Fine-Grained Cryptography

Akshay Degwekar Vinod Vaikuntanathan Prashant Nalini Vasudevan

MIT

June 9, 2016

- " Cryptographers seldom sleep well. Joe Kilian, several years ago"
 - Alon Rosen, yesterday at lunch

" Cryptographers seldom sleep well. – Joe Kilian, several years ago" – Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.

- ► Factoring.
- ► Lattice problems.
- **•** ...

" Cryptographers seldom sleep well. – Joe Kilian, several years ago" – Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.

- Factoring.
- ► Lattice problems.
- **.** . . .

What are the weakest assumptions we can do with?

- ▶ We need BPP \neq NP. Is this sufficient? ([AGGM06], [BB15], ...)
- ▶ How about BPP \neq SZK? ([Ost91], [AR15], ...)

" Cryptographers seldom sleep well. – Joe Kilian, several years ago" – Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.

- Factoring.
- Lattice problems.
- ▶ ...

What are the weakest assumptions we can do with?

- ▶ We need BPP \neq NP. Is this sufficient? ([AGGM06], [BB15], ...)
- ▶ How about BPP \neq SZK? ([Ost91], [AR15], ...)

In what settings can we do with minimal assumptions?

▶ With *no* assumptions?

▶ [Mer78]: Public-key encryption in the random oracle model where honest parties run in time O(n), unconditionally secure against adversaries that run in time $o(n^2)$.

- ▶ [Mer78]: Public-key encryption in the random oracle model where honest parties run in time O(n), unconditionally secure against adversaries that run in time $o(n^2)$.
- ▶ [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest parties use O(s) space, unconditionally secure against adversaries that use $o(s^2)$ space.

- ▶ [Mer78]: Public-key encryption in the random oracle model where honest parties run in time O(n), unconditionally secure against adversaries that run in time $o(n^2)$.
- ▶ [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest parties use O(s) space, unconditionally secure against adversaries that use $o(s^2)$ space.
- ► [Has87]: One-way permutation computable in NC⁰, *unconditionally* secure against adversaries computable in AC⁰.

- ▶ [Mer78]: Public-key encryption in the random oracle model where honest parties run in time O(n), unconditionally secure against adversaries that run in time $o(n^2)$.
- ▶ [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest parties use O(s) space, unconditionally secure against adversaries that use $o(s^2)$ space.
- ► [Has87]: One-way permutation computable in NC⁰, *unconditionally* secure against adversaries computable in AC⁰.

$$f(x_1,...,x_n) = (x_1 \oplus x_2, x_2 \oplus x_3,...,x_{n-1} \oplus x_n,x_n)$$

Primitives that are:

- 1. Secure against adversaries with restricted computational power.
- 2. Computable with less computational power than these adversaries.

Primitives that are:

- 1. Secure against adversaries with restricted computational power.
- 2. Computable with less computational power than these adversaries.

Examples of restrictions:

▶ Bounded running time. (E.g., Merkle Puzzles [Mer78].)

Primitives that are:

- 1. Secure against adversaries with restricted computational power.
- 2. Computable with less computational power than these adversaries.

Examples of restrictions:

- ▶ Bounded running time. (E.g., Merkle Puzzles [Mer78].)
- \blacktriangleright Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)

Primitives that are:

- 1. Secure against adversaries with restricted computational power.
- 2. Computable with less computational power than these adversaries.

Examples of restrictions:

- ▶ Bounded running time. (E.g., Merkle Puzzles [Mer78].)
- ▶ Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)
- ▶ Bounded circuit-depth. (E.g., [Has87], this work.)

Primitives that are:

- 1. Secure against adversaries with restricted computational power.
- 2. Computable with less computational power than these adversaries.

Examples of restrictions:

- ▶ Bounded running time. (E.g., Merkle Puzzles [Mer78].)
- ▶ Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)
- ▶ Bounded circuit-depth. (E.g., [Has87], this work.)
 - ► Constant depth, unbounded fan-in AC⁰.
 - ► Logarithmic depth, bounded fan-in NC¹.

Results

Unconditional constructions against AC⁰:

- ▶ OWF, PRG. (other constructions known from [Has87, AW85, Vio12, MST06])
- ▶ Weak PRF.
- Symmetric Encryption.
- Collision Resistant Hash Functions.

Constructions against NC^1 based on $L \not\subseteq NC^1$:

- ▶ OWF, PRG. (similar, independent, constructions in [AR15])
- ► Public-Key Encryption.
- ► Collision Resistant Hash Functions.

Results

Unconditional constructions against AC⁰:

- ▶ OWF, PRG. (other constructions known from [Has87, AW85, Vio12, MST06])
- ► Weak PRF.
- ► Symmetric Encryption.
- Collision Resistant Hash Functions.

