
Obscuro: A Bitcoin Mixer using Trusted Execution Environments

Muoi Tran
National University of Singapore

muoitran@comp.nus.edu.sg

Loi Luu
Kyber Network

loiluu@kyber.network

Min Suk Kang
National University of Singapore

kangms@comp.nus.edu.sg

Iddo Bentov
Cornell University

iddobentov@cornell.edu

Prateek Saxena
National University of Singapore

prateeks@comp.nus.edu.sg

ABSTRACT

Bitcoin provides only pseudo-anonymous transactions, which can

be exploited to link payers and payees ś defeating the goal of anony-

mous payments. To thwart such attacks, several Bitcoin mixers have

been proposed, with the objective of providing unlinkability be-

tween payers and payees. However, existing Bitcoin mixers can be

regarded as either insecure or ineicient.

We present Obscuro, a highly eicient and secure Bitcoin mixer

that utilizes trusted execution environments (TEEs). With the TEE’s

conidentiality and integrity guarantees for code and data, ourmixer

design ensures the correct mixing operations and the protection of

sensitive data (i.e., private keys and mixing logs), ruling out coin

theft and address linking attacks by a malicious service provider.

Yet, the TEE-based implementation does not prevent the manipula-

tion of inputs (e.g., deposit submissions, blockchain feeds) to the

mixer, hence Obscuro is designed to overcome such limitations:

it (1) ofers an indirect deposit mechanism to prevent a malicious

service provider from rejecting benign user deposits; and (2) scruti-

nizes blockchain feeds to prevent deposits from being mixed more

than once (thus degrading anonymity) while being eclipsed from

the main blockchain branch. In addition, Obscuro provides several

unique anonymity features (e.g., minimum mixing set size guaran-

tee, resistant to dropping user deposits) that are not available in

existing centralized and decentralized mixers.

Our prototype of Obscuro is built using Intel SGX and we demon-

strate its efectiveness in Bitcoin Testnet. Our implementationmixes

1000 inputs in just 6.49 seconds, which vastly outperforms all of

the existing decentralized mixers.

CCS CONCEPTS

· Security and privacy→ Pseudonymity, anonymity and un-

traceability;

KEYWORDS

Bitcoin, Anonymity, Mixer, Trusted Execution Environments, Intel

SGX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’18, December 3ś7, 2018, San Juan, PR, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274750

ACM Reference Format:

Muoi Tran, Loi Luu, Min Suk Kang, Iddo Bentov, and Prateek Saxena. 2018.

Obscuro: A Bitcoin Mixer using Trusted Execution Environments. In 2018

Annual Computer Security Applications Conference (ACSAC ’18), December

3ś7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3274694.3274750

1 INTRODUCTION

Bitcoin is the irst widely-adopted cryptocurrency that allows users

to transact digital coins without relying on any centralized, trusted

party [36]. It allows users to have pseudonymous identities called

Bitcoin addresses, which are generated from their public keys. Users

send coins by creating transactions that include one or more inputs

(i.e., references to outputs of previous transactions) and outputs (i.e.,

addresses and credits that go to these addresses).

Although each Bitcoin user can stay pseudo-anonymous by gen-

erating multiple cryptographic addresses that are used to receive

funds, the users’ transaction records are publicly available on the

blockchain. In other words, Bitcoin’s pseudo-anonymity can be

regarded as publishing everyone’s credit card statements, with

the names redacted but the łaccount numbersž (i.e., cryptographic

addresses) and payment amounts visible. Since all the Bitcoin trans-

actions can always be linked (i.e., referenced) back to one or more

previous transactions, the privacy of Bitcoin users can be violated

by an adversary who is able to track the low of bitcoins being

transferred and further cluster Bitcoin addresses together[7, 29, 30,

35, 38, 40, 49].

Transaction traceabilitymay be useful under some circumstances

(e.g., tracking criminal activities); however, Bitcoin allows any-

one to examine users transaction history (e.g., their incomes and

spending habits), which may lead to large-scale privacy invasion

or surveillance. Furthermore, Bitcoin’s traceability is considered to

be harmful to its fungibility because the coins in circulation can

be considered tainted to certain degrees (see [39] for a well-known

legal case).

Improving Bitcoin anonymity using mixers. In the past few

years, there have been several proposals that aim to provide better

privacy for Bitcoin users using Bitcoin mixers. These mixers take

coins from multiple senders and output the coins to determined

recipients in a shuled order. Since all the recipients have the equal

probability of being transacting with a given sender, it is diicult to

identify which sending address is actually linked to which receiving

address.

Unfortunately, existing Bitcoin mixers are either known to be

vulnerable to a number of attacks that can be launched by malicious

692

https://doi.org/10.1145/3274694.3274750
https://doi.org/10.1145/3274694.3274750
https://doi.org/10.1145/3274694.3274750

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA M. Tran et al.

mixer service providers, or ineicient due to prohibitive algorith-

mic/communication overhead for large (e.g. hundreds or thousands)

mixing set sizes. In general, some mixers require users to send coins

to a centralized service and thus a malicious service provider can

leak the links between senders and recipients, steal the coins or sub-

tly reject some honest users from participating to reduce anonymity

set (see Section 7 for how Mixcoin [14], BlindCoin [51] and Tum-

bleBit [18] are vulnerable to these attacks). Alternatively, there

are several decentralized Bitcoin mixing protocols that operate

with individual peers [12, 26, 42, 43, 57]. However, decentralized

mixers demonstrate limited scalability (e.g., only mix among 50

peers [26, 42, 43]), sufer from long waiting times for inding other

mixing parties [12], or assume an unrealistic fraction of honest

mixing parties (e.g., 2/3 of parties are honest [57]).

Our contributions. As a new design point in the space of Bitcoin

mixers, we propose a centralized mixing system called Obscuro,

which can swiftly mix a thousand users while ofering strong se-

curity and anonymity guarantees against malicious mixer service

providers, which have not been achieved by any existing mixers.

Obscuro utilizes modern hardware-based trusted execution envi-

ronments (TEEs) to protect its mixing operations from a potentially

malicious mixer service provider.1 Speciically, Obscuro (1) isolates

its execution in a special memory region and prevents a malicious

service provider from stealing users’ deposits or leaking transaction

links; (2) allows users to verify the correct mixing operations before

they deposit their coins; and (3) maintains a TEE-based simple pro-

tocol architecture so that its mixing set size is limited only by the

inherent Bitcoin block size. Obscuro has a generic design that is

compatible with various trusted execution environment techniques.

Moreover, Obscuro addresses a new family of attacks that aim

to weaken the anonymity guarantees of the mixer. Speciically, a

malicious service provider may block connections between some

users and the mixing service to efectively reduce the anonymity

set. Also, a malicious provider can manipulate the Bitcoin blocks

fed to the mixer and create blockchain forks to make the anonymity

set reduction attack invisible to users; see Section 2.2 for detailed

attack strategies. To handle these attacks, Obscuro removes all

direct network interactions between users and the mixer platform

and guarantees benign users’ participation. Also,Obscuro employs

a stateless design and malicious blockchain fork detection.

