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Enclaves, such as those enabled by Intel SGX, offer a hardware primitive for shielding user-level applications from the OS. While
enclaves are a useful starting point, code running in the enclave requires additional checks whenever control or data is transferred
to/from the untrusted OS. The enclave-OS interface on SGX, however, can be extremely large if we wish to run existing unmodified
binaries inside enclaves. This paper presents RATEL, a dynamic binary translation engine running inside SGX enclaves on Linux. RATEL
offers complete interposition, the ability to interpose on all executed instructions in the enclave and monitor all interactions with the OS.
Instruction-level interposition offers a general foundation for implementing a large variety of inline security monitors in the future.

We take a principled approach in explaining why complete interposition on SGX is challenging. We draw attention to 5 design
decisions in SGX that create fundamental trade-offs between performance and ensuring complete interposition, and we explain how
to resolve them in the favor of complete interposition. To illustrate the utility of the RATEL framework, we present the first attempt to
offer binary compatibility with existing software on SGX. We report that RATEL offers binary compatibility with over 200 programs we
tested, including micro-benchmarks and real applications such as Linux shell utilities. Runtimes for two programming languages,

namely Python and R, tested with standard benchmarks work out-of-the-box on RATEL without any specialized handling.
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1 INTRODUCTION

Commercial processors today have native support for trusted execution environments (TEEs) to run user-level applica-
tions in isolation from other software on the system. A prime example of such a TEE is Intel Software Guard eXtensions
(SGX) [59]. The hardware-isolated environment created by SGX, commonly referred to as an enclave, runs a user-level
application without trusting privileged software. Enclaves offer a good basis for isolation, as they do not necessarily
place trust on the OS and allow us to restrict the code base to trust. Further, they open up the possibility of reverse
sandboxing, where the enclaved application protects itself from attacks arising from the OS [49].

SGX exposes an extremely large interface between the enclave and the OS, including the potential to transfer control to

the OS at every memory access (e.g. via memory faults) or instruction executed (e.g. via timer interrupts and exceptions).
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Furthermore, the demand for running commodity applications inside SGX has surged, but these applications are not
written to deal with the threat of a malicious OS. Therefore, the ability to interpose on all control and data passed on
the enclave-OS interface is an important building block. Such interposition can be used for implementing compatibility
frameworks, a host of well-known inline security monitors, and sandboxing techniques inside enclaves [14, 47, 73, 83, 84].

Complete interposition on enclave-OS interface is a known challenge. For example, a long line of work on frameworks
which aim to run existing software on SGX highlights the difficulty of ensuring compatibility [16, 20, 30, 72, 75]. In
this work, we address this challenge by taking a new approach: we enable dynamic binary translation (DBT), i.e., the
ability to interpose on all enclave instructions executed in the enclave. Our work enables DBT on Intel SGX enclaves for
unmodified x86_64 Linux binaries by designing a system called RATEL. RATEL is available open-source [1] and it builds
on DynamoRIO, an industrial-strength DBT engine originally designed for non-enclave code [24]. The RATEL DBT
engine does not trust the OS, and enclave applications running on RATEL are assumed to be unaware of its presence.
A security monitor implemented using RATEL can mediate and intercept on all instructions, entry-exits, system calls,
dynamically generated code, asynchronous events, virtual address accesses, and run-time loading of code and data
in the enclave—a foundation for implementing a wide variety of security-related instrumentation on enclaves in the
future, without specializing to individual applications or language runtimes.

To illustrate one advantage of such seamless interposition, in this work, we use RATEL to build a binary compatibility
layer for SGX. Binary compatibility creates the illusion for an unmodified application binary as if it is running in a normal
OS process, rather than in a restricted environment such as an enclave. In designing this layer, we observe several trade-
offs arise between ensuring complete interposition on the OS-enclave boundary and the resulting performance. These
trade-offs are orthogonal to security concerns pointed out in prior works (c.f. Iago attacks [31], side-channels [90]). We
observe that these trade-offs are somewhat fundamental and rooted in 5 specific restrictions imposed by the SGX design,
which create sweeping incompatibility with multi-threading, memory mapping, synchronization, signal-handling,
shared memory, and other commodity OS abstractions. Our design resolves these trade-offs consistently in the favor of
complete interposition rather than performance. In this sense, our work departs from prior works.

RATEL is the first system that enables DBT and binary compatibility for SGX, to the best of our knowledge. Prior works
have proposed a number of different ways of achieving partial compatibility—offering specific programming languages
for authoring enclave code [17, 64, 86], keeping compatibility with container interfaces [16, 49], or conformance to
specific versions of library interfaces provided by library OSes [20, 30, 68, 72, 75]. All of these designs, however, assume
that the application binaries run benign code that uses a particular prescribed interface to achieve compatibility on
SGX—for example, application binaries are expected to be relinked against specific versions of libraries (e.g., mus1, libc,
glibc), ported to a customized OS, or containerized. In contrast, RATEL interposes at the instruction-level execution of

unmodified program binaries in the enclave, and this approach conceptually does not require such strong assumptions.

Results. We highlight 3 results showing the egalitarian compatibility offered by RATEL. First, we find that RATEL
supports more than one language runtimes (e.g. Python and R) out-of-the-box, without requiring any language-specific
design decisions. Second, we successfully run a total of 203 unique unmodified binaries across 5 benchmark suites
(58 binaries), 4 real-world application use-cases (12 binaries), and 133 Linux utilities. These encompass various work-
load profiles including CPU-intensive (SPEC 2006), I/O system call intensive (FSCQ, IOZone), system stress-testing
(HBenchOS), multi-threading support (Parsec-SPLASH2), a machine learning library (Torch), and real-world applications
demonstrated in prior works on SGX. RATEL offers compatibility but does not force applications to use any specific

libraries or higher-level interfaces. At the same time, our presented techniques work without any specialization per
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OS abstraction Restrictions affecting abstraction
System call arguments R1

Dynamic loaded/generated code R2

Thread support R5, R2

Signal handling R1,R5

Thread synchronization R3,R1

File/memory mapping R1,R2,R3,R4

IPC/shared memory R3, R4

Table 1. Ramifications of SGX design restrictions on common OS abstractions.

target application or runtime, highlighting that DBT can be a general solution to compatibility on enclaves. Lastly,
we show that RATEL has comparable! or better compatibility than Graphene-SGX, which requires relinking with a

particular version of libc, and is one of the longest maintained SGX compatibility infrastructure available publicly.

2 WHY IS COMPLETE INTERPOSITION CHALLENGING?

Intel SGX allows execution of code inside a hardware-isolated environment called an enclave for running user-level
application code [35].2 Our goal is to interpose on all the instructions executed inside the enclave. This is a challenge
on SGX because of its severe threat model and restrictions placed on enclave code. The OS is not trusted in this threat
model. SGX enforces confidentiality and integrity of enclave-bound code and data. All enclave memory is private and
only accessible when executing in enclave-mode. Data exchanged with the external world (e.g., the host application
or OS) must reside in public memory which is not protected. At runtime, execution control can only synchronously
enter an enclave via ECALLs and exit an enclave via OCALLs, which are primary interfaces provided by SGX for effecting
system calls (syscalls). Any illegal instructions or exceptions in the enclave create asynchronous entry-exit points. SGX
restricts these to pre-specified points in the program. If the enclave execution is interrupted asynchronously, SGX saves

the enclave code execution context and resumes it at the entry point later [2].

