖(𝑛) = 𝛿(𝑛) = 0.

∙ (𝐸𝑓 , 𝐷𝑓 ) is said to be semi-efficient if 𝐸𝑓 is computable in 𝑝𝑜𝑙𝑦(|𝑥|, |𝑧|) time,

and it is said to be efficient if both 𝐸𝑓 and 𝐷𝑓 are computable in 𝑝𝑜𝑙𝑦(|𝑥|, |𝑧|)

time.

We can extend the above definition to PREs of randomized functions in a natural

way. Namely, to construct an (𝜖, 𝛿)-PRE for a randomized function 𝐴(𝑥, 𝑧; 𝑟), sim-

ply construct an (𝜖, 𝛿)-PRE (𝐸𝐴′ , 𝐷𝐴′) for the deterministic function 𝐴′(𝑥, (𝑧, 𝑟)) =

𝐴(𝑥, 𝑧; 𝑟), and let 𝐸𝐴(𝑥, 𝑧) be the random variable 𝐸𝐴′(𝑥, (𝑧, 𝑟)) when 𝑟 is chosen

uniformly at random, and have 𝐷𝐴 be the same as 𝐷𝐴′ . We then have the following

lemma, whose proof is in Appendix A.

Lemma 2.2. Let 𝐴(𝑥, 𝑧) be a randomized function, and (𝐸𝐴, 𝐷𝐴) be an (𝜖, 𝛿)-PRE

of 𝐴 as described above. Then, for any 𝑥 and any 𝑧1, 𝑧2:

𝑑(𝐴(𝑥, 𝑧1), 𝐴(𝑥, 𝑧2)) ≤ 𝛿′ =⇒ 𝑑(𝐸𝐴(𝑥, 𝑧1), 𝐸𝐴(𝑥, 𝑧2)) ≤ 𝛿(|𝑥|) + 𝛿′
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We also use the following lemma.

Lemma 2.3 ([1, 21]). Every function 𝑓 : {0, 1}* × {0, 1}* → {0, 1}* that can be

computed in L/poly has efficient perfect locally computable PREs, with encoding in

NC0 and decoding in NC2.

Finally, we abuse notation slightly and define partial randomized encodings for

languages (boolean functions) a bit differently, for somewhat technical reasons (in-

stead of calling this object something different).

Definition 2.11 (PREs for languages). An (𝜖, 𝛿)-partial randomised encoding (PRE)

of a language 𝐿 ⊆ {0, 1}* is a pair of (randomised) functions (𝐸𝐿, 𝐷𝐿), called the

encoding and decoding functions, respectively, that satisfy the following conditions:

1. Correctness : ∀𝑥 ∈ 𝐿 and 𝑏 ∈ {0, 1}: Pr [𝐷𝐿(𝑥,𝐸𝐿(𝑥, 𝑏)) = 𝑏] ≥ 1− 𝜖(|𝑥|).

2. Privacy : ∀𝑥 /∈ 𝐿, 𝑑(𝐸𝐿(𝑥, 0), 𝐸𝐿(𝑥, 1)) ≤ 𝛿(|𝑥|).

Semi-efficiency, efficiency and locality are defined as for general partial randomised

encodings.

2.4 Special Interactive Proofs

We define a special type of interactive proof system with two messages. Roughly

speaking, the restriction on the proof system (aside from the fact that it has two

messages) is that the verifier uses a special procedure to accept or reject. In particular,

the verifier 𝑉 on input 𝑥 and a uniformly random bit 𝑏, comes up with a message 𝑚

to send to the prover. The prover wins if he can guess the bit 𝑏, given 𝑚.

Definition 2.12 (Special Interactive Proof). An (𝜖, 𝛿)-Special Interactive Proof (SIP)

for a language 𝐿 is a pair (𝑃, 𝑉 ), where:

1. 𝑉 is a PPT algorithm that takes as input an instance 𝑥 and a bit 𝑏, and outputs

a message 𝑚; and
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2. 𝑃 takes as input the instance 𝑥 and the verifier message 𝑚, and outputs a bit

𝑏′.

We require (𝑃, 𝑉 ) to satisfy the following conditions, when 𝑏← {0, 1}:

1. Completeness : ∀𝑥 ∈ 𝐿, Pr [𝑃 (𝑥, 𝑉 (𝑥, 𝑏)) = 𝑏] ≥ 1− 𝜖(|𝑥|).

2. Soundness : ∀𝑥 /∈ 𝐿, and for any 𝑃 *, Pr [𝑃 *(𝑥, 𝑉 (𝑥, 𝑏)) = 𝑏] ≤ 1/2 + 𝛿(|𝑥|).

While the restrictions imposed on these proofs seem rather severe, they turn out

to be quite general. In fact, it follows from the work of Sahai and Vadhan [32] that

the set of languages with such proofs is exactly the class SZK. See Theorem 2.5.

2.5 Statistical Zero Knowledge

Recall that the class SZK is the set of languages that have statistical zero-knowledge

proofs, and the class SZKL is set of languages that have statistical zero-knowledge

proofs where the verifier and the simulator (for a statistically close simulation) both

run in log-space.

Definition 2.13 (Promise Problems 𝑆𝐷, 𝑆𝐷𝐿). The promise problem (𝜖, 𝛿)-Statistical

Difference (𝑆𝐷) is defined by the following YES and NO instances:

𝑆𝐷𝑌 𝐸𝑆 = {(𝑀1,𝑀2, 1
𝑛) : 𝑑(𝑀𝑛

1 ,𝑀
𝑛
2 ) > 1− 𝜖(𝑛)}

𝑆𝐷𝑁𝑂 = {(𝑀1,𝑀2, 1
𝑛) : 𝑑(𝑀𝑛

1 ,𝑀
𝑛
2 ) < 𝛿(𝑛)}

where 𝑀1,𝑀2 are deterministic Turing machines, and 𝑀𝑛
1 ,𝑀

𝑛
2 represent the random

variables corresponding to their outputs when the input is distributed uniformly at

random in {0, 1}𝑛.

If 𝑀1 and 𝑀2 are log-space machines, then the language is called (𝜖, 𝛿)-Statistical

Difference for Log-space Machines, or simply 𝑆𝐷𝐿.

Theorem 2.4 ([32]). For every 𝜖(𝑛), 𝛿(𝑛) = 2−𝑛
𝑂(1) such that 𝛿(𝑛) < (1− 𝜖(𝑛))2, the

(𝜖, 𝛿)-𝑆𝐷 problem is complete for SZK, and the (𝜖, 𝛿)-𝑆𝐷𝐿 problem is complete for

SZKL.
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We will use the following theorem which is a slightly stronger version of Theo-

rem 2.4. We describe the proof (which follows from the proof of Theorem 2.4 in [32])

in Appendix B for completeness.

Theorem 2.5 ([32]). There exist negligible functions 𝜖(𝑛), 𝛿(𝑛) = 𝑛−𝜔(1) such that

for any language 𝐿 ∈ SZK, 𝐿 has an (𝜖, 𝛿)-special interactive proof system (𝑃, 𝑉 ).

Furthermore, if 𝐿 ∈ SZKL, then the verifier 𝑉 can be computed in log-space.

Proof Sketch. For the main statement, we observe that the complete problem for

SZK, namely (𝜖, 𝛿)-𝑆𝐷, has a simple (𝜖/2, 𝛿/2)-special interactive proof which works

as follows.

∙ The verifier 𝑉 , on input an instance (𝑀0,𝑀1, 1
𝑛) of the 𝑆𝐷 problem chooses a

uniformly random bit 𝑏, and outputs a sample from 𝑀𝑛
𝑏 ; and

∙ The prover’s goal is to guess the bit 𝑏.

By Fact 2.1, it follows that the best success probability of any prover in this game is
1+𝑑(𝑀𝑛

0 ,𝑀𝑛
1 )

2
. By the completeness of 𝑆𝐷 (Theorem 2.4), we get that SZK has (𝜖, 𝛿)-

special interactive proofs for some 𝜖(𝑛), 𝛿(𝑛) = 𝑛−𝜔(1).

The proof for SZKL works in exactly the same way, except it is now a concern that

the verifier has to first run the SZK-completeness reduction to obtain an instance of

the statistical distance problem 𝑆𝐷𝐿, since it is not guaranteed that the reduction

runs in log-space. However, we show that the Sahai-Vadhan reduction indeed does.

We refer the reader to appendix B for more details.

In fact, the connection between languages with special interactive proofs and SZK

goes both ways. Namely,

Fact 2.6. Let (1−2𝜖(𝑛))2 > 2𝛿(𝑛). If a language 𝐿 has an (𝜖, 𝛿)-SIP, then 𝐿 ∈ SZK.

This is because deciding a language 𝐿 that has an (𝜖, 𝛿)-SIP (𝑃, 𝑉 ) is the same as

deciding whether (𝑉(𝑥,0), 𝑉(𝑥,1), 1
|𝑟(|𝑥|)|) ∈ (2𝜖, 2𝛿)-𝑆𝐷, where 𝑉(𝑥,𝑏)(𝑟) = 𝑉 (𝑥, 𝑏; 𝑟), and

(2𝜖, 2𝛿)-𝑆𝐷 is in SZK for 𝜖 and 𝛿 satisfying the given property.
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Chapter 3

From Zero Knowledge to Secret

Sharing and Back

In this chapter, we show tight connections between languages with special interac-

tive proofs, partial randomized encodings (PRE), and secret sharing schemes. In

particular, we show:

Theorem 3.1 (Main theorem). For any language 𝐿 and parameters 𝜖(𝑛) and 𝛿(𝑛),

the following three statements are equivalent:

1. There are parameters 𝜖1 = 𝑂(𝜖) and 𝛿1 = 𝑂(𝛿) such that 𝐿 has an (𝜖1, 𝛿1)-

special interactive proof (𝑃, 𝑉 ), where the verifier 𝑉 has a semi-efficient, locally

computable, (𝜖1, 𝛿1)-PRE.

