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Cryptography

“ Cryptographers seldom sleep well. – Joe Kilian, several years ago”

– Alon Rosen, yesterday at lunch

Present-day cryptography employs several hardness assumptions.

I Factoring.

I Lattice problems.

I . . .

What are the weakest assumptions we can do with?

I We need BPP 6= NP. Is this sufficient? ([AGGM06], [BB15], . . . )

I How about BPP 6= SZK? ([Ost91], [AR15], . . . )

In what settings can we do with minimal assumptions?

I With no assumptions?
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Cryptography in other settings

I [Mer78]: Public-key encryption in the random oracle model where honest parties
run in time O(n), unconditionally secure against adversaries that run in time
o(n2).

I [Mau92, CM97]: Symmetric encryption and key-exchange protocols where honest
parties use O(s) space, unconditionally secure against adversaries that use o(s2)
space.

I [Has87]: One-way permutation computable in NC0, unconditionally secure against
adversaries computable in AC0.

f (x1, . . . , xn) = (x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn)
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Fine-Grained Cryptographic Primitives

Primitives that are:

1. Secure against adversaries with restricted computational power.

2. Computable with less computational power than these adversaries.

Examples of restrictions:

I Bounded running time. (E.g., Merkle Puzzles [Mer78].)

I Bounded space. (E.g., the bounded storage model from [Mau92] and [CM97].)
I Bounded circuit-depth. (E.g., [Has87], this work.)

I Constant depth, unbounded fan-in - AC0.
I Logarithmic depth, bounded fan-in - NC1.
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Results

Unconditional constructions against AC0:

I OWF, PRG. (other constructions known from [Has87, AW85, Vio12, MST06])

I Weak PRF.

I Symmetric Encryption.

I Collision Resistant Hash Functions.

Constructions against NC1 based on L 6⊆ NC1:

I OWF, PRG. (similar, independent, constructions in [AR15])

I Public-Key Encryption.

I Collision Resistant Hash Functions.
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Ingredients

Theorem ([Bra10, Tal14])

Polynomial-sized circuits of depth d cannot distinguish between a log4d(m)-wise
independent distribution over {0, 1}m and Um.

Corollary

Let Dm be a distribution over {0, 1}m that is logω(1)(m)-wise independent. Then:

Dm ≈AC0 Um
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Lemma ([Gal62])

If rows of Mm×n are chosen to be random sparse vectors, and m = poly(n), then

w.h.p. any set of
(

n
log3(n)

)
rows of M are linearly independent.

I =⇒ w.h.p. Mx is
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)
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Lemma (Sparse Matrix Lemma)
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Ingredients

Theorem (Implied by [AB84])

There is an AC0 circuit C such that for v1, v2 ∈ {0, 1}n, if at least one of them is
log2(n)-sparse, then C (v1, v2) = 〈v1, v2〉.

Corollary

If rows of M are sparse, Mx can be computed in AC0.
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Symmetric Encryption against AC0

KeyGen(1n) :
Random k ∈ {0, 1}n.

Enc(1n, k, b):
Random sparse c ∈ {0, 1}n such that 〈c, k〉 = b.

Dec(1n, k, c):
Output 〈c, k〉.

I Some keys are more equal than others.

I Above is additively homomorphic.
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Symmetric Encryption against AC0

Game 1 - Semantic Security

Ch Adv

k← KeyGen(1n)
m0, m1

(|m0| = |m1| = m)

b ← {0, 1} Enc(k,mb)

b′

Game 2

Ch Adv

k← KeyGen(1n)

{
c0i ← Enc (k, 0)

}
i{

c1i ← Enc(k, 1)
}
i

b ← {0, 1} Enc(k, b)

b′

Equivalent by standard hybrid arguments.
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Game 2 Challenger can be simulated by Game 3 Adversary in AC0.
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Ch Adv

k← KeyGen(1n)

{bi ← {0, 1}}i {(Enc(k, bi ), bi )}i

b ← {0, 1} Enc(k, b)

b′

Game 4

Ch Adv

k← KeyGen(1n)

sparse {ri}i {(ri , 〈k, ri〉)}i

sparse r r

b = 〈k, r〉 b′

Reverse Sampling Lemma

For ’balanced’ keys k, (Enc(k, bi ), bi ) and (ri , 〈k, ri〉) are statistically close.
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CRHF against AC0

KeyGen(1n):

I k← KeyGenEnc(1`(n))

I Choose random bits b1, . . . , bn. Let ci = Enc(1`(n), k, bi ).

I Output the following matrix C:

C = c1 c2 . . . cn

=

Eval(1n,C, x):

I Output Cx.
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CRHF against AC0

Enc Challenger Enc Adversary CRHF Adversary

k← KeyGen(1`(n)) sparse m0,m1 ∈ {0, 1}n

m0, m1

b ← {0, 1} C = Enc(1`(n), k,mb)

C

x, y

If C(x− y) 6= 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉

= 〈m1, x− y〉 = 0 : b′ ← {0, 1}
Else, if 〈m0, x− y〉 =: b′ = 0

Else: b′ = 1

b′
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Candidate PKE against AC0

KeyGen(1n) :
Random A ∈ {0, 1}n×n, sparse k ∈ {0, 1}n.
pk = (A,Ak), sk = k.

Enc(1n,pk = (A,Ak), b):
Sparse s ∈ {0, 1}n.
b = 0: Output c = (sTA, sTAk).
b = 1: Output c = (sTA, b′), where b′ ← {0, 1}.

Dec(1n, k, c = (c1
T , c2)):

If 〈c1, k〉 = c2, output 0, else 1.

I Secure if (A,Ak) ≈AC0 (A, r) for random A, sparse k.
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Results

Unconditional constructions against AC0:

I OWF, PRG. (other constructions known from [Has87], [Vio12], [MST06])

I Weak PRF.

I Symmetric Encryption.

I Collision Resistant Hash Functions.

Constructions against NC1 based on L 6⊆ NC1:

I OWF, PRG. (similar, independent, constructions in [AR15])

I Public-Key Encryption.

I Collision Resistant Hash Functions.



Public-Key Encryption against NC1

I Based on the worst-case assumption that L 6⊆ NC1.
I L - class of languages with polynomial-sized branching programs.
I NC1 - class of languages with polynomial-sized constant-width branching programs.

I Makes use of algebraic structure in the Randomised Encodings for L by
Ishai-Kushilevitz [IK00].
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Public-Key Encryption against NC1

KeyGen(1n):

pk = Rn
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(Notice that pk · sk = 0.)

Enc(1n,pk, b):

I Pick s← {0, 1}n. Let t = (0 0 · · · 0 1)T .

I Output cT = sTpk + btT .

Dec(1n, sk, c): Output 〈c, sk〉. (= (sTpk + btT )sk = 0 + b〈t, sk〉 = b)
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Public-Key Encryption against NC1

Game 1 - Semantic Security

Ch Adv

(pk, sk)← KeyGen(1n)

b ← {0, 1} pk, Enc(1n,pk, b)

b′
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Open Problems

I Public-Key Encryption against AC0.

I Better PRGs and PRFs against NC1.
I Improve upon Merkle puzzles without too many assumptions.

I Perhaps using recent Fine-Grained Complexity results.

I Constructions against AC0[p].
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