Constructions against NC^1 based on $L \subseteq NC^1$:

- ▶ OWF, PRG. (similar, independent, constructions in [AR15])
- ► Public-Key Encryption.
- ► Collision Resistant Hash Functions.

Theorem ([Bra10, Tal14])

Polynomial-sized circuits of depth d cannot distinguish between a $\log^{4d}(m)$ -wise independent distribution over $\{0,1\}^m$ and U_m .

Theorem ([Bra10, Tal14])

Polynomial-sized circuits of depth d cannot distinguish between a $\log^{4d}(m)$ -wise independent distribution over $\{0,1\}^m$ and U_m .

Corollary

Let D_m be a distribution over $\{0,1\}^m$ that is $\log^{\omega(1)}(m)$ -wise independent. Then:

$$D_m \approx_{\mathsf{AC}^0} U_m$$

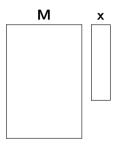
Observation

Observation

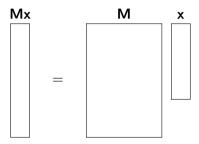
Let $\mathbf{M} \in \{0,1\}^{m \times n}$ be a matrix such that any set of k rows are linearly independent. If \mathbf{x} is distributed uniformly over $\{0,1\}^n$, then $\mathbf{M}\mathbf{x}$ is k-wise independent.

M

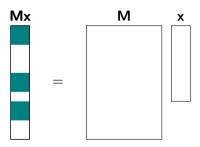
Observation



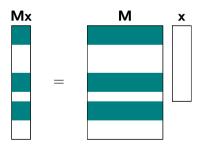
Observation



Observation



Observation



Lemma ([Gal62])

If rows of $\mathbf{M}_{m \times n}$ are chosen to be random sparse vectors, and m = poly(n), then w.h.p. any set of $\left(\frac{n}{\log^3(n)}\right)$ rows of \mathbf{M} are linearly independent.

Lemma ([Gal62])

If rows of $\mathbf{M}_{m \times n}$ are chosen to be random sparse vectors, and m = poly(n), then w.h.p. any set of $\left(\frac{n}{\log^3(n)}\right)$ rows of \mathbf{M} are linearly independent.

 $ightharpoonup \implies w.h.p. \ \mathbf{Mx} \ is \left(\frac{n}{\log^3(n)}\right)$ -wise independent.

Lemma ([Gal62])

If rows of $\mathbf{M}_{m \times n}$ are chosen to be random sparse vectors, and m = poly(n), then w.h.p. any set of $\left(\frac{n}{\log^3(n)}\right)$ rows of \mathbf{M} are linearly independent.

- $ightharpoonup \implies w.h.p. \ \mathbf{Mx} \ is \left(\frac{n}{\log^3(n)}\right)$ -wise independent.
- ightharpoonup \Longrightarrow $(M, Mx) \approx_{AC^0} (M, U_m)$

Lemma (Sparse Matrix Lemma)

If rows of $\mathbf{M}_{m \times n}$ are chosen to be random sparse vectors, and m = poly(n), then w.h.p. any set of $\left(\frac{n}{\log^3(n)}\right)$ rows of \mathbf{M} are linearly independent.

- $ightharpoonup \implies w.h.p. \ \mathbf{Mx} \ is \left(\frac{n}{\log^3(n)}\right)$ -wise independent.
- ightharpoonup \Longrightarrow $(M, Mx) \approx_{AC^0} (M, U_m)$

Theorem (Implied by [AB84])

There is an AC⁰ circuit C such that for $\mathbf{v_1}, \mathbf{v_2} \in \{0,1\}^n$, if at least one of them is $\log^2(n)$ -sparse, then $C(\mathbf{v_1}, \mathbf{v_2}) = \langle \mathbf{v_1}, \mathbf{v_2} \rangle$.

Theorem (Implied by [AB84])

There is an AC⁰ circuit C such that for $\mathbf{v_1}, \mathbf{v_2} \in \{0,1\}^n$, if at least one of them is $\log^2(n)$ -sparse, then $C(\mathbf{v_1}, \mathbf{v_2}) = \langle \mathbf{v_1}, \mathbf{v_2} \rangle$.