2.1 Restrictions Imposed by SGX Design

Intel SGX protects the enclave by enforcing strict isolation at several points of interactions between the OS and the

user enclave code. We outline 5 restrictions that the design of SGX imposes:

R1. Spatial memory partitioning. SGX enforces spatial memory partitioning. It reserves a region that is private
to the enclave and the rest of the virtual memory is public. Memory can either be public or private, not both.

R2. Static memory partitioning. The enclave has to specify the spatial partitioning statically. The size, type (e.g.,
code, data, stack, heap), and permissions for its private memory have to be specified before creation and these
attributes cannot be changed at runtime.

R3. Non-shareable private memory. An enclave cannot share its private memory with other enclaves.

R4. 1-to-1 private virtual memory mappings. Private memory spans over a contiguous virtual address (VA)
range, the start address of which is decided by the OS. The private VA space has a 1-to-1 mapping with the
physical address (PA) space.

!We chose not to support fork in RATEL [19].
ZUnless stated otherwise, we use the term Intel SGX v1 to refer to the hardware as well as the trusted platform software (PSW) and the trusted software
development kit (SDK), as shown in Figure 2.
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R5. Fixed entry points. An enclave can only resume execution from its last point and context of exit. Any other

entry points/contexts have to be statically pre-specified in the binary as valid ahead of time.

2.2 Ramifications on Incompatibility

Restrictions R1-R5 are a systematic way to understand the incompatibility created by design choices in SGX with the
OS and application functionality. Table 1 summarizes the effect. All of the restrictions apply to SGX v1 [12]. R1-R4
apply to SGX v2 [58, 89], but R2 is relaxed because SGX v2 enables dynamic page creation and permission changes.
Thus, for the rest of the paper, we describe our design based on SGX v1. We discuss their specific differences to SGX v2

and its ramifications in Section 7.2.

R1. Since SGX spatially partitions the enclave memory, any data which is exchanged with the OS requires copying
between private and public memory. In normal applications, an OS assumes that it can access all the memory of a user
process, but this is no longer true for enclaves. Any syscall arguments that reside in enclave private memory are not
accessible to the OS or the host process. The enclave has to explicitly manage a public and a private copy of the data to
make it accessible externally and to shield it from unwanted modification when necessary. We refer to this as a two-copy
mechanism. Thus, R1 breaks functionality (e.g., system calls, signal handling, futex), introduces non-transparency (e.g.,

explicitly synchronizing both copies), and introduces security gaps (e.g., TOCTOU attacks [31, 43]).

R2. Applications often require changes to the size or permissions of enclave memory. For example, memory permissions
change after dynamic loading of libraries (e.g., dlopen) or files (e.g., mmap), executing dynamically generated code,
creating read-only zero-ed data segments (e.g., .bss), and for software-based isolation of security-sensitive data. The
restriction R2 is incompatible with such functionality. To work with this restriction, applications require careful semantic
changes: either weaken the protection (e.g., read-and-execute instead of read-or-execute), use the two-copy mechanism,

or rely on some additional form of isolation (e.g., using segmentation or software instrumentation).

R3. SGX has no mechanism to allow two enclaves to share parts of their private memory directly. This restriction
is incompatible with the synchronization primitives like locks and shared memory when there is no trusted OS
synchronization service. Keeping 2 copies of a shared lock breaks its semantics and creates a chicken-and-egg issue:
how to synchronize the 2 copies without another trusted synchronization primitive.

R4. When applications demand new virtual address mappings (e.g., malloc), the OS adds these mappings. Normally,
applications can ask the OS to map the same physical page at several different offsets, either with same or different
permissions—for example, say when the same file is mapped as read-only at two places in the program space. On SGX,

however, the same PA cannot be mapped to multiple enclave VAs. Any such mappings lead to memory protection faults.

R5. SGX starts or resumes enclave execution only from controlled entry points, i.e., which have to be statically identified
virtual addresses. Entry/exit points such as those via system calls are feasible to identify statically. However, there are
several unexpected entry points to an application when we run them unmodified in an enclave (e.g., due to exception-
generating instructions or faulting memory accesses). Determining all potential program points across the enclave
boundary is not straightforward. When the control re-enters the enclave after an exit (e.g., an OCALL), SGX requires
that the program execution context at the time of exit and re-entry should be the same. This does not adhere to typical
program functionality. Normally, if the program wants to execute custom error handling code, say after a divide-by-zero
(SIGFPE) or illegal instruction (SIGILL), it can resume execution at a handler function in the binary with appropriate
execution context setup by the OS. On the contrary, SGX will resume enclave execution at the same instruction and
same context (not the OS setup context for exception handling), thus re-triggering an exception if naively handled.
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It is possible to enable compatibility with exceptions by using the SGX features for exception handling [59]. However,
it requires inserting logic to update exception handling data structures (e.g., SSA, enclave stack for EENTER, ERESUME)
before and after the exception occurs. Doing such changes in unmodified binaries, though not conceptually impossible,
is complex and intricate. Our design needs to prevent overriding any pre-existing legitimate behavior of the enclave
binary and ensure that the context expected by the application binary remains the same, i.e., as if the binary was

running outside the enclave. We explain the challenges and our design in Section 3, Section 4 provides details.

3 OVERVIEW

Our work poses the following question: Can complete interposition on the OS-enclave interfaces be achieved on the
SGX platform? We present the first system that allows interposing on all enclave-bound instructions, by enabling a
widely-used dynamic binary translation (DBT) engine inside SGX enclaves. Our system is called RATEL.

Before we present the design of our DBT engine, we emphasize a key design trade-off: Working with restrictions
R1—R5, we observe that one is forced to choose between complete interposition at the OS-enclave interfaces and performance.
We explain these trade-offs in Section 3.2. Our design picks completeness of interposition over performance, wherever
necessary. In this design principle, it fundamentally departs from prior work.

Several different approaches to enable applications in SGX enclaves have been proposed. In nearly all prior works,
performance consideration dominates design decisions. A prominent way to side-step the performance costs of ensuring
compatibility is to ask the application to use a prescribed program-level interface or APIL The choice of interfaces varies.
They include specific programming languages [33, 41, 44, 86], application frameworks [53], container interfaces [16], and
particular implementations of standard libc interfaces. Figure 1 shows the prescribed interfaces in three approaches,
including library OSes and container engines, and where they intercept the application to maintain compatibility. Given
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that complete instruction-level interposition is not the objective of prior works, they handle only subsets of R1 — R5.
One drawback of these approaches is that if an application does not originally use the prescribed API, the application
needs to be rewritten, recompiled from source, or relinked against specific libraries. Further, enclave programs may
invoke the OS interfaces directly outside the prescribed API. The approach of complete interposition at the lowest level
of interfaces (i.e. at each executed instruction) offers a powerful way of providing compatibility without specializing to
specific target applications or making any such assumptions on the application behavior.

As an illustration of its utility, we show that we can build a binary compatibility layer for Linux-based SGX enclaves
on RATEL. Application binaries are originally created with the intention of running on a particular OS in an unrestricted
OS process environment. A binary compatibility layer runs below the application and translates any code illegal in the
restrictive SGX environment to the appropriate enclave-OS interfaces. In concept, application code is thus free to use
any library, direct assembly code, and runtime that uses the Linux system call interfaces. Furthermore, RATEL has about
26 additional instruction-level runtime profilers and monitors, which are pre-existing in our baseline DBT engine (see
Section 6.4). These become available to applications running on SGX enclaves directly. Such instrumentation can be

used for debugging, resource accounting, or implementing inline security monitors for enclaved code in the future.

