Fine-Grained Cryptography

Akshay Degwekar Vinod Vaikuntanathan Prashant Nalini Vasudevan
MIT

June 9, 2016

Cryptography

" Cryptographers seldom sleep well. — Joe Kilian, several years ago”
— Alon Rosen, yesterday at lunch

Cryptography

" Cryptographers seldom sleep well. — Joe Kilian, several years ago”
— Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.
» Factoring.
> Lattice problems.

> ..

Cryptography

" Cryptographers seldom sleep well. — Joe Kilian, several years ago”
— Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.
» Factoring.
> Lattice problems.

> ..

What are the weakest assumptions we can do with?
» We need BPP # NP. Is this sufficient? ([AGGMO06], [BB15], ...)
» How about BPP # SZK? ([Ost91], [AR15], ...)

Cryptography

" Cryptographers seldom sleep well. — Joe Kilian, several years ago”
— Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.
» Factoring.
> Lattice problems.

> ..

What are the weakest assumptions we can do with?
» We need BPP # NP. Is this sufficient? ([AGGMO06], [BB15], ...)
» How about BPP # SZK? ([Ost91], [AR15], ...)

In what settings can we do with minimal assumptions?

» With no assumptions?

Cryptography in other settings

» [Mer78]: Public-key encryption in the random oracle model where honest parties

run in time O(n), unconditionally secure against adversaries that run in time
2
o(n?).

Cryptography in other settings

» [Mer78]: Public-key encryption in the random oracle model where honest parties

run in time O(n), unconditionally secure against adversaries that run in time
2
o(n?).

» [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest
parties use O(s) space, unconditionally secure against adversaries that use o(s?)
space.

Cryptography in other settings

» [Mer78]: Public-key encryption in the random oracle model where honest parties
run in time O(n), unconditionally secure against adversaries that run in time
2
o(n?).

» [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest
parties use O(s) space, unconditionally secure against adversaries that use o(s?)
space.

» [Has87]: One-way permutation computable in NC°, unconditionally secure against
adversaries computable in AC°.

Cryptography in other settings

» [Mer78]: Public-key encryption in the random oracle model where honest parties
run in time O(n), unconditionally secure against adversaries that run in time
2
o(n?).

» [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest
parties use O(s) space, unconditionally secure against adversaries that use o(s?)
space.

» [Has87]: One-way permutation computable in NC°, unconditionally secure against
adversaries computable in AC°.

(X1, xn) = (X1 D x2, %2 D X3, ...y, Xn—1 D X, Xn)

Fine-Grained Cryptographic Primitives

Primitives that are:
1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Fine-Grained Cryptographic Primitives

Primitives that are:
1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:
» Bounded running time. (E.g., Merkle Puzzles [Mer78].)

Fine-Grained Cryptographic Primitives

Primitives that are:
1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:
» Bounded running time. (E.g., Merkle Puzzles [Mer78].)
» Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)

Fine-Grained Cryptographic Primitives

Primitives that are:
1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:
» Bounded running time. (E.g., Merkle Puzzles [Mer78].)
» Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)
» Bounded circuit-depth. (E.g., [Has87], this work.)

Fine-Grained Cryptographic Primitives

Primitives that are:
1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:
» Bounded running time. (E.g., Merkle Puzzles [Mer78].)
» Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)

» Bounded circuit-depth. (E.g., [Has87], this work.)

» Constant depth, unbounded fan-in - ACC.
» Logarithmic depth, bounded fan-in - NC?.

Results

Unconditional constructions against AC:
» OWF, PRG. (other constructions known from [Has87, AW85, Viol2, MST06])
» Weak PRF.
» Symmetric Encryption.

» Collision Resistant Hash Functions.

Constructions against NC! based on L ¢ NC!:
» OWF, PRG. (similar, independent, constructions in [AR15])
» Public-Key Encryption.

» Collision Resistant Hash Functions.

Results

Unconditional constructions against AC:
>

>

» Symmetric Encryption.

v

Collision Resistant Hash Functions.