Corollary

If rows of M are sparse, Mx can be computed in AC^0 .

```
KeyGen(1^n):
Random \mathbf{k} \in \{0,1\}^n.
```

```
\begin{split} & \mathsf{KeyGen}(1^n): \\ & \mathsf{Random} \ \mathbf{k} \in \{0,1\}^n. \\ & \mathsf{Enc}(1^n,\mathbf{k},b): \\ & \mathsf{Random} \ \mathsf{sparse} \ \mathbf{c} \in \{0,1\}^n \ \mathsf{such that} \ \langle \mathbf{c},\mathbf{k} \rangle = b. \end{split}
```

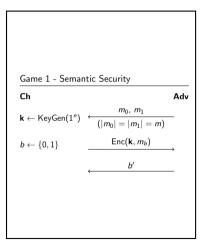
```
\begin{aligned} & \mathsf{KeyGen}(\mathbf{1}^n): \\ & \mathsf{Random} \ \mathbf{k} \in \{0,1\}^n. \\ & \mathsf{Enc}(\mathbf{1}^n,\mathbf{k},b): \\ & \mathsf{Random} \ \mathsf{sparse} \ \mathbf{c} \in \{0,1\}^n \ \mathsf{such that} \ \langle \mathbf{c},\mathbf{k} \rangle = b. \\ & \mathsf{Dec}(\mathbf{1}^n,\mathbf{k},\mathbf{c}): \\ & \mathsf{Output} \ \langle \mathbf{c},\mathbf{k} \rangle. \end{aligned}
```

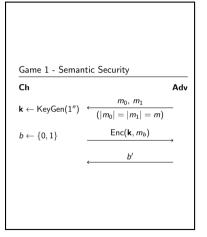
```
\begin{aligned} & \mathsf{KeyGen}(1^n): \\ & \mathsf{Random} \ \mathbf{k} \in \{0,1\}^n. \\ & \mathsf{Enc}(1^n,\mathbf{k},b): \\ & \mathsf{Random} \ \mathsf{sparse} \ \mathbf{c} \in \{0,1\}^n \ \mathsf{such that} \ \langle \mathbf{c},\mathbf{k} \rangle = b. \\ & \mathsf{Dec}(1^n,\mathbf{k},\mathbf{c}): \\ & \mathsf{Output} \ \langle \mathbf{c},\mathbf{k} \rangle. \end{aligned}
```

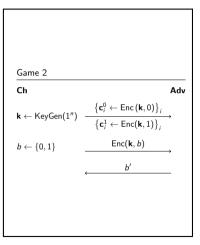
▶ Some keys are more equal than others.

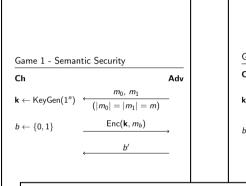
```
\begin{aligned} & \mathsf{KeyGen}(\mathbf{1}^n): \\ & \mathsf{Random} \ \mathbf{k} \in \{0,1\}^n. \\ & \mathsf{Enc}(\mathbf{1}^n,\mathbf{k},b): \\ & \mathsf{Random} \ \mathsf{sparse} \ \mathbf{c} \in \{0,1\}^n \ \mathsf{such that} \ \langle \mathbf{c},\mathbf{k} \rangle = b. \\ & \mathsf{Dec}(\mathbf{1}^n,\mathbf{k},\mathbf{c}): \\ & \mathsf{Output} \ \langle \mathbf{c},\mathbf{k} \rangle. \end{aligned}
```

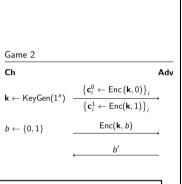
- Some keys are more equal than others.
- ► Above is additively homomorphic.



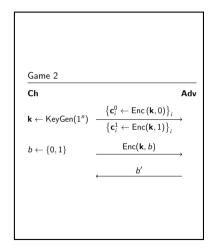


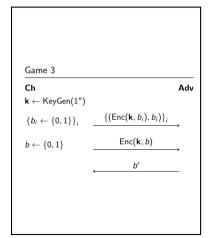


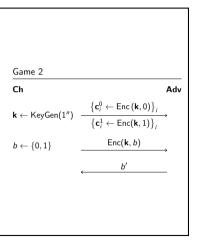


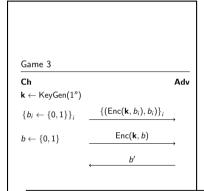


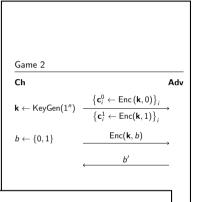
Equivalent by standard hybrid arguments.



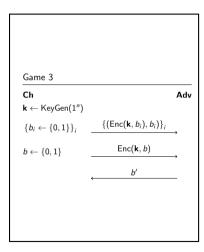


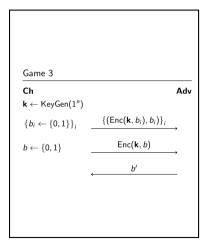


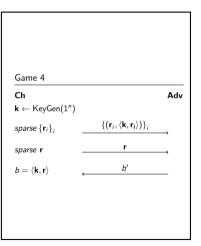


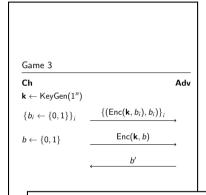


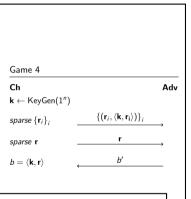
Game 2 Challenger can be simulated by Game 3 Adversary in AC⁰.





