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Plan

I Introduce problems
I Present average-case reduction
I Summarise
I Present Proof of Work
I ???
I Profit.



Worst-Case: Orthogonal Vectors

U V

1 0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 0 0

n

dlog2 n

∃u ∈ U, v ∈ V : disjoint?

Best known worst-case algorithm [AWY15]: O(n2−1/O(log(d/ log n)))

OV Conjecture (implied by SETH [Wil05])

If d = ω(log n), OV takes n2−o(1) time.
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Average-Case: A Polynomial for OV (independently featured in [Wil16])

U V

ui1 ui2 . . . uidi

vj1 vj2 . . . vjdj

f





(1− ui1vj1)(1− ui2vj2) · · · (1− uid vjd )

1⇔ ui , vj disjoint

=
∑

i∈[n]

∑
j∈[n]

p > n2

f : F2nd
p → Fp

deg(f ) = 2d

d = log2 n
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Worst-Case to Average-Case

Theorem

∃A in time n1+α : Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

⇓
∃B in time n1+α+o(1) that decides OV

Corollary

OV takes n2−o(1) ⇒ f takes n2−o(1) on average
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Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f ) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3

Time: Õ(d · nd + d · t + d3)Time: t1+o(1)Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V ) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]
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`∈[d]

(1− ui`vj`)
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Time: Õ(d · nd + d · t + d3)

Time: t1+o(1)Time:

F2nd
p

x

x +
yt

g(t) = f (x + yt)

g(0) = f (x), deg(g) ≤ 2d

Error-correct from (noisy) g(1), g(2), . . . , g(cd)

Pry [too many t’s : A(x + yt) 6= g(t)] < 1
3

(Markov Bound)

f (U,V ) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`)

=

 ∑
i ∈ [n/2]
j ∈ [n/2]

+
∑

i ∈ [n/2]
j ∈ (n/2, n]

+
∑

i ∈ (n/2, n]
j ∈ [n/2]

+
∑

i ∈ (n/2, n]
j ∈ (n/2, n]

 ∏
`∈[d]

(1− ui`vj`)



Worst-Case to Average-Case (using ideas from [Lip91, GS92, CPS99])

f : F2nd
p → Fp, deg(f ) = 2d

Prx←F2nd
p

[A(x) = f (x)] ≥ 0.9

Prx←F2nd
p

[A(x) = f (x)] ≥ 1
no(1)

Time: t = n1+α

∀x : PrB [B(x) = f (x)] ≥ 2
3
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Intermediate Summary

We have a worst-to-average case reduction from OV (resp. 3SUM, APSP) to evaluating a
polynomial f (other respective polynomials).

In addition,
I f has low degree – polylog(n).
I f is somewhat e�iciently computable – Õ(n2).
I f is downward self-reducible.

Theorem [Wil16]

There is an MA proof system for proving (f (x) = y) that has:
I perfect completeness and negligible soundness.
I prover complexity Õ(n2).
I verifier complexity Õ(n).
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I f is downward self-reducible.

Theorem [Wil16]

There is an MA proof system for proving (f (x) = y) that has:
I perfect completeness and negligible soundness.
I prover complexity Õ(n2).
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Proof of Work

Prover Verifier

x← F2nd
px

Compute f (x) = z
and MA proof π

z, π

Verify using π
that f (x) = z

Õ(n)Õ(n2)

Pr [Prover can run in n2−ε and convince Verifier] ≤ 1
nε/2

(See [DN92] for generic constructions and applications.)
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What Next?

I Average-case complexity of OV, 3SUM, etc.
I Fine-grained cryptography

I Some prior work under other assumptions [Mer78, Hås87, BGI08, DVV16, . . . ].
I Fine-grained OWFs from SETH?
I Beat Merkle’s key agreement under these assumptions?

I Average-case algorithms
I Design algorithms to evaluate polynomials that work on average.

I Be�er reductions
I Is it actually possible to do be�er than guessing at random?
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To be passed in case of an abundance of time.



k-SAT and SETH

( x1 ∨ x2 ∨ . . . ) ∧ ( . . . ∨ xn ∨ . . . ) ∧ · · · ∧ ( . . . ∨ . . . ∨ . . . )

k

Best known worst-case algorithm [PPSZ05]: Õ(2(1−c/k)n)

Strong Exponential Time Hypothesis (SETH) [IPZ98]

∀ε ∃k: k-SAT takes Ω̃(2(1−ε)n) time.
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An E�icient MA Protocol for f [Wil16]

(U,V ) ∈ F2nd
p , z ∈ Fp

φ1, . . . , φd : Fp → Fp

∀i ∈ [n] : φ`(i) = ui`

deg(φ`) ≤ n− 1

f (U,V ) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− ui`vj`) =
∑
i∈[n]

∑
j∈[n]

∏
`∈[d]

(1− φ`(i)vj`)

 =
∑
i∈[n]

r(i)

I Proof: Coe�icients of r . (Interpolation – Õ(n2))
I Verification:

I Check r at random point. (Computation of φ and correct value – Õ(n))
I Compute r(i) for i ∈ [n] and sum to get f (U,V ). (Batch evaluation – Õ(n))
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