We implement Obscuro using a recent trusted computing ca-

pability called Intel SGX [6, 27]. The Obscuro prototype demon-

strates its efectiveness in terms of mixing times for various sizes

of anonymity sets on both Bitcoin Regtest and Bitcoin Testnet. For

example, Obscuro takes only 6.49 seconds to mix 1000 transac-

tions, showing that Obscuro is eicient and ready to be deployed

in practice.

2 PROBLEM DEFINITION

2.1 Preliminaries

Cryptography primitives. First, we denote a permutation func-

tion π (x1,x2, · · · ,xn) ← (x1,x2, · · · ,xn) which returns a random

1For simplicity, we assume that a mixer service provider runs its mixer software
on its local machine. If a service provider outsources the mixer software to a cloud
infrastructure, our threat model includes the infrastructure as well.

permutation of set (x1,x2, · · · ,xn).We utilize the ECDSA digital sig-

nature scheme of the libsecp256k1 library [52], which we denoted

by DS. DS consists of a key generation algorithm DS.GenKey()

that generates a public key pkDS and a secret key skDS. The 160-bit

hash output of the public key pkDS is used to generate a Bitcoin

address addr. We utilize the Elliptic Curve Integrated Encryption

Scheme (ECIES) as a public-key encryption (PE) scheme. To avoid

confusion, let us deine the public and private key pair generation

of PE as PE.GenKey().
Baseline mixing operations. Let us call a sender Alice and a re-

cipient Bob. Alice, with the address addrA participates in a mixing

round by sending a denomination of deposit to a Bitcoin address

that belongs to the mixer and notiies the mixer with the Bob’s with-

drawal address addrB, through a channel secured with PE. After re-
ceiving n deposit transactions (tx1, tx2, · · · , txn) from senders with

addresses (addrA1
, addrA2

, · · · , addrAn
), the mixer permutes their

recipient addresses with a fresh instance of a random permutation

π (e.g., Fisher-Yates shule) and returns coins to the permuted ad-

dresses, i.e., π (addrB1
, addrB2

, · · · , addrBn
), in that order. The inal

transaction TX written into the public blockchain contains the list

of deposit transactions (tx1, tx2, · · · , txn) as inputs and the shuled

recipient address list π (addrB1
, addrB2

, · · · , addrBn
) as outputs.

Privacy Deinition. The purpose of a mixer is to provide relation-

ship anonymity between any sender and recipient pair, as we deine

as follows [37]:

Deinition 2.1. Relationship anonymity of a sender address addrA
and a recipient address addrB, which are involved in a mixing

transaction TX, means that an outsider (i.e., being neither the sender

nor the recipient) cannot distinguish whether the owners of these

addresses are transacting or not. In other words, addrA and addrB
are unlinkable.

2.2 Threat Model

We consider a strong adversary (e.g., a malicious mixing service

provider) that controls the mixer operations as well as the under-

lying privileged software running on the hosting platform (e.g.,

operating system (OS)). Since the adversary can access any system

resource of the mixer, she can actively modify or drop any message

received by or sent from the mixer platform. Moreover, the adver-

sary can observe all the transactions on the public blockchain. We

also assume the adversary can make deposits under her control (or

Sybil deposits).

We consider three types of attacks against Bitcoin mixers:

Coin stealing attacks. An adversary steals user-submitted coins.

The adversary may trick participants to submit coins to adversary’s

address or obtain the secret key skPE
M

associated with the mixer’s

address addrM.

Availability attacks. An adversary prevents some or all partici-

pants from using a mixing service. The adversary may disrupt a

sender’s access to the mixer or the mixer’s access to the blockchain

(i.e., the mixer cannot return coins to the intended recipient).

Anonymity attacks. An adversary aims to identify the recipient

address addrB of a benign recipient Bob who is transacting with a

begin sender Alice (who owns addrA) through a mixer, i.e., break

the relationship anonymity between addrB and addrA (see Dei-

nition 2.1). When the adversary has access to the permutation π ,

693

Obscuro: A Bitcoin Mixer using Trusted Execution Environments ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

de-anonymization is trivial. Without access to π , the adversary has

to guess the correct recipient address within the anonymity setÐi.e.,

the set of all benign recipient addresses.2 Here, we present two

attack strategies to reduce the anonymity set size:

1. Participation rejection. The adversary blocks the participation

from some arbitrary benign senders and performs a mixing

operation only with a few selected benign deposits (and per-

haps some adversary-created deposits), efectively reducing the

anonymity set of the mixing round. The adversary who controls

the mixer platform can easily block one or more interactions

between the mixer and benign senders. For example, the ad-

versary can block the distribution of the mixer identity (i.e., its

Bitcoin address addrM and public key pkPE
M
) to some benign

users so that they cannot send deposit transactions or establish

a channel (which is used to notify their deposits and withdrawal

addresses) with the mixer. In the extreme case, only one benign

deposit can be included and its sender/recipient addresses are

immediately linked.

2. Blockchain forking. By allowing indirect deposit submission via

the Bitcoin blockchain (see Section 3.3 for details), Obscuro

prevents anonymity set reduction in the valid blockchain; how-

ever, adversaries may still reduce the anonymity set in a stale

chain. To be speciic, the adversary can feed the two diferent

blockchain feedsÐa stale chain and valid chainÐto the mixer

to have it mix twice with the two feeds. The stale chain is an

adversary-generated one that is visible to only the mixer and

contains only selected user deposits (thus reducing anonymity

set) whereas the valid chain has all the user-submitted deposits.

This attack makes the anonymity set reduction invisible to

users. Two attack strategies are available: (1) the adversary can

directly tamper with the blockchain data stored on the mixer

platform, or (2) the adversary can feed a stale chain and a valid

chain to the mixer sequentially so that the stale one becomes

naturally abandoned thus invisible to the Bitcoin network later.

2.3 Scope, Assumptions, and Limitations

Direct attacks against the conidentiality properties of TEE plat-

forms are beyond the scope of this work. Particularly, we acknowl-

edge that several side-channel attacks against Intel SGX have been

discovered and also mitigations have been actively studied in the

last few years [23, 33, 45ś47, 53].

We assume that the mixer implementation has no malware or

backdoor inserted by the mixer operator. The full implementation

of the mixer (about additional 2.4K source lines of code (SLoC) to

the trusted computing base; see Section 5.2) is open-sourced and

available for public scrutiny. We leave a formal veriication of our

implementation for future work.

Similarly to all the centralized mixing services, our mixer pro-

posal is susceptible to denial-of-service (DoS) attacks on the mixer’s

platform (though users will never lose their funds, due to a refund

mechanism). Direct defenses to such attacks are out of scope.

2The anonymity set is deined over the recipient addresses of a mixing round. The
same for the sender addresses can be deined and their set sizes are equivalent for a
given mixing round.

We aim to provide anonymity for users in a single mixing round

but do not ofer special logic for better anonymity across multiple

mixing rounds; e.g., intersection attacks [16, 17, 22, 32].

Moreover, we do not aim to address an exceedingly powerful

adversary that can arbitrarily control the transactions of the public

blockchain (e.g., via owning or colluding with a large fraction of

miners).

3 OBSCURO

3.1 Solution Overview

Obscuro maintains a simple centralized mixer architecture and

protocolÐthat is, senders submit deposits to a single address of a

mixer and then the funds are sent to the shuled recipient addresses.