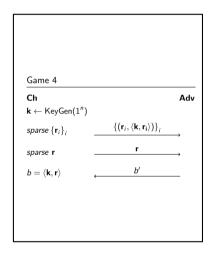






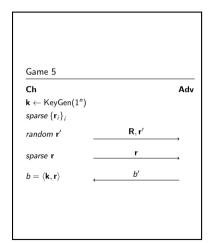
Reverse Sampling Lemma

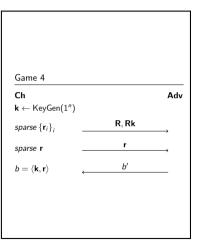
For 'balanced' keys \mathbf{k} , $(\mathsf{Enc}(\mathbf{k},b_i),b_i)$ and $(\mathbf{r}_i,\langle\mathbf{k},\mathbf{r}_i\rangle)$ are statistically close.

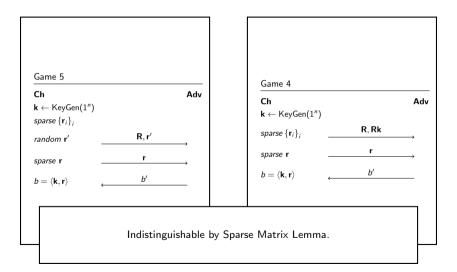


Symmetric Encryption against AC^0

Game 4		
Ch $\mathbf{k} \leftarrow KeyGen(1^n)$		Ad
sparse $\{\mathbf{r}_i\}_i$	R, Rk	
sparse r	r	
$b = \langle \mathbf{k}, \mathbf{r} \rangle$	Ь'	





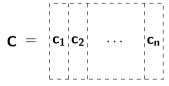


$KeyGen(1^n)$:

- ▶ $\mathbf{k} \leftarrow \mathsf{KeyGen}^{Enc}(1^{\ell(n)})$
- ▶ Choose random bits b_1, \ldots, b_n . Let $\mathbf{c_i} = \text{Enc}(1^{\ell(n)}, \mathbf{k}, b_i)$.

$KeyGen(1^n)$:

- $\mathbf{k} \leftarrow \mathsf{KeyGen}^{Enc}(1^{\ell(n)})$
- ▶ Choose random bits b_1, \ldots, b_n . Let $\mathbf{c_i} = \mathsf{Enc}(1^{\ell(n)}, \mathbf{k}, b_i)$.
- ► Output the following matrix **C**:



$KeyGen(1^n)$:

- ▶ $\mathbf{k} \leftarrow \mathsf{KeyGen}^{Enc}(1^{\ell(n)})$
- ▶ Choose random bits b_1, \ldots, b_n . Let $\mathbf{c_i} = \mathsf{Enc}(1^{\ell(n)}, \mathbf{k}, b_i)$.
- ► Output the following matrix **C**:

$$C \ = \ \begin{vmatrix} c_1 & c_2 & \dots & c_n \end{vmatrix}$$

Eval $(1^n, \mathbf{C}, \mathbf{x})$:

► Output **C**x.

KeyGen (1^n) :

- ▶ $\mathbf{k} \leftarrow \mathsf{KeyGen}^{Enc}(1^{\ell(n)})$
- ▶ Choose random bits b_1, \ldots, b_n . Let $\mathbf{c_i} = \text{Enc}(1^{\ell(n)}, \mathbf{k}, b_i)$.
- ► Output the following matrix **C**:

Eval $(1^n, \mathbf{C}, \mathbf{x})$:

► Output **C**x.

Enc Challenger Enc Adversary CRHF Adversary $\mathbf{k} \leftarrow \mathsf{KeyGen}(1^{\ell(n)})$ sparse $m_0, m_1 \in \{0, 1\}^n$

Enc Challenger Enc Adversary CRHF Adversary $\mathbf{k} \leftarrow \mathsf{KeyGen}(1^{\ell(n)})$ sparse $m_0, m_1 \in \{0,1\}^n$