2. There are parameters 𝜖2 = 𝑂(𝜖) and 𝛿2 = 𝑂(𝛿) such that 𝐿 has a semi-efficient,

locally computable, (𝜖2, 𝛿2)-PRE.

3. There are parameters 𝜖3 = 𝑂(𝜖) and 𝛿3 = 𝑂(𝛿) such that for all 𝑛, there is a

semi-efficient (𝜖3, 𝛿3)-secret sharing scheme under the access structure 𝒜𝐿,𝑛.

We will prove Theorem 3.1 in Section 3.1, and here we state a number of interesting

corollaries. The first two corollaries “almost” characterize the languages 𝐿 whose

associated access structure 𝒜𝐿,𝑛 (as defined in Definition 2.8) has a semi-efficient
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secret-sharing scheme. Corollary 3.2 shows that any language in SZKL has a semi-

efficient secret-sharing scheme. Corollary 3.3 shows that furthermore, if P/poly has

semi-efficient, locally computable PREs, then any language in the entire class SZK has

a semi-efficient secret-sharing scheme. Moreover, it also says that no language outside

SZK has semi-efficient secret-sharing schemes, implying that our characterization is

almost tight.

Corollary 3.2. Let 𝜖(𝑛), 𝛿(𝑛) = 𝑛−𝜔(1) be negligible functions. For any language

𝐿 ∈ SZKL, and for every 𝑛, there is a semi-efficient (𝜖, 𝛿)-secret sharing scheme

under the associated access structure 𝒜𝐿,𝑛.

Proof. Theorem 2.5 asserts that for any 𝐿 ∈ SZKL, there is an (𝜖, 𝛿)-special interactive

proof (𝑃, 𝑉 ) for some 𝜖(𝑛), 𝛿(𝑛) = 𝑛−𝜔(1), where the verifier algorithm 𝑉 can be

computed in log-space. Therefore, by Lemma 2.3, 𝑉 has an efficient (and not just

semi-efficient) perfect, locally computable PRE. Applying Theorem 3.1 (in particular,

that (1)⇒ (3)), there is a semi-efficient (𝑂(𝜖), 𝑂(𝛿))-secret sharing scheme for 𝒜𝐿,𝑛.

Corollary 3.3. Let 𝜖(𝑛), 𝛿(𝑛) = 𝑛−𝜔(1) be negligible functions.

∙ Assume that P/poly has semi-efficient (𝜖, 𝛿)-locally computable PREs. Then, for

any language 𝐿 ∈ SZK, and for every 𝑛, there is a semi-efficient (𝜖, 𝛿)-secret

sharing scheme under the associated access structure 𝒜𝐿,𝑛.

∙ Conversely, if 𝒜𝐿,𝑛 has a semi-efficient (𝜖, 𝛿)-secret sharing scheme, then 𝐿 ∈

SZK.

This follows from the same arguments as corollary 3.2, but with the absence of

something like lemma 2.3 to complete the argument. In fact, one may replace P/poly

in corollary 3.3 with any complexity class C that is closed under the operations

involved in the reduction used in the proof of theorem B.1 (while replacing SZK with

the appropriate SZKC). The converse is true because of Theorem 3.1 and fact 2.6

We also have the following theorem about efficient secret sharing schemes, where

both the sharing and reconstruction algorithms run in time polynomial in 𝑛. The dif-
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ference from Theorem 3.1 is that here, we require the prover in the special interactive

proof to be efficient, namely run in time polynomial in 𝑛. We view this theorem as

an avenue to constructing efficient secret sharing schemes for languages 𝐿 outside L:

namely, to construct a secret-sharing scheme for 𝒜𝐿,𝑛, it suffices to construct special

interactive proofs for 𝐿 wherein the verifier algorithm can be computed in L.

The proof of Theorem 3.4 follows directly from that of Theorem 3.1.

Theorem 3.4. For any language 𝐿 and parameters 𝜖(𝑛) and 𝛿(𝑛), the following three

statements are equivalent:

1. There are parameters 𝜖1 = 𝑂(𝜖) and 𝛿1 = 𝑂(𝛿) such that 𝐿 has an (𝜖1, 𝛿1)-special

interactive proof (𝑃, 𝑉 ), where the prover algorithm is computable in polynomial

time, and the verifier 𝑉 has an efficient, locally computable, (𝜖1, 𝛿1)-PRE.

2. There are parameters 𝜖2 = 𝑂(𝜖) and 𝛿2 = 𝑂(𝛿) such that 𝐿 has an efficient,

locally computable, (𝜖2, 𝛿2)-PRE.

3. There are parameters 𝜖3 = 𝑂(𝜖) and 𝛿3 = 𝑂(𝛿) such that for all 𝑛, there is an

efficient (𝜖3, 𝛿3)-secret sharing scheme under the access structure 𝒜𝐿,𝑛.

3.1 Proof of the Main Theorem

We prove Theorem 3.1 by showing that (1) =⇒ (2) =⇒ (3) =⇒ (1).

(1) =⇒ (2). Let (𝑃, 𝑉 ) be an (𝜖, 𝛿)-special interactive proof for 𝐿, and let (𝐸𝑉 , 𝐷𝑉 )

be the hypothesized semi-efficient, locally computable (𝜖, 𝛿)-PRE for 𝑉 . The PRE

for the language 𝐿 works as follows:

∙ 𝐸𝐿(𝑥, 𝑏) = 𝐸𝑉 (𝑥, 𝑏)

∙ 𝐷𝐿(𝑥, 𝑦) = 𝑃 (𝑥,𝐷𝑉 (𝑥, 𝑦))

We first show correctness. Let 𝑥 ∈ 𝐿 and 𝑏 ∈ {0, 1}. From the correctness of the

PRE for the verifier algorithm 𝑉 , we know that:

𝐷𝑉 (𝑥,𝐸𝑉 (𝑥, 𝑏)) = 𝑉 (𝑥, 𝑏)
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with probability at least 1 − 𝜖. Now, by the completeness of the special interactive

proof, we know that:

𝑃 (𝑥, 𝑉 (𝑥, 𝑏)) = 𝑏

with probability at least 1 − 2𝜖 (because this probability is at least 1 − 𝜖 when 𝑏 is

chosen at random).

, and we have the following for any 𝑏 ∈ {0, 1}:

Pr𝑏′←{0,1} [𝑃 (𝑥, 𝑉 (𝑥, 𝑏′)) = 𝑏′] =
1

2
Pr [𝑃 (𝑥, 𝑉 (𝑥, 𝑏)) = 𝑏] +

1

2
Pr [𝑃 (𝑥, 𝑉 (𝑥, 1− 𝑏)) = 1− 𝑏]

Putting these together, we have:

𝐷𝐿(𝑥,𝐸𝐿(𝑥, 𝑏)) = 𝑃
(︀
𝑥,𝐷𝑉 (𝑥,𝐸𝑉 (𝑥, 𝑏))

)︀
= 𝑃

(︀
𝑥, 𝑉 (𝑥, 𝑏)

)︀
= 𝑏

with probability at least 1− 3𝜖.

Next, we turn to privacy. Let 𝑥 /∈ 𝐿. We will show that 𝐸𝐿(𝑥, 0) and 𝐸𝐿(𝑥, 1)

are statistically close. First, note that by the 𝛿-soundness of the special interactive

proof, we know that the distributions 𝑉 (𝑥, 0) and 𝑉 (𝑥, 1) are 𝑂(𝛿)-close. Now, by

Lemma 2.2 and using the 𝛿-privacy of the PRE scheme for 𝑉 , this means that 𝐸𝑉 (𝑥, 0)

and 𝐸𝑉 (𝑥, 1) are also 𝑂(𝛿)-close. This demonstrates privacy of our PRE scheme for

𝐿.

Since 𝐸𝐿 is the same as 𝐸𝑉 , it is clear that if the PRE scheme (𝐸𝑉 , 𝐷𝑉 ) is locally

computable, so is (𝐸𝐿, 𝐷𝐿). Moreover, if (𝐸𝑉 , 𝐷𝑉 ) is semi-efficient, so is (𝐸𝐿, 𝐷𝐿).

Finally, if (𝐸𝑉 , 𝐷𝑉 ) is efficient and the prover 𝑃 in the special interactive proof is

computable in polynomial time, then (𝐸𝐿, 𝐷𝐿) is also efficient.

(2) =⇒ (3). This implication follows from the work of Ishai and Wee [21]. We

provide a proof here for completeness.

Given a locally computable (𝜖, 𝛿)-PRE (𝐸𝐿, 𝐷𝐿) for a language 𝐿, let {𝐸(𝑖)
𝐿 (𝑥𝑖, 𝑏)}𝑖∈[𝑛]

be the local decomposition of 𝐸𝐿(𝑥, 𝑏). The following is the secret sharing scheme

(𝑆,𝑅) for the access structure 𝒜𝐿,𝑛:
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∙ Sharing : Let 𝑠 ∈ {0, 1} be the secret bit to be shared. 𝑆(𝑠) works as follows:

1. For each 𝑖, pick 𝑠𝑖,0, 𝑠𝑖,1 ∈ {0, 1} at random such that 𝑠𝑖,0 ⊕ 𝑠𝑖,1 = 𝑠, and

give 𝑠𝑖,𝑏 to the party 𝑃𝑖,𝑏.

