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" Cryptographers seldom sleep well. — Joe Kilian, several years ago”
— Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.
» Factoring.
> Lattice problems.

> ..

What are the weakest assumptions we can do with?
» We need BPP # NP. Is this sufficient? ([AGGMO06], [BB15], ...)
» How about BPP # SZK? ([Ost91], [AR15], ...)

In what settings can we do with minimal assumptions?

» With no assumptions?
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» [Mer78]: Public-key encryption in the random oracle model where honest parties
run in time O(n), unconditionally secure against adversaries that run in time
2
o(n?).

» [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest
parties use O(s) space, unconditionally secure against adversaries that use o(s?)
space.

» [Has87]: One-way permutation computable in NC°, unconditionally secure against
adversaries computable in AC°.

(X1, xn) = (X1 D x2, %2 D X3, ...y, Xn—1 D X, Xn)
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Fine-Grained Cryptographic Primitives

Primitives that are:
1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:
» Bounded running time. (E.g., Merkle Puzzles [Mer78].)
» Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)

» Bounded circuit-depth. (E.g., [Has87], this work.)

» Constant depth, unbounded fan-in - ACC.
» Logarithmic depth, bounded fan-in - NC?.
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Ingredients

Theorem (Implied by [AB84])
There is an AC circuit C such that for vy, vo € {0,1}", if at least one of them is
log?(n)-sparse, then C(v1,v2) = (v1,va).

Corollary

If rows of M are sparse, Mx can be computed in ACC.
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KeyGen(1") :

Random k € {0,1}".
Enc(1",k, b):

Random sparse ¢ € {0,1}" such that (c,k) = b.
Dec(1", k, c):

Output (c, k).

» Some keys are more equal than others.

» Above is additively homomorphic.
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Game 2 Challenger can be simulated by Game 3 Adversary in ACO.
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Symmetric Encryption against AC°

Game 3 Game 4

Ch Adv Ch

k < KeyGen(1") k < KeyGen(1")

(b + {0,1}}, {(Enc(k, by), b;)}; sparse {1}, {(ri, (k,ri))

b+ {0,1} Enc(k, b) sparse r v
b b= (k1) b’

- -

Reverse Sampling Lemma

L For 'balanced’ keys k, (Enc(k, b;), b;) and (r;, (k,r;)) are statistically close.
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Game 5

Game 4
Ch Adv

Ch Adv
k + KeyGen(1")

k < KeyGen(1")
sparse {r;};

. R, Rk
random v’ R, sparse {ril; _
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sparse r . rvr

b= (k,r 4
b= (k,r) b’ ) -

Indistinguishable by Sparse Matrix Lemma.
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KeyGen(1"):
> k «— KeyGenEme(14n)
» Choose random bits by, ..., b,. Let ¢; = Enc(14") k, b;).
» Qutput the following matrix C:

1=k -T-----° 777‘ I - - - - - -=-=-=-=-=-= |
| | | | | | |
! ! | ! | q
| | | | | | |
C = c,¢2 L !
S Lo
| | | | | | |
S | I L e e e e - -

Eval(1", C, x):
» OQutput Cx.
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CRHF against AC°

Enc Challenger
k < KeyGen(1¢")

b+ {0,1}

mo, my

C = Enc(14", k, mj)

- - @ 7,

Enc Adversary

sparse mg, my € {0,1}"

If C(x—y)#0:b + {0,1}

Else, if (mg,x —y)
=(my,x—y)=0:b"+ {0,1}

Else, if (mg,x —y) =:b'=0

Else: o' =1

X,y

CRHF Adversary
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Candidate PKE against AC°

KeyGen(1") :
Random A € {0,1}"*", sparse k € {0,1}".
pk = (A, AK), sk = k.

Enc(1”, pk = (A, Ak), b):

Sparse s € {0,1}".

b =0: Output c = (s"A,s" Ak).

b=1: Output c = (sT A, b'), where b’ + {0,1}.
Dec(1", k,c = (c17, c)):

If (c1,k) = ¢, output 0, else 1.

» Secure if (A, Ak) =pco (A,r) for random A, sparse k.
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Public-Key Encryption against NC?

» Based on the worst-case assumption that L ¢ NC*.
» L - class of languages with polynomial-sized branching programs.
» NC! - class of languages with polynomial-sized constant-width branching programs.

» Makes use of algebraic structure in the Randomised Encodings for L by
Ishai-Kushilevitz [IKOO].
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0" |0 0"
M} = M] =
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r
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Theorem (IKO00)
IfL ¢ NCY, then, for infinitely many values of n:

RIMERA ~yc: RIMIRE
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Public-Key Encryption against NC?

KeyGen(1"):

pk = R'MIRD, = 1

OT

Infl

Infl

OT

(Notice that pk - sk = 0.)

Enc(1”, pk, b):

> Pick s < {0,1}". Lett=(00--- 01)7.

» Output ¢” =s"pk + bt'.

Dec(1", sk, c): Output (c,sk). (= (s”pk + bt")sk = 0 + b(t, sk) = b)
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Game 1 - Semantic Security

Ch Adv
(pk, sk) < KeyGen(1")
b+« {0,1} pk, Enc(1", pk, b)

b

- v @
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Game 1 - Semantic Security

Ch Adv
pk < RIMORA

s« {0,1}", b« {0,1} pk, s”pk + bt”

b

-z @

Game 2

Ch
pk « RIMLRA

s {0,1}", b« {0,1}

Adv

pk, rT

N

b

- -




Open Problems

v

Public-Key Encryption against ACC.

Better PRGs and PRFs against NC?.
Improve upon Merkle puzzles without too many assumptions.
» Perhaps using recent Fine-Grained Complexity results.

v

v

v

Constructions against AC%[p].
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