3.1 Background on DBT

Dynamic binary translation (DBT) is a well-known approach to binary code instrumentation and implementing
inline reference monitors. It intercepts each instruction in a program before it executes [52]. In this paper, we choose
DynamoRIO as our DBT engine, since it is open-source and widely used in industry [24].3 Vanilla DynamoRIO works
much like a just-in-time compilation engine which dynamically re-generates (and instruments) code of the application
running on it. At a high level, DynamoRIO first loads itself and then loads the application code in a separate part of the
VA space, as shown in Figure 2. Similarly, it sets up two different contexts, one for itself and one for the application.
DynamoRIO can update the code on-the-fly before putting it in the code cache by re-writing instructions (e.g., convert
a syscall instruction to a stub or library function call). Such rewriting ensures that DynamoRIO engine takes control
before each block of code executes, enabling the ability to interpose on every instruction. Instrumented code blocks
are placed in a region of memory called a code cache. When the code cache executes, DynamoRIO regains control as
the instrumentation logic desires. It does post-execution updates to itself for book-keeping or to the program’s state.
Additionally, DynamoRIO hooks on all events intended for the process (e.g., signals). The application itself is prevented
from accessing DynamoRIO memory via address-space isolation techniques [52]. Thus, it acts as an arbiter between the
application’s binary code and the external environment(e.g., OS, filesystem) with complete interposition.

The original DynamoRIO engine is designed to work for non-enclave code. We adapt it to work inside SGX enclaves,
resulting in our RATEL system. To contrast it with the approach of changing libc, DBT intercepts the application
right at the point at which it interacts with the OS (Figure 1) for SGX compatibility. RATEL retains the entire low-level
instruction translation and introspection machinery of DynamoRIO, including the code cache and its performance
optimizations. This enables reusing well-established techniques for application instrumentation and performance
enhancements. We eliminate the support for auxiliary client plugins to reduce TCB, but a suite of built-in runtime
profilers (see Table 12) which do not use the DynamoRIO client plugin interfaces are retained in RATEL.

DynamoRIO instrumentation capability is also designed to execute a race-free application without introducing any

new races [26]. To achieve this, vanilla DynamoRIO engine itself outlines the following design principles:

3 Another option is Intel Pin [50], but it is not open-source.
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(a) DynamoRIO injects itself into existing threads. DynamoRIO does not create any new threads during its own
execution. Instead, it uses application threads to perform all translation operations.

(b) Separate DynamoRIO and application locks. DynamoRIO does not re-use application locks for its own synchro-
nization. It introduces new lock variables and exclusively uses them. Further, DynamoRIO does not modify any
lock operations of the application code.

(c) Lock ordering to avoid deadlocks. DynamoRIO does not hold any locks when the application code in the code
cache holds locks. This way locks held by the application have higher priority in the order in which locks must
be acquired, a well-known way of avoiding deadlocks.

(d) Memory consistency for race-free applications. The original DynamoRIO implementation only inserts memory
reads for indirect branches and certain system call arguments. To safeguard consistency for memory reads,
DynamoRIO does not insert additional memory access or modify the order of accesses in the application. For
system call processing, DynamoRIO uses locks following the principles (a), (b), and (c). Applications that originally

have race conditions are not protected by DynamoRIO, but this is unavoidable.

The four principles above avoid introducing any new concurrency bugs (e.g. race conditions) in the translated
application. We explain how our approach in RATEL piggybacks on such thread-safety to ensure there are no concurrency

issues beyond those which exist in the logic of the original translated program in Section 3.3.

3.2 RatEeL Approach

RATEL provides compatibility for both the DynamoRIO DBT engine as well as any application binary code that

DynamoRIO translates. We provide a high-level overview of our design and explain its key trade-offs.

High-level Overview. As a first step, RATEL loads the DynamoRIO dynamic translation engine at a specific location
in virtual memory, which we denote as A. Let us say that the vanilla dynamic translation engine in DynamoRIO is
coded to access virtual address memory regions denoted as B and the target application accesses regions C respectively.
The basic principle behind the design of RATEL is to ensure referential transparency: whenever the DynamoRIO engine
accesses any virtual address that would have been a location in B (without RATEL), it must now access the corresponding
location with base at the relocated address A in RATEL. Similarly, if the application would have accessed a location in
C originally, RATEL must ensure that it accesses the corresponding to its translated location. To do this, RATEL must
(a) intercept all operations that create virtual memory maps (e.g., via static and dynamic loading), and (b) keeps an
address translation table in A for translating program accesses made by the target application dynamically. Note that
such referential transparency for memory accesses provides compatibility with position-independent code, dynamically
generated code, and shadow memory data structures (e.g., shadow stacks) that the application may have originally
used—the memory references at runtime resolve consistently to the same translated address and the values read/written
as thus consistent with the original run. For security, RATEL must ensure that all accesses to A originate from the
dynamic translation engine itself, and the application code is unable to access A directly—a memory isolation policy.
RATEL enforces this policy for the dynamic translation engine by modifying its code statically. For the target application,
memory isolation can be enforced at runtime through the instruction rewriting capability of DynamoRIO itself, as done
in program shepherding [52].

In addition, RATEL modifies DynamoRIO to adhere to SGX virtual memory limitations (R1-R4). In designing RATEL,
we statically change the DynamoRIO code to load it at a fixed memory region A. Note that A can be fixed at the time of
initialization of the process (loading), therefore, it does not break compatibility with address-space layout randomization.
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This allows us to load RATEL and start its execution without violating the memory semantics of SGX. We register
a fixed entry point in RATEL when entering or resuming the enclave. This entry point acts as a unified trampoline,
such that upon entry, RATEL decides where to redirect the control flow, depending on the previously saved context.
In DynamoRIO code, we statically replace all instructions that are illegal in SGX with an external call that executes
outside the enclave. Thus, RATEL execution itself is guaranteed to never violate R5.

RATEL has complete control over the loading and running of the translated application binary. Therefore, to ensure
that the application adheres to R1-R5, RATEL dynamically rewrites the instructions before they are executed from the
code cache. To keep compatibility with R2, we statically initialize the virtual memory size of the application to the
maximum allowed by SGX; the type and permissions of memory are set to the specified type in the original binary. RATEL
augments its memory manager to keep track of and transparently update the application memory layout as it changes
during execution. At runtime, the application can make direct changes to its own virtual memory layout via system
calls. RATEL dynamically adapts these changes to SGX by making two copies, wherever necessary, or by relocating the
virtual address regions. RATEL intercepts all application interactions with the OS. It modifies application parameters,
OS return values and events for monitoring indirect changes to the memory (e.g., thread creation). Before executing
any application logic, RATEL scans the code cache for any instructions (e.g., syscall, cpuid) that may potentially be
deemed as illegal in SGX and replaces it with an external call. In the other direction, RATEL also intercepts OS events
on the behalf of the application. Upon re-entry, if the event has to be delivered to the application (e.g., signals for
application itself), it sets/restores the appropriate execution context and resumes execution via the trampoline. In this

way, RATEL remedies the application on-the-fly to adhere to R1-R5.