2. Select bits {𝑠0, . . . , 𝑠𝑛} at random such that
⨁︀𝑛

𝑖=0 𝑠𝑖 = 𝑠. For each 𝑖 ∈ [𝑛],

give 𝑠𝑖 to both 𝑃𝑖,0 and 𝑃𝑖,1.

3. Choose a random string 𝑟, compute 𝜓𝑖,𝑏 ← 𝐸
(𝑖)
𝐿 (𝑏, 𝑠0; 𝑟) for every 𝑖 ∈ [𝑛]

and 𝑏 ∈ {0, 1}, and give 𝜓𝑖,𝑏 to party 𝑃𝑖,𝑏.

∙ Reconstruction: Any authorized set 𝐵 ∈ 𝒜𝐿,𝑛 reconstructs the secret as follows:

– If 𝐵 contains 𝑃𝑖,0 and 𝑃𝑖,1 for some 𝑖, the secret 𝑠 can be retrieved as

𝑠 = 𝑠𝑖,0 ⊕ 𝑠𝑖,1.

– If not, then 𝐵 = {𝑃𝑖,𝑥𝑖
} for some 𝑥 ∈ 𝐿. This means that between them,

the parties contain 𝐸𝐿(𝑥, 𝑠0; 𝑟) = {𝐸(𝑖)
𝐿 (𝑥𝑖, 𝑠0; 𝑟)}𝑖∈[𝑛]. Output

𝐷𝐿(𝑥,𝐸𝐿(𝑥, 𝑠0; 𝑟))⊕
⨁︁
𝑖∈[𝑛]

𝑠𝑖

as the secret.

For correctness, note that there are two possible types of authorized sets 𝐵 in

𝒜𝐿,𝑛. If the set 𝐵 contains parties 𝑃𝑖,0 and 𝑃𝑖,1 for some 𝑖, they recover the secret

as 𝑠𝑖,0 ⊕ 𝑠𝑖,1. If not, the authorized set contains the parties 𝑃1,𝑥1 , . . . , 𝑃𝑛,𝑥𝑛 for some

𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐿. By the correctness of the PRE scheme for 𝐿, we know that

𝐷𝐿(𝑥,𝐸𝐿(𝑥, 𝑠0; 𝑟)) = 𝑠0 with probability at least 1− 𝜖. Thus, the recovered secret is

𝐷𝐿(𝑥,𝐸𝐿(𝑥, 𝑠0; 𝑟))⊕
⨁︁
𝑖∈[𝑛]

𝑠𝑖 =
⨁︁

𝑖∈{0,1,...,𝑛}

𝑠𝑖 = 𝑠

with probability at least 1− 𝜖.

For privacy, there are again two types of sets 𝐵 that are not present in 𝒜𝐿,𝑛. If

there is an 𝑖 such that the set of parties 𝐵 does not contain either of 𝑃𝑖,0 and 𝑃𝑖,1,

then 𝐵’s shares look completely random due to the absence of any information about
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𝑠𝑖. The other case is when 𝐵 = {𝑃𝑖,𝑥𝑖
} for some 𝑥 /∈ 𝐿. In this case, 𝑑(𝑆(0)𝐵, 𝑆(1)𝐵)

is exactly the distance between 𝐸𝐿(𝑥, 0) and 𝐸𝐿(𝑥, 1) due to how the 𝑠𝑖’s are picked,

which is at most 𝛿 by the privacy of the randomised encoding of 𝐿.

It is also easy to see from the definition of 𝑆 and 𝑅 that if (𝐸𝐿, 𝐷𝐿) is semi-efficient,

then so is (𝑆,𝑅); and the same if it is efficient.

(3) =⇒ (1). Given an (𝜖, 𝛿)-secret sharing scheme (𝑆,𝑅) for the access structure

𝒜𝐿,𝑛, we construct a special interactive proof (𝑃, 𝑉 ) for 𝐿, as follows:

∙ The verifier 𝑉 , on input 𝑥 and a bit 𝑏, outputs 𝑆(𝑏)𝐵𝑥 , where 𝐵𝑥 = {𝑃𝑖,𝑥𝑖
}.

∙ The prover 𝑃 on input 𝑥 and the verifier message 𝑚, outputs 𝑅(𝐵𝑥,𝑚), where

𝐵𝑥 = {𝑃𝑖,𝑥𝑖
}.

For completeness, we have that for any 𝑥 ∈ 𝐿, when 𝑏← {0, 1},

Pr [𝑃 (𝑥, 𝑉 (𝑥, 𝑏)) = 𝑏] = Pr [𝑅(𝐵𝑥, (𝑆(𝑏)𝐵𝑥) = 𝑏] ≥ 1− 𝜖

by the correctness of secret sharing scheme, as 𝐵𝑥 ∈ 𝒜(𝐿.𝑛).

For privacy, we have that for any 𝑥 /∈ 𝐿, when 𝑏← {0, 1}, for any 𝑃 *,

Pr [𝑃 *(𝑥, 𝑉 (𝑥, 𝑏)) = 𝑏] ≤ 1 + 𝑑(𝑉 (𝑥, 0), 𝑉 (𝑥, 1))

2
≤ 1

2
+
𝛿

2

by privacy of the secret sharing scheme, as 𝐵𝑥 /∈ 𝒜𝐿,𝑛.

𝑉 is a PPT algorithm if (𝑆,𝑅) is semi-efficient, and 𝑃 is computable in polynomial

time if (𝑆,𝑅) is efficient. Also, 𝑉 is local because it can be split into the collection

{𝑉 (𝑖)(𝑥𝑖, 𝑏) = 𝑆(𝑏){𝑃𝑖,𝑥𝑖
}}, so it serves as its own semi-efficient locally computable

PRE.
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Chapter 4

Positive Results on Efficient Secret

Sharing

In this chapter we present efficient secret sharing schemes for access structures associ-

ated with Bounded-Degree Graph Non-Isomorphism, Lattice Closest Vector in small

dimensions, and Co-Primality. These are obtained by the application of Theorem 3.4

(in particular, the implication (1) =⇒ (2) in the theorem).

Useful throughout this chapter is the fact that arithmetic over integers (and ra-

tional numbers) may be performed in NC1 (see [39] for details).

4.1 Bounded-Degree Graph Non-Isomorphism

Notation. Given an upper triangular matrix 𝑀 ∈ {0, 1}𝑛×𝑛, denote by 𝐺(𝑀) the

undirected graph whose adjacency matrix is (𝑀 + 𝑀𝑇 ), and for a symmetric ma-

trix 𝑀 , the undirected graph whose adjacency matrix is 𝑀 . The degree of a graph,

𝑑𝑒𝑔(𝐺), is the maximum degree of any vertex in the graph. If 𝐺1 and 𝐺2 are isomor-

phic, we denote this as 𝐺1 ≡ 𝐺2.

Definition 4.1 (𝑑-𝐵𝐷𝐺𝑁𝐼). 𝑑-Bounded Degree Graph Non-Isomorphism is the promise

problem given by the following sets of YES and NO instances over pairs of upper tri-
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angular matrices:

𝑑-𝐵𝐷𝐺𝑁𝐼𝑌 𝐸𝑆 = {(𝑀0,𝑀1)|𝐺(𝑀0) ̸≡ 𝐺(𝑀1); 𝑑𝑒𝑔(𝐺(𝑀0)), 𝑑𝑒𝑔(𝐺(𝑀1)) ≤ 𝑑}

𝑑-𝐵𝐷𝐺𝑁𝐼𝑁𝑂 = {(𝑀0,𝑀1)|𝐺(𝑀0) ≡ 𝐺(𝑀1); 𝑑𝑒𝑔(𝐺(𝑀0)), 𝑑𝑒𝑔(𝐺(𝑀1)) ≤ 𝑑}

While Graph (Non-)Isomorphism is not known to be in P, there is a classical poly-

nomial time algorithm known for 𝑑-𝐵𝐷𝐺𝑁𝐼 due to Luks [29]. However, it appears

to be a long open question whether 𝑑-𝐵𝐷𝐺𝑁𝐼 is in NC (or even in RNC) [2].

Theorem 4.1. For every constant 𝑑 and every 𝑛, there is an efficient (perfect) secret

sharing scheme for the access structure 𝒜𝑑-𝐵𝐷𝐺𝑁𝐼,𝑛. The complexity of the recon-

struction algorithm grows as 𝑛𝑂(𝑑), whereas sharing runs in time polynomial in 𝑛.

Proof. We prove this by showing a special interactive proof for 𝑑-𝐵𝐷𝐺𝑁𝐼 where the

verifier runs in log-space (and therefore, has efficient perfect locally computable PREs)

and the prover runs in polynomial time. This satisfies statement (1) in Theorem 3.4,

and hence implies the existence of the required secret sharing scheme.

