
Fine-Grained Cryptography

Akshay Degwekar Vinod Vaikuntanathan Prashant Nalini Vasudevan

MIT

June 9, 2016

Cryptography

“ Cryptographers seldom sleep well. – Joe Kilian, several years ago”

– Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.

I Factoring.

I Lattice problems.

I . . .

What are the weakest assumptions we can do with?

I We need BPP 6= NP. Is this sufficient? ([AGGM06], [BB15], . . .)

I How about BPP 6= SZK? ([Ost91], [AR15], . . .)

In what settings can we do with minimal assumptions?

I With no assumptions?

Cryptography

“ Cryptographers seldom sleep well. – Joe Kilian, several years ago”

– Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.

I Factoring.

I Lattice problems.

I . . .

What are the weakest assumptions we can do with?

I We need BPP 6= NP. Is this sufficient? ([AGGM06], [BB15], . . .)

I How about BPP 6= SZK? ([Ost91], [AR15], . . .)

In what settings can we do with minimal assumptions?

I With no assumptions?

Cryptography

“ Cryptographers seldom sleep well. – Joe Kilian, several years ago”

– Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.

I Factoring.

I Lattice problems.

I . . .

What are the weakest assumptions we can do with?

I We need BPP 6= NP. Is this sufficient? ([AGGM06], [BB15], . . .)

I How about BPP 6= SZK? ([Ost91], [AR15], . . .)

In what settings can we do with minimal assumptions?

I With no assumptions?

Cryptography

“ Cryptographers seldom sleep well. – Joe Kilian, several years ago”

– Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.

I Factoring.

I Lattice problems.

I . . .

What are the weakest assumptions we can do with?

I We need BPP 6= NP. Is this sufficient? ([AGGM06], [BB15], . . .)

I How about BPP 6= SZK? ([Ost91], [AR15], . . .)

In what settings can we do with minimal assumptions?

I With no assumptions?

Cryptography in other settings

I [Mer78]: Public-key encryption in the random oracle model where honest parties
run in time O(n), unconditionally secure against adversaries that run in time
o(n2).

I [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest
parties use O(s) space, unconditionally secure against adversaries that use o(s2)
space.

I [Has87]: One-way permutation computable in NC0, unconditionally secure against
adversaries computable in AC0.

f (x1, . . . , xn) = (x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn)

Cryptography in other settings

I [Mer78]: Public-key encryption in the random oracle model where honest parties
run in time O(n), unconditionally secure against adversaries that run in time
o(n2).

I [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest
parties use O(s) space, unconditionally secure against adversaries that use o(s2)
space.

I [Has87]: One-way permutation computable in NC0, unconditionally secure against
adversaries computable in AC0.

f (x1, . . . , xn) = (x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn)

Cryptography in other settings

I [Mer78]: Public-key encryption in the random oracle model where honest parties
run in time O(n), unconditionally secure against adversaries that run in time
o(n2).

I [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest
parties use O(s) space, unconditionally secure against adversaries that use o(s2)
space.

I [Has87]: One-way permutation computable in NC0, unconditionally secure against
adversaries computable in AC0.

f (x1, . . . , xn) = (x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn)

Cryptography in other settings

I [Mer78]: Public-key encryption in the random oracle model where honest parties
run in time O(n), unconditionally secure against adversaries that run in time
o(n2).

I [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest
parties use O(s) space, unconditionally secure against adversaries that use o(s2)
space.

I [Has87]: One-way permutation computable in NC0, unconditionally secure against
adversaries computable in AC0.

f (x1, . . . , xn) = (x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn)

Fine-Grained Cryptographic Primitives

Primitives that are:

1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:

I Bounded running time. (E.g., Merkle Puzzles [Mer78].)

I Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)
I Bounded circuit-depth. (E.g., [Has87], this work.)

I Constant depth, unbounded fan-in - AC0.
I Logarithmic depth, bounded fan-in - NC1.

Fine-Grained Cryptographic Primitives

Primitives that are:

1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:

I Bounded running time. (E.g., Merkle Puzzles [Mer78].)

I Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)
I Bounded circuit-depth. (E.g., [Has87], this work.)

I Constant depth, unbounded fan-in - AC0.
I Logarithmic depth, bounded fan-in - NC1.

Fine-Grained Cryptographic Primitives

Primitives that are:

1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:

I Bounded running time. (E.g., Merkle Puzzles [Mer78].)

I Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)

I Bounded circuit-depth. (E.g., [Has87], this work.)
I Constant depth, unbounded fan-in - AC0.
I Logarithmic depth, bounded fan-in - NC1.

Fine-Grained Cryptographic Primitives

Primitives that are:

1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:

I Bounded running time. (E.g., Merkle Puzzles [Mer78].)

I Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)
I Bounded circuit-depth. (E.g., [Has87], this work.)

I Constant depth, unbounded fan-in - AC0.
I Logarithmic depth, bounded fan-in - NC1.

Fine-Grained Cryptographic Primitives

Primitives that are:

1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:

I Bounded running time. (E.g., Merkle Puzzles [Mer78].)

I Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)
I Bounded circuit-depth. (E.g., [Has87], this work.)

I Constant depth, unbounded fan-in - AC0.
I Logarithmic depth, bounded fan-in - NC1.

Results

Unconditional constructions against AC0:

I OWF, PRG. (other constructions known from [Has87, AW85, Vio12, MST06])

I Weak PRF.

I Symmetric Encryption.

I Collision Resistant Hash Functions.

Constructions against NC1 based on L 6⊆ NC1:

I OWF, PRG. (similar, independent, constructions in [AR15])

I Public-Key Encryption.

I Collision Resistant Hash Functions.

Results

Unconditional constructions against AC0:

I OWF, PRG. (other constructions known from [Has87, AW85, Vio12, MST06])

I Weak PRF.

I Symmetric Encryption.

I Collision Resistant Hash Functions.

Constructions against NC1 based on L 6⊆ NC1:

I OWF, PRG. (similar, independent, constructions in [AR15])

I Public-Key Encryption.

I Collision Resistant Hash Functions.

Ingredients

Theorem ([Bra10, Tal14])

Polynomial-sized circuits of depth d cannot distinguish between a log4d(m)-wise
independent distribution over {0, 1}m and Um.

Corollary

Let Dm be a distribution over {0, 1}m that is logω(1)(m)-wise independent. Then:

Dm ≈AC0 Um

Ingredients

Theorem ([Bra10, Tal14])

Polynomial-sized circuits of depth d cannot distinguish between a log4d(m)-wise
independent distribution over {0, 1}m and Um.

Corollary

Let Dm be a distribution over {0, 1}m that is logω(1)(m)-wise independent. Then:

Dm ≈AC0 Um

Ingredients

Theorem ([Bra10, Tal14])

Polynomial-sized circuits of depth d cannot distinguish between a log4d(m)-wise
independent distribution over {0, 1}m and Um.

Corollary

Let Dm be a distribution over {0, 1}m that is logω(1)(m)-wise independent. Then:

Dm ≈AC0 Um

Ingredients

Observation
Let M ∈ {0, 1}m×n be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0, 1}n, then Mx is k-wise independent.

M xMx

=

Mx M x

Ingredients

Observation
Let M ∈ {0, 1}m×n be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0, 1}n, then Mx is k-wise independent.

M

xMx

=

Mx M x

Ingredients

Observation
Let M ∈ {0, 1}m×n be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0, 1}n, then Mx is k-wise independent.

M x

Mx

=

Mx M x

Ingredients

Observation
Let M ∈ {0, 1}m×n be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0, 1}n, then Mx is k-wise independent.

M xMx

=

Mx M x

Ingredients

Observation
Let M ∈ {0, 1}m×n be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0, 1}n, then Mx is k-wise independent.

M xMx

=

Mx

M x

Ingredients

Observation
Let M ∈ {0, 1}m×n be a matrix such that any set of k rows are linearly independent. If
x is distributed uniformly over {0, 1}n, then Mx is k-wise independent.