Enc Challenger

 $\boldsymbol{k} \leftarrow \mathsf{KeyGen}(1^{\ell(n)})$

 m_0, m_1

 $\mathbf{C} = \mathsf{Enc}(1^{\ell(n)}, \mathbf{k}, m_b)$

 $b \leftarrow \{0,1\}$

Enc Adversary

sparse $m_0, m_1 \in \left\{0,1\right\}^n$

Enc Challenger

$$\textbf{k} \leftarrow \mathsf{KeyGen}(1^{\ell(n)})$$

 m_0, m_1

 $\mathbf{C} = \mathsf{Enc}(1^{\ell(n)}, \mathbf{k}, m_b)$

$$b \leftarrow \{0,1\}$$

Enc Adversary

sparse $m_0, m_1 \in \left\{0,1\right\}^n$

CRHF Adversary

С

Enc Challenger

$$\textbf{k} \leftarrow \mathsf{KeyGen}(1^{\ell(n)})$$

$$m_0, m_1$$

$$b \leftarrow \{0,1\}$$
 $\mathbf{C} = \mathsf{Enc}(1^{\ell(n)}, \mathbf{k}, m_b)$

Enc Adversary

sparse $m_0, m_1 \in \left\{0,1\right\}^n$

CRHF Adversary

С

x, y

Enc Challenger

 $\mathbf{k} \leftarrow \mathsf{KeyGen}(1^{\ell(n)})$

 m_0, m_1

 $\mathbf{C} = \mathsf{Enc}(1^{\ell(n)}, \mathbf{k}, m_b)$ $b \leftarrow \{0,1\}$

Enc Adversary

sparse $m_0, m_1 \in \{0, 1\}^n$

x, y

C

If $C(x - y) \neq 0 : b' \leftarrow \{0, 1\}$

4日 → 4周 → 4 差 → 4 差 → 1 至 9 9 0 0

Enc Challenger

 $\mathbf{k} \leftarrow \mathsf{KeyGen}(1^{\ell(n)})$

 m_0, m_1 $\mathbf{C} = \mathsf{Enc}(1^{\ell(n)}, \mathbf{k}, m_b)$

 $b \leftarrow \{0,1\}$

Enc Adversary

sparse $m_0, m_1 \in \{0, 1\}^n$

x, y

C

$$\begin{split} \text{If } \mathbf{C}(\mathbf{x}-\mathbf{y}) &\neq 0: b' \leftarrow \{0,1\} \\ \text{Else, if } &\langle \mathbf{m}_0, \mathbf{x}-\mathbf{y} \rangle \\ &= \langle \mathbf{m}_1, \mathbf{x}-\mathbf{y} \rangle = 0: b' \leftarrow \{0,1\} \end{split}$$

Enc Challenger

 $\mathbf{k} \leftarrow \mathsf{KeyGen}(1^{\ell(n)})$

 m_0, m_1 $\mathbf{C} = \mathsf{Enc}(1^{\ell(n)}, \mathbf{k}, m_b)$

 $b \leftarrow \{0,1\}$

Enc Adversary

sparse $m_0, m_1 \in \{0, 1\}^n$

C x, y

If
$$\mathbf{C}(\mathbf{x} - \mathbf{y}) \neq 0 : b' \leftarrow \{0, 1\}$$

Else, if $\langle \mathbf{m_0}, \mathbf{x} - \mathbf{y} \rangle$

$$= \langle \textbf{m}_{\textbf{1}}, \textbf{x} - \textbf{y} \rangle = 0: \textit{b}' \leftarrow \{0, 1\}$$

Else, if $\langle \mathbf{m_0}, \mathbf{x} - \mathbf{y} \rangle =: b' = 0$

Enc Challenger

 $\mathbf{k} \leftarrow \mathsf{KeyGen}(1^{\ell(n)})$

 $egin{aligned} & & m_0, \ m_1 \end{aligned}$ $\mathbf{C} = \mathsf{Enc}(1^{\ell(n)}, \mathbf{k}, m_b)$

 $b \leftarrow \{0,1\}$

Enc Adversary

sparse $m_0, m_1 \in \{0,1\}^n$

CRHF Adversary

C x, y

If
$$\mathbf{C}(\mathbf{x} - \mathbf{y}) \neq 0 : b' \leftarrow \{0, 1\}$$

Else, if $\langle m_0, \textbf{x} - \textbf{y} \rangle$

$$= \langle \mathbf{m_1}, \mathbf{x} - \mathbf{y} \rangle = 0 : b' \leftarrow \{0, 1\}$$

Else, if $\langle \mathbf{m_0}, \mathbf{x} - \mathbf{y} \rangle =: b' = 0$

Else: b'=1

Enc Challenger

 $\mathbf{k} \leftarrow \mathsf{KeyGen}(1^{\ell(n)})$

 $egin{aligned} & & m_0, \ m_1 \end{aligned}$ $\mathbf{C} = \mathsf{Enc}(1^{\ell(n)}, \mathbf{k}, m_b)$