3.3 Resolving Key Design Trade-offs

RATEL helps to interpose on the enclave code without relying on the untrusted OS. In doing so, the SGX restrictions
R1 — R5 give rise to trade-offs between ensuring complete interposition and having low performance overheads. We
point out that these are somewhat fundamental and apply to RATEL and other compatibility efforts equally. However,

RATEL chooses completeness in its interposition over performance, whenever conflicts arise.

Two-copy mechanism for R1 & R2. Due to restriction R1, whenever the application wants to read or write data
outside the enclave, the data needs to be placed in public memory. Computing on data in public memory, which is
exposed to the OS, is insecure. Therefore, if the application wishes to securely compute on the data, a copy must
necessarily be maintained in a separate private memory space, as R2 forbids making changes to the memory permissions
dynamically. Specifically, we use a two-copy mechanism, instances of which repeat throughout the design. Consider
that case where an enclave wishes to write data to a file. The OS cannot access the buffer in enclave private memory.
Here, the enclave can utilize a two-copy design, in which we place the file data in public memory. The enclave keeps an
additional copy i.e., the second copy of that data in its private memory. When the enclave wishes to update the file, the
enclave updates the private and the public copy. When reading data from the public memory such as a file, an enclave
must copy the data to private memory and check it before further use.

The above two-copy design pattern is used in other scenarios in RATEL too, specifically, when the enclave shares data
with the OS (e.g., for system call handling) and when the data in its private memory needs to have different permissions
over time. The OS can manipulate the public memory content at any time—while the enclave is computing on the data,
after the enclave’s check but before its use. Such changes by the OS can result in TOCTOU bugs. Keeping a separate

private copy in the enclave reduces the attack surface. The other scenario where two-copy design comes useful is when
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the enclave wants to change the permissions of its private memory, such as in switching read-only data to executable /
writable, but within the enclave itself. Such permission switching for memory region is disabled on SGX due to R2. To
address this, the two-copy mechanism creates a copy of the data in an additional separate memory region inside private
memory, such that the new region has the new permissions. The two-copy mechanism, however, incurs both space and
computational performance overheads. Every update to the data causes at least a memory copy operation. The total
overhead depends on the application’s workload characteristics (kinds and frequency of shared data accesses) and can

vary from 10% for CPU-intensive workloads to 10X for IO-intensive workloads (see Section 6.3).

Memory Sharing for R3 & R4. R3 creates an “all or none” trust model for enclaves. Either memory is shared with all
entities (including the OS) or kept private to one enclave. R4 restricts sharing memory within an enclave further. These
restrictions conflict with semantics of shared memory and synchronization primitives. For instance, synchronization
primitives such as futexes are implemented with a single memory copy that the OS is trusted to manage securely—such
a design is in direct conflict with the SGX security model. To implement such abstractions securely, designs on SGX must
rely on a trusted software manager which necessarily resides in an enclave, since the OS is untrusted (see Section 4.4).
Applications can then maintain compatibility with locks and shared memory abstractions. But, this comes at a trade-off
in performance costs: access to shared memory or synchronization primitives, which are originally inexpensive memory

accesses, turn into (possibly remote) procedure calls to the trusted manager enclave.

Secure entry-points for R5. Restriction R5 requires that whenever the enclave resumes control after an exit, the enclave
state (or context) should be the same as right before exit. This implies that the security monitor (e.g., the DBT engine)
must take control before all exit points and after resumption, to save-restore contexts—otherwise, the interposition
can be incomplete, creating security holes and incompatibility. Without guarantees of complete interposition, the
OS can return control into the enclave, bypassing security checks that the DBT engine implements. The price for
complete interposition on binaries is performance—the DBT engine must intercept all entry/exit points and simulate
additional context switches in software. Prior approaches, such as library OSes, choose performance over completeness
in interposition, by asking applications to link against specific library interfaces which constrict enclave-OS interaction
via certain specified library interfaces. But, this does not enforce complete interposition. Applications, due to bugs or
when exploited, can make direct OS interactions without using the prescribed API, use inline assembly, or override
entry handlers setup by the library OS. All scenarios in which applications go outside the prescribed interfaces, the
library OS design requires special handling.

Several additional security considerations arise in the implementation details of our design. These include (a) avoiding
naive designs that have TOCTOU attacks; (b) saving and restoring the execution context from private memory; (c)
maintaining RATEL-specific metadata in private memory to ensure integrity of memory mappings that change at

runtime; and (d) explicitly zeroing out memory content and pointers after use. We explain them inline in Section 4.

3.4 Threat Model & Scope

RATEL is best viewed as a general framework for instruction-level interposition on enclaved binaries, rather than a
stand-alone sandboxing engine that protects enclaves against all possible OS attacks. RATEL itself does not trust the
OS or any security guarantees the OS provides. Binaries running on top of RATEL otherwise follow the same threat
model as vanilla DBT engines [82]. Application binaries are assumed to not be aware of the presence of RATEL—they
are benign binaries but which can be exploited via externally-provided inputs. Under exploitation, malicious code may

execute on RATEL. RATEL provides instruction-level instrumentation of all instructions executed and does not provide
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any higher-level security guarantees beyond that. For example, malicious code can readily determine that it is running
on RATEL [42] and, therefore, RATEL is not suitable for analyzing analysis-evading malicious code. Using the instruction-
level monitoring capability, the vanilla DynamoRIO engine itself provides certain built-in security mechanisms, which
are preserved in RATEL. Specifically, ASLR for all heap regions is turned on and the code cache is randomized. RATEL
isolates the stack, dynamically allocated memory, and file-mapped I/O regions through instrumentation. The main new
challenges highlighted in this work are those due to enabling DBT on SGX, while most other threats to DBT-based
instrumentation are pre-existing and known. The design trade-offs we emphasize apply to any interposition framework
that runs on SGX, but have not been emphasized clearly in prior works.

Building an end-to-end secure sandbox on top of RATEL requires additional security mechanisms, which are common
to other systems and are previously known. These mechanisms include encryption/decryption of external file or I/O
content [16, 30, 49, 72], sanitization of OS inputs to prevent Iago attacks [31, 51, 77, 81], defenses against known side-
channel attacks [22, 48, 66, 73, 74], additional attestation or integrity of dynamically loaded/generated code [44-46, 85],
and so on. These are important but largely orthogonal to our focus.

Our binary compatibility layer has support for large majority but not all of the Linux system calls. The most notable of
these unsupported system calls is fork which is used for multi-processing. Since RATEL does not support multi-process
applications, we support locks and synchronization primitives for threads within a single enclave. The basic design
of RATEL can be extended to support fork with the two-copy mechanism, similar to prior work [30, 75]. However,
maintaining compatibility with fork blindly is a questionable design decision, especially for enclaves, as has been
argued extensively [19]. A recent work on SGX compatibility has left out support for fork and multi-enclave locks

based on the same observation [72].

4 RATEL DESIGN

We explain how RATEL handles syscalls, memory, threads, synchronization, and exceptions/signals inside SGX enclaves.

4.1 Syscalls & Unanticipated Entry-Exits

SGX does not allow enclaves to execute several instructions such as syscall, cpuid, and rdtsc. If the enclave executes
them, SGX exits the enclave and generates a SIGILL signal. Gracefully recovering from the failure requires re-entering
the enclave at a different program point. Due to R5, this is disallowed by SGX. In RATEL, either DynamoRIO or the
application can invoke illegal instructions, which may create unanticipated exits from the enclave.