The SIP proof (𝑃, 𝑉 ) works along the lines of the classical SZK proof for Graph

Non-Isomorphism [18], as follows:

∙ The verifier 𝑉 ((𝑀0,𝑀1), 𝑏), on input upper triangular matrices𝑀0,𝑀1 ∈ {0, 1}𝑛×𝑛

and bit 𝑏, selects a random permutation matrix 𝑃 ∈ 𝑆𝑛, and outputs 𝑃 (𝑀𝑏 +

𝑀𝑇
𝑏 )𝑃 𝑇 .

∙ The prover 𝑃 ((𝑀0,𝑀1),𝑀), checks whether 𝐺(𝑀) ≡ 𝐺(𝑀0). If so, it outputs

0, else 1.

Note that the operation 𝑃 (𝑀 +𝑀𝑇 )𝑃 𝑇 is equivalent to permuting the vertices of

the graph 𝐺(𝑀) by the permutation 𝑃 .

Perfect completeness of this protocol follows from the fact that if 𝑀0 ̸≡𝑀1, then

the verifier’s output 𝑀 will be such that 𝐺(𝑀) is isomorphic to exactly one of 𝐺(𝑀0)

and 𝐺(𝑀1), and 𝑃 can identify which by running the algorithm for 𝑑-𝐵𝐷𝐺𝑁𝐼 [29].
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The protocol is perfectly sound because if 𝑀0 ≡ 𝑀1, then the distribution of the

verifier’s output is the same whether 𝑏 = 0 or 1, and 𝑃 has probability exactly 1/2

of guessing 𝑏 correctly.

The complexity of the verifier 𝑉 in the above protocol is that of selecting a random

permutation and performing two matrix multiplications, both of which can be done

in log-space. Hence by Lemma 2.3, 𝑉 has efficient perfect locally computable PREs.

The prover 𝑃 is computable in polynomial time because all the prover does is run the

(polynomial time) algorithm for 𝑑-𝐵𝐷𝐺𝑁𝐼.

(That the running time of reconstruction algorithm of the resulting secret sharing

scheme is 𝑛𝑂(𝑑) can be seen by tracing its dependence on the running time of the

algorithm for 𝑑-𝐵𝐷𝐺𝑁𝐼 - the one in [29] runs in time 𝑛𝑂(𝑑) - in the proof of Theorem

3.1.)

4.2 Lattice Closest Vectors

Notation. For a full-rank (over Q) matrix 𝐵 ∈ Z𝑑×𝑑, let Λ(𝐵) denote the integer

lattice (of dimension 𝑑) whose basis is 𝐵, and 𝒫(𝐵) denote the fundamental paral-

lelepiped of the same lattice (the parallelepiped formed by the column vectors of 𝐵

and the origin). We denote by ℬ(𝑦, 𝛿) the set of points in the ball of radius 𝛿 centered

at the point 𝑦 (note that as we work with discretised space and not with R𝑑, the

number of points in this set is finite).

Given full-rank matrix 𝐵 ∈ Z𝑑×𝑑, a vector 𝑦 ∈ Z𝑑, 𝛿 ∈ Z+ and 𝛾 ∈ [0, 1], the

(decision version of the) gap closest vector problem in 𝑑 dimensions (𝐺𝑎𝑝𝐶𝑉 𝑃𝛾,𝑑)

asks whether the Euclidean distance of 𝑦 from (any point in) Λ(𝐵) is at most (𝛾𝛿) or

at least 𝛿.

While classical algorithms due to Gauss, and Lenstra, Lenstra and Lovasz [27]

show that for any 𝑑, 𝐺𝑎𝑝𝐶𝑉 𝑃𝛾,𝑑 is in P for any 𝛾, it is not known to be (and

conjectured not to be) in NC. We are interested in the complement of this problem,

as defined below.
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Definition 4.2 (coGapCVP𝛾,d). For any 𝑑 ∈ Z+ and 𝛾 ∈ [0, 1], 𝑐𝑜𝐺𝑎𝑝𝐶𝑉 𝑃𝛾,𝑑 is

the promise problem defined by the following YES and NO instances over triples

(𝐵, 𝑦, 𝛿), where 𝐵 ∈ Z𝑑×𝑑 is full-rank over Q, 𝑦 ∈ Z𝑑 and 𝛿 ∈ Z+:

𝑐𝑜𝐺𝑎𝑝𝐶𝑉 𝑃 𝑌 𝐸𝑆
𝛾,𝑑 = {(𝐵, 𝑦, 𝛿) | ∀𝑥 ∈ Λ(𝐵) : ||𝑦 − 𝑥|| > 𝛿}

𝑐𝑜𝐺𝑎𝑝𝐶𝑉 𝑃𝑁𝑂
𝛾,𝑑 = {(𝐵, 𝑦, 𝛿) | ∃𝑥 ∈ Λ(𝐵) : ||𝑦 − 𝑥|| ≤ 𝛾𝛿}

The following theorem asserts the existence of efficient secret sharing schemes

under access structures associated with the above problem. A number of lemmas

used in its proof may be found in Appendix C.

Theorem 4.2. For every 𝑐, 𝑑, 𝑛, and any 𝛾 =
(︀
1− Ω( 1

𝑛𝑐 )
)︀
, there is an efficient

(𝑜(1), 𝑜(1))-secret sharing scheme under the access structure 𝒜𝑐𝑜𝐺𝑎𝑝𝐶𝑉 𝑃𝛾,𝑑,𝑛.

Proof. We prove this theorem by constructing a (𝑜(1), 𝑜(1))-Special Interactive Proof

for 𝑐𝑜𝐺𝑎𝑝𝐶𝑉 𝑃𝛾,𝑑 with a log-space verifier and a poly time prover. As the veri-

fier is computable in log-space, it has efficient perfect locally computable PREs, by

Lemma 2.3. The existence of such an SIP, along with Theorem 3.4, implies the

efficient secret sharing schemes we need.

Our SIP is a slight modification of the protocol of Goldreich and Goldwasser [17].

Let 𝐴 be the logspace program promised by Lemma C.2. The protocol is as follows:

∙ The verifier gets as input the instance (𝐵, 𝑦, 𝛿) and a bit 𝑏, and does the follow-

ing:

– It picks bits 𝑏1, . . . , 𝑏𝑘 such that 𝑏1 ⊕ · · · ⊕ 𝑏𝑘 = 𝑏 (for 𝑘 determined later

in the proof).

– For each 𝑖 ∈ [𝑘], if 𝑏𝑖 = 0, it picks 𝑧′𝑖 ← 𝐴(0, 𝛿/2, 1𝑛), else 𝑧′𝑖 ← 𝐴(𝑦, 𝛿/2, 1𝑛).

– For each 𝑖, it sets 𝑧𝑖 = 𝑧′𝑖 mod 𝒫(𝐵).

– It outputs (𝑧1, . . . , 𝑧𝑘).

∙ The prover gets as input (𝐵, 𝑦, 𝛿) and the verifier’s output (𝑧1, . . . , 𝑧𝑘).
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– For each 𝑖 ∈ [𝑘], it checks if the distance of 𝑧𝑖 from the lattice Λ(𝐵) is at

most 𝛿/2.

– If so, it sets 𝑏′𝑖 = 0, else 𝑏′𝑖 = 1.

– It outputs 𝑏′ = 𝑏′1 ⊕ · · · ⊕ 𝑏′𝑘 as its guess.

If 𝑦 is 𝛿-far from the lattice, all points in the set ℬ(𝑦, 𝛿/2) are more than 𝛿/2-far

from the lattice. By Lemma C.2, except with probability 1
2𝑛

, this is also true of

samples from 𝐴(𝑦, 𝛿/2, 1𝑛). Points from 𝐴(0, 𝛿/2, 1𝑛), on the other hand, are always

within 𝛿/2 from the lattice. These properties are not affected by reducing modulo

𝒫(𝐵).

Hence, except with negligible probability, the prover can guess each 𝑏𝑖 correctly by

running the algorithm from [27]. By the union bound, the prover can in fact guess all

𝑏𝑖’s, and hence 𝑏, correctly except with negligible probability, and hence the protocol

is (1− 𝑜(1))-complete.

If 𝑦 is less than 𝛾𝛿 from the lattice, let 𝑥 be the lattice point closest to 𝑦. By

Lemma C.3,

𝑑(ℬ(𝑥, 𝛿/2),ℬ(𝑦, 𝛿/2)) = 1− 𝑐′′(1− 𝛾)𝑑

for some constant 𝑐′′. Using guarantees from Lemma C.2, we have:

𝑑(𝐴(𝑥, 𝛿/2, 1𝑛), 𝐴(𝑦, 𝛿/2, 1𝑛)) ≤ 𝑑(ℬ(𝑥, 𝛿/2),ℬ(𝑦, 𝛿/2)) + 𝑛𝑒𝑔𝑙(𝑛)

≤ 1− 𝑐′(1− 𝛾)𝑑

for another constant 𝑐′.

