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Connections and Applications

* Attribute-Based Encryption. [Att14,Weel4]

e Secret-sharing for certain graph-based access structures.

* Light-weight alternative to zero-knowledge proofs in some settings. [AIRO1]
e Data privacy in information-theoretic PIR. [GIKVO0O]

A minimal model of multi-party computation.



What Was Known Earlier

Upper bounds:

e Communication 200" 1081 for any predicate on n-bit inputs. [LVW17]

* Communication O (o) for predicates with size-o branching programs or span

programs. [IW14,AR16]

Lower bounds:
* Explicit predicate that requires QL(logn) bits of communication. [GKW15]
* Same predicate requires Q(x/n) bits for linear CDS. [GKW15]



CDS and Statistical Difference
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Separations

Explicit function PCol: {0,1}411087 x {(,1}2n10gn _; £( 1} that has:
e CDS complexity: O(logn)
* Randomized communication complexity: Q(n'/3)

* Linear CDS complexity: Q(n1/6)

Inspired by oracle separations between SZK and other classes [Aar12],
and the Pattern Matrix method [Shel1].



Collision Problems
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Collision Problems
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R(PCol) > Q(n'/3)
([AmbO05,Kut05] + [Shel1l])

PCol(x,y) = Col(x[y])

linCDS(PCol) > Q(n/*)
(left + [GKW15])




Collision Problems
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Use PSM [FKN94] to send:
* hx[y](i) ifs=0
e re{0,1}8nifs =1

If PCol(x,y) = 0, both are
the same distribution, else
they are far apart.



Closure

h - Boolean formula over {0,1}™ of size o

CDS for each of CDS for
fl' "'ifm R h(fl' ""fm)
Comm: ty, ..., by Comm: o - poly(t;, p;)
Rand : pq, ..., Pm Rand : o - poly(t;, p;)

Construction uses transformations for Statistical Difference [SV03,0ka96],
and PSM protocols [FKN94].



Amplification

CDS for f CDS for f
Single-bit secret k-bit secret
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Construction uses constant-rate ramp secret-sharing schemes [CCGdHVO07].

Incomparable version follows from the Polarization Lemma [SV03].



Lower Bound

There exists a predicate f:{0,1}" x {0,1}" — {0,1} for which any

perfect (single-bit) CDS requires communication at least 0.99n.

Proven by reduction to the PSM lower bound of [FKN94].

Earlier bound was explicit, Q(logn) bits. [GKW15]



Amortization

For any predicate f:{0,1}" x {0,1}"* - {0,1}and m > 22°" there is
a perfect CDS protocol for f with m-bit secrets with communication

complexity O (mn).

Proven using techniques from the amortization of branching programs [Pot16].

m-fold repetition of best known general protocol [LVW17]: m - 20(Wnlogn)



summary

We prove the following properties of CDS:
* Lower Bounds: Non-explicit, Q(n).
e Separation: From insecure communication and linear CDS.
* Amortization: O(n) per bit of secret, if there are more than 22" pits.
* Closure: Under composition with formulas.

« Amplification: Of correctness and privacy from constant to 2% with
O (k) blowup.

To note:
e Connections with Statistical Difference and SZK.

e Barriers to PSM lower bounds.