M xMx

=

Mx M x

Ingredients

Lemma ([Gal62])

If rows of Mm×n are chosen to be random sparse vectors, and m = poly(n), then

w.h.p. any set of
(

n
log3(n)

)
rows of M are linearly independent.

I =⇒ w.h.p. Mx is
(

n
log3(n)

)
-wise independent.

I =⇒ (M,Mx) ≈AC0 (M,Um)

Ingredients

Lemma ([Gal62])

If rows of Mm×n are chosen to be random sparse vectors, and m = poly(n), then

w.h.p. any set of
(

n
log3(n)

)
rows of M are linearly independent.

I =⇒ w.h.p. Mx is
(

n
log3(n)

)
-wise independent.

I =⇒ (M,Mx) ≈AC0 (M,Um)

Ingredients

Lemma ([Gal62])

If rows of Mm×n are chosen to be random sparse vectors, and m = poly(n), then

w.h.p. any set of
(

n
log3(n)

)
rows of M are linearly independent.

I =⇒ w.h.p. Mx is
(

n
log3(n)

)
-wise independent.

I =⇒ (M,Mx) ≈AC0 (M,Um)

Ingredients

Lemma (Sparse Matrix Lemma)

If rows of Mm×n are chosen to be random sparse vectors, and m = poly(n), then

w.h.p. any set of
(

n
log3(n)

)
rows of M are linearly independent.

I =⇒ w.h.p. Mx is
(

n
log3(n)

)
-wise independent.

I =⇒ (M,Mx) ≈AC0 (M,Um)

Ingredients

Theorem (Implied by [AB84])

There is an AC0 circuit C such that for v1, v2 ∈ {0, 1}n, if at least one of them is
log2(n)-sparse, then C (v1, v2) = 〈v1, v2〉.

Corollary

If rows of M are sparse, Mx can be computed in AC0.

Ingredients

Theorem (Implied by [AB84])

There is an AC0 circuit C such that for v1, v2 ∈ {0, 1}n, if at least one of them is
log2(n)-sparse, then C (v1, v2) = 〈v1, v2〉.

Corollary

If rows of M are sparse, Mx can be computed in AC0.

Symmetric Encryption against AC0

KeyGen(1n) :
Random k ∈ {0, 1}n.

Enc(1n, k, b):
Random sparse c ∈ {0, 1}n such that 〈c, k〉 = b.

Dec(1n, k, c):
Output 〈c, k〉.

I Some keys are more equal than others.

I Above is additively homomorphic.

Symmetric Encryption against AC0

KeyGen(1n) :
Random k ∈ {0, 1}n.

Enc(1n, k, b):
Random sparse c ∈ {0, 1}n such that 〈c, k〉 = b.

Dec(1n, k, c):
Output 〈c, k〉.

I Some keys are more equal than others.

I Above is additively homomorphic.

Symmetric Encryption against AC0

KeyGen(1n) :
Random k ∈ {0, 1}n.

Enc(1n, k, b):
Random sparse c ∈ {0, 1}n such that 〈c, k〉 = b.

Dec(1n, k, c):
Output 〈c, k〉.

I Some keys are more equal than others.

I Above is additively homomorphic.

Symmetric Encryption against AC0

KeyGen(1n) :
Random k ∈ {0, 1}n.

Enc(1n, k, b):
Random sparse c ∈ {0, 1}n such that 〈c, k〉 = b.

Dec(1n, k, c):
Output 〈c, k〉.

I Some keys are more equal than others.

I Above is additively homomorphic.

Symmetric Encryption against AC0

KeyGen(1n) :
Random k ∈ {0, 1}n.

Enc(1n, k, b):
Random sparse c ∈ {0, 1}n such that 〈c, k〉 = b.

Dec(1n, k, c):
Output 〈c, k〉.

I Some keys are more equal than others.

I Above is additively homomorphic.

Symmetric Encryption against AC0

KeyGen(1n) :
Random k ∈ {0, 1}n.

Enc(1n, k, b):
Random sparse c ∈ {0, 1}n such that 〈c, k〉 = b.