Obscuro can be robust against all the three types of attacks while

maintaining such simple mixing operations because it utilizes the

conidentiality and integrity guarantees of trusted execution envi-

ronments (TEE). Hardware-based TEEs (such as Intel SGX [6, 27],

ARM TrustZone [8]) provide isolated execution (i.e., the mixer execu-

tion is isolated from all other operations in the platform including

privileged software such as OS) and remote attestation (i.e., a third

party can verify the correctness of the mixer’s operations) proper-

ties [56]. The TEE-protectedmixer design prevents adversaries from

stealing participant’s coins because users can verify the mixer’s

address addrM via remote attestation and the secret key skDS
M

of

the mixer (which is required when spend coins from addrM) is pro-

tected within TEE. Also, Obscuro does not leak the permutation π

because the shuling operations are executed in the isolated TEE

region and not accessible to adversaries. In addition, for higher

availability, Obscuro has a refund mechanism which is written in

a simple script in the deposit transaction tx, allowing senders to

claim back the sent coins when mixing service is being denied.

Although being powerful enough to rule out the coin stealing

and availability attacks, TEE’s conidentiality and integrity guaran-

tees alone do not necessarily address the two anonymity reduction

attacks (i.e., participation rejection and blockchain forking attacks)

because these attacks involve the blockchain inputs manipulated

outside of the TEE’s protection. The participation rejection attack

drops some user deposits before the TEE-based mixer reads them,

and the blockchain forking attack presents an adversary-generated

stale block to the mixer. First, to handle the participation rejection

attacks, we propose an indirect participation mechanism, which

enables any user to participate in a mixing round without direct

interaction with the mixer. As we remove any direct interaction be-

tween users and the mixer, the adversary cannot reduce anonymity

set by disrupting their interactions with the mixer. Second, Ob-

scuro avoids mixing user deposits twice in a stale chain and the

valid chain by protecting the received blockchain data within the

TEE and ensuring any deposit transaction will contribute in at most

one mixing round.

3.2 Obscuro Protocol

We describe the architecture of Obscuro using Intel SGX [6, 27]

capabilities in Figure 1. An application implemented in the SGX

programming model includes two types of components: (1) trusted

components that are loaded and executed inside an SGX enclave, a

special memory region that is isolated from the untrusted functions

694

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA M. Tran et al.

Verify blocks

& transactions

Untrusted

components

SGX Enclave

Obscuro

Create enclave Generate keys

Publish

attestation report

and mixer identity

Forward block

data

blocks

Create mixed

transaction

verified
!"

#$%
&', #$%

)*

Forward mixed

transaction

+,

Public

bulletin

boards

Intel

Attestation

Service

-../% ,

0$%
)*

Validation

results
!"

User
Bitcoin

network

blocks

+,

Trusted

components

Mixer platform

Legend:

Attestation

report

(o
p
ti
o
n
a
l)

(o
p
ti
o
n
a
l)

+

-.
./
%
,

0$
%
)*

-../% ,

0$%
)*+

+

Store verified

block headers
block

header

Figure 1: The Obscuro architecture. Components in the green background are trusted, while the ones in the gray background

are untrusted. The adversary controls components in the red stripe background.

including privileged software (e.g., OS), and (2) untrusted compo-

nents that operate as a non-SGX application outside of the enclave

boundary. While the code inside an enclave is able to read/write

the application memory outside of the enclave as well as the en-

clave data in its unencrypted form, the non-enclave code (e.g., the

OS) cannot access the enclave’s memory. At a high level, Obscuro

protocol has four phases as follows:

1. Bootstrapping and remote attestation. Obscuro starts its exe-

cution in TEE, generates keys, and publishes its identities (i.e.,

Bitcoin address and public key) so that users can verify them

remotely.

2. Participation via blockchain. Users participate in a mixing round

by submitting deposit transactions to the mixer’s address. A

transaction includes an encrypted recipient’s address and a

refund script.

3. Deposit veriication. When a Obscuro instance is initiated, it

veriies the correctness of the blockchain data and extracts the

user-submitted Obscuro deposits. Obscuro irst downloads,

veriies, and stores the public blockchain headers (not the entire

blockchain). Then, it scans some recent blocks (e.g., blocks

that are added to the blockchain since the Obscuro instance

is initiated) and extracts all the deposit transactions and their

attached recipient addresses from them. The number of recent

blocks that may have valid deposits (thus need to be scanned)

is determined and announced by the Obscuro mixer instance;

see Section 3.5. To improve this initial bootstrap time, Obscuro

implementation starts the veriication from a widely accepted

hardcoded block checkpoint. We test the performance of the

bootstrap process and show that it is acceptable for typicalmixer

operations; see Section 5.2. Moreover, Obscuro also checks if

the collected deposits have been mixed in another blockchain

fork to prevent blockchain tampering attacks.

4. Mixing and returning coins. Obscuro follows a set of rules to

determine when a mixing round starts and then executes the

mixing operations mentioned in Section 2.1.

We discuss the details of the irst two phases, which realize our

indirect participation mechanism against the participation rejection

attacks, in Section 3.3. The mitigations for the blockchain forking

attacks are presented in Section 3.4. Section 3.5 presents a set of

parameters and rules for practical mixing operations of Obscuro.

3.3 Indirect Participation Mechanism

All-or-none availability for Obscuro’s identity. We ensure

that either all or none of the benign users can obtain the iden-

tity of Obscuro (i.e., pkPE
M

and addrM) to participate in a mixing

round via the remote attestation process as follows.

1. An initiator irst begins the remote attestation of the Obscuro

instance. Ideally, any person or organization can be the initiator

of a remote attestation.3 When an Obscuro instance has been

launched in a newly created SGX enclave, Obscuro involves

DS.GenKey() and PE.GenKey() to generate fresh (pkDS
M
, skDS

M
)

and (pkPE
M
, skPE

M
), respectively. The mixer address addrM is also

generated from pkDS
M

accordingly.

2. Next, the enclave provides an attestation report, which is crypto-

graphically signed by the attestation key of the SGX hardware.

The attestation report contains the hash of the enclave’s initial

contents (i.e., the measurement of the application instance) and

the hash of some manifest data computed inside the enclave.

The manifest data includes the pkPE
M

and addrM and is sent

along with the attestation report.

3. The attestation report and the manifest data are then distributed

by the initiator through some public bulletin boards (e.g., IPFS [2],

public blockchains).

4. Finally, users may forward the attestation report to the Intel

Attestation Service (IAS) [21] to verify the report and the man-

ifest data. Note, however, that the interaction with the IAS is

optional for most of the users since any user or a third party

can distribute the attestation validation result from the IAS so

that users can verify the attestation report by themselves [19].

3Intel suggests that the service provider of the SGX application to be the initiator [21].

695

Obscuro: A Bitcoin Mixer using Trusted Execution Environments ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

...

N"#$
(e.g.,	430	transactions)

N"%&
(e.g.,	50	transactions)

Obscuro

mix	after �(#%)

never	mix

�(#%) (e.g.,	100	blocks)

�*+&,%-" (e.g.,	2	blocks)

Legend

Obscuro deposit

non-Obscuro

deposit
Scanning

deposits

Skipping

unconfirmed	

deposits

deposit	pool mixing	policy:	

mix	immediately

blockchain

Figure 2: The Obscuro mixing policy.

