
Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM
I APSP
I Orthogonal Vectors

Average-Case Fine-Grained HardnessAverage-Case Fine-Grained Hardness

I Natural object of study
I Necessary for cryptography
I Potential use in algorithm design

Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM
I APSP
I Orthogonal Vectors

Average-Case Fine-Grained HardnessAverage-Case Fine-Grained Hardness

I Natural object of study
I Necessary for cryptography
I Potential use in algorithm design

Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM
I APSP
I Orthogonal Vectors

Average-Case Fine-Grained HardnessAverage-Case Fine-Grained Hardness

I Natural object of study
I Necessary for cryptography
I Potential use in algorithm design

Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM

I APSP
I Orthogonal Vectors

Average-Case Fine-Grained HardnessAverage-Case Fine-Grained Hardness

I Natural object of study
I Necessary for cryptography
I Potential use in algorithm design

Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM
I APSP

I Orthogonal Vectors

Average-Case Fine-Grained HardnessAverage-Case Fine-Grained Hardness

I Natural object of study
I Necessary for cryptography
I Potential use in algorithm design

Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM
I APSP
I Orthogonal Vectors

Average-Case Fine-Grained HardnessAverage-Case Fine-Grained Hardness

I Natural object of study
I Necessary for cryptography
I Potential use in algorithm design

Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM
I APSP
I Orthogonal Vectors

Average-Case Fine-Grained Hardness

Average-Case Fine-Grained Hardness

I Natural object of study
I Necessary for cryptography
I Potential use in algorithm design

Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM
I APSP
I Orthogonal Vectors

Average-Case Fine-Grained HardnessAverage-Case Fine-Grained Hardness

I Natural object of study
I Necessary for cryptography
I Potential use in algorithm design

Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM
I APSP
I Orthogonal Vectors

Average-Case Fine-Grained HardnessAverage-Case Fine-Grained Hardness

I Natural object of study

I Necessary for cryptography
I Potential use in algorithm design

Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM
I APSP
I Orthogonal Vectors

Average-Case Fine-Grained HardnessAverage-Case Fine-Grained Hardness

I Natural object of study
I Necessary for cryptography

I Potential use in algorithm design

Average-Case Fine-Grained Hardness

Marshall Ball Alon Rosen Manuel Sabin Prashant Nalini Vasudevan

Average-Case Fine-Grained Hardness

I 3SUM
I APSP
I Orthogonal Vectors

Average-Case Fine-Grained HardnessAverage-Case Fine-Grained Hardness

I Natural object of study
I Necessary for cryptography
I Potential use in algorithm design

Plan

I Introduce problems
I Present average-case reduction
I Summarise
I Present Proof of Work
I ???
I Profit.

Worst-Case: Orthogonal Vectors

U V

1 0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 0 0

n

dlog2 n

∃u ∈ U, v ∈ V : disjoint?

Best known worst-case algorithm [AWY15]: O(n2−1/O(log(d/ log n)))

OV Conjecture (implied by SETH [Wil05])

If d = ω(log n), OV takes n2−o(1) time.

Worst-Case: Orthogonal Vectors

U V

1 0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 0 0

n

dlog2 n

∃u ∈ U, v ∈ V : disjoint?

Best known worst-case algorithm [AWY15]: O(n2−1/O(log(d/ log n)))

OV Conjecture (implied by SETH [Wil05])

If d = ω(log n), OV takes n2−o(1) time.

Worst-Case: Orthogonal Vectors

U V

1 0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 0 0

n

d

log2 n

∃u ∈ U, v ∈ V : disjoint?

Best known worst-case algorithm [AWY15]: O(n2−1/O(log(d/ log n)))

OV Conjecture (implied by SETH [Wil05])

If d = ω(log n), OV takes n2−o(1) time.

Worst-Case: Orthogonal Vectors

U V

1 0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 0 0

n

d

log2 n

∃u ∈ U, v ∈ V : disjoint?

Best known worst-case algorithm [AWY15]: O(n2−1/O(log(d/ log n)))

OV Conjecture (implied by SETH [Wil05])

If d = ω(log n), OV takes n2−o(1) time.

Worst-Case: Orthogonal Vectors

U V

1 0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 0 0

n

d

log2 n

∃u ∈ U, v ∈ V : disjoint?