RATEL changes DynamoRIO logic to convert such illegal instruction to stubs that either delegate or emulate the
functionality. For the target application, whenever RATEL observes an illegal instruction in the code cache, it replaces the

instruction with a call to the RATEL syscall handler function. RATEL has three ways of handling system call execution:

(1) Complete delegation: Entirely delegate the syscall instruction and handler to code outside the enclave;
(2) Partial delegation: Execute the syscall instruction outside, and then update the private in-enclave state; or

(3) Emulation: Completely simulating the syscall behavior with a handler inside the enclave.

RATEL uses complete delegation for file, networking, and timer related system calls. It uses partial delegation for
memory management, threads, and signal handling. We outline the details of other syscall subsystems that are fully
or partially emulated by RATEL in Sections 4.2, 4.3, 4.4, and 4.5. RATEL uses emulation for very few system calls. For
example, the arch_prctl syscall is used to read the FS base. RATEL emulates it by executing a rdfsbase instruction.
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Creating and Synchronizing Memory Copies. Syscalls access process memory for input-output parameters and
error codes. Since enclaves do not allow this, for delegating the syscall outside the enclave, RATEL creates a copy of
input parameters from private memory to public memory. This includes simple value copies as well as deep copies of
structures. The OS then executes the syscall and generates results in public memory. After the syscall completes, RATEL
copies back the OS-provided return values and error codes to private memory.

Memory copies alone are not sufficient. For example, when loading a library, the application uses d1_open which in
turn calls mmap, which must execute outside the enclave. Thus the mmap call outside the enclave will map the library
in the untrusted public address space of the application. However, the original intent of the application is to map the
library inside the enclave private memory. As another example, consider when the enclave code wants to create a new
thread local storage (TLS) segment. Due to the restrictive SGX environment, RATEL must execute the system call outside
the enclave, and the new thread is created for the DynamoRIO runtime instead of the target application. In all such
cases, RATEL takes care to explicitly propagate changes to inside the enclave, i.e., reflect changes to private memory.

When the enclave code copies input arguments or results for external functions (e.g., syscalls) between private and
public memory, other enclave threads should not change the private memory. To ensure this, RATEL uses DynamoRIO
locks to synchronize private memory accesses introduced by two-copy mechanism. Our implementation adheres to
principles (a)-(d) outlined in Section 3.1. One caveat which arises in RATEL is when two threads in the same enclave
attempt to perform syscalls simultaneously. Consider an example where the application has 2 threads, one of which
is waiting / polling to acquire a lock, while the other holds it. As per the principle (c), the RATEL instance running in
thread 1 will try to acquire a DynamoRIO-specific lock (inside the poll syscall) which might already have been held by
the RATEL instance running in the thread 2. This can lead to a deadlock. To avoid deadlocks in such cases, we examine

each system call and add DynamoRIO locks only when the syscall updates private memory.

Checking Memory State after Syscalls. RATEL resumes execution in the enclave only after the syscall state has been
completely copied inside the enclave. This allows the enclave to employ sanitization of OS return values before using it.
Previously known sanitization checks for Iago attacks can be implemented here [77]. Note that all such sanitization
checks must execute inside the enclave and after the state from the public memory is copied into the enclave private
memory. This caveat is important to avoid TOCTOU attacks wherein the OS modifies public memory state before or

midway through the execution of the sanitization checks.

4.2 Memory Management

RATEL utilizes partial emulation for syscalls that change the process virtual memory layouts and permissions (e.g. mmap,
mprotect, fsync, and so on). It executes the syscall outside the enclave and then explicitly reflects the memory layout
changes inside the enclave. First, this is not straightforward. Due to R1-R4, several layout configurations are not allowed
for enclave virtual memory (e.g., changing memory permissions). Second, RATEL does not trust the OS information (e.g.,
via procmap). Hence, RATEL must use a two-copy mechanism when it uses the partial delegation approach.
Specifically, RATEL maintains its own procmap-like structure to keep its own view of the process virtual memory
inside the enclave, tracks the memory-related events, and updates the enclave state. For example in the case of mmap
syscall to map a file in enclave private memory, the handler outside the enclave creates a public memory region
by invoking the OS first. Then, RATEL allocates a region of private memory which mirrors the content of the file

mapped outside the enclave, and updates its internal procmap-like structure to record the new virtual addresses created.

Manuscript submitted to ACM



12 J. Cui et al.

Further, RATEL synchronizes the two-copies of memories to maintain execution semantics on all subsequent changes to
mmapped-memory. This is done whenever the application unmaps the memory or invokes the sync/fsync syscalls.

RATEL does not blindly replicate OS-dictated memory layout changes inside the enclave. It first checks if the resultant
layout will violate any security semantics (e.g., mapping a buffer to zero-address). It proceeds to update enclave layout
and memory content only if these checks succeed. To do this, RATEL keeps its metadata in private memory.

With interposition over memory management, RATEL transparently side-steps SGX restriction due to R2. When
application makes changes to the permissions of a memory region (say X) dynamically, RATEL moves the content to
a memory region (say Y) which has the required permissions. To do this, RATEL requires a stash of unused private
memory regions (Y) that are originally not used by the application. These memory regions are allocated statically by
RATEL at the start and their page permissions are set to readable, writable, and executable. Subsequently, when the
application binary accesses memory X, RATEL dynamically translates the access to the copy in memory Y. This allows
RATEL to transparently emulate the permission change, which is otherwise a disallowed behavior inside the enclave.

Note that the stash pool of private memory regions Y are private to the enclave, but have overly permissive access
rights. This can be avoided by reserving regions with write-only and execute-only permissions, but this may decrease
the size of usable non-stash memory. Alternatively, the access rights can be implemented through runtime monitoring

of memory accesses, but this adds performance costs. The trade-offs are inherent to restrictions R1 and R2.

4.3 Multi-threading

RATEL supports multiple threads running in a single enclave. However, it has no support for fork to create multiple
processes running in different enclaves. Therefore, our design restricts our concerns to enabling thread synchronization
within a single enclave. This is still challenging because restriction R2 requires the enclaved application to pre-declare a
maximum number of threads before execution. SGX also does not allow the enclave to resume at arbitrary program
points or execution contexts (restriction R5). This creates several challenges in adapting DynamoRIO to run in SGX.
In the vanilla DynamoRIO design, the dynamic translation engine and the target application share the same thread,
but they have separate TLS segment for cleaner context switch. DynamoRIO keeps the default TLS segment for the
target application and creates a new TLS segment for itself at a different address. It switches between these 2 TLS

segments by changing the segment register—DynamoRIO uses gsbase and the application uses fsbase.

Multiplexing TLS Segments. Normally, to context switch between threads, one TLS segment to save the currently
executing application thread context is sufficient. But with RATEL, we need an additional TLS segment to save the state
of RATEL itself. Furthermore, SGX itself reserves one additional TLS segment for its own internal use. This brings the
total number of required TLS segments, for a correct context switch, to 3 on SGX.