Deposit Submission via Blockchain. Obscuro allows users to

participate in a mixing round indirectly by embedding the partici-

pation information to the deposit transaction written on the public

blockchain. In particular, a recipient (say Bob) chooses the recipient

address addrB, encrypts it with the pkPE
M

of Obscuro, and then

forwards the encrypted message to a sender (say Alice). Next, Alice

constructs the deposit transaction tx that follows the predeined
format shown in the Appendix A. The encrypted address is included

in the OP_RETURN ield (which can carry up to 80 bytes) of the de-

posit transaction. The encryption must be CCA secure because the

ciphertexts will be available on the blockchain and adversaries can

modify and submit them to the oracle (i.e., the mixer); see Section 5

for details.

We also utilize the opcode OP_CHECKLOCKTIMEVERIFY, which

allows the mixer to spend the deposit, and allows the user to claim

back the deposit after a locked time (if it has not been spent yet).

Alice then broadcasts the deposit transaction tx to the Bitcoin net-

work.

3.4 Detection of Malicious Blockchain Forks

Obscuro detects malicious blockchain forks by employing the

following design policies. First, Obscuro does not store blockchain

data outside of the protected TEE, hence prevents an adversary

from directly tampering with the blockchain data stored on the

mixer platform. Note that sealed storage [6] cannot be used to

store the blockchain data securely because the adversary can roll

back the state of the sealed storage [25, 50]. Second, to prevent

an adversary from loading diferent blockchain data to diferent

Obscuro instances, Obscuro generates and uses a new address

to receive deposits for every instance (see Section 5.2), ensuring

that each deposit is mixed on only one blockchain. Third, Obscuro

checks the received blockchain data to see if: (1) the blockchain

contains forks; (2) there is a deposit transaction appears on one or

more forks; and (3) the deposit transaction has been mixed before.

If all the conditions are met, we consider it as an attempt to tamper

with the blockchain fed to Obscuro. Then Obscuro abandons its

current address, generates new keys, and starts a newmixing round.

3.5 Collecting Deposits

To specify precisely how the deposits should be collected and

when a mixing operation is executed, we introduce four system

parameters: Nmin, Nmax, Bwait, and Bconfirm. In Figure 2, we illus-

trate how these parameters are used to determine the mixing set

for each round. In particular, Obscuro continuously monitors the

blockchain and collects deposits from the maximum Bwait blocks

(excluding the Bconfirm most recent blocks) since its last mixing

operation, to be maintained in the deposit pool. Obscuro decides

whether to mix the deposits in the pool based on the size of the

pool and the number of blocks since the last mixing operation as

follows.

1. If there are less than Nmin deposits in the pool after scanning

Bwait blocks (since the last mix operation), no mixing is done

and the deposits are refunded.

2. When the pool reaches Nmax deposits, the mixer immediately

starts mixing with the Nmax deposits.

3. If there exist at least Nmin deposits after reaching Bwait blocks

since the last mix operation, the mixer performs the mix with

all the available deposits.

The practical value of Bwait can be the locked time of the deposits

(plus the few Bconfirm blocks for conirmation), so that the user

can get refunded immediately in the case that her deposit is not

mixed. Nmax denotes the maximum capacity of participants in a

mixing round due to the underlying blockchain’s constraints (e.g.,

maximum transaction size). Having a minimum mixing set size

parameter Nmin is desirable since it provides a lower bound on the

quality of the mix. This assures the users an in-protocol guarantee

regarding the mixing set size even before they send coins to the

mixer, which is not supported by any centralized mixers. Since

Obscuro may inish a mixing round within 2 blocks, we use the

block conirmation parameter Bconfirm to prevent it from strictly

abandoning its address whenever there is an orphaned fork on the

main blockchain.

4 SECURITY ANALYSIS

In this section, we present how Obscuro is secure against the

coin stealing, availability, and anonymity attacks described in our

threat model (see Section 2.2). We assume that all the cryptographic

primitives used are secure.

Coin stealing attacks. With the execution isolation guarantee

of TEE, an adversary cannot access the mixer’s secret keys and

thus cannot steal the user-submitted coins. Moreover, an untrusted

service provider or bulletin board also cannot trick participants to

deposit coins to a wrong address because any tampering with pkPE
M
,

addrM, or the attestation report will lead to a failed veriication by

the IAS (see Section 3.3).

Availability attacks. Since the mixing operations are executed

within the protected TEE, we ensure that Obscuro returns coins to

the recipient addresses at the end of each mixing round. If the mixer

transaction is not submitted to the Bitcoin network, the senders

can get their coins back after a determined period thanks to the

refund script in the deposit transaction. Thus, the user-submitted

coins are always available to be withdrawn from Obscuro.

Anonymity attacks.We remark that the permutation is performed

within a TEE which is not accessible to the adversary. However,

with the capability of manipulating the inputs of the mixer, an

adversary can reject some benign users by either (1) selectively

disclosing the mixer’s identity (i.e., addrM and pkPE
M
) to only an

696

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA M. Tran et al.

arbitrary set of benign users; or (2) selectively accepting only some

benign users’ deposit submissions.4 Our Obscuro design removes

these adversary’s capabilities. First, Obscuro’s all-or-none avail-

ability mechanism makes it extremely hard for an adversary to

selectively prevent benign users from learning the identity of the

mixer unless she controls all the public bulletin boards the users can

use, which is practically impossible. Second, Obscuro’s blockchain-

based deposit submission requires an adversary to own (or collude

with) a signiicant portion of Bitcoin mining power to prevent ar-

bitrary benign deposits from being accepted by Obscuro on the

main blockchain, which is also impractical.

We now show that the blockchain forking attack is also inefec-

tive. First, an adversary cannot directly tamper with the blockchain

data that Obscuro is processing since Obscuro does not store it

outside TEE and data within TEE is protected with integrity guar-

antee. If an adversary restarts Obscuro and feeds a blockchain

to it, Obscuro will not be able to collect the deposits from that

blockchain because its secret keys are destroyed when the previous

execution is terminated. Similarly, because the Obscuro uses a new

address to receive coins when it detects malicious blockchain forks,

any deposit transaction will be used to mix at most once, regardless

on a local branch or the main branch of the blockchain. In both

attack attempts, the adversary may break the unlinkability of some

senders and their recipients in the fake blockchain; however, the

recipient addresses will never be used in the main blockchain. In-

stead, the afected users will get their deposits back via our refund

mechanism.

5 IMPLEMENTATION AND EVALUATION

We implement a proof of concept of Obscuro on a commodity

platform with the full Intel SGX support. Our evaluation of mixing

large numbers of deposits shows that our SGX-based Bitcoin mixer

is practical and incurs only negligible overhead.