On reducing modulo 𝒫(𝐵), this distance does not increase, since the set of points

in the intersection of any two sets remain in the intersection after reduction. Also,

after the reduction, 𝐴(𝑥, 𝛿/2, 1𝑛) and 𝐴(0, 𝛿/2, 1𝑛) are the same. Hence, for each
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𝑖 ∈ [𝑘],

𝑑(𝑧𝑖|𝑏𝑖 = 0, 𝑧𝑖|𝑏𝑖 = 1) = 𝑑(𝐴(0, 𝛿/2, 1𝑛) mod 𝒫(𝐵), 𝐴(𝑦, 𝛿/2, 1𝑛) mod 𝒫(𝐵))

≤ 𝑑(𝐴(𝑥, 𝛿/2, 1𝑛), 𝐴(𝑦, 𝛿/2, 1𝑛))

≤ 1− 𝑐′(1− 𝛾)𝑑

Considering what the verifier does - choosing 𝑏1, . . . , 𝑏𝑘 that XOR to 𝑏 and selecting

𝑧𝑖’s appropriately - Lemma C.4 tells us that:

𝑑((𝑧1, . . . , 𝑧𝑘)|𝑏 = 0, (𝑧1, . . . , 𝑧𝑘)|𝑏 = 1) = 𝑑(𝑧𝑖|𝑏𝑖 = 0, 𝑧𝑖|𝑏𝑖 = 1)𝑘

≤ (1− 𝑐′(1− 𝛾)𝑑)𝑘

As long as 𝛾 =
(︀
1− Ω( 1

𝑛𝑐 )
)︀

for some 𝑐, we can choose 𝑘 as some 𝑝𝑜𝑙𝑦(𝑛) to make this

quantity negligible, meaning that the distributions of verifier messages when 𝑏 = 0 and

𝑏 = 1 are negligibly close. This means the prover cannot guess 𝑏 with non-negligible

probability, giving us the required 𝑜(1)-soundness.

The verifier here runs the logspace program from Lemma C.2 and the reduction

modulo 𝒫(𝐵) on its output, which can also be done in logspace by Lemma C.5. As a

constant number of compositions of logspace programs still gives a logspace program,

the verifier can be computed in logspace. The prover simply runs the algorithm from

[27] several times, and is hence computable in polynomial time.

4.3 Co-primality

Efficient secret sharing schemes for non-co-primality and semi-efficient ones for quadratic

non-residuosity were shown by Beimel and Ishai [5] as an illustration of the power

of non-linear secret sharing schemes over linear ones. We note that these follow as

implications of our Theorem 3.1 given the existence of SZK proofs for these languages

with logspace verifiers (which are indeed known to exist).
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We demonstrate here, as an example, the case of non-co-primality, which is in P,

but again, as noted in [5], not known to be in NC.

Definition 4.3 (Non-co-primality). The language Non-co-primality (NCoP) consists

of pairs of positive integers that are not co-prime, represented as strings, that is,

𝑁𝐶𝑜𝑃 = {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ Z+, 𝑔𝑐𝑑(𝑢, 𝑣) > 1}

Theorem 4.3 asserts the existence of statistically correct, statistically private effi-

cient secret sharing schemes under the access structure associated with 𝑁𝐶𝑜𝑃 .

Theorem 4.3. For every 𝑛, there is an efficient (𝑜(1), 𝑜(1))-secret sharing scheme

under the access structure 𝒜𝑁𝐶𝑜𝑃,𝑛.

Proof. Again, we prove this by demonstrating a (𝑜(1), 𝑜(1))-SIP for Non-co-primality

where the prover is efficient and the verifier has efficient perfect locally computable

PREs. This implies what we need, by Theorem 3.4.

We denote by |𝑢| the length of the representation of 𝑢 as a boolean string. Below,

we assume |𝑢| ≥ |𝑣|. The SIP proof (𝑃, 𝑉 ) is roughly as follows, for some 𝑚 = Θ(|𝑢|):

∙ The verifier 𝑉 takes as input (𝑢, 𝑣) and a bit 𝑏.

– If 𝑏 = 1, it outputs 𝑚 random multiples of 𝑢 modulo 𝑣; that is, it picks 𝑚

random numbers {𝑟𝑖}𝑖∈[𝑚] ← {0, 1}|𝑢| and outputs {(𝑟𝑖𝑢)(𝑚𝑜𝑑 𝑣)}.

– If 𝑏 = 0, it outputs 𝑚 random numbers in [𝑣].

∙ The prover 𝑃 takes as input (𝑢, 𝑣) and the verifiers message, which is a set of

𝑚 numbers {𝑎𝑖}𝑖∈[𝑚]. If 𝑔𝑐𝑑({𝑎𝑖}) = 1, the prover outptus 0, else 1.

The above SIP is complete because if 𝑔𝑐𝑑(𝑢, 𝑣) > 1, then if 𝑏 = 1, all multiples of

𝑢 modulo 𝑣 will be divisible by 𝑔𝑐𝑑(𝑢, 𝑣), and the prover will always output 1, and

if 𝑏 = 0, with high probability the 𝑔𝑐𝑑 of 𝑚 random numbers in [𝑣] will be 1 and

the prover will output 0. It is sound because when 𝑔𝑐𝑑(𝑢, 𝑣) = 1, the distribution

of multiples of 𝑢 (drawn from a large enough range) modulo 𝑣 is negligibly close to

uniform, and the cases 𝑏 = 0 and 𝑏 = 1 are indistinguishable.
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The verifier 𝑉 is computable in L, as all it does is multiply 𝑛-bit numbers, and so

has efficient perfect locally computable PREs, by Lemma 2.3. The prover is efficient,

as all it has to do is compute the 𝑔𝑐𝑑 of some numbers.
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Chapter 5

Negative Results on Universally

Efficient Secret Sharing

In this chapter, we show that a natural strengthening of efficient secret-sharing, that

we call universally efficient secret-sharing, cannot exist for all of P, if for every poly-

nomial 𝑡, P ̸⊆ DSPACE(𝑡(𝑛)).

Notation. Below, by 𝐿 we denote both a language in a class 𝒞, and its standard

representation as a member of this class, say, for example, as a Turing machine that

decides the language in case 𝒞 = P. For a function 𝑓 that takes two arguments (as

𝑓(𝑥, 𝑦)), by 𝑓(𝑥, ·), we denote 𝑓 curried with 𝑥, that is, the function 𝑔(𝑦) = 𝑓(𝑥, 𝑦);

this extends naturally to the case where 𝑓 takes more than two arguments.

Definition 5.1 (Universal Secret Sharing). An (𝜖, 𝛿)-Universally Efficient Secret

Sharing Scheme (USS), or simply a universal secret sharing scheme, for a class of

languages 𝒞 over a domain 𝐷 is a pair of (randomized) algorithms (𝑆,𝑅) such that

for any 𝐿 ∈ 𝒞 and any 𝑛, (𝑆(𝐿, 1𝑛, ·), 𝑅(𝐿, 1𝑛, ·, ·)) is an (𝜖, 𝛿)-secret sharing scheme

under the access structure 𝐴𝐿,𝑛 over the domain 𝐷.

For any polynomial 𝑡, a universal secret sharing scheme is said to be 𝑡-semi-

efficient if for any 𝐿 ∈ 𝒞, 𝑆(𝐿, 1𝑛, ·) is computable in time 𝑡(𝑛). The scheme is said

to be 𝑡-efficient if both 𝑆(𝐿, 1𝑛, ·) and 𝑅(𝐿, 1𝑛, ·, ·) are computable in time 𝑡(𝑛).
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Theorem 5.1. Let, for all 𝑛, 1− 𝜖(𝑛) > 𝛿(𝑛). If a class of languages 𝒞 has 𝑡-semi-

efficient (𝜖, 𝛿)-universal secret sharing (USS) schemes, then there exists 𝑡′ such that

𝑡′(𝑛) = 𝑂(𝑡(𝑛)) and 𝒞 ⊆ DSPACE(𝑡′(𝑛)).

Proof Sketch. Suppose (𝑆,𝑅) is a 𝑡-semi-efficient (𝜖, 𝛿) USS scheme for the class 𝒞.

Theorem 5.1 follows from applying lemma 5.2 to each language 𝐿 ∈ 𝒞, using the fact

that by definition, (𝑆(𝐿, 1𝑛, ·), 𝑅(𝐿, 1𝑛, ·, ·)) is an (𝜖, 𝛿)-secret sharing scheme for 𝐴𝐿,𝑛

where the sharing algorithm runs in time 𝑡(𝑛).

In particular, Theorem 5.1 implies that if P had a t-semi-efficient USS scheme,

then it would be contained in DSPACE(𝑡(𝑛)) for some polynomial 𝑡(𝑛).

Lemma 5.2. Let, for all 𝑛, 1− 3𝜖(𝑛) > 3𝛿(𝑛). If, for some language 𝐿, there is an

(𝜖, 𝛿)-secret sharing scheme (𝑆,𝑅) for 𝐴𝐿,𝑛 for all 𝑛, where 𝑆 runs in time 𝑡(𝑛), then

𝐿 ∈ DSPACE(𝑡′(𝑛)), where 𝑡′(𝑛) = 𝑂(𝑡(𝑛)).

The proof below is adapted from that of a more general statement from [15].

Proof. We start by using Theorem 3.1 to recognize the existence of an (𝜖′, 𝛿′)-SIP

(𝑃, 𝑉 ) for 𝐿 where 𝑉 runs in time 𝑡(𝑛), where 𝜖′ = 3𝜖 and 𝛿′ = 3𝛿 (the constant 3

comes out of the proof of Theorem 3.1), and we have 1− 𝜖′(𝑛) > 𝛿′(𝑛).

In order to decide whether 𝑥 ∈ 𝐿, it is sufficient to determine whether any 𝑃 ′

can guess 𝑏 given 𝑉 (𝑥, 𝑏) with probability ≥ (1− 𝜖′(|𝑥|)) or only ≤ (1/2 + 𝛿′(|𝑥|)/2).