Best known worst-case algorithm [AWY15]: O(n2−1/O(log(d/ log n)))

OV Conjecture (implied by SETH [Wil05])

If d = ω(log n), OV takes n2−o(1) time.

Worst-Case: Orthogonal Vectors

U V

1 0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 0 0

n

d

log2 n

∃u ∈ U, v ∈ V : disjoint?

Best known worst-case algorithm [AWY15]: O(n2−1/O(log(d/ log n)))

OV Conjecture (implied by SETH [Wil05])

If d = ω(log n), OV takes n2−o(1) time.

Worst-Case: Orthogonal Vectors

U V

1 0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 0 0

n

d

log2 n

∃u ∈ U, v ∈ V : disjoint?

Best known worst-case algorithm [AWY15]: O(n2−1/O(log(d/ log n)))

OV Conjecture (implied by SETH [Wil05])

If d = ω(log n), OV takes n2−o(1) time.

Average-Case: A Polynomial for OV (independently featured in [Wil16])

U V

ui1 ui2 . . . uidi

vj1 vj2 . . . vjdj

f

(1− ui1vj1)(1− ui2vj2) · · · (1− uid vjd)

1⇔ ui , vj disjoint

=
∑

i∈[n]

∑
j∈[n]

p > n2

f : F2nd
p → Fp

deg(f) = 2d

d = log2 n

Average-Case: A Polynomial for OV (independently featured in [Wil16])

U V

ui1 ui2 . . . uidi

vj1 vj2 . . . vjdj

f

(1− ui1vj1)(1− ui2vj2) · · · (1− uid vjd)

1⇔ ui , vj disjoint

=
∑

i∈[n]

∑
j∈[n]

p > n2

f : F2nd
p → Fp

deg(f) = 2d

d = log2 n

Average-Case: A Polynomial for OV (independently featured in [Wil16])

U V

ui1 ui2 . . . uidi

vj1 vj2 . . . vjdj

f

(1− ui1vj1)(1− ui2vj2) · · · (1− uid vjd)

1⇔ ui , vj disjoint

=
∑

i∈[n]

∑
j∈[n]

p > n2

f : F2nd
p → Fp

deg(f) = 2d

d = log2 n

Average-Case: A Polynomial for OV (independently featured in [Wil16])

U V

ui1 ui2 . . . uidi

vj1 vj2 . . . vjdj

f

(1− ui1vj1)(1− ui2vj2) · · · (1− uid vjd)

1⇔ ui , vj disjoint

=
∑

i∈[n]

∑
j∈[n]

p > n2

f : F2nd
p → Fp

deg(f) = 2d

d = log2 n

Average-Case: A Polynomial for OV (independently featured in [Wil16])

U V

ui1 ui2 . . . uidi

vj1 vj2 . . . vjdj

f

(1− ui1vj1)(1− ui2vj2) · · · (1− uid vjd)

1⇔ ui , vj disjoint

=
∑

i∈[n]

∑
j∈[n]

p > n2

f : F2nd
p → Fp

deg(f) = 2d

d = log2 n

Average-Case: A Polynomial for OV (independently featured in [Wil16])

U V

ui1 ui2 . . . uidi

vj1 vj2 . . . vjdj

f

(1− ui1vj1)(1− ui2vj2) · · · (1− uid vjd)

1⇔ ui , vj disjoint

=
∑

i∈[n]

∑
j∈[n]

p > n2

f : F2nd
p → Fp

deg(f) = 2d

d = log2 n

Worst-Case to Average-Case

Theorem

∃A in time n1+α : Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

⇓
∃B in time n1+α+o(1) that decides OV

Corollary

OV takes n2−o(1) ⇒ f takes n2−o(1) on average

Worst-Case to Average-Case

Theorem

∃A in time n1+α : Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

⇓
∃B in time n1+α+o(1) that decides OV

Corollary

OV takes n2−o(1) ⇒ f takes n2−o(1) on average

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)Time: t1+o(1)Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)Time: t1+o(1)Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)Time: t1+o(1)

Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)Time: t1+o(1)

Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)Time: t1+o(1)

Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)Time: t1+o(1)

Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)Time: t1+o(1)

Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)Time: t1+o(1)

Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)

Time: t1+o(1)Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)

Time: t1+o(1)Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)

Time: t1+o(1)Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)

Time: t1+o(1)Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)

Time: t1+o(1)

Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)

Intermediate Summary

We have a worst-to-average case reduction from OV (resp. 3SUM, APSP) to evaluating a
polynomial f (other respective polynomials).