5.1 Implementation

We utilize the Panoply framework [48] to port Bitcoin Core’s code-

base 5 into an Intel SGX application. We use theOpenSSL library to
implement our public key encryption scheme PE, which is the

Elliptic Curve Integrated Encryption Scheme (ECIES) over the

secp256k1 elliptic curvewithAES countermode and 16-byteHMAC

tag. ECIES is CCA secure [9, 15] and its ciphertexts are quite com-

pact (i.e., only 69 bytes) to it in the OP_RETURN ield. We also port

the constant-time ECDSA library libsecp256k1 [52] into the en-

clave for the implementation of the digital signature DS due to

its compatibility with current Bitcoin protocol. We implemented

the shuling function with the linear time complexity Fisher-Yates

shule algorithm [13] using the trusted randomness generator.

Because it is crucial to use a reliable randomness source for the

cryptographic keys and the permutation function, we increase the

entropy of our random seed in order to reduce the trust in the

hardware provider (i.e., Intel in our current implementation). Thus,

in addition to the trusted hardware-based randomness provided by

the RDRAND to sgx_read_rand(), we concatenate extra sources

4Note that rejecting individual users can be also considered as an availability attack;
however, its ultimate attack goal is to reduce anonymity set.
5Version v0.13.1: https://bitcoin.org/en/release/v0.13.1

34.55

30.01

0

5

10

15

20

25

30

35

40

With	SGX Without	SGX

minute

(a) Fetching and verifying 200,000
blocks (minutes).

2.39

1.99

0

0.5

1

1.5

2

2.5

3

With	SGX Without	SGX

second

(b) Scanning transactions in 100
blocks (seconds).

Figure 3: Measured time for fetching blocks and scanning

transactions with/without SGX.

●

0 200 400 600 800 1000
0

1
2

3
4

5
6

7

Input Size

M
ix

in
g

 a
n

d
 s

ig
n

in
g

 (
s
e

c
o

n
d

)
● ● ●

●
●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●●

●

With SGX

Without SGX

Figure 4: Obscuro signing and mixing time with/without

SGX.

of randomness: OS provided randomness, the SGX trusted clock

and the latest block hash from the Bitcoin blockchain. To predict

the random seed that we feed to the key generator, the adversary

will need to control all the components that contribute to the seed.

5.2 Evaluation

We evaluate Obscuro on a Dell Latitude E5570 laptop that is SGX-

enabled with the 6th Generation Intel® Core™ i7-6820HQ CPU

and 8GB of memory. We conigure the laptop’s BIOS to allocate

128 MB memory for each SGX enclave. We use the Linux 1.6 Open

Source Beta version of Intel Software Guard Extensions SDK, Intel

SGX Platform Software (PSW), and a driver on Ubuntu Desktop-

14.04-LTS 64-bits with Linux kernel version 3.13. Obscuro is com-

piled with GCC v4.8 and built for SGX hardware pre-release mode

HW_PRERELEASE with default optimization lags.

Here, we evaluate the performance of several steps in the Ob-

scuro protocol. We also measure the overhead caused by SGX

operations by comparing two versions of Obscuro, with and with-

out SGX equipped. All experiments are done 20 times in Bitcoin

Regression Testing environment. Furthermore, we also measure

the transaction fees via an on-chain evaluation. Finally, we describe

the trusted computing base of Obscuro implementation.

Bootstrapping Bitcoin blockchain. We measure the time taken

to fetch and verify the Bitcoin blockchain since the latest checkpoint.

697

https://bitcoin.org/en/release/v0.13.1

Obscuro: A Bitcoin Mixer using Trusted Execution Environments ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

As of this writing, the latest block is approximately 200, 000 blocks

ahead of the most recent blockchain checkpoint.6 Figure 3(a) shows

that it takes approximately 35 minutes. This is easily acceptable

in practice since the bootstrapping happens only once when an

Obscuro instance is launched.

Scanning for Obscuro deposits. We measure the time taken to

scan Bitcoin blocks and ind valid Obscuro deposits, which also

involves ECIES decryption operations. In particular, we assume a

conservative scenario in which Obscuro should scan 100 blocks to

search for 2000Obscuro deposits among a total of 4000 transactions.

Figure 3(b) shows that our implementation scans the deposits very

fast (2.39 seconds with SGX) and the overhead incurred by the use

of SGX is acceptable (only 0.4 seconds).

Mixing and Signing transactions.Wemeasure the running time

of the mixing and signing operations and show thatObscuro is scal-

able and eicient in mixing a large set of transactions and operating

Obscuro with trusted hardware causes negligible overhead. We

test the shuling and transaction signing with diferent sizes of the

mixing set, ranging from 5 to 1000 transactions. Figure 4 shows that

the operation time increases as the size of the mixing set increases

and SGX programming model causes a very small extra execution

time (approximately 3% − 5%). Furthermore, Obscuro can mix one

thousand input transactions within seconds (speciically, 1000 in-

puts in 6.49 seconds). This means that a practical deployment of

Obscuro can handle thousands of deposits in a mixing round. Note

that the transaction signing operation is the major contributor to

the mixer performance and it is known to scale quadratically due

to its re-hashing mechanism.

On-blockchain evaluation. We also deploy Obscuro on Bitcoin

Testnet, a global testing environment mimicking the mainnet, hav-

ing each user send 0.01 Testnet Bitcoin through Obscuro. We have

successfully mixed 430 users in a standard transaction7 and 1000

users in a non-standard transaction8. We set the transaction fee to

be around 22 satoshi/bytes, which make the transactions likely to

be mined instantly. Each user will need to pay the transaction fee

in the deposit transaction and partly the mixed transaction, which

takes account in total only 0.0001 BTC (0.6 USD as in June 2018).

Trusted Computing Base (TCB).Wemeasure the size of the TCB

of our prototype. Obscuro’s trusted functions contribute 1, 150

source lines of code (SLoC). Obscuro also requires some changes

in the Bitcoin Core implementation which contribute 1, 292 SLoC.

Thus, Obscuro contributes a total of 2, 442 SloC to the TCB. The

entire TCB includes the Bitcoin Core implementation, two widely

used cryptographic libraries (i.e., libsecp256k1 and OpenSSL), and
the Panoply implementation, in which users can audit to verify

whether they deviate from their public codebases. 9

6 DISCUSSION

6.1 Recipient of the Mixing Fees

Like many other mixing services, Obscuro may enforce some par-

ticipation fees (e.g., 1ś3 percent of the mixing value) on top of the

transaction fees to deter DoS and Sybil attacks [12, 14, 18, 51, 57].

6Latest checkpoint is at block 295000, see chainparams.cpp in Bitcoin Core’s codebase.
7
https://www.blocktrail.com/tBTC/tx/59e1f4fe3e6b735f279f340a088597af45f545e6bab4542c82a24d0014b59b9

8
https://www.blocktrail.com/tBTC/tx/f5230965145ef06eb65595e41ecb701af6c128802a174f34a7b65ac7d44dc9b8

9https://github.com/BitObscuro/Obscuro

However, if the recipient of the mixing fees happens to be mali-

cious, the deterrence does not work. For example, the recipient of

the mixing fees can generate a large number of Sybil deposits with-

out any mixing fees because the mixing fees will be paid to herself

eventually. Deciding who receives the mixing fees is challenging

and has been rarely addressed in previous works.