But, the x86_64 architecture itself provides only 2 base registers (fsbase and gsbase) for storing pointers to TLS
segments. Therefore, when we attempt to run DynamoRIO inside SGX, there are not enough base registers to save 3
TLS segment offsets (one each for DynamoRIO, SGX, and the application). We circumvent this limitation of the SGX
platform as follows. First, RATEL adds 2 fields in each TLS segment to store fsbase and gsbase register values for that
segment. We use these TLS segment fields to save and restore pointers to the segment base addresses. This allows us to
still maintain and switch between 3 clean TLS segment views per thread. Second, when RATEL has to restore a TLS
segment, it searches through a list of TLS segment base addresses, to find the right one to restore—this is because it

does not have enough base registers to store 3 TLS segment bases (which would have avoided the search).
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Restoring TLS Segments on Context Switches. RATEL conceptually maintains a linked list of a maximum of 3 TLS
segment base pointers. The head of the list is the fsbase register, which serves as a pointer to the default first TLS
segment created by SGX reserved for its own use. This default segment is called the primary and all TLS segments
created subsequently are referred to as secondary. To point to the next TLS segment in the linked list, RATEL adds a new
field in the TLS segment, which is NULL for the last element in the list. To traverse the list, the gsbase register is used.
The list search begins with the primary, and the right segment to restore is always the last element in the link list. This
way, RATEL can search and decide which of the 3 TLS segments to restore using only 2 registers (fsbase and gsbase).

There are two ways in which control can enter/exit from the enclave: via synchronous exits (e.g., ECALL/OCALL used
for syscalls) and via asynchronous exits (e.g., used for exceptions, timer interrupts, and so on). During synchronous exits,
RATEL sets up the TLS segment link list such that the restored TLS context state upon resumption is for DynamoRIO
and SGX respectively. The subsequent exception handlers copy state from outside the enclave to inside, perform various
Iago checks, and then setup the TLS segment to that of the application thread. During asynchronous exits, RATEL
does not need to perform any special setup for the TLS segment link list. When the exception handler executes on
resumption, it sets up the executing context just before the exit. RATEL performs similar checks and operations as in the
case of synchronous exits, and then restores the context to that before the exit (which may be DynamoRIO’s context or

that of the application thread). Therefore, our design works correctly for both synchronous and asynchronous exits.

Dynamic Threading. Since the number of TCS entries is fixed at enclave creation time on SGX, the maximum number
of threads supported is capped. RATEL multiplexes the limited TCS entries available among the application threads
dynamically, as shown in Figure 4. When an application wants to create a new thread (e.g., via clone), RATEL first
checks if there is a free TCS slot. If it is the case, it performs an OCALL to do so outside the enclave. Otherwise, it
busy-waits until a TCS slot is released. Once a TCS slot is available, the OCALL creates a new thread outside the enclave.
After finishing thread creation, the parent thread returns back to the enclave and resumes execution. The child thread
explicitly performs an ECALL to enter the enclave and DynamoRIO resumes execution for the application’s child thread.

For all threading operations, RATEL ensures transparent context switches to preserve binary compatibility as intended
by DynamoRIO. For security, RATEL creates and stores all thread-specific context either inside the enclave or SGX’s
secure hardware-backed storage at all times. It does not use any OS data structures or addresses for thread management.
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Safety of Two-copy Mechanism. RATEL does not introduce any new concurrency issues due to its two-copy mech-
anism (i.e., one-way or two-way copy). Consider two threads in the same enclave sharing a region of memory and
concurrently accessing it. If the original code itself has data races when accessing memory, those races will be preserved
in RATEL with its two-copy mechanism. On the other hand, if the original code is race-free then its execution with RATEL
will also be race-free. The two-copy mechanism ensures this because it does not introduce any additional writes/reads
to shared (public) memory—it only replaces the original reads/writes of the shared data with reads/writes to translated
addresses in private memory. The use of a private copy does not alter the semantics of the original access. In Section 6.1.4,

we evaluate the above scenarios for native, DynamoRIO, and RATEL execution of real-world applications.

4.4 Thread Synchronization

SGX provides basic synchronization primitives (e.g., SGX mutex and conditional locks) backed by hardware locks. But
they can only be used for enclave code. Thus, they are semantically incompatible with the lock mechanisms used by
DynamoRIO or legacy applications which use OS locks. For example, DynamoRIO implements a fast lock using the
futex syscall, where the lock is kept in a shared memory accessible to all application threads and the OS. Here, the OS
needs the ability to read the lock state to determine whether it should wait during the FUTEX_WAIT syscall.

A naive design would be to maintain the futex lock in public memory, such that it is accessible to the enclave(s) and
the OS. However, the OS can arbitrarily change the lock state and attack the application. Specifically, it can reset the
lock during the execution of a critical section in an application thread. Therefore, this design choice is not safe.

As an alternative, we can employ a two-copy mechanism for locks. The enclave can keep the lock in private memory.
When it wants to communicate state change to the OS, RATEL can tunnel a futex OCALL to the host OS. This approach
is problematic as well. Threads inside the enclave may frequently update the locks in private memory. The futex state
outside the enclave needs to be kept consistent with the private copy, when the OS kernel and the untrusted part of
the enclave access it, or else the semantics of the lock may not uphold. The more frequent the local updates to the
in-enclave copy of the lock state, the higher the chance of inconsistencies. In general, avoiding such race conditions
usually involves using locks for synchronizing. But requiring locks to synchronize copies of other locks, as suggested in
this design alternative, only results in a chicken-and-egg problem.

Supporting such semantics efficiently, where the OS has a shared read access to the lock state, is difficult with SGX
because of restrictions R1 and R3. Figure 3 shows the schematics of design choices for implementing synchronization
primitives available on SGX. Note that options (a) and (b) are insecure as discussed above. RATEL implements a lock
manager inside the same enclave that executes the application. Our simplification has one limitation: Only threads

within the same application process (and enclave) can utilize RATEL synchronization primitives.

RaTEL Lock Manager Implementation. Our design choice of using a single enclave to execute both the DynamoRIO
engine and all application threads eliminates considerable complexity in implementation. It turns out that a futex-based
locks become unnecessary since we do not need sharing across the process boundary or with the OS. The DynamoRIO
usage of futexes can thus be replaced with a simpler primitive such as spinlocks to achieve the same functionality.
Specifically, RATEL implements a lock manager using the hardware spinlock exposed by SGX. RATEL invokes its in-
enclave lock manager either when DynamoRIO uses futexes or when the application binaries perform lock-based
synchronization. For the DynamoRIO code, we manually change it to invoke our lock manager. In case of application
locks, RATEL loads application binary into the code cache and replaces thread-related calls (e.g., pthread_cond_wait) in

the enclave-OS interface with stubs to invoke our lock manager to use RATEL-provided safe synchronization primitives.
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Fig. 5. (a) Original signal handling in DynamoRIO. (b) Signal handling in RATEL.

4.5 Signal Handling

RATEL cannot piggyback on the existing signal handling mechanism exposed by the SGX, due to restriction R5.
Specifically, when DynamoRIO executes inside the enclave, the DynamoRIO signal handler needs to get description
of the event to handle it (Figure 5(a)). However, Intel’s SGX platform software removes all such information when it
delivers the signal to the enclave. This breaks the functionality of programmer-defined handlers to recover from well
known exceptions (e.g., divide by zero). Further, any illegal instructions inside the enclave generate exceptions, which
are raised in the form of signals. Existing binaries may not have handlers for recovering from such illegal instructions.
Therefore, RATEL must provide handlers for all such exceptions.