Dec(1n, k, c):
Output 〈c, k〉.

I Some keys are more equal than others.

I Above is additively homomorphic.

Symmetric Encryption against AC0

Game 1 - Semantic Security

Ch Adv

k← KeyGen(1n)
m0, m1

(|m0| = |m1| = m)

b ← {0, 1} Enc(k,mb)

b′

Game 2

Ch Adv

k← KeyGen(1n)

{
c0i ← Enc (k, 0)

}
i{

c1i ← Enc(k, 1)
}
i

b ← {0, 1} Enc(k, b)

b′

Equivalent by standard hybrid arguments.

Symmetric Encryption against AC0

Game 1 - Semantic Security

Ch Adv

k← KeyGen(1n)
m0, m1

(|m0| = |m1| = m)

b ← {0, 1} Enc(k,mb)

b′

Game 2

Ch Adv

k← KeyGen(1n)

{
c0i ← Enc (k, 0)

}
i{

c1i ← Enc(k, 1)
}
i

b ← {0, 1} Enc(k, b)

b′

Equivalent by standard hybrid arguments.

Symmetric Encryption against AC0

Game 1 - Semantic Security

Ch Adv

k← KeyGen(1n)
m0, m1

(|m0| = |m1| = m)

b ← {0, 1} Enc(k,mb)

b′

Game 2

Ch Adv

k← KeyGen(1n)

{
c0i ← Enc (k, 0)

}
i{

c1i ← Enc(k, 1)
}
i

b ← {0, 1} Enc(k, b)

b′

Equivalent by standard hybrid arguments.

Symmetric Encryption against AC0

Game 2

Ch Adv

k← KeyGen(1n)

{
c0i ← Enc (k, 0)

}
i{

c1i ← Enc(k, 1)
}
i

b ← {0, 1} Enc(k, b)

b′

Game 3

Ch Adv

k← KeyGen(1n)

{bi ← {0, 1}}i {(Enc(k, bi), bi)}i

b ← {0, 1} Enc(k, b)

b′

Game 2 Challenger can be simulated by Game 3 Adversary in AC0.

Symmetric Encryption against AC0

Game 2

Ch Adv

k← KeyGen(1n)

{
c0i ← Enc (k, 0)

}
i{

c1i ← Enc(k, 1)
}
i

b ← {0, 1} Enc(k, b)

b′

Game 3

Ch Adv

k← KeyGen(1n)

{bi ← {0, 1}}i {(Enc(k, bi), bi)}i

b ← {0, 1} Enc(k, b)

b′

Game 2 Challenger can be simulated by Game 3 Adversary in AC0.

Symmetric Encryption against AC0

Game 2

Ch Adv

k← KeyGen(1n)

{
c0i ← Enc (k, 0)

}
i{

c1i ← Enc(k, 1)
}
i

b ← {0, 1} Enc(k, b)

b′

Game 3

Ch Adv

k← KeyGen(1n)

{bi ← {0, 1}}i {(Enc(k, bi), bi)}i

b ← {0, 1} Enc(k, b)

b′

Game 2 Challenger can be simulated by Game 3 Adversary in AC0.

Symmetric Encryption against AC0

Game 3

Ch Adv

k← KeyGen(1n)

{bi ← {0, 1}}i {(Enc(k, bi), bi)}i

b ← {0, 1} Enc(k, b)

b′

Game 4

Ch Adv

k← KeyGen(1n)

sparse {ri}i {(ri , 〈k, ri〉)}i

sparse r r

b = 〈k, r〉 b′

Reverse Sampling Lemma

For ’balanced’ keys k, (Enc(k, bi), bi) and (ri , 〈k, ri〉) are statistically close.

Symmetric Encryption against AC0

Game 3

Ch Adv

k← KeyGen(1n)

{bi ← {0, 1}}i {(Enc(k, bi), bi)}i

b ← {0, 1} Enc(k, b)

b′

Game 4

Ch Adv

k← KeyGen(1n)

sparse {ri}i {(ri , 〈k, ri〉)}i

sparse r r

b = 〈k, r〉 b′

Reverse Sampling Lemma

For ’balanced’ keys k, (Enc(k, bi), bi) and (ri , 〈k, ri〉) are statistically close.