Ingredients

Ingredients

Theorem ([Bral0, Tall4])

Polynomial-sized circuits of depth d cannot distinguish between a Iog4d(m)—wise
independent distribution over {0,1}" and Up,.

Ingredients

Theorem ([Bral0, Tall4])

Polynomial-sized circuits of depth d cannot distinguish between a Iog4d(m)—wise
independent distribution over {0,1}" and Up,.

Corollary
Let D,, be a distribution over {0,1}™ that is log“*)(m)-wise independent. Then:

Dm %Aco Um

Ingredients

Observation
Let M € {0,1}™" be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0,1}", then Mx is k-wise independent.

Ingredients

Observation
Let M € {0,1}™" be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0,1}", then Mx is k-wise independent.

M

Ingredients

Observation
Let M € {0,1}™" be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0,1}", then Mx is k-wise independent.

M X

Ingredients

Observation
Let M € {0,1}™" be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0,1}", then Mx is k-wise independent.

Mx M X

Ingredients

Observation
Let M € {0,1}™" be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0,1}", then Mx is k-wise independent.

Mx M X

Ingredients

Observation
Let M € {0,1}™" be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0,1}", then Mx is k-wise independent.

EH

Ingredients

Lemma ([Gal62])

If rows of M, are chosen to be random sparse vectors, and m = poly(n), then

n

w.h.p. any set of | —3—) rows of M are linearly independent.
log>(n)

Ingredients

Lemma ([Gal62])
If rows of M, are chosen to be random sparse vectors, and m = poly(n), then

w.h.p. any set of () rows of M are linearly independent.

log®(n)

» — w.h.p. Mx is(g)-wise independent.

log(n)

Ingredients

Lemma ([Gal62])

If rows of M, are chosen to be random sparse vectors, and m = poly(n), then

n

w.h.p. any set of | —3—) rows of M are linearly independent.
log>(n)

» — w.h.p. Mx is (logg’(n)>-wise independent.

» = (M,Mx) =00 (M, Up)

Ingredients

Lemma (Sparse Matrix Lemma)
If rows of M, are chosen to be random sparse vectors, and m = poly(n), then

w.h.p. any set of (@) rows of M are linearly independent.
» — w.h.p. Mx is (logg’(n)>-wise independent.

» = (M,Mx) =500 (M, Up)

Ingredients

Theorem (Implied by [AB84])

There is an AC circuit C such that for vy, vo € {0,1}", if at least one of them is
log?(n)-sparse, then C(v1,v2) = (v1,va).

Ingredients

Theorem (Implied by [AB84])
There is an AC circuit C such that for vy, vo € {0,1}", if at least one of them is
log?(n)-sparse, then C(v1,v2) = (v1,va).

Corollary

If rows of M are sparse, Mx can be computed in ACC.

Symmetric Encryption against AC°

Symmetric Encryption against AC°

KeyGen(1") :
Random k € {0,1}".

Symmetric Encryption against AC°

KeyGen(1") :
Random k € {0,1}".
Enc(1",k, b):
Random sparse ¢ € {0,1}" such that (c,k) = b.

Symmetric Encryption against AC°

KeyGen(1") :

Random k € {0,1}".
Enc(1",k, b):

Random sparse ¢ € {0,1}" such that (c,k) = b.
Dec(1", k, c):

Output (c, k).

Symmetric Encryption against AC°

KeyGen(1") :

Random k € {0,1}".
Enc(1",k, b):

Random sparse ¢ € {0,1}" such that (c,k) = b.
Dec(1", k, c):

Output (c, k).

» Some keys are more equal than others.

Symmetric Encryption against AC°

KeyGen(1") :

Random k € {0,1}".
Enc(1",k, b):

Random sparse ¢ € {0,1}" such that (c,k) = b.
Dec(1", k, c):

Output (c, k).

» Some keys are more equal than others.

» Above is additively homomorphic.