 $b \leftarrow \{0,1\}$

Enc Adversary

sparse $m_0, m_1 \in \{0,1\}^n$

С

x, y

If $\mathbf{C}(\mathbf{x} - \mathbf{y}) \neq 0 : b' \leftarrow \{0, 1\}$

Else, if $\langle m_0, \mathbf{x} - \mathbf{y} \rangle$

$$= \langle \mathbf{m_1}, \mathbf{x} - \mathbf{y} \rangle = 0 : b' \leftarrow \{0, 1\}$$

Else, if $\langle \mathbf{m_0}, \mathbf{x} - \mathbf{y} \rangle =: b' = 0$

Else: b'=1

CRHF Adversary

Candidate PKE against AC^0

```
\begin{aligned} & \mathsf{KeyGen}(1^n): \\ & \mathsf{Random} \ \mathbf{A} \in \{0,1\}^{n \times n}, \ \mathsf{sparse} \ \mathbf{k} \in \{0,1\}^n. \\ & \mathbf{pk} = (\mathbf{A}, \mathbf{Ak}), \mathbf{sk} = \mathbf{k}. \end{aligned} \\ & \mathsf{Enc}(1^n, \mathbf{pk} = (\mathbf{A}, \mathbf{Ak}), b): \\ & \mathsf{Sparse} \ \mathbf{s} \in \{0,1\}^n. \\ & b = 0: \ \mathsf{Output} \ \mathbf{c} = (\mathbf{s}^T \mathbf{A}, \mathbf{s}^T \mathbf{Ak}). \\ & b = 1: \ \mathsf{Output} \ \mathbf{c} = (\mathbf{s}^T \mathbf{A}, b'), \ \mathsf{where} \ b' \leftarrow \{0,1\}. \end{aligned}
```

```
KevGen(1^n):
     Random \mathbf{A} \in \{0,1\}^{n \times n}, sparse \mathbf{k} \in \{0,1\}^n.
     pk = (A, Ak), sk = k.
\operatorname{Enc}(1^n, \mathbf{pk} = (\mathbf{A}, \mathbf{Ak}), b):
     Sparse \mathbf{s} \in \{0, 1\}^n.
     b = 0: Output \mathbf{c} = (\mathbf{s}^T \mathbf{A}, \mathbf{s}^T \mathbf{A} \mathbf{k}).
      b=1: Output \mathbf{c}=(\mathbf{s}^T\mathbf{A},b'), where b' \leftarrow \{0,1\}.
Dec(1^n, \mathbf{k}, \mathbf{c} = (\mathbf{c_1}^T, c_2)):
     If \langle \mathbf{c_1}, \mathbf{k} \rangle = c_2, output 0, else 1.
```

```
KevGen(1^n):
     Random \mathbf{A} \in \{0,1\}^{n \times n}, sparse \mathbf{k} \in \{0,1\}^n.
     pk = (A, Ak), sk = k.
\operatorname{Enc}(1^n, \mathbf{pk} = (\mathbf{A}, \mathbf{Ak}), b):
     Sparse \mathbf{s} \in \{0, 1\}^n.
     b = 0: Output \mathbf{c} = (\mathbf{s}^T \mathbf{A}, \mathbf{s}^T \mathbf{A} \mathbf{k}).
      b=1: Output \mathbf{c}=(\mathbf{s}^T\mathbf{A},b'), where b' \leftarrow \{0,1\}.
Dec(1^n, \mathbf{k}, \mathbf{c} = (\mathbf{c_1}^T, c_2)):
     If \langle \mathbf{c_1}, \mathbf{k} \rangle = c_2, output 0, else 1.
```

► Secure if $(\mathbf{A}, \mathbf{Ak}) \approx_{\mathsf{AC}^0} (\mathbf{A}, \mathbf{r})$ for random \mathbf{A} , sparse \mathbf{k} .

Results

Unconditional constructions against AC⁰:

- ► OWF, PRG. (other constructions known from [Has87], [Vio12], [MST06])
- ▶ Weak PRF.
- ► Symmetric Encryption.
- ► Collision Resistant Hash Functions.

Constructions against NC^1 based on $L \not\subseteq NC^1$:

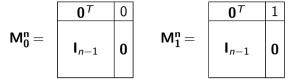
- ▶ OWF, PRG. (similar, independent, constructions in [AR15])
- ► Public-Key Encryption.
- ► Collision Resistant Hash Functions.

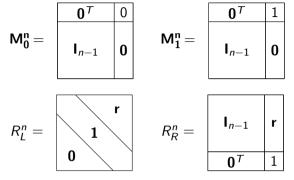
Public-Key Encryption against NC¹

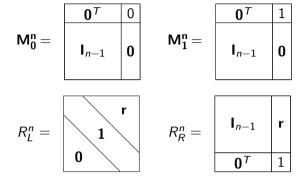
- ▶ Based on the worst-case assumption that $L \subseteq NC^1$.
 - ▶ L class of languages with polynomial-sized branching programs.
 - ► NC¹ class of languages with polynomial-sized *constant-width* branching programs.