Symmetric Encryption against AC0

Game 3

Ch Adv

k← KeyGen(1n)

{bi ← {0, 1}}i {(Enc(k, bi), bi)}i

b ← {0, 1} Enc(k, b)

b′

Game 4

Ch Adv

k← KeyGen(1n)

sparse {ri}i {(ri , 〈k, ri〉)}i

sparse r r

b = 〈k, r〉 b′

Reverse Sampling Lemma

For ’balanced’ keys k, (Enc(k, bi), bi) and (ri , 〈k, ri〉) are statistically close.

Symmetric Encryption against AC0

Game 4

Ch Adv

k← KeyGen(1n)

sparse {ri}i {(ri , 〈k, ri〉)}i

sparse r r

b = 〈k, r〉 b′

Symmetric Encryption against AC0

Game 4

Ch Adv

k← KeyGen(1n)

sparse {ri}i R,Rk

sparse r r

b = 〈k, r〉 b′

Game 5

Ch Adv

k← KeyGen(1n)

sparse {ri}i

random r′ R, r′

sparse r r

b = 〈k, r〉 b′

Indistinguishable by Sparse Matrix Lemma.

Symmetric Encryption against AC0

Game 4

Ch Adv

k← KeyGen(1n)

sparse {ri}i R,Rk

sparse r r

b = 〈k, r〉 b′

Game 5

Ch Adv

k← KeyGen(1n)

sparse {ri}i

random r′ R, r′

sparse r r

b = 〈k, r〉 b′

Indistinguishable by Sparse Matrix Lemma.

Symmetric Encryption against AC0

Game 4

Ch Adv

k← KeyGen(1n)

sparse {ri}i R,Rk

sparse r r

b = 〈k, r〉 b′

Game 5

Ch Adv

k← KeyGen(1n)

sparse {ri}i

random r′ R, r′

sparse r r

b = 〈k, r〉 b′

Indistinguishable by Sparse Matrix Lemma.

CRHF against AC0

KeyGen(1n):

I k← KeyGenEnc(1`(n))

I Choose random bits b1, . . . , bn. Let ci = Enc(1`(n), k, bi).

I Output the following matrix C:

C = c1 c2 . . . cn

=

Eval(1n,C, x):

I Output Cx.

CRHF against AC0

KeyGen(1n):

I k← KeyGenEnc(1`(n))

I Choose random bits b1, . . . , bn. Let ci = Enc(1`(n), k, bi).

I Output the following matrix C:

C = c1 c2 . . . cn

=

Eval(1n,C, x):

I Output Cx.

CRHF against AC0

KeyGen(1n):

I k← KeyGenEnc(1`(n))

I Choose random bits b1, . . . , bn. Let ci = Enc(1`(n), k, bi).

I Output the following matrix C:

C = c1 c2 . . . cn

=

Eval(1n,C, x):

I Output Cx.

CRHF against AC0

KeyGen(1n):

I k← KeyGenEnc(1`(n))

I Choose random bits b1, . . . , bn. Let ci = Enc(1`(n), k, bi).

I Output the following matrix C:

C = c1 c2 . . . cn =

Eval(1n,C, x):

I Output Cx.

CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉

= 〈m1, x− y〉 = 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′

CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉

= 〈m1, x− y〉 = 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′

CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉

= 〈m1, x− y〉 = 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′

CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉

= 〈m1, x− y〉 = 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′

CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉

= 〈m1, x− y〉 = 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′

CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}

Else, if 〈m0, x− y〉
= 〈m1, x− y〉 = 0 : b′ ← {0, 1}

Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′

CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉

= 〈m1, x− y〉 = 0 : b′ ← {0, 1}

Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′

CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉

= 〈m1, x− y〉 = 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′

CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉

= 〈m1, x− y〉 = 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′

CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉

= 〈m1, x− y〉 = 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′

Candidate PKE against AC0

KeyGen(1n) :
Random A ∈ {0, 1}n×n, sparse k ∈ {0, 1}n.
pk = (A,Ak), sk = k.