Recall that SGX allows entering the enclave at fixed program points. Leveraging this, RATEL employs a primary
signal handler that it registers with SGX. For any signals generated for DynamoRIO or the application, we always enter
the enclave via the primary handler and we copy the signal number into the enclave. We then use the primary as a
trampoline to route the control to the appropriate secondary signal handler inside the enclave, based on the signal
number. At a high-level, we realize a virtualized trap-and-emulate signal handling design. We use SGX signal handling
semantics for our primary. For the secondary, we setup and tear down a separate stack to mimic the semantics in the
software. The intricate details of handling the stack state at the time of such context switch are elided here. Figure 5(b)

shows a schematic of our design and we explain the flow of control and associated issues here.

Registration. The original DynamoRIO code and the application binary use sigaction to register signal handlers for
itself. In RATEL, first we change DynamoRIO logic to register only the primary signal handler with SGX. We then record
the DynamoRIO and application registrations as secondary handlers. This way, when SGX or the OS delivers the signal
to the enclave, SGX directs the control to our primary handler.* Since this is a pre-registered handler, SGX allows it.

The primary handler checks the signal information (e.g., signal code) and explicitly routes execution to the secondary.

Delivery. A signal may arrive when the execution control is inside the enclave. In this case, RATEL executes a primary

signal handler that delivers the signal to the enclave. However, if the signal arrives when the CPU is in a non-enclave

4Vanilla SGX PSW does not provide an API to register for any signals for the enclave. Other frameworks circumvent this limitation by piggybacking on
default signal handlers of SGX PSW [30, 72]. For simplicity, we have directly changed the PSW to register our primary signal handler.
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context, SGX does not automatically invoke the enclave to redirect execution flow. To force this, RATEL has to explicitly
enter the enclave. But it can only enter at a pre-registered program point with a valid context, as per restriction R5.
Thus, RaTEL first wakes up the enclave at a valid point (via ECALL). RATEL copies the signal information, passed as an
input argument to the ECALL, to private memory. It then simulates the signal delivery by setting up the enclave stack in

private memory to execute the primary handler.

Exit. After executing their logic, handlers use sigreturn instruction for returning control to the point before the signal
interrupted the execution. When RATEL observes this instruction in the secondary handler it has to simulate a return
back to the primary handler instead. The primary handler then performs its own real sigreturn. SGX then resumes

execution from the point before the signal was generated.

Handling Nested Signals. One issue with platforms like SGX is that it supports synchronous and asynchronous
signals. Signals can be nested, in the sense that signals can be delivered by the OS while the enclave is handling another
one. The enclave cannot mask signals selectively at runtime on SGX. Accordingly, the potential for subtle reentrancy
bugs in the enclave signal handling code arises. At a high-level, RATEL handles signals safely by ensuring that unsafe
nesting is not possible. Specifically, the SGX platform automatically saves enclave state in private memory regions
pointed to by hardware State Save Area (SSA) when an exception is to be delivered. To support nesting, SGX provides
an array of SSAs frames, leaving the option to set the maximum size of array (hence, the maximum possible nesting
depth) to the enclave. RATEL utilizes this feature to limit the nesting depth to 2. This is needed because in RATEL one
SSA frame can be used by RATEL itself and the other by the target application. With the maximum nesting depth set to
2, if a nested signal of depth 3 is being attempted to be delivered, SGX securely aborts the enclave since not enough SSA

frames are available. With this design, there are only 4 possible combinations of reentrancy to reason about:

(1) RATEL signal handler is interrupted with a signal to be delivered to the application;
(2) application’s signal handler is interrupted with a signal to be delivered to RATEL;
(3) RATEL signal handler is interrupted with a signal to be delivered to the RATEL;

(4) application handler is interrupted with a signal to be delivered to the application.

In Case 1 and 3, DynamoRIO gets execution control. In Case 1, DynamoRIO has one additional SSA frame available
to save the current state of the primary handler and deliver control to the beginning of the primary signal handler
but with the new context. In Case 3, the 2 SSA frames are already used up to save RATEL’s primary handler state and
the application’s secondary handler state. Therefore, SGX is unable to deliver the signal and the enclave execution is
aborted. In Case 2 and Case 4, similar to Case 3, the 2 SSA frames are already in use to store the current state of the
primary and secondary signal handlers respectively. SGX, thus, cannot deliver the signal and the enclave is aborted.
Thus, in all the above scenarios, RATEL design handles reentrancy safely. Note that RATEL reentrancy handling for
synchronous exceptions, which are used for threads and syscalls (Section 4.3), and asynchronous exceptions is the same
regardless of the exception type.

Remark. RATEL signal handling extends the trap-and-emulate principle used by DynamoRIO. Since DynamoRIO
design enforces transparency, we preserve this in RATEL. This goes beyond merely working around the SGX limitations,
thus making our design different than existing frameworks. Specifically, existing library OS-based SGX frameworks
(e.g., Graphene-SGX and Occlum) assume that all exception registration and execution will go via the prescribed library
interfaces. So, they do not keep a separate signal context for the library OS signals and the application. These works do
not discuss what happens during nested signals or when the enclave-OS interaction happens outside of the prescribed
library registration and handler mechanisms.
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5 IMPLEMENTATION

We implement RATEL on DynamoRIO [24]. We run DynamoRIO inside an enclave with the help of a standard Intel
SGX development kit that includes user-land software (SDK v2.1), platform software (PSW v2.1), and a Linux kernel
driver (v1.5). We make a total of 9667 LoC software changes to DynamoRIO and SDK infrastructure. We run RATEL on
unmodified hardware that supports SGX v1.

RATEL design makes several changes to DynamoRIO core (e.g., memory management, lock manager, signal forward-
ing). We discuss three high-level implementation challenges which arise in implementing our design while eliding
lower-level challenges here for brevity. The root cause of our highlighted challenges is the way Intel SDK and PSW

expose hardware features and what DynamoRIO expects.

Self-identifying Load Address. The vanilla DynamoRIO engine needs to know its own start location in memory
to avoid overlapping its own address space with that of the target application, and so it uses a hard-coded address.
Since our modifications change such hard-coded address assumptions, RATEL uses a call — pop instruction sequence to
self-identify the runtime location in memory for the DynamoRIO engine [70, 87], aligns it at a page boundary, and

updates the DynamoRIO logic to use code location-independent addressing.

Setting SSA Slots. The vanilla SGX SDK and PSW use just two SSA frames: one is used to process timer interrupts
specially and the other to handle all other interrupts. As explained in Section 4.5, the RATEL design aims to set the
effective nesting depth to 2. Therefore, in the implementation, it uses 3 SSA slots: one reserved for the timer interrupt
(to be handled by the SGX SDK), and the remaining two as described in Section 4.5. The timer interrupt handler simply
routes control to whichever signal handler was interrupted. The SGX specification allows setting the required SSA slots

by changing the NSSA field in our SDK implementation.

Preserving Execution Contexts. For starting execution of a newly created thread, RATEL invokes a pre-declared
ECALL to enter the enclave. This is a nested ECALL, which is not supported by SGX SDK. To allow it, we modify the
SDK to facilitate the entrance of child threads and initialize the thread data structure for it. Specifically, we check if
the copy of thread arguments inside the enclave matches the ones outside before resuming thread execution. We save
specific registers so that the thread can exit the enclave later. Note that the child thread has its own execution path
differentiating from the parent one, RATEL hence bridges its return address to the point in the code cache that a new
thread always starts. After the thread is initialized, we explicitly update DynamoRIO data structures to record the new
thread (e.g., the TLS base for application libraries). This way, DynamoRIO is aware of the new thread and can control

its execution in the code cache.