This is equivalent to whether 𝑑(𝑉 (𝑥, 0), 𝑉 (𝑥, 1)) is ≥ (1 − 𝜖(|𝑥|)) or ≤ 𝛿(|𝑥|). But

𝑑(𝑉 (𝑥, 0), 𝑉 (𝑥, 1)) itself can be computed in space 𝑂(𝑡(|𝑥|)) as follows.

First, for any 𝑣 of length at most 𝑡(|𝑥|), Pr𝑟 [𝑉 (𝑥, 𝑏; 𝑟) = 𝑣] can be computed by

iterating over the possible values of 𝑟 – note that |𝑟| ≤ 𝑡(|𝑥|)– and simulating 𝑉 to

see if it outputs 𝑣, and counting the number of 𝑟’s for which it does. This requires

only 𝑂(𝑡(|𝑥|)) space because 𝑉 can be simulated in this much space, and the count

of 𝑟’s is at most 2𝑡(|𝑥|).

So for each 𝑣, we can also compute

𝑝(𝑣) := |Pr𝑟 [𝑉 (𝑥, 0; 𝑟) = 𝑣]− Pr𝑟 [𝑉 (𝑥, 1; 𝑟) = 𝑣]|
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in 𝑂(𝑡(|𝑥|)) space. What we need is the sum
(︁∑︀

𝑣:|𝑣|≤𝑡(|𝑥|) 𝑝(𝑣)
)︁
. To compute this,

we simply iterate over all the 𝑣’s, storing at the end of each iteration only the sum(︀∑︀
𝑣′:𝑣′≤𝑣 𝑝(𝑣)

)︀
. As each 𝑝(𝑣) ≥ 2−𝑡(|𝑥|), and the cumulative sum is at most 1, this

adds at most 𝑂(𝑡(|𝑥|)) space to what is needed for each iteration. Hence, the entire

computation of 𝑑(𝑉 (𝑥, 0), 𝑉 (𝑥, 1)) can be done in space 𝑡′(|𝑥|) = 𝑂(𝑡(|𝑥|)), and hence

𝐿 ∈ DSPACE(𝑡′(𝑛)).
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Chapter 6

Conclusion and Future Directions

In this work, we have shown close relationships between computationally efficient

secret sharing and zero knowledge proofs. We showed how zero knowledge proofs with

certain properties for a language may be used to obtain efficient secret sharing schemes

for access structures related to that language, and noted that efficient secret sharing

schemes in turn yield zero knowledge proofs. This was a step toward understanding

the class of access structures that have such secret sharing schemes. There is a lot of

ground to cover in this regard, and below we mention a few of the problems in this

direction that demand to be studied, particularly in the wake of our work.

Notation. Let mSS denote the class of (monotone) languages corresponding to ac-

cess structures that have semi-efficient secret sharing schemes, and SS denote the class

of languages whose monotonized access structures have semi-efficient secret sharing

schemes. Let SSeff and mSSeff denote the corresponding classes for efficient secret shar-

ing schemes (that is, those that also have efficient reconstruction). Let SZKeff
L denote

the class of languages that have 𝑆𝑍𝐾 proofs with logspace verifier and polynomial-

time prover. Let mL denote the class of languages in L that can be computed by

polynomial-sized monotone branching programs.

The following containments follow from our work (as described in the previous

sections) and [23]:
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SZKL ⊆ SS ⊆ SZK

SZKeff
L ⊆ SSeff ⊆ BPP

mL ⊆ mSS ⊆ SZK

mL ⊆ mSSeff ⊆ BPP

A number of questions related to these classes remain open, including:

1. Can one non-trivially characterize mSS and mSSeff?

∙ The containment of mL in mSS and mSSeff was obtained with just linear

secret sharing schemes in mind. Could considering non-linear secret shar-

ing schemes help us find larger classes of monotone languages than mL

whose access structures have (semi-)efficient secret sharing schemes?

∙ Is there a better upper bound on either? At least, can one demonstrate

monotone languages in SZK (resp. BPP) that do not have semi-efficient

(resp. efficient) secret sharing schemes?

2. Can one better characterize SS and SSeff?

∙ Do these classes have natural complete problems?

∙ Are they closed under operations like composition and complementation?

∙ Is SS = SZK? Is SSeff = BPP?

A closely related topic to study would be that of the classes SZKL and SZKeff
L

(which, as mentioned earlier, are contained in SS and SSeff respectively). SZKL is

notable for containing a number of problems whose hardness much of cryptography

depends on, from quadratic residuosity to several lattice problems. This class has

been studied in the past and is known to have complete problems similar to the

statistical complete problems for SZK [14].
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Regarding SZKeff
L , while there has been research into 𝑆𝑍𝐾 proofs with efficient

provers, this has been in slightly different settings - [6] showed that any language in

SZK has an 𝑆𝑍𝐾 proof with a polynomial-time prover that is given oracle access to

an NP-hard problem, and [30] showed that given any language 𝐿 in SZK∩NP, there is

an 𝑆𝑍𝐾 proof for 𝐿 where the prover runs in polynomial-time given the 𝑁𝑃 witness

for the input. SZKeff
L , though, is about provers that are efficient without such aids,

and not much is known in this case.

The following are a few questions to start an investigation into SZKeff
L with:

1. Does SZKeff
L have natural complete problems?

2. Does it matter whether the randomness used by the verifier is public or private?

3. Is it closed under complement?

4. How does it relate to BPP?
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Appendix A

Proof of Lemma 2.2

In this section, we restate and prove lemma 2.2. This essential lemma extends the

privacy properties of PREs to the case of PREs of randomised functions - while the

original definition of PREs (for deterministic functions) states that if for some 𝑥,

𝑓(𝑥, 𝑧1) = 𝑓(𝑥, 𝑧2), then 𝐸𝑓 (𝑥, 𝑧1) and 𝐸𝑓 (𝑥, 𝑧2) are statistically close, lemma 2.2

states that even for a randomised function 𝑔, if 𝑔(𝑥, 𝑧1) and 𝑔(𝑥, 𝑧2) are statistically

close, then so are 𝐸𝑔(𝑥, 𝑧1) and 𝐸𝑔(𝑥, 𝑧2).

Note that PREs for randomised functions are defined as described in section 2:

To construct an (𝜖, 𝛿)-PRE for a randomized function 𝐴(𝑥, 𝑧; 𝑟), simply construct an

(𝜖, 𝛿)-PRE (𝐸𝐴′ , 𝐷𝐴′) for the deterministic function 𝐴′(𝑥, (𝑧, 𝑟)) = 𝐴(𝑥, 𝑧; 𝑟), and let

𝐸𝐴(𝑥, 𝑧) be the random variable 𝐸𝐴′(𝑥, (𝑧, 𝑟)) when 𝑟 is chosen uniformly at random,

and have 𝐷𝐴 be the same as 𝐷𝐴′ .

Lemma A.1. Let 𝐴(𝑥, 𝑧) be a randomized function, and (𝐸𝐴, 𝐷𝐴) be an (𝜖, 𝛿)-PRE

of 𝐴 as described above. Then, for any 𝑥 and any 𝑧1, 𝑧2:

𝑑(𝐴(𝑥, 𝑧1), 𝐴(𝑥, 𝑧2)) ≤ 𝛿′ =⇒ 𝑑(𝐸𝐴(𝑥, 𝑧1), 𝐸𝐴(𝑥, 𝑧2)) ≤ 𝛿(|𝑥|) + 𝛿′

Proof. As above, consider the deterministic function 𝐴′(𝑥, (𝑧, 𝑟)) = 𝐴(𝑥, 𝑧; 𝑟). By

definition, 𝑑(𝐸𝐴(𝑥, 𝑧1), 𝐸𝐴(𝑥, 𝑧2)) = 𝑑(𝐸𝐴′(𝑥, (𝑧1, 𝑟)), 𝐸𝐴′(𝑥, (𝑧2, 𝑟))), which is given
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by:

∑︁
𝑣

|Pr [𝐸𝐴′(𝑥, (𝑧1, 𝑟)) = 𝑣]− Pr [𝐸𝐴′(𝑥, (𝑧2, 𝑟)) = 𝑣]|

where 𝑟 is distributed uniformly over its domain. We wish to prove that this expression

is small. From the privacy of PREs, we have promises on the behaviour of 𝐸𝐴′ on

inputs for which 𝐴′ has the same output value. Towards exploiting this, we expand

the above expression, conditioning on possible values of 𝐴′ to get:

∑︁
𝑣

⃒⃒⃒⃒
⃒∑︁

𝑣

Pr [𝐴′(𝑥, (𝑧1, 𝑟)) = 𝑣]Pr
[︁
𝐸𝐴′(𝑥, (𝑧1, 𝑟)) = 𝑣

⃒⃒⃒
𝐴′(𝑥, (𝑧1, 𝑟)) = 𝑣

]︁
−
∑︁
𝑣

Pr [𝐴′(𝑥, (𝑧2, 𝑟)) = 𝑣]Pr
[︁
𝐸𝐴′(𝑥, (𝑧2, 𝑟)) = 𝑣

⃒⃒⃒
𝐴′(𝑥, (𝑧2, 𝑟)) = 𝑣

]︁⃒⃒⃒⃒⃒
For the same reason - so that we may compare 𝐸𝐴′ on points where 𝐴′ has the same

output value - we add and subtract (
∑︀

𝑣 Pr [𝐴′(𝑥, (𝑧1, 𝑟)) = 𝑣]) to the factor in the

second term above and use the triangle inequality to say that what we have is at

most:

∑︁
𝑣

Pr [𝐴′(𝑥, (𝑧1, 𝑟)) = 𝑣]
(︁∑︁

𝑣

⃒⃒⃒
Pr

[︁
𝐸𝐴′(𝑥, (𝑧1, 𝑟)) = 𝑣

⃒⃒⃒
𝐴′(𝑥, (𝑧1, 𝑟)) = 𝑣

]︁
−Pr

[︁
𝐸𝐴′(𝑥, (𝑧2, 𝑟)) = 𝑣

⃒⃒⃒
𝐴′(𝑥, (𝑧2, 𝑟)) = 𝑣

]︁⃒⃒⃒ )︁
+
∑︁
𝑣

∑︁
𝑣

Pr
[︁
𝐸𝐴(𝑥, (𝑧2, 𝑟)) = 𝑣

⃒⃒⃒
𝐴(𝑥, (𝑧2, 𝑟)) = 𝑣

]︁
·

|Pr [𝐴(𝑥, (𝑧1, 𝑟)) = 𝑣]− Pr [𝐴(𝑥, (𝑧2, 𝑟)) = 𝑣]|

The first summand above is a convex combination of several terms, each of which is

at most 𝛿(|𝑥|) by the privacy guarantee of 𝐸𝐴′ (as each of these terms is some convex

combination of the distance between 𝐸𝐴′ on input values for which 𝐴′ produces the
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same output). The second summand is simply equal to 𝑑(𝐴′(𝑥, 𝑧1), 𝐴
′(𝑥, 𝑧2)) = 𝛿′.

Hence the whole thing is at most (𝛿(|𝑥|) + 𝛿′), which is what we wanted to prove.
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Appendix B

A Refined Completeness Theorem for

SZKL

In this section, we complete the proof sketch of Theorem 2.5. In order to do so, we

shall first demonstrate Lemma B.1.

Lemma B.1 ([32]). There exist negligible functions 𝜖(𝑛), 𝛿(𝑛) = 𝑛−𝜔(1) such that

every language 𝐿 in SZKL reduces to (𝜖, 𝛿)-𝑆𝐷𝐿. Furthermore, there is a logspace

program 𝐷𝐿 such that, if an instance 𝑥 is mapped to the instance (𝐶0, 𝐶1) by the

above reduction, 𝐷𝐿(𝑏, 𝑥, 𝑟) = 𝐶𝑏(𝑟).

Given 𝐷𝐿 from Lemma B.1 for a language 𝐿 ∈ SZKL, we can prove Theorem 2.5

by constructing a special interactive proof (𝑃, 𝑉 ) for 𝐿 as follows:

∙ 𝑉 (𝑥, 𝑏; 𝑟) = 𝐷𝐿(𝑏, 𝑥, 𝑟)

∙ 𝑃 (𝑥,𝑚) outputs 0 if Pr [𝐷𝐿(0, 𝑥, 𝑟) = 𝑚] > Pr [𝐷(1, 𝑥, 𝑟) = 𝑚], and 1 otherwise.

Note that the above is an (𝜖/2, 𝛿/2)-SIP proof for 𝐿 where the verifier can be

computed in logspace.

We shall now sketch a proof of Lemma B.1, for which we shall need the following

amplification lemma for statistical distance of distributions.

Lemma B.2 (Polarisation Lemma, [32]). Let 𝛼, 𝛽 ∈ [0, 1] be constants such that

𝛼2 > 𝛽. Given two logspace machines 𝑋0, 𝑋1 : {0, 1}𝑛 → {0, 1}𝑚, there are logspace
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machines 𝑌0, 𝑌1 : {0, 1}𝑛′ → {0, 1}𝑚′ (where 𝑛′, 𝑚′ grow polynomially with 𝑛, 𝑚) that

use 𝑋0, 𝑋1 only as blackboxes such that:

𝑑(𝑋0, 𝑋1) ≥ 𝛼 =⇒ 𝑑(𝑌0, 𝑌1) ≥ 1− 2−𝑛
′

𝑑(𝑋0, 𝑋1) ≤ 𝛽 =⇒ 𝑑(𝑌0, 𝑌1) ≤ 2−𝑛
′

Both the above lemmas are not stated in precisely this manner in either [32] or

[35], but these extensions follow easily from the proofs of statements that are indeed

made in these works.

Proof Sketch. of Lemma B.1 (The lemma follows directly from the proof of com-

pleteness of 𝑆𝐷 for 𝑆𝑍𝐾 presented in [35], noticing that the reduction from any

𝐿 ∈ 𝑆𝑍𝐾 to 𝑆𝐷, outlined below, leads to logspace machines if one starts with an

𝐿 ∈ 𝑆𝑍𝐾𝐿, as 𝐿 has a logspace simulator.)

Suppose 𝐿 has an SZK proof (𝑃, 𝑉 ) in which, on inputs of length 𝑛, the total

communication is 𝑡(𝑛) over 𝑣(𝑛) messages, 𝑉 uses 𝑟(𝑛) bits of randomness, and there

is a logspace simulator 𝑆 that achieves deviation 𝜇(𝑛) ≤ 1/(𝐶𝑡(𝑛)2), for some constant

𝐶 to be determined. Let 𝑆𝑖 denote the distribution of the output of 𝑆 (on a given

input) truncated to the first 𝑖 rounds. We assume, without loss of generality, that

the prover speaks first, messages alternate, and that the last message of the verifier

consists of all its randomness. We shall describe now distributions that witness the

reduction of 𝐿 to 𝑆𝐷𝐿. Proofs and further details may be found in [35], chapter 3.

Define the following distributions:

𝑋 : 𝑆2 ⊗ 𝑆4 ⊗ · · · ⊗ 𝑆2𝑣

𝑌1 : 𝑆1 ⊗ 𝑆3 ⊗ · · · ⊗ 𝑆2𝑣−1 ⊗ 𝑈𝑟−7

𝑌2 : Run 𝑆 8𝑙𝑛(𝑡𝑣 + 2) times, and if the transcript is rejecting in

a majority of these, output 𝑈𝑡𝑣+2, else output nothing.

𝑌 : 𝑌1 ⊗ 𝑌2
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We may arrange, again without loss of generality, for a given input length 𝑛 of 𝐿,

for both 𝑋 and 𝑌 to use at most 𝑚′ bits of randomness and have output length 𝑛′.

Let 𝑞 = 9𝑘𝑚′2 for some constant 𝑘 to be determined later.

Let 𝑋 ′′ = ⊗𝑞𝑋 and 𝑌 ′′ = ⊗𝑞𝑌 , and 𝑚′′ and 𝑛′′ be the (upper bound on) number

of bits of randomness used and output length of 𝑋 ′′ and 𝑌 ′′. Let 𝐻 = 𝐻𝑚′′+𝑛′′,𝑚′′ be

a family of 2-universal hash functions from {0, 1}𝑚′′+𝑛′′ → {0, 1}𝑚′′ . Define now the

following distributions:

𝐴 : Choose 𝑟 ← {0, 1}𝑚′′
, ℎ← 𝐻, 𝑦 ← 𝑌 , let 𝑥 = 𝑋 ′′(𝑟). Output (𝑥, ℎ, ℎ(𝑟, 𝑦)).

𝐵 : Choose 𝑥← 𝑋 ′′, ℎ← 𝐻, 𝑧 ← {0, 1}𝑚′′
. Output (𝑥, ℎ, 𝑧).

As proven in [35], if 𝑥 ∈ 𝐿, then 𝑑(𝐴,𝐵) ≥ 1 − 𝑂(2−𝑘), and if 𝑥 /∈ 𝐿, 𝑑(𝐴,𝐵) ≤

2−Ω(𝑘). Note that all steps involved so far, including evaluating the hash function,

may be done in logspace, meaning that there is a randomised logspace program that

on input 𝑥 can sample 𝐴 (or 𝐵).

This lets us apply Lemma B.2 to (𝐴,𝐵) to get distributions (𝐴′, 𝐵′) which are

still sampleable in logspace given 𝑥 (as they are logspace programs that only use the

samplers for 𝐴 and 𝐵 as blackboxes), and are such that if 𝑥 ∈ 𝐿, 𝑑(𝐴′, 𝐵′) ≥ 1− 2−𝑟

and if 𝑥 /∈ 𝐿, 𝑑(𝐴′, 𝐵′) ≤ 2−𝑟, where 𝑟 (a polynomial in |𝑥| and Ω(|𝑥|)) is the amount

of randomness used by the sampler for 𝐴′ (or 𝐵′). This gives us the reduction to

𝑆𝐷𝐿.

We now define 𝐷𝐿 to simply emulate the above steps. On input (𝑏, 𝑥, 𝑟), where |𝑟|

is a function of |𝑥| resulting from above operations (𝐷𝐿 is undefined on input lengths

that do not obey this relation between |𝑥| and |𝑟|), if 𝑏 = 0, 𝐷𝐿 runs the logspace

sampler for 𝐴′ with input 𝑥 and randomness 𝑟, and simliarly the sampler for 𝐵′ if

𝑏 = 1. Note that 𝐷𝐿 is still in logspace, and that if 𝑥 ∈ 𝐿, 𝑑(𝐷𝐿(0, 𝑥, 𝑟), 𝐷𝐿(1, 𝑥, 𝑟)) ≥

1− 2−|𝑥|, and if 𝑥 /∈ 𝐿, 𝑑(𝐷𝐿(0, 𝑥, 𝑟), 𝐷𝐿(1, 𝑥, 𝑟)) ≤ 2−|𝑥|.
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Appendix C

Lemmas for Section 4.2

In this section we prove several facts that are used in the proof of theorem 4.2 con-

cerning the Gap Closest Vector Problem, which were stated in appendix C.