Enc(1n,pk = (A,Ak), b):
Sparse s ∈ {0, 1}n.
b = 0: Output c = (sTA, sTAk).
b = 1: Output c = (sTA, b′), where b′ ← {0, 1}.

Dec(1n, k, c = (c1
T , c2)):

If 〈c1, k〉 = c2, output 0, else 1.

I Secure if (A,Ak) ≈AC0 (A, r) for random A, sparse k.

Candidate PKE against AC0

KeyGen(1n) :
Random A ∈ {0, 1}n×n, sparse k ∈ {0, 1}n.
pk = (A,Ak), sk = k.

Enc(1n,pk = (A,Ak), b):
Sparse s ∈ {0, 1}n.
b = 0: Output c = (sTA, sTAk).
b = 1: Output c = (sTA, b′), where b′ ← {0, 1}.

Dec(1n, k, c = (c1
T , c2)):

If 〈c1, k〉 = c2, output 0, else 1.

I Secure if (A,Ak) ≈AC0 (A, r) for random A, sparse k.

Candidate PKE against AC0

KeyGen(1n) :
Random A ∈ {0, 1}n×n, sparse k ∈ {0, 1}n.
pk = (A,Ak), sk = k.

Enc(1n,pk = (A,Ak), b):
Sparse s ∈ {0, 1}n.
b = 0: Output c = (sTA, sTAk).
b = 1: Output c = (sTA, b′), where b′ ← {0, 1}.

Dec(1n, k, c = (c1
T , c2)):

If 〈c1, k〉 = c2, output 0, else 1.

I Secure if (A,Ak) ≈AC0 (A, r) for random A, sparse k.

Candidate PKE against AC0

KeyGen(1n) :
Random A ∈ {0, 1}n×n, sparse k ∈ {0, 1}n.
pk = (A,Ak), sk = k.

Enc(1n,pk = (A,Ak), b):
Sparse s ∈ {0, 1}n.
b = 0: Output c = (sTA, sTAk).
b = 1: Output c = (sTA, b′), where b′ ← {0, 1}.

Dec(1n, k, c = (c1
T , c2)):

If 〈c1, k〉 = c2, output 0, else 1.

I Secure if (A,Ak) ≈AC0 (A, r) for random A, sparse k.

Candidate PKE against AC0

KeyGen(1n) :
Random A ∈ {0, 1}n×n, sparse k ∈ {0, 1}n.
pk = (A,Ak), sk = k.

Enc(1n,pk = (A,Ak), b):
Sparse s ∈ {0, 1}n.
b = 0: Output c = (sTA, sTAk).
b = 1: Output c = (sTA, b′), where b′ ← {0, 1}.

Dec(1n, k, c = (c1
T , c2)):

If 〈c1, k〉 = c2, output 0, else 1.

I Secure if (A,Ak) ≈AC0 (A, r) for random A, sparse k.

Results

Unconditional constructions against AC0:

I OWF, PRG. (other constructions known from [Has87], [Vio12], [MST06])

I Weak PRF.

I Symmetric Encryption.

I Collision Resistant Hash Functions.

Constructions against NC1 based on L 6⊆ NC1:

I OWF, PRG. (similar, independent, constructions in [AR15])

I Public-Key Encryption.

I Collision Resistant Hash Functions.

Public-Key Encryption against NC1

I Based on the worst-case assumption that L 6⊆ NC1.
I L - class of languages with polynomial-sized branching programs.
I NC1 - class of languages with polynomial-sized constant-width branching programs.

I Makes use of algebraic structure in the Randomised Encodings for L by
Ishai-Kushilevitz [IK00].

Public-Key Encryption against NC1

I Based on the worst-case assumption that L 6⊆ NC1.
I L - class of languages with polynomial-sized branching programs.
I NC1 - class of languages with polynomial-sized constant-width branching programs.

I Makes use of algebraic structure in the Randomised Encodings for L by
Ishai-Kushilevitz [IK00].