In addition,
I f has low degree – polylog(n).
I f is somewhat e�iciently computable – Õ(n2).
I f is downward self-reducible.

Theorem [Wil16]

There is an MA proof system for proving (f (x) = y) that has:
I perfect completeness and negligible soundness.
I prover complexity Õ(n2).
I verifier complexity Õ(n).

Intermediate Summary

We have a worst-to-average case reduction from OV (resp. 3SUM, APSP) to evaluating a
polynomial f (other respective polynomials). In addition,

I f has low degree – polylog(n).
I f is somewhat e�iciently computable – Õ(n2).
I f is downward self-reducible.

Theorem [Wil16]

There is an MA proof system for proving (f (x) = y) that has:
I perfect completeness and negligible soundness.
I prover complexity Õ(n2).
I verifier complexity Õ(n).

Intermediate Summary

We have a worst-to-average case reduction from OV (resp. 3SUM, APSP) to evaluating a
polynomial f (other respective polynomials). In addition,

I f has low degree – polylog(n).
I f is somewhat e�iciently computable – Õ(n2).
I f is downward self-reducible.

Theorem [Wil16]

There is an MA proof system for proving (f (x) = y) that has:
I perfect completeness and negligible soundness.
I prover complexity Õ(n2).
I verifier complexity Õ(n).

Proof of Work

Prover Verifier

x← F2nd
px

Compute f (x) = z
and MA proof π

z, π

Verify using π
that f (x) = z

Õ(n)Õ(n2)

Pr [Prover can run in n2−ε and convince Verifier] ≤ 1
nε/2

(See [DN92] for generic constructions and applications.)

Proof of Work

Prover Verifier

x← F2nd
px

Compute f (x) = z
and MA proof π

z, π

Verify using π
that f (x) = z

Õ(n)Õ(n2)

Pr [Prover can run in n2−ε and convince Verifier] ≤ 1
nε/2

(See [DN92] for generic constructions and applications.)

Proof of Work

Prover Verifier

x← F2nd
px

Compute f (x) = z
and MA proof π

z, π

Verify using π
that f (x) = z

Õ(n)Õ(n2)

Pr [Prover can run in n2−ε and convince Verifier] ≤ 1
nε/2

(See [DN92] for generic constructions and applications.)

Proof of Work

Prover Verifier

x← F2nd
px

Compute f (x) = z
and MA proof π

z, π

Verify using π
that f (x) = z

Õ(n)Õ(n2)

Pr [Prover can run in n2−ε and convince Verifier] ≤ 1
nε/2

(See [DN92] for generic constructions and applications.)

Proof of Work

Prover Verifier

x← F2nd
px

Compute f (x) = z
and MA proof π

z, π

Verify using π
that f (x) = z

Õ(n)Õ(n2)

Pr [Prover can run in n2−ε and convince Verifier] ≤ 1
nε/2

(See [DN92] for generic constructions and applications.)

Proof of Work

Prover Verifier

x← F2nd
px

Compute f (x) = z
and MA proof π

z, π

Verify using π
that f (x) = z

Õ(n)Õ(n2)

Pr [Prover can run in n2−ε and convince Verifier] ≤ 1
nε/2

(See [DN92] for generic constructions and applications.)

Proof of Work

Prover Verifier

x← F2nd
px

Compute f (x) = z
and MA proof π

z, π

Verify using π
that f (x) = z

Õ(n)Õ(n2)

Pr [Prover can run in n2−ε and convince Verifier] ≤ 1
nε/2

(See [DN92] for generic constructions and applications.)

What Next?

I Average-case complexity of OV, 3SUM, etc.
I Fine-grained cryptography

I Some prior work under other assumptions [Mer78, Hås87, BGI08, DVV16, . . .].
I Fine-grained OWFs from SETH?
I Beat Merkle’s key agreement under these assumptions?

I Average-case algorithms
I Design algorithms to evaluate polynomials that work on average.