Symmetric Encryption against AC°

Game 1 - Semantic Security

Ch Adv
" mg, my
k < KeyGen(1
@) ol =) = m)
b+ {0,1} Enc(k, mp)

b

- -

Symmetric Encryption against AC°

Game 1 - Semantic Security

Ch Adv
n mo, my
k < KeyGen(1") (1m0l = [m1] = m)
b+ {0,1} Enc(k, mp)
by

- -

Game 2

Ch

k < KeyGen(1")

b+ {0,1}

Adv
{c? « Enc(k,0)},
v el
{c} « Enc(k,1)},

Enc(k, b)

b

- -z

Symmetric Encryption against AC°

Game 1 - Semantic Security

Ch Adv
n mo, my
k < KeyGen(1") (1m0l = [m1] = m)
b+ {0,1} Enc(k, mp)
by

- -

Game 2

Ch

k < KeyGen(1")

b+ {0,1}

Adv
{c? « Enc(k,0)},
v el
{c} « Enc(k,1)},

Enc(k, b)

b

- -z

Equivalent by standard hybrid arguments.

Symmetric Encryption against AC°

Game 2

Ch Adv
{? « Enc(k,0)},

k < KeyGen(1") —
{e! + Enc(k, 1)},
b+ {0,1} Enc(k, b)

b

-z

Symmetric Encryption against AC°

Game 3 Game 2

Ch Adv Ch Adv
k < KeyGen(1") {c? — Enc(k.O)}V.

(b fonyy, {(Enclb)b)}; <) e ey,
befory _ Enckd) befo.1) Enctie)

b b

D D ——

Symmetric Encryption against AC°

Game 3

Ch

Adv

k < KeyGen(1")

(b {0.1}}, {(Enc(k, br), bi)};
be (0.1) Enc(k, b)

b

- -

Game 2

Ch Adv
{? « Enc(k,0)},

k < KeyGen(1") —
{c} < Enc(k,1)},
b+ {0,1} Enc(k, b)

b

-z

Game 2 Challenger can be simulated by Game 3 Adversary in ACO.

Symmetric Encryption against AC°

Game 3

Ch Adv
k + KeyGen(1")

(b {0.1}}, {(Enc(k, by), bi)};
be (0.1} Enc(k, b)

b

- -

Symmetric Encryption against AC°

Game 3

Ch
k + KeyGen(1")

{bi < {0,1}};

b+ {0,1}

Adv

{(Enc(k, b;), b;)};
Enc(k, b)

b

- -

Game 4

Ch Adv
k < KeyGen(1")

sparse {r;}; {(ri, (kri))

sparse r v
b=(kn) oy

Symmetric Encryption against AC°

Game 3 Game 4

Ch Adv Ch

k < KeyGen(1") k < KeyGen(1")

(b + {0,1}}, {(Enc(k, by), b;)}; sparse {1}, {(ri, (k,ri))

b+ {0,1} Enc(k, b) sparse r v
b b= (k1) b’

- -

Reverse Sampling Lemma

L For 'balanced’ keys k, (Enc(k, b;), b;) and (r;, (k,r;)) are statistically close.

Symmetric Encryption against AC°

Game 4
Ch Adv
k < KeyGen(1")
sparse {r;}; %
sparse r - r

by

b=(k.r) o

Symmetric Encryption against AC°

Game 4
Ch Adv
k < KeyGen(1")
sparse {r;}; R, Rk
sparse r v
b/

b= (k,r)

Symmetric Encryption against AC°

Game 5

Ch
k + KeyGen(1")
sparse {r;};

random v’
sparse r

b= (k,r)

Adv

Game 4

Ch Adv
k < KeyGen(1")

sparse {ri}; R, Rk ,
sparse r v
b= (k,r) v

Symmetric Encryption against AC°

Game 5

Game 4
Ch Adv

Ch Adv
k + KeyGen(1")

k < KeyGen(1")
sparse {r;};

. R, Rk
random v’ R, sparse {ril; _
R sparse r v

sparse r . rvr

b= (k,r 4
b= (k,r) b’) -

Indistinguishable by Sparse Matrix Lemma.

CRHF against AC°

KeyGen(1"):
> k «— KeyGenEme(14n)
» Choose random bits by, ..., b,. Let ¢; = Enc(14") k, b;).