An issue that needs to be addressed at the onset of a discussion of a problem

such as 𝐺𝑎𝑝𝐶𝑉 𝑃 is that of precision, that is, how many bits will be used to represent

numbers and vectors. Arguments and algorithms that are guided by intuition from the

behaviour of real quantities tend to work only when the set of numbers representable

is dense enough. But one is also constrained by being unable to use more than a

polynomial number of bits of precision for efficiency.

Below, as in section 4.2, for any 𝑑-dimensional vector 𝑦 and 𝑟 ∈ Q+, we denote

by ℬ(𝑦, 𝑟) the set of points in the ball of radius 𝑟 centered at 𝑦 that are representable

using whatever scheme it is that we use to represent vectors. In general, this will

be as a tuple of rational numbers, but in turn only those rational numbers that are

representable given the number of bits of precision we use. By 𝑙 bits of precision, we

mean that the number of bits used to represent the fractional part of rational number

is 𝑙.

Another concern is that a number of intuitive propositions that one takes for

granted in 2 or 3 dimensions break completely in higher dimensions. The fact that

we are only interested in low-dimensional spaces alleviates such concerns significantly,

and we are able to make use of the following results, some of which would not hold

in higher dimensions.

61



The following lemma is implied by, among others, [38], and states that the number

of integer points in a 𝑑-dimensional sphere is more or less what one would expect it

to be, namely, of the order of the volume of the sphere.

Lemma C.1. For any 𝑑, the number of integer points in a 𝑑-dimensional sphere of

radius 𝑟 centered at the origin is Θ(𝑟𝑑).

This implies that if we use 𝑙 bits of precision, then for any 𝑑, there are constants

𝑐1 and 𝑐2 such that for any point 𝑦 ∈ Z𝑑 and 𝑟 ∈ Q:

𝑐1(𝑟2
𝑙)𝑑 ≤ |ℬ(𝑦, 𝑟)| ≤ 𝑐2(𝑟2

𝑙)𝑑

We shall next look at the task of sampling a point uniformly at random from such

a ball ℬ(𝑦, 𝑟), and make use of the above bounds to do so easily by rejection sampling.

Hereon we shall use 𝑙, as above, to denote the number of bits of precision.

Lemma C.2 (Sampling from balls). For 𝑦 ∈ Z𝑑 and 𝑟 ∈ Q, let 𝐵(𝑦, 𝑟) be the uniform

distribution over the points in ℬ(𝑦, 𝑟). There is a (randomised) logspace program 𝐴

such that, for any 𝑘, 𝑑(𝐴(𝑦, 𝑟, 1𝑘), 𝐵(𝑦, 𝑟)) ≤ 1
2𝑘

.

Proof. Let 𝑠 be the integer such that 2𝑠−1 ≤ 2𝑟 ≤ 2𝑠. 𝐴 repeatedly samples random

points in the 𝑑-dimensional hypercube of side 2𝑠 centered at the origin until it finds

a point that is at a distance of at most 𝑟 from the origin, or until it fails 𝑐𝑘 times for

some constant 𝑐 to be determined. If it finds such a point, it shifts the point by 𝑦

and outputs it, else it outputs 𝑦.

To see that this may be done with only logspace, note that selecting a random

point from the hypercube of side 2𝑠 simply involves picking 𝑠 + 𝑙 random bits, and

checking that the chosen point, say (𝑥1, . . . , 𝑥𝑑), is within distance 𝑟 is the same as

checking that
∑︀𝑑

𝑖=1 𝑥
2
𝑖 ≤ 𝑟2, which can be done in NC1 (because squaring, addition

of a constant number of integers and comparison can be), and hence in L.

Conditioned on 𝐴 finding a point in the ball, its output is distributed the same

as 𝐵. Hence, 𝑑(𝐴(𝑦, 𝑟, 1𝑘), 𝐵(𝑦, 𝑟)) is at most the probability that 𝐴 fails to do so,
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which is:

(︂
1− 𝑛𝑜. 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑏𝑎𝑙𝑙

𝑛𝑜. 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒

)︂𝑐𝑘

=

(︂
1− |ℬ(𝑦, 𝑟)|

2𝑑(𝑠+𝑙)

)︂𝑐𝑘

≤
(︂

1− 𝑐1𝑟
𝑑2𝑙𝑑

(4𝑟)𝑑2𝑙𝑑

)︂𝑐𝑘

=
(︁

1− 𝑐1
4𝑑

)︁𝑐𝑘

where 𝑐1 is the constant from the bound on |ℬ(𝑦, 𝑟)| above and the term inside the

brackets at the end is a constant, and so 𝑐 can be chosen so that the whole thing is

at most 1
2𝑘

, giving us what we need.

The following lemma states, in a sense, that balls whose centers are close (relative

to their radii) have significant overlap. What shall be salient to us here is that if

the fractional distance between the centers is noticeably bounded away from 1 (that

is, (1− 𝛾) = Ω
(︁

1
𝑝𝑜𝑙𝑦(𝑛)

)︁
), then so is the distance between uniform distributions over

these balls.

Lemma C.3. There is a constant 𝑐 such that for any 𝛾 ∈ [0, 1), 𝑟 ∈ Q+ and 𝑑-

dimensional vector 𝑦, if ||𝑦|| ≤ 𝛾𝑟, then 𝑑(ℬ(0, 𝑟/2),ℬ(𝑦, 𝑟/2)) = 1− 𝑐(1− 𝛾)𝑑.

Proof. Let 𝐵0 = ℬ(0, 𝑟/2) and 𝐵1 = ℬ(𝑦, 𝑟/2) for notational convenience.

As we are concerned with uniform distributions over these sets, we have 𝑑(𝐵0, 𝐵1) =

|𝐵0∖𝐵1|
|𝐵0| . Considering 𝐵0 and 𝐵1 as balls in R𝑑, it is easy to see that it is possible to

embed a ball of radius (1− 𝛾) 𝑟
2

in 𝐵0 ∩𝐵1 (its center is at 𝑦/2). Let 𝐵′ be the set of

points situated in the space of this ball. This implies that |𝐵0∖𝐵1| = |𝐵0|−|𝐵0∩𝐵1| ≤

|𝐵0| − |𝐵′|.
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Using the bounds on sizes of balls obtained earlier, we have:

𝑑(𝐵0, 𝐵1) =
|𝐵0 ∖𝐵1|
|𝐵0|

≤ 1− |𝐵
′|

|𝐵0|

≤ 1− 𝑐1(1− 𝛾)𝑑(𝑟/2)𝑑2𝑙𝑑

𝑐2(𝑟/2)𝑑2𝑙𝑑

= 1− 𝑐1
𝑐2

(1− 𝛾)𝑑

We will also be using the following lemma from [32] (which was, in fact, originally

used there to prove lemma B.2).

Lemma C.4 (Yet another XOR lemma). Given distributions 𝑋0, 𝑋1 over the same

domain and 𝑘 ∈ Z+, define distributions 𝑌0, 𝑌1 by the following sampling procedure

for 𝑌𝑏:

∙ Select bits 𝑏1, . . . , 𝑏𝑘 such that 𝑏1 ⊕ · · · ⊕ 𝑏𝑘 = 𝑏.

∙ For each 𝑖 ∈ [𝑘], sample 𝑐𝑖 ← 𝑋𝑏𝑖.

∙ Output (𝑐1, . . . , 𝑐𝑘).

Then, 𝑑(𝑌0, 𝑌1) = 𝑑(𝑋0, 𝑋1)
𝑘.

Another procedure that we shall need to perform is that of reducing a vector

modulo the fundamental parallelepiped 𝒫(𝐵) of a lattice Λ(𝐵). This too can be

performed in logarithmic space, as evidenced by the following lemma.

Lemma C.5. Given a full-rank (over Q) matrix 𝐵 ∈ Z𝑑×𝑑 and vector 𝑦 ∈ Q𝑑,

𝑦 mod 𝒫(𝐵) can be computed in logspace.

Proof. As 𝐵 is full rank, there is a vector 𝑥 ∈ Q𝑑 such that 𝐵𝑥 = 𝑦. 𝑥 may be

written as 𝑥1 + 𝑥2 for some 𝑥1 ∈ Z𝑑 and 𝑥2 ∈ [0, 1)𝑑. What we wish to compute

is 𝑦 mod 𝒫(𝐵) = 𝐵𝑥2. We shall do so by first computing 𝑥 as 𝐵−1𝑦, taking the

fractional parts of each of its coordinates to get 𝑥2 and then computing 𝐵𝑥2.

64



As 𝐵 is of constant dimension 𝑑, its inverse can be computed in NC1 by the

standard method of computing determinants of its minors. 𝐵−1𝑦 and 𝐵𝑥2 can also

be computed in NC1, as addition and multiplication of any constant number of integers

(or rationals) can be done in NC1. 𝑥2 can also be obtained from 𝑥 in NC1, as it simply

involves one addition or subtraction per co-ordinate of 𝑥. Thus, 𝑦 mod 𝒫(𝐵) can be

computed in NC1 given 𝐵 and 𝑦, and hence in logspace.
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