I Be�er reductions
I Is it actually possible to do be�er than guessing at random?

What Next?

I Average-case complexity of OV, 3SUM, etc.

I Fine-grained cryptography
I Some prior work under other assumptions [Mer78, Hås87, BGI08, DVV16, . . .].
I Fine-grained OWFs from SETH?
I Beat Merkle’s key agreement under these assumptions?

I Average-case algorithms
I Design algorithms to evaluate polynomials that work on average.

I Be�er reductions
I Is it actually possible to do be�er than guessing at random?

What Next?

I Average-case complexity of OV, 3SUM, etc.
I Fine-grained cryptography

I Some prior work under other assumptions [Mer78, Hås87, BGI08, DVV16, . . .].
I Fine-grained OWFs from SETH?
I Beat Merkle’s key agreement under these assumptions?

I Average-case algorithms
I Design algorithms to evaluate polynomials that work on average.

I Be�er reductions
I Is it actually possible to do be�er than guessing at random?

What Next?

I Average-case complexity of OV, 3SUM, etc.
I Fine-grained cryptography

I Some prior work under other assumptions [Mer78, Hås87, BGI08, DVV16, . . .].
I Fine-grained OWFs from SETH?
I Beat Merkle’s key agreement under these assumptions?

I Average-case algorithms
I Design algorithms to evaluate polynomials that work on average.

I Be�er reductions
I Is it actually possible to do be�er than guessing at random?

What Next?

I Average-case complexity of OV, 3SUM, etc.
I Fine-grained cryptography

I Some prior work under other assumptions [Mer78, Hås87, BGI08, DVV16, . . .].
I Fine-grained OWFs from SETH?
I Beat Merkle’s key agreement under these assumptions?

I Average-case algorithms
I Design algorithms to evaluate polynomials that work on average.

I Be�er reductions
I Is it actually possible to do be�er than guessing at random?

To be passed in case of an abundance of time.

k-SAT and SETH

(x1 ∨ x2 ∨ . . .) ∧ (. . . ∨ xn ∨ . . .) ∧ · · · ∧ (. . . ∨ . . . ∨ . . .)

k

Best known worst-case algorithm [PPSZ05]: Õ(2(1−c/k)n)

Strong Exponential Time Hypothesis (SETH) [IPZ98]

∀ε ∃k: k-SAT takes Ω̃(2(1−ε)n) time.

k-SAT and SETH

(x1 ∨ x2 ∨ . . .) ∧ (. . . ∨ xn ∨ . . .) ∧ · · · ∧ (. . . ∨ . . . ∨ . . .)

k

Best known worst-case algorithm [PPSZ05]: Õ(2(1−c/k)n)

Strong Exponential Time Hypothesis (SETH) [IPZ98]

∀ε ∃k: k-SAT takes Ω̃(2(1−ε)n) time.

k-SAT and SETH

(x1 ∨ x2 ∨ . . .) ∧ (. . . ∨ xn ∨ . . .) ∧ · · · ∧ (. . . ∨ . . . ∨ . . .)

k

Best known worst-case algorithm [PPSZ05]: Õ(2(1−c/k)n)

Strong Exponential Time Hypothesis (SETH) [IPZ98]

∀ε ∃k: k-SAT takes Ω̃(2(1−ε)n) time.

An E�icient MA Protocol for f [Wil16]

(U,V) ∈ F2nd
p , z ∈ Fp

φ1, . . . , φd : Fp → Fp

∀i ∈ [n] : φ`(i) = ui`

deg(φ`) ≤ n− 1

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− φ`(i)vj`)

 =
∑
i∈[n]

r(i)

I Proof: Coe�icients of r . (Interpolation – Õ(n2))
I Verification:

I Check r at random point. (Computation of φ and correct value – Õ(n))
I Compute r(i) for i ∈ [n] and sum to get f (U,V). (Batch evaluation – Õ(n))

An E�icient MA Protocol for f [Wil16]

(U,V) ∈ F2nd
p , z ∈ Fp

φ1, . . . , φd : Fp → Fp

∀i ∈ [n] : φ`(i) = ui`

deg(φ`) ≤ n− 1

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− φ`(i)vj`)