CRHF against AC°

KeyGen(1"):
> k «— KeyGenEme(14n)
» Choose random bits by, ..., b,. Let ¢; = Enc(14") k, b;).
» Qutput the following matrix C:

CRHF against AC°

KeyGen(1"):
> k «— KeyGenEme(14n)
» Choose random bits by, ..., b,. Let ¢; = Enc(14") k, b;).
» Qutput the following matrix C:

C = ac

Eval(1", C, x):
» OQutput Cx.

CRHF against AC°

KeyGen(1"):
> k «— KeyGenEme(14n)
» Choose random bits by, ..., b,. Let ¢; = Enc(14") k, b;).
» Qutput the following matrix C:

1=k -T-----° 777‘ I - - - - - -=-=-=-=-=-= |
| | | | | | |
! ! | ! | q
| | | | | | |
C = c,¢2 L !
S Lo
| | | | | | |
S | I L e e e e - -

Eval(1", C, x):
» OQutput Cx.

CRHF against AC°

Enc Challenger Enc Adversary CRHF Adversary
k < KeyGen(1¢") sparse mo, my € {0,1}"

CRHF against AC°

Enc Challenger Enc Adversary CRHF Adversary
k < KeyGen(1¢") sparse mo, my € {0,1}"

mo, my

CRHF against AC°

Enc Challenger Enc Adversary CRHF Adversary
k < KeyGen(1¢") sparse mo, my € {0,1}"

Mo, My
b+ {0,1} C = Enc(1"), k, my)

- - @ 7,

CRHF against AC°

Enc Challenger Enc Adversary CRHF Adversary
k < KeyGen(1¢") sparse mo, my € {0,1}"

Mo, My
b+ {0,1} C = Enc(1"), k, my)

- - @ 7,

CRHF against AC°

Enc Challenger
k < KeyGen(1¢")
mo, my

b+ {0,1} C = Enc(14"), k, mp)

- - @ 7,

Enc Adversary

sparse mg, my € {0,1}"

X,y

CRHF Adversary

CRHF against AC°

Enc Challenger Enc Adversary CRHF Adversary
k < KeyGen(1¢") sparse mo, my € {0,1}"

Mo, My
b+ {0,1} C = Enc(1"), k, my)

- - @ 7,

X,y

If C(x—y)#0:b + {0,1}

CRHF against AC°

Enc Challenger Enc Adversary CRHF Adversary
k < KeyGen(1¢") sparse mo, my € {0,1}"

Mo, My
b+ {0,1} C = Enc(1"), k, my)

- - @ 7,

X,y

If C(x—y)#0:b + {0,1}
Else, if (mg,x —y)
=(my,x—y)=0:b"+ {0,1}

CRHF against AC°

Enc Challenger Enc Adversary CRHF Adversary
k < KeyGen(1¢") sparse mo, my € {0,1}"

Mo, My
b+ {0,1} C = Enc(1"), k, my)

- - @ 7,

X,y

If C(x—y)#0:b + {0,1}

Else, if (mg,x —y)
=(my,x—y)=0:b"+ {0,1}

Else, if (mg,x —y) =:b'=0

CRHF against AC°

Enc Challenger Enc Adversary CRHF Adversary
k < KeyGen(1¢") sparse mo, my € {0,1}"

Mo, My
b+ {0,1} C = Enc(1"), k, my)

- - @ 7,

X,y

If C(x—y)#0:b + {0,1}

Else, if (mg,x —y)
=(my,x—y)=0:b"+ {0,1}

Else, if (mg,x —y) =:b'=0

Else: o' =1

CRHF against AC°

Enc Challenger
k < KeyGen(1¢")

b+ {0,1}

mo, my

C = Enc(14", k, mj)

- - @ 7,

Enc Adversary

sparse mg, my € {0,1}"

If C(x—y)#0:b + {0,1}

Else, if (mg,x —y)
=(my,x—y)=0:b"+ {0,1}

Else, if (mg,x —y) =:b'=0

Else: o' =1

X,y

CRHF Adversary

Candidate PKE against AC°

Candidate PKE against AC°

KeyGen(1") :
Random A € {0,1}"*", sparse k € {0,1}".
pk = (A, AK), sk = k.