Public-Key Encryption against NC¹

- ▶ Based on the worst-case assumption that $L \subseteq NC^1$.
 - L class of languages with polynomial-sized branching programs.
 - ▶ NC¹ class of languages with polynomial-sized *constant-width* branching programs.
- ► Makes use of algebraic structure in the Randomised Encodings for L by Ishai-Kushilevitz [IK00].







Theorem (IK00)

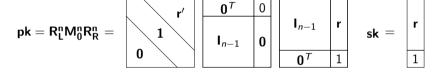
If $L \not\subseteq NC^1$, then, for infinitely many values of n:

$$R_L^n \mathbf{M_0^n} R_R^n \approx_{\mathsf{NC}^1} R_L^n \mathbf{M_1^n} R_R^n$$

 $KeyGen(1^n)$:

$$\mathbf{k} = \mathsf{R}^\mathsf{n}_\mathsf{L} \mathsf{M}^\mathsf{n}_\mathsf{0} \mathsf{R}^\mathsf{n}_\mathsf{R} = egin{bmatrix} \mathbf{r}' & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{n-1} & \mathbf{0} & \mathbf{I}_{n-1} & \mathbf{r} \\ \mathbf{0} & \mathbf{0}^\mathsf{T} & \mathbf{1} & \mathbf{s} \mathbf{k} \end{bmatrix} \quad \mathbf{s} \mathbf{k} = egin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{0} & \mathbf{0}^\mathsf{T} & \mathbf{1} & \mathbf{r} & \mathbf{r} \\ \mathbf{0} & \mathbf{0}^\mathsf{T} & \mathbf{1} & \mathbf{r} \\ \mathbf{0} & \mathbf{0}^\mathsf{T} & \mathbf{1} & \mathbf{r} \\ \mathbf{0} & \mathbf{0}^\mathsf{T} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}^\mathsf{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}^\mathsf{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}^\mathsf{T} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}^\mathsf{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}^\mathsf{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{0$$

 $KeyGen(1^n)$:



(Notice that $\mathbf{pk} \cdot \mathbf{sk} = \mathbf{0}$.)

 $KeyGen(1^n)$:

$$\mathsf{pk} = \mathsf{R}^\mathsf{n}_\mathsf{L} \mathsf{M}^\mathsf{n}_\mathsf{0} \mathsf{R}^\mathsf{n}_\mathsf{R} = \begin{bmatrix} & & \mathsf{r}' & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \end{bmatrix} \begin{bmatrix} & \mathsf{0}^\mathsf{T} & & \mathsf{0} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{bmatrix}$$

0^{T}	0
I_{n-1}	0

(Notice that $\mathbf{pk} \cdot \mathbf{sk} = \mathbf{0}$.)

 $Enc(1^n, \mathbf{pk}, b)$:

- ▶ Pick $\mathbf{s} \leftarrow \{0,1\}^n$. Let $\mathbf{t} = (0 \ 0 \cdots \ 0 \ 1)^T$.
- Output $\mathbf{c}^T = \mathbf{s}^T \mathbf{p} \mathbf{k} + b \mathbf{t}^T$.

 $KeyGen(1^n)$:

$$\mathsf{pk} = \mathsf{R}^{\mathsf{n}}_{\mathsf{L}} \mathsf{M}^{\mathsf{n}}_{\mathsf{0}} \mathsf{R}^{\mathsf{n}}_{\mathsf{R}} = \begin{bmatrix} & \mathsf{r}' \\ & \mathsf{1} \\ & \mathsf{0} \end{bmatrix}$$

0^{T}	0
I_{n-1}	0

(Notice that $\mathbf{pk} \cdot \mathbf{sk} = \mathbf{0}$.)

 $\mathsf{Enc}(1^n,\mathbf{pk},b)$:

- ▶ Pick $\mathbf{s} \leftarrow \{0,1\}^n$. Let $\mathbf{t} = (0 \ 0 \cdots \ 0 \ 1)^T$.
- Output $\mathbf{c}^T = \mathbf{s}^T \mathbf{p} \mathbf{k} + b \mathbf{t}^T$.

 $Dec(1^n, \mathbf{sk}, \mathbf{c})$: Output $\langle \mathbf{c}, \mathbf{sk} \rangle$.

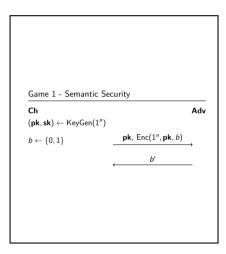
 $KeyGen(1^n)$:

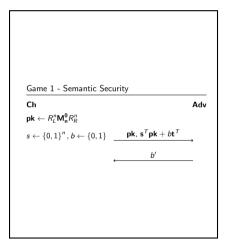
(Notice that $\mathbf{pk} \cdot \mathbf{sk} = \mathbf{0}$.)