The most secure defense against this subtle attack is to burn

the mixing fees by sending the fees to an unspendable address

(similar to PeerCoin [4]). Note that burning fee can cause a small

delation on the total supply of Bitcoin but completely prevent the

aforementioned risk. As a more economically viable solution that is

less ideal in terms of security, some reputable charity organizations

or privacy advocacy organizations (e.g., EFF [1] or Tor [5]), which

are believed to be honest, can be set as the recipients of the mixing

fee. It is even possible to allow each user to choose the recipient of

his mixing fee from a list of several reputable organizations (e.g.,

using diferent identiiers in the OP_RETURN output) or the burning

option.

6.2 Multiple Obscuro Instances

Obscuro is necessarily an open source project (for public scrutiny

of its code) and thus any third party can spawn anObscuro instance

simply by getting the open-source implementation and running

it on an Intel SGX platform. Consequently, users may see many

Obscuro instances, which have diferent identities (i.e., address

and public key), are successfully veriied via remote attestation. In

fact, this does not provide any economic gain to the third-party

service provider, since the recipients of the mixing fees are hard-

coded in Obscuro’s codebase, which is owned and maintained

by the original service provider. However, having many Obscuro

instances may cause users to become confused and deposit their

coins to third-party Obscuro instances, resulting in the shortage

of deposits at the original one.

To thwart this concern, the original operator can provide a signa-

ture that certiies the Obscuro instance that it is operating, along

with the attestation data that is published in the public bulletin

boards. Then, users are advised to deposit coins only to the address

of the Obscuro instance that is run by the original operator, who

takes the responsibility to maintain the Obscuro codebase.

7 RELATEDWORK

Privacy of Bitcoin and altcoins have been actively studied in the past

few years. In this section, we irst summarize Bitcoin-based mixer

proposals and then discuss other non-Bitcoin proposals. Moreover,

we outline a recent trend in utilizing trusted hardware in cryptocur-

rency or, in general, blockchain applications.

7.1 Existing Bitcoin Mixer Solutions

Existing mixer proposals can be classiied into two main groups

based on their design, namely centralized and decentralized mix-

ers. We compare our scheme Obscuro with existing proposals in

various aspects (see Table 1).

Decentralized mixers. In decentralized mixing protocols, partic-

ipants communicate among themselves to privately permute the

ownership of their coins. In CoinJoin, users mutually sign on a

698

https://www.blocktrail.com/tBTC/tx/59e1f4ffe3e6b735f279f340a088597af45f545e6bab4542c82a24d0014b59b9
https://www.blocktrail.com/tBTC/tx/f5230965145ef06eb65595e41ecb701af6c128802a174f34a7b65ac7d44dc9b8
https://github.com/BitObscuro/Obscuro

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA M. Tran et al.

Bitcoin mixers Theft

prevention

Relationship

anonymity

Participation

guarantee

Large mixing

set guarantee

Join-then-abort

resistance

On-chain

transactions

Decentralized

CoinJoin [26] ✓ ✗3 ✓ small set5 ✗ 1

CoinShule [42, 43] ✓ ✓ ✓ small set5 ✗ 1

CoinParty [57] ✓1 ✓ ✓ ✓ ✗ 2

Xim [12] ✓ ✗3 ✓ small set5 ✓ 7

Centralized

MixCoin [14] ✗2 ✗4 ✗ ✗ ✓ 2

BlindCoin [51] ✗2 ✓ ✗ ✗ ✓ 2

TumbleBit [18] ✓ ✓ ✗ ✗ ✓ 4

Obscuro ✓ ✓ ✓ ✓ ✓ 2

Table 1: Comparison between existing Bitcoin mixer proposals and Obscuro. 1 CoinParty only achieves theft prevention if

2/3 users are honest. 2 MixCoin and BlindCoin only provide accountability.3 Users can link all senders and recipients. 4 Mixer

operator can link all senders and recipients. 5 Users know the mixing set size before mixing, but the set size is small.

single transaction where each user controls an input and an out-

put addresses [26]. However, CoinJoin allows every participant to

learn all the between any sender and recipient addresses. Coin-

Shule [42] and its successor CoinShule++[43] use an additional

overlay cryptographic mixing protocol on top of CoinJoin to pro-

vide relationship anonymity for all sender and recipient pairs. Coin-

Party [57] is another decentralized mixing protocol. However, it

relies on an assumption that 2/3 of the peers are honest, which

could easily be violated in practice. In these decentralized proto-

cols, users are allowed to refuse to agree on the transaction, thus

coin stealing are prevented; however, a malicious user can initially

participate in the execution of the protocol, but aborts before the

end of the execution in order to disrupt the mixing of the honest

users (i.e.,join-then-abort attack). CoinShule and CoinShule++

can identify which users have been aborted but the rest has to mix

again. As a consequence, They only mix among a relatively small

set of users (e.g., 50 participants). To discourage the join-then-abort

attack, XIM [12] proposes a two-party mixing protocol where the

users need to pay a participation fee and advertise themselves on

the blockchain. Nevertheless, XIM requires multiple on-chain trans-

actions and thus may take hours to inish a mixing round between

only two participants.

Centralized mixers. In Mixcoin, users send coins to a centralized

party and receive back the mixed coins [14]. Mixcoin is invulnerable

to join-then-abort attack since the users join the mix independently.

Mixcoin does not achieve relationship anonymity despite users

cannot identify the recipient addresses of others because the mixer

operator knows all the links between senders and their recipients.

Blindcoin modiies Mixcoin using blind signature scheme so that

the mixer operator cannot learn the links [51]. Since the mixer op-

erators of MixCoin and Blindcoin may steal users’ coins, they give

users signed certiicates to provide accountability, which can dam-

age the reputation of a malicious mixer operator. The accountability

property is far from ideal as coin theft cannot be prevented. Tum-

bleBit presents an untrusted intermediate payment hub between

the payer and payee, involving a cryptographic puzzle promise and

solver protocol among them to prevent coin theft [18]. While these

centralized protocols can mix participants in a large set (e.g., 800

users in TumbleBit), they fail to defend against the participation re-

jection attack (see Section 2.2) because the malicious mixer service

providers can selectively reject to interact with some benign users.

Also, there is no in-protocol guarantee regarding the mixing set

size and thus users may need to participate in subsequent rounds

until they are satisied with large enough mixing set size.

Comparison with Obscuro. From Table 1, we can see that Ob-

scuro outperforms all other mixers in most of the properties. In

particular, Obscuro protects the coins and ensures the unlinka-

bility between all senders and their recipients. We also guarantee

participation for benign users and allow them to verify the mini-

mal size of the mixing set they will be included before they send

their deposits (see Section 3.5). Similar to other centralized mixers,

there is no coordination among users in Obscuro and a malicious

participant cannot disrupt others during mixing. In fact, a sender

and recipient pair is only involved in two transactions, a deposit

transaction and a mixed transaction, which is slightly higher than

it is in decentralized proposals.

7.2 Privacy Improvements in other
Cryptocurrencies

Several privacy-enhancing cryptocurrencies have been proposed

and built recently such as MimbleWimble[20], Monero [3] and

ZCash [31, 44]. In Monero, ring signature is used to hide a sender’s

address within a group of others. Monero users can also use stealth

addresses to hide their actual outputs while transacting, and ring

conidential transaction to hide the transferring amount of coins.