Candidate PKE against AC°

KeyGen(1") :
Random A € {0,1}"*", sparse k € {0,1}".
pk = (A, AK), sk = k.

Enc(1”, pk = (A, Ak), b):
Sparse s € {0,1}".
b =0: Output c = (s"A,s" Ak).
b=1: Output c = (sT A, b'), where b’ + {0,1}.

Candidate PKE against AC°

KeyGen(1") :

Random A € {0,1}"*", sparse k € {0,1}".

pk = (A, Ak), sk = k.
Enc(1”, pk = (A, AK), b):

Sparse s € {0,1}".

b =0: Output c = (s"A,s" Ak).

b=1: Output c = (sT A, b'), where b’ + {0,1}.
Dec(1", k,c = (c17, c)):

If (c1,k) = ¢, output 0, else 1.

Candidate PKE against AC°

KeyGen(1") :
Random A € {0,1}"*", sparse k € {0,1}".
pk = (A, AK), sk = k.

Enc(1”, pk = (A, Ak), b):

Sparse s € {0,1}".

b =0: Output c = (s"A,s" Ak).

b=1: Output c = (sT A, b'), where b’ + {0,1}.
Dec(1", k,c = (c17, c)):

If (c1,k) = ¢, output 0, else 1.

» Secure if (A, Ak) =pco (A,r) for random A, sparse k.

Results

Constructions against NC! based on L ¢ NC!:

>

» Public-Key Encryption.

>

Public-Key Encryption against NC?

» Based on the worst-case assumption that L ¢ NC*.

» L - class of languages with polynomial-sized branching programs.
» NC! - class of languages with polynomial-sized constant-width branching programs.

Public-Key Encryption against NC?

» Based on the worst-case assumption that L ¢ NC*.
» L - class of languages with polynomial-sized branching programs.
» NC! - class of languages with polynomial-sized constant-width branching programs.

» Makes use of algebraic structure in the Randomised Encodings for L by
Ishai-Kushilevitz [IKOO].

Public-Key Encryption against NC?

M3

OT

0

In—l

0

-3

OT

In—1

Public-Key Encryption against NC?

0" |0 0"
M} = M] =
0 In—l 0 1 |,-,_1
r
R} = 1 Ry = | ‘1
0 OT

Public-Key Encryption against NC?

0" |0 0"
M} = M] =
0 In—l 0 1 |,-,_1
r
R} = 1 Ry = | ‘1
0 OT

Theorem (IKO00)
IfL ¢ NCY, then, for infinitely many values of n:

RIMERA ~yc: RIMIRE

Public-Key Encryption against NC?

KeyGen(1"):

pk = R'MIRD, = 1

OT

Infl

Infl

OT

Public-Key Encryption against NC?

KeyGen(1"):

pk = R'MIRD, = 1

OT

Infl

Infl

OT

(Notice that pk - sk = 0.)

Public-Key Encryption against NC?

KeyGen(1"):

pk = R'MIRD, = 1

OT

Infl

Infl

OT

(Notice that pk - sk = 0.)

Enc(1”, pk, b):

> Pick s < {0,1}". Lett=(00--- 01)7.

» Output ¢” =s"pk + bt'.

Public-Key Encryption against NC?

KeyGen(1"):

pk = R'MIRD, = 1

OT

Infl

Infl

OT

(Notice that pk - sk = 0.)

Enc(1”, pk, b):

> Pick s < {0,1}". Lett=(00--- 01)7.

» Output ¢” =s"pk + bt'.

Dec(1", sk, c): Output (c, sk).

Public-Key Encryption against NC?

KeyGen(1"):

pk = R'MIRD, = 1

OT

Infl

Infl

OT

(Notice that pk - sk = 0.)

Enc(1”, pk, b):

> Pick s < {0,1}". Lett=(00--- 01)7.

» Output ¢” =s"pk + bt'.