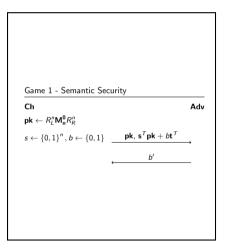
 $Enc(1^n, \mathbf{pk}, b)$:

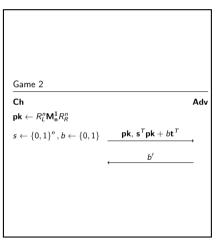
- ▶ Pick $\mathbf{s} \leftarrow \{0,1\}^n$. Let $\mathbf{t} = (0 \ 0 \cdots \ 0 \ 1)^T$.
- Output $\mathbf{c}^T = \mathbf{s}^T \mathbf{p} \mathbf{k} + b \mathbf{t}^T$.

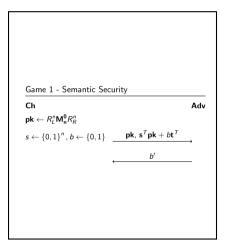
$$Dec(1^n, \mathbf{sk}, \mathbf{c})$$
: Output $\langle \mathbf{c}, \mathbf{sk} \rangle$. $(= (\mathbf{s}^T \mathbf{pk} + b\mathbf{t}^T)\mathbf{sk} = 0 + b\langle \mathbf{t}, \mathbf{sk} \rangle = b)$

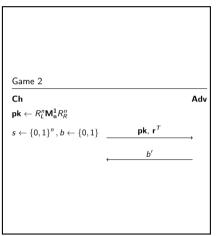












Open Problems

- ▶ Public-Key Encryption against AC⁰.
- ▶ Better PRGs and PRFs against NC¹.
- ▶ Improve upon Merkle puzzles without too many assumptions.
 - Perhaps using recent Fine-Grained Complexity results.
- ▶ Constructions against $AC^0[p]$.

- Miklós Ajtai and Michael Ben-Or.

 A theorem on probabilistic constant depth computations.
 - In Proceedings of the 16th Annual ACM Symposium on Theory of Computing, April 30 May 2, 1984, Washington, DC, USA, pages 471–474, 1984.
- Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz.

 On basing one-way functions on np-hardness.

 In Jon M. Kleinberg, editor, *Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 701-710.* ACM
 - Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 701–710. ACM, 2006.
- Benny Applebaum and Pavel Raykov.
 On the relationship between statistical zero-knowledge and statistical randomized encodings.
 - Electronic Colloquium on Computational Complexity (ECCC), 22:186, 2015.
- Miklós Ajtai and Avi Wigderson.

 Deterministic simulation of probabilistic constant depth circuits (preliminary version).

In 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985, pages 11–19, 1985.

Andrej Bogdanov and Christina Brzuska.

On basing size-verifiable one-way functions on np-hardness.

In Yevgeniy Dodis and Jesper Buus Nielsen, editors, *Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I*, volume 9014 of *Lecture Notes in Computer Science*, pages 1–6. Springer, 2015.

Mark Braverman.

Polylogarithmic independence fools AC^0 circuits. J. ACM, 57(5), 2010.

Christian Cachin and Ueli Maurer.
Unconditional security against memory-bounded adversaries.
In *Advances in CryptologyCRYPTO'97*, pages 292–306. Springer, 1997.

Robert G. Gallager. Low-density parity-check codes. IRE Trans. Information Theory, 8(1):21–28, 1962.

Johan Hastad.

One-way permutations in nc 0. *Information Processing Letters*, 26(3):153–155, 1987.

Ueli M Maurer.

Conditionally-perfect secrecy and a provably-secure randomized cipher. *Journal of Cryptology*, 5(1):53–66, 1992.

🔋 Ralph C. Merkle.

Secure communications over insecure channels. *Commun. ACM*, 21(4):294–299, 1978.

Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On epsilon-biased generators in nc⁰.

Random Struct. Algorithms, 29(1):56–81, 2006.

Rafail Ostrovsky.
One-way functions, hard on average problems, and statistical zero-knowledge proofs.

In Proceedings of the Sixth Annual Structure in Complexity Theory Conference, Chicago, Illinois, USA, June 30 - July 3, 1991, pages 133–138, 1991.

Tight bounds on the fourier spectrum of ac⁰. Electronic Colloquium on Computational Complexity (ECCC), 21:174, 2014.

Emanuele Viola.

The complexity of distributions.

SIAM Journal on Computing, 41(1):191–218, 2012.