Unfortunately, recent studies demonstrate various anonymity at-

tacks against these properties [22, 32]. ZCash is a cryptocurrency

developed from ZeroCoin [31] and ZeroCash [44] proposals. ZCash

protocol is based on a zero-knowledge proof called SNARKs [10]

where transactions reveal no information about the transacting

amount or recipients. However, ZCash requires a trusted setup,

limiting its large-scale adoption. MimbleWimble is an extension

of Bitcoin protocol and ofers conidential transactions; however,

its functionalities lack script support. There is also a conidential

699

Obscuro: A Bitcoin Mixer using Trusted Execution Environments ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

transaction proposal for Bitcoin, which motivates ValueShule to

mix transactions with diferent transferring amounts[41].

In some other cryptocurrencies with no built-in privacy such

as Ethereum and Ripple, there are also some mixer proposals that

aim to improve the transaction anonymity. For instance, Möbius

replaces a central mixer with an Ethereum smart contract em-

ployed with ring signatures and stealth addresses so that a recipient

can withdraw coins without being linked with any sender [28].

PathShule proposes a mixing protocol for path-based transactions

in credit networks and demonstrates mixing in Ripple [34].

While these alternative cryptocurrencies are promising, Bitcoin

still remains as the most popular cryptocurrency with the largest

market capitalization.Obscuro aims to provide a secure and anony-

mous mixing service for Bitcoin transactions, without any need to

modify the current protocol.

7.3 TEE for Cryptocurrency Applications

The trusted hardware has opened a new range of research problems

Ð including ones in cryptocurrency research. For instance, a re-

cently proposed of-chain micropayment channel, named Teechan,

utilizes the trusted execution environment (e.g., Intel SGX) to scale

up transaction throughput of Bitcoin transactions to thousands per

second [24]. Intel SGX is utilized in Town Crier to provide authen-

ticated data to the Ethereum smart contracts system [54]. A recent

proposal named Tesseract uses Intel SGX to build a real-time cryp-

tocurrency exchange [11]. The TEE is also used to securely report

CPU cycles, or a Proof-of-Useful-Work, which is the foundation of

a blockchain mining framework called REM [55].

8 CONCLUSION

Mixing Bitcoin transactions signiicantly improves the anonymity

of Bitcoin by providing relationship anonymity to transactions.

Bitcoin mixers must guarantee protection against strong adver-

saries (e.g., malicious service providers), provide strong anonymity

guarantees, and support large-size anonymity set and short mix-

ing time, which have not been completely achieved by prior work.

We exploit a new security capability in emerging CPUs, trusted

execution environment (TEE), to design a secure and anonymous

Bitcoin centralized mixer. Our Obscuro mixer demonstrates that

the strong security and anonymity guarantees are achievable for

fast and large-size mixing services.

9 ACKNOWLEDGMENTS

We thank the anonymous reviewers of this paper for their helpful

feedback. We also thank Dat Le Tien, Hung Dang, Shweta Shinde

and Amrit Kumar for useful feedback on an early version of the

paper. This research was partially supported by a grant from Sin-

gapore Ministry of Education Academic Research Fund Tier 1 (R-

252-000-624-133) and a grant from National Science Foundation

(CNS-1617676). This work is also supported in part by research

grants to the NUS CRYSTAL Centre.

REFERENCES
[1] 2018. Electronic Frontier Foundation (EFF). https://www.ef.org/. Online;

accessed June 2018.
[2] 2018. IPFS. https://ipfs.io/. Online; accessed June 2018.
[3] 2018. Monero. https://getmonero.org/. Online; accessed June 2018.

[4] 2018. PeerCoin. https://peercoin.net. Online; accessed June 2018.
[5] 2018. Tor. https://www.torproject.org/. Online; accessed June 2018.
[6] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. ACM New York, NY, USA.

[7] Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer, and Srdjan
Capkun. 2013. Evaluating user privacy in bitcoin. In International Conference on
Financial Cryptography and Data Security. Springer, 34ś51.

[8] ARM ARM. 2009. Security technology building a secure system using trustzone
technology (white paper). ARM Limited (2009).

[9] Mihir Bellare and Chanathip Namprempre. 2008. Authenticated Encryption:
Relations among Notions and Analysis of the Generic Composition Paradigm. J.
Cryptology 21, 4 (2008), 469ś491.

[10] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKs for C: Verifying program executions succinctly and in zero
knowledge. In Advances in CryptologyśCRYPTO 2013. Springer, 90ś108.

[11] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xeuyuan Zhao, Lorenz Breidenbach,
Philip Daian, and Ari Juels. 2017. Tesseract: Real-time cryptocurrency exchange
using trusted hardware.

[12] George Bissias, A Pinar Ozisik, Brian N Levine, and Marc Liberatore. 2014. Sybil-
resistant mixing for bitcoin. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society. ACM, 149ś158.

[13] Paul E Black. 2005. Fisher-yates shule. Dictionary of algorithms and data
structures 19 (2005).

[14] Joseph Bonneau, Arvind Narayanan, AndrewMiller, Jeremy Clark, Joshua A Kroll,
and Edward W Felten. 2014. Mixcoin: Anonymity for Bitcoin with accountable
mixes. In International Conference on Financial Cryptography and Data Security.
Springer, 486ś504.

[15] D Brown. 2009. Standards for eicient cryptography, SEC 1: elliptic curve cryp-
tography. Released Standard Version 1 (2009).

[16] Karthekeyan Chandrasekaran, Richard Karp, Erick Moreno-Centeno, and Santosh
Vempala. 2011. Algorithms for implicit hitting set problems. In Proceedings of the
twenty-second annual ACM-SIAM symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, 614ś629.

[17] George Danezis and Andrei Serjantov. 2004. Statistical disclosure or intersection
attacks on anonymity systems. In International Workshop on Information Hiding.
Springer, 293ś308.

[18] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and
Sharon Goldberg. 2017. TumbleBit: An untrusted Bitcoin-compatible anony-
mous payment hub. Proceedings of NDSS 2017 (2017).

[19] Intel. 2017. Attestation Service for Intel® Software Guard Extensions: API
Documentation. https://software.intel.com/sites/default/iles/managed/7e/3b/
ias-api-spec.pdf.

[20] Tom Elvis Jedusor. 2016. Mimblewimble.
[21] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen.

2016. Intel® Software Guard Extensions: EPID Provisioning and Attestation
Services. White Paper 1 (2016), 1ś10.

[22] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. 2017. A trace-
ability analysis of MoneroâĂŹs blockchain. In European Symposium on Research
in Computer Security. Springer, 153ś173.

[23] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring ine-grained control low inside SGX enclaves with
branch shadowing. In 26th USENIX Security Symposium, USENIX Security. 16ś18.

[24] Joshua Lind, Ittay Eyal, Peter Pietzuch, and Emin Gün Sirer. 2017. Teechan:
Payment Channels Using Trusted Execution Environments. In 4th Workshop on
Bitcoin and Blockchain Research.

[25] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In 26th USENIX Security Symposium, USENIX Security.
1289ś1306.

[26] Greg Maxwell. 2013. CoinJoin: Bitcoin privacy for the real world. In Post on
Bitcoin forum.