Dec(1", sk, c): Output (c,sk). (= (s”pk + bt")sk = 0 + b(t, sk) = b)

Public-Key Encryption against NC?

Game 1 - Semantic Security

Ch Adv
(pk, sk) < KeyGen(1")
b+« {0,1} pk, Enc(1", pk, b)

b

- v @

Public-Key Encryption against NC?

Game 1 - Semantic Security

Ch Adv
pk < RIMORA

s« {0,1}", b« {0,1} pk, s”pk + bt”

b

-z @

Public-Key Encryption against NC?

Game 1 - Semantic Security

Ch Adv
pk < RIMORA

s« {0,1}", b« {0,1} pk, s”pk + bt”

b

-z @

Game 2

Ch
pk « RIMLRA

s {0,1}", b« {0,1}

Adv

pk, s"pk + btT

b

- -

Public-Key Encryption against NC?

Game 1 - Semantic Security

Ch Adv
pk < RIMORA

s« {0,1}", b« {0,1} pk, s”pk + bt”

b

-z @

Game 2

Ch
pk « RIMLRA

s {0,1}", b« {0,1}

Adv

pk, rT

N

b

- -

Open Problems

v

Public-Key Encryption against ACC.

Better PRGs and PRFs against NC?.
Improve upon Merkle puzzles without too many assumptions.
» Perhaps using recent Fine-Grained Complexity results.

v

v

v

Constructions against AC%[p].

Miklés Ajtai and Michael Ben-Or.

A theorem on probabilistic constant depth computations.

In Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
April 30 - May 2, 1984, Washington, DC, USA, pages 471-474, 1984.

Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz.

On basing one-way functions on np-hardness.

In Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 701-710. ACM,
2006.

Benny Applebaum and Pavel Raykov.

On the relationship between statistical zero-knowledge and statistical randomized
encodings.

Electronic Colloquium on Computational Complexity (ECCC), 22:186, 2015.

Miklés Ajtai and Avi Wigderson.
Deterministic simulation of probabilistic constant depth circuits (preliminary
version).

In 26th Annual Symposium on Foundations of Computer Science, Portland,
Oregon, USA, 21-23 October 1985, pages 11-19, 1985.

[Andrej Bogdanov and Christina Brzuska.
On basing size-verifiable one-way functions on np-hardness.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography -
12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March
23-25, 2015, Proceedings, Part I, volume 9014 of Lecture Notes in Computer
Science, pages 1-6. Springer, 2015.

[Mark Braverman.
Polylogarithmic independence fools AV circuits.
J. ACM, 57(5), 2010.

[d Christian Cachin and Ueli Maurer.
Unconditional security against memory-bounded adversaries.
In Advances in CryptologyCRYPTQ'97, pages 292-306. Springer, 1997.

[§ Robert G. Gallager.
Low-density parity-check codes.

IRE Trans. Information Theory, 8(1):21-28, 1962.

Johan Hastad.
One-way permutations in nc 0.
Information Processing Letters, 26(3):153-155, 1987.

Ueli M Maurer.
Conditionally-perfect secrecy and a provably-secure randomized cipher.
Journal of Cryptology, 5(1):53-66, 1992.

Ralph C. Merkle.
Secure communications over insecure channels.
Commun. ACM, 21(4):294-299, 1978.

Elchanan Mossel, Amir Shpilka, and Luca Trevisan.

On epsilon-biased generators in nc0.

Random Struct. Algorithms, 29(1):56-81, 2006.

Rafail Ostrovsky.
One-way functions, hard on average problems, and statistical zero-knowledge
proofs.

In Proceedings of the Sixth Annual Structure in Complexity Theory Conference,

Chicago, Illinois, USA, June 30 - July 3, 1991, pages 133-138, 1991.

Avishay Tal.
0

Tight bounds on the fourier spectrum of ac”.
Electronic Colloquium on Computational Complexity (ECCC), 21:174, 2014.

Emanuele Viola.
The complexity of distributions.
SIAM Journal on Computing, 41(1):191-218, 2012.

	Model
	Constructions