Public-Key Encryption against NC1

Mn
0 =

In−1

0

0

0T

Mn
1 =

In−1

1

0

0T

Rn
L = 1

0

r

Rn
R =

In−1

1

r

0T

Theorem (IK00)

If L 6⊆ NC1, then, for infinitely many values of n:

Rn
LM

n
0Rn

R ≈NC1 Rn
LM

n
1Rn

R

Public-Key Encryption against NC1

Mn
0 =

In−1

0

0

0T

Mn
1 =

In−1

1

0

0T

Rn
L = 1

0

r

Rn
R =

In−1

1

r

0T

Theorem (IK00)

If L 6⊆ NC1, then, for infinitely many values of n:

Rn
LM

n
0Rn

R ≈NC1 Rn
LM

n
1Rn

R

Public-Key Encryption against NC1

Mn
0 =

In−1

0

0

0T

Mn
1 =

In−1

1

0

0T

Rn
L = 1

0

r

Rn
R =

In−1

1

r

0T

Theorem (IK00)

If L 6⊆ NC1, then, for infinitely many values of n:

Rn
LM

n
0Rn

R ≈NC1 Rn
LM

n
1Rn

R

Public-Key Encryption against NC1

KeyGen(1n):

pk = Rn
LM

n
0R

n
R =

In−1

0

0

0T

1

0

r′
In−1

1

r

0T

sk =
r

1

(Notice that pk · sk = 0.)

Enc(1n,pk, b):

I Pick s← {0, 1}n. Let t = (0 0 · · · 0 1)T .

I Output cT = sTpk + btT .

Dec(1n, sk, c): Output 〈c, sk〉. (= (sTpk + btT)sk = 0 + b〈t, sk〉 = b)

Public-Key Encryption against NC1

KeyGen(1n):

pk = Rn
LM

n
0R

n
R =

In−1

0

0

0T

1

0

r′
In−1

1

r

0T

sk =
r

1

(Notice that pk · sk = 0.)

Enc(1n,pk, b):

I Pick s← {0, 1}n. Let t = (0 0 · · · 0 1)T .

I Output cT = sTpk + btT .

Dec(1n, sk, c): Output 〈c, sk〉. (= (sTpk + btT)sk = 0 + b〈t, sk〉 = b)

Public-Key Encryption against NC1

KeyGen(1n):

pk = Rn
LM

n
0R

n
R =

In−1

0

0

0T

1

0

r′
In−1

1

r

0T

sk =
r

1

(Notice that pk · sk = 0.)

Enc(1n,pk, b):

I Pick s← {0, 1}n. Let t = (0 0 · · · 0 1)T .

I Output cT = sTpk + btT .

Dec(1n, sk, c): Output 〈c, sk〉. (= (sTpk + btT)sk = 0 + b〈t, sk〉 = b)

Public-Key Encryption against NC1

KeyGen(1n):

pk = Rn
LM

n
0R

n
R =

In−1

0

0

0T

1

0

r′
In−1

1

r

0T

sk =
r

1

(Notice that pk · sk = 0.)

Enc(1n,pk, b):

I Pick s← {0, 1}n. Let t = (0 0 · · · 0 1)T .

I Output cT = sTpk + btT .

Dec(1n, sk, c): Output 〈c, sk〉.

(= (sTpk + btT)sk = 0 + b〈t, sk〉 = b)

Public-Key Encryption against NC1

KeyGen(1n):

pk = Rn
LM

n
0R

n
R =

In−1

0

0

0T

1

0

r′
In−1

1

r

0T

sk =
r

1

(Notice that pk · sk = 0.)

Enc(1n,pk, b):

I Pick s← {0, 1}n. Let t = (0 0 · · · 0 1)T .

I Output cT = sTpk + btT .