 =
∑
i∈[n]

r(i)

I Proof: Coe�icients of r . (Interpolation – Õ(n2))
I Verification:

I Check r at random point. (Computation of φ and correct value – Õ(n))
I Compute r(i) for i ∈ [n] and sum to get f (U,V). (Batch evaluation – Õ(n))

An E�icient MA Protocol for f [Wil16]

(U,V) ∈ F2nd
p , z ∈ Fp

φ1, . . . , φd : Fp → Fp

∀i ∈ [n] : φ`(i) = ui`

deg(φ`) ≤ n− 1

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− φ`(i)vj`)

 =
∑
i∈[n]

r(i)

I Proof: Coe�icients of r . (Interpolation – Õ(n2))
I Verification:

I Check r at random point. (Computation of φ and correct value – Õ(n))
I Compute r(i) for i ∈ [n] and sum to get f (U,V). (Batch evaluation – Õ(n))

An E�icient MA Protocol for f [Wil16]

(U,V) ∈ F2nd
p , z ∈ Fp

φ1, . . . , φd : Fp → Fp

∀i ∈ [n] : φ`(i) = ui`

deg(φ`) ≤ n− 1

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− φ`(i)vj`)

 =
∑
i∈[n]

r(i)

I Proof: Coe�icients of r . (Interpolation – Õ(n2))

I Verification:
I Check r at random point. (Computation of φ and correct value – Õ(n))
I Compute r(i) for i ∈ [n] and sum to get f (U,V). (Batch evaluation – Õ(n))

An E�icient MA Protocol for f [Wil16]

(U,V) ∈ F2nd
p , z ∈ Fp

φ1, . . . , φd : Fp → Fp

∀i ∈ [n] : φ`(i) = ui`

deg(φ`) ≤ n− 1

f (U,V) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− φ`(i)vj`)

 =
∑
i∈[n]

r(i)

I Proof: Coe�icients of r . (Interpolation – Õ(n2))
I Verification:

I Check r at random point. (Computation of φ and correct value – Õ(n))
I Compute r(i) for i ∈ [n] and sum to get f (U,V). (Batch evaluation – Õ(n))

Amir Abboud, Richard Ryan Williams, and Huacheng Yu.
More applications of the polynomial method to algorithm design.
In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages
218–230. SIAM, 2015.

Eli Biham, Yaron J. Goren, and Yuval Ishai.
Basing weak public-key cryptography on strong one-way functions.
In Ran Cane�i, editor, Theory of Cryptography, Fi�h Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008., volume 4948 of Lecture
Notes in Computer Science, pages 55–72. Springer, 2008.

Jin-yi Cai, Aduri Pavan, and D. Sivakumar.
On the hardness of permanent.
In Christoph Meinel and Sophie Tison, editors, STACS 99, 16th Annual Symposium on
Theoretical Aspects of Computer Science, Trier, Germany, March 4-6, 1999, Proceedings,
volume 1563 of Lecture Notes in Computer Science, pages 90–99. Springer, 1999.

Cynthia Dwork and Moni Naor.

Pricing via processing or comba�ing junk mail.
In Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings, pages
139–147, 1992.

Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan.
Fine-grained cryptography.
In Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III, pages
533–562, 2016.

Peter Gemmell and Madhu Sudan.
Highly resilient correctors for polynomials.
Information processing le�ers, 43(4):169–174, 1992.

Johan Håstad.
One-way permutations in NC0.
Information Processing Le�ers, 26(3):153–155, 1987.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane.

Which problems have strongly exponential complexity?
In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, November
8-11, 1998, Palo Alto, California, USA, pages 653–663. IEEE Computer Society, 1998.

Richard Lipton.
New directions in testing.
Distributed Computing and Cryptography, 2:191–202, 1991.

Ralph C. Merkle.
Secure communications over insecure channels.
Commun. ACM, 21(4):294–299, 1978.

Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane.
An improved exponential-time algorithm for k-sat.
J. ACM, 52(3):337–364, May 2005.

Ryan Williams.
A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005.

Ryan Williams.

Strong ETH breaks with merlin and arthur: Short non-interactive proofs of batch
evaluation.
In 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016,
Tokyo, Japan, pages 2:1–2:17, 2016.