[27] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shai,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions
and software model for isolated execution.. In HASP@ ISCA. 10.

[28] Sarah Meiklejohn and Rebekah Mercer. 2018. Möbius: Trustless tumbling for
transaction privacy. Proceedings on Privacy Enhancing Technologies 2018, 2 (2018),
105ś121.

[29] Sarah Meiklejohn and Claudio Orlandi. 2015. Privacy-enhancing overlays in
bitcoin. In International Conference on Financial Cryptography and Data Security.
Springer, 127ś141.

[30] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon
McCoy, Geofrey M Voelker, and Stefan Savage. 2013. A istful of bitcoins:
characterizing payments among men with no names. In Proceedings of the 2013
conference on Internet measurement conference. ACM, 127ś140.

700

https://www.eff.org/
https://ipfs.io/
https://getmonero.org/
https://peercoin.net
https://www.torproject.org/
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA M. Tran et al.

[31] IanMiers, Christina Garman, Matthew Green, and Aviel D Rubin. 2013. Zerocoin:
Anonymous distributed e-cash from bitcoin. In Security and Privacy (SP), 2013
IEEE Symposium on. IEEE, 397ś411.

[32] Andrew Miller, Malte Möser, Kevin Lee, and Arvind Narayanan. 2017. An
empirical analysis of linkability in the Monero blockchain. arXiv preprint
arXiv:1704.04299 (2017).

[33] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX ampliies the power of cache attacks. In International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 69ś90.

[34] Pedro Moreno-Sanchez, Tim Ruing, and Aniket Kate. 2017. PathShule: Credit
Mixing and Anonymous Payments for Ripple. Proceedings on Privacy Enhancing
Technologies 2017, 3 (2017), 110ś129.

[35] Malte Moser, Rainer Bohme, and Dominic Breuker. 2013. An inquiry into money
laundering tools in the Bitcoin ecosystem. In eCrime Researchers Summit (eCRS),
2013. IEEE, 1ś14.

[36] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. bit-
coin.org (2009).

[37] Andreas Pitzmann and Marit Hansen. 2010. A terminology for talking about
privacy by data minimization: Anonymity, Unlinkability, Undetectability, Unob-
servability, Pseudonymity, and Identity Management. (2010).

[38] Fergal Reid and Martin Harrigan. 2013. An analysis of anonymity in the bitcoin
system. In Security and privacy in social networks. Springer, 197ś223.

[39] Kenneth Reid. 2013. Banknotes and Their Vindication in Eighteenth-Century
Scotland. David Fox andWolfgang Ernst (eds), Money in theWestern Legal Tradition
(Oxford University Press, 2014, Forthcoming); Edinburgh School of Law Research
Paper No. 2013/19 (2013).

[40] Dorit Ron and Adi Shamir. 2013. Quantitative analysis of the full bitcoin trans-
action graph. In International Conference on Financial Cryptography and Data
Security. Springer, 6ś24.

[41] Tim Ruing and Pedro Moreno-Sanchez. 2017. ValueShule: Mixing Conidential
Transactions for Comprehensive Transaction Privacy in Bitcoin. In International
Conference on Financial Cryptography and Data Security. Springer, 133ś154.

[42] TimRuing, PedroMoreno-Sanchez, andAniket Kate. 2014. CoinShule: Practical
decentralized coin mixing for Bitcoin. In European Symposium on Research in
Computer Security. Springer, 345ś364.

[43] Tim Ruing, Pedro Moreno-Sanchez, and Aniket Kate. 2016. P2P Mixing and
Unlinkable Bitcoin Transactions. IACR Cryptology ePrint Archive 2016 (2016),
824.

[44] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE,
459ś474.

[45] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware guard extension: Using SGX to conceal cache attacks. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 3ś24.

[46] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:
Eradicating controlled-channel attacks against enclave programs. In Proceedings
of the 2017 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA.

[47] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
2016. Preventing page faults from telling your secrets. In Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security. ACM,
317ś328.

[48] Shweta Shinde, DL Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply: Low-
TCB Linux applications with SGX enclaves. In Proceedings of the Annual Network
and Distributed System Security Symposium (NDSS). 12.

[49] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. 2014. Bitiodine: Ex-
tracting intelligence from the bitcoin network. In International Conference on
Financial Cryptography and Data Security. Springer, 457ś468.

[50] Raoul Strackx and Frank Piessens. 2016. Ariadne: A minimal approach to state
continuity. In USENIX Security.

[51] Luke Valenta and Brendan Rowan. 2015. Blindcoin: Blinded, accountablemixes for
bitcoin. In International Conference on Financial Cryptography and Data Security.
Springer, 112ś126.

[52] P Wuille et al. 2015. libsecp256k1: Optimized C library for EC operations on
curve secp256k1.

[53] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In Security
and Privacy (SP), 2015 IEEE Symposium on. IEEE, 640ś656.

[54] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town
Crier: An authenticated data feed for smart contracts. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. ACM, 270ś
282.

[55] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert Van Renesse. 2017.
REM: Resource-Eicient Mining for Blockchains. IACR Cryptology ePrint Archive
2017 (2017), 179.

[56] Fengwei Zhang and Hongwei Zhang. 2016. Sok: A study of using hardware-
assisted isolated execution environments for security. In Proceedings of the Hard-
ware and Architectural Support for Security and Privacy 2016. ACM, 3.

[57] Jan Henrik Ziegeldorf, Fred Grossmann, Martin Henze, Nicolas Inden, and Klaus
Wehrle. 2015. Coinparty: Secure multi-party mixing of bitcoins. In Proceedings
of the 5th ACM Conference on Data and Application Security and Privacy. ACM,
75ś86.

A STRUCTURE OF THE DEPOSIT
TRANSACTION

Here, we describe the format of the deposit transaction that the

users submit to Obscuro. Particularly, the recipient address addrB
is a Pay-To-Script-Hash (P2SH) address and is encrypted with the

Obscuro’s pkPE
M
. The user then needs to construct a redeem script

that follows the format shown in Figure 5. Essentially, this script

allows both the mixer and the user spend the deposit transaction

but the user can only do that after ⟨time − lock⟩ value (e.g., 100

blocks). Next, the user then hashes the redeem script, puts the hash

in the scriptPubKey, and broadcasts the deposit transaction to the

Bitcoin network (See Figure 6).

1 OP_IF

2 <pubkey_M> OP_CHECKSIG %public key associated with addr_M

3 OP_ELSE

4 <time -lock > OP_CHECKLOCKTIMEVERIFY OP_DROP

5 <pubkey_A> OP_CHECKSIG %public key associated with addr_A

6 OP_ENDIF

Figure 5: Structure of the redeem script.

1 Input:

2 scriptSig: <signature_A> <pubkey_A>

3 Output:

4 Index: 0

5 Value: 0

6 scriptPubKey:

7 OP_RETURN <identifier > <Encrypted(addr_B)>

8

9 Index: 1

10 Value: 1000000 %The denomination is 0.01 bitcoin

11 scriptPubKey:

12 OP_HASH 160 <Hash 160(redeem_script)> OP_EQUAL

Figure 6: Structure of the deposit transaction.

701