Dec(1n, sk, c): Output 〈c, sk〉. (= (sTpk + btT)sk = 0 + b〈t, sk〉 = b)

Public-Key Encryption against NC1

Game 1 - Semantic Security

Ch Adv

(pk, sk)← KeyGen(1n)

b ← {0, 1} pk, Enc(1n,pk, b)

b′

Public-Key Encryption against NC1

Game 1 - Semantic Security

Ch Adv

pk← Rn
LM

0
nRn

R

s ← {0, 1}n , b ← {0, 1} pk, sTpk + btT

b′

Game 2

Ch Adv

pk← Rn
LM

1
nRn

R

s ← {0, 1}n , b ← {0, 1} pk, sTpk + btT

b′

Public-Key Encryption against NC1

Game 1 - Semantic Security

Ch Adv

pk← Rn
LM

0
nRn

R

s ← {0, 1}n , b ← {0, 1} pk, sTpk + btT

b′

Game 2

Ch Adv

pk← Rn
LM

1
nRn

R

s ← {0, 1}n , b ← {0, 1} pk, sTpk + btT

b′

Public-Key Encryption against NC1

Game 1 - Semantic Security

Ch Adv

pk← Rn
LM

0
nRn

R

s ← {0, 1}n , b ← {0, 1} pk, sTpk + btT

b′

Game 2

Ch Adv

pk← Rn
LM

1
nRn

R

s ← {0, 1}n , b ← {0, 1} pk, rT

b′

Open Problems

I Public-Key Encryption against AC0.

I Better PRGs and PRFs against NC1.
I Improve upon Merkle puzzles without too many assumptions.

I Perhaps using recent Fine-Grained Complexity results.

I Constructions against AC0[p].

Miklós Ajtai and Michael Ben-Or.
A theorem on probabilistic constant depth computations.
In Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
April 30 - May 2, 1984, Washington, DC, USA, pages 471–474, 1984.

Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz.
On basing one-way functions on np-hardness.
In Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 701–710. ACM,
2006.

Benny Applebaum and Pavel Raykov.
On the relationship between statistical zero-knowledge and statistical randomized
encodings.
Electronic Colloquium on Computational Complexity (ECCC), 22:186, 2015.

Miklós Ajtai and Avi Wigderson.
Deterministic simulation of probabilistic constant depth circuits (preliminary
version).

In 26th Annual Symposium on Foundations of Computer Science, Portland,
Oregon, USA, 21-23 October 1985, pages 11–19, 1985.

Andrej Bogdanov and Christina Brzuska.
On basing size-verifiable one-way functions on np-hardness.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography -
12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March
23-25, 2015, Proceedings, Part I, volume 9014 of Lecture Notes in Computer
Science, pages 1–6. Springer, 2015.

Mark Braverman.

Polylogarithmic independence fools AC0 circuits.
J. ACM, 57(5), 2010.

Christian Cachin and Ueli Maurer.
Unconditional security against memory-bounded adversaries.
In Advances in CryptologyCRYPTO’97, pages 292–306. Springer, 1997.

Robert G. Gallager.
Low-density parity-check codes.

IRE Trans. Information Theory, 8(1):21–28, 1962.

Johan Hastad.
One-way permutations in nc 0.
Information Processing Letters, 26(3):153–155, 1987.

Ueli M Maurer.
Conditionally-perfect secrecy and a provably-secure randomized cipher.
Journal of Cryptology, 5(1):53–66, 1992.

Ralph C. Merkle.
Secure communications over insecure channels.
Commun. ACM, 21(4):294–299, 1978.

Elchanan Mossel, Amir Shpilka, and Luca Trevisan.

On epsilon-biased generators in nc0.
Random Struct. Algorithms, 29(1):56–81, 2006.

Rafail Ostrovsky.
One-way functions, hard on average problems, and statistical zero-knowledge
proofs.

In Proceedings of the Sixth Annual Structure in Complexity Theory Conference,
Chicago, Illinois, USA, June 30 - July 3, 1991, pages 133–138, 1991.

Avishay Tal.

Tight bounds on the fourier spectrum of ac0.
Electronic Colloquium on Computational Complexity (ECCC), 21:174, 2014.

Emanuele Viola.
The complexity of distributions.
SIAM Journal on Computing, 41(1):191–218, 2012.

	Model
	Constructions