Propagating Implicit Changes & Metadata. Thread uses exit/exit_group syscall for terminating itself. Then the
OS zeros out the child thread ID (ctid). In RATEL, we explicitly create a new thread inside the enclave, so we have to
terminate it explicitly by zeroing out the pointers to the IDs. Further, we clean up and free the memory associated with

each thread inside and outside the enclave.

Built-in Profilers. DynamoRIO supports two modes of instrumentation—built-in profilers and client plugins. Profilers
are readily available with the DynamoRIO core and provide basic functionalities such as instruction tracing, logging, and
tuning the DynamoRIO parameters (see Table 12). On the other hand, DynamoRIO clients are specific instrumentation
plugins designed to perform user-desired tasks (e.g., Shadow stack). Since profilers are part of DynamoRIO, RATEL
supports all of them out-of-the-box. Our current implementation removes client plugin support to reduce TCB. We

demonstrate RATEL compatibility with these profilers in Section 6.4.
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Subsystem Total Impl Implementation Covered
Del Emu P.Emu DR +Binaries
Process 12 8 4 2 2 3
Filename based 37 25 25 0 0 16
Signals 12 7 3 4 0 6
Memory 18 10 6 0 4 4
Inter process communication 12 4 4 0 0 0
File descriptor based 65 53 48 0 5 30
File name or descriptor based 19 9 9 0 0 5
Networks 19 17 15 0 2 15
Misc 124 79 79 0 0 36
Total 318 212 193 6 13 115

Table 2. RATEL syscall support. Column 2 — 3: total Linux system calls and support in RATEL. Column 4 — 6: syscalls implemented by
full delegation, full emulation, and partial emulation respectively. Column 7: syscalls tested in RATEL.

6 EVALUATION
We evaluate the following properties of RATEL empirically:

o Binary compatibility. How well does RATEL provide binary compatibility with common Linux programs on SGX?

e TCB. What is the size of the trusted computing base (TCB) for RATEL?

o Performance. How much overhead does RATEL introduce for applications?

o Graphene-SGX. Does RATEL compare in compatibility and performance to Graphene-SGX, the state-of-the-art
library OS for SGX?

o Instrumentation capability. What kinds of low-level monitors does RATEL provide for end applications?

Setup. All our experiments are performed on a Lenovo machine with SGX v1 support, 128 MB EPC of which approxi-
mately 90 MB is available for user-enclaves, 12 GB RAM, 64 KB L1, 256 KB L2, 4096 KB L3 cache, 3.4GHz processor speed.
We use Ubuntu 16.04, Intel SGX SDK v2.1, PSW v2.1, driver v1.5, DynamoRIO v6.2.17. All performance statistics reported
are the geometric mean over 5 runs. To foster open science and reproducibility, we have made our implementation and
evaluation public. RATEL code-base, our benchmarks, and case-studies are open-source and available [1].

To compare RATEL’s binary compatibility and performance with other approaches, we have chosen Graphene-SGX, a
library OS that runs inside the enclave. Graphene-SGX offers the lowest compatibility barrier of all prior systems to our
knowledge, specifically offering compatibility with glibc. It is a mature and publicly available system, which has been

maintained for over 3 years as of this writing.

6.1 Compatibility

To evaluate compatibility, we initially select 310 binaries that cover an extensive set of benchmarks, utilities, and
large-scale applications. These are commonly reported to be used as evaluations target for DynamoRIO and prior
enclave-based systems [16, 25, 30, 34, 47, 76, 77] that we surveyed for our study. Further, they represent a mix of
memory-intensive, CPU-intensive, multi-threading, network-intensive, and file I/O workloads. A total of 69 binaries
are from micro-benchmarks: 29 from SPEC 2006 (CPU), 1 from I0Zone (I/O) v3.487, 9 from FSCQ v1.0 (file API), 21
from HBenchOS v1.0 (system stress-test), and 9 from Parsec-SPLASH2 (multi-threading). We run 12 binaries from 3
real-world applications—cURL v7.65.0 (server-side utilities), SQLite v3.28.0 (database), Memcached v1.5.20 (key-value
store), and 9 applications from Privado (secure ML framework). We selected all 229 Linux utilities which are available
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Fig. 6. System calls statistics over all 208 binaries. (a) Unique syscalls for each binary; and (b) frequency per syscall.

from our test system’s /bin and /usr/bin directories. Apart from these 310 binaries, we tested 2 language runtimes,
Python (v2.7.17 and v3.8.2) and R v3.6.3. Python is tested with Python-CPU-Benchmark [6], Python Programming
Examples [8], and PyBench v2.0 [7]. R is tested with the R-benchmark-25 [3].

6.1.1 Compatibility Gains. Python and R benchmarks run out-of-the-box on RaTEL, highlighting how multiple
languages can be supported without any special handling. The R interpreter has JIT enabled, which constitutes an
example of how RATEL can handle dynamically generated code gracefully, whereas the Python interpreter is bytecode-
interpretation based. For the remaining 310 benchmarks and applications, we download the source code and compile
it with default flags required to run them natively on our machine. We directly use the existing binaries for Linux
utilities. We test the same binaries on native hardware, with DynamoRIO, and with RATEL without changing the original
source code or the binaries. Out of 310 binaries, 272 targets execute successfully with the native Linux and with the
(unmodified) vanilla DynamoRIO. The remaining 38 binaries either use unsupported devices (e.g., NTFS) or do not run
on our machine. We discard them from our RATEL experiments since vanilla DynamoRIO also does not work on them.
Of the remaining 272 binaries that work on the baselines, RATEL has support for the system calls used by 208 of these.

RATEL runs them out-of-the-box with no additional porting effort.

System Call Support & Coverage. RATEL supports a total of 212/318 (66.66%) syscalls exposed by the Linux Kernel.
We emulate 6 syscalls purely inside the enclave and delegate 193 of them via OCALLs. For the remaining 13, we use
partial emulation and partial delegation. Table 2 gives a detailed breakdown of our syscall support. Syscall usage
is not uniform across frequently used applications and libraries [80]. Hence we empirically evaluate the degree of
expressiveness supported by RATEL. For all of the 272 binaries in our evaluation, we observe a total of 121 unique
syscalls are used by the benchmarks. RATEL supports 115 of them. Table 2 shows the syscalls supported by RATEL and
their usage in our benchmarks and real-world applications (see Section 6.1.2). Figures 6a and 6b show the distribution
of unique syscalls and their frequency as observed over binaries supported by RATEL. Thus, our empirical study shows
that RATEL supports 115/121 (95.0%) syscall observed in our benchmark programs.

To support 212 syscalls, we added 3233 LoC (15 LoC per syscall on average). In the future, RATEL can be extended to
increase the number of supported syscalls. Readers are referred to Section 6.1.2 for more details. RATEL handles 31 out
of the 32 standard Linux signals—the SIGPROF signal is not handled which vanilla DynamoRIO itself does not support.
Library vs Binary Compatibility. We maintain full binary compatibility with all 208 binaries tested for which we had

system call support in RATEL. For them, RATEL works out-of-the-box in our experiments. We report that, given the same
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Utility # of sys.|Utility # of sys.|Utility # of sys.|Utility  # of sys. | Utility # of sys. | Utility # of sys.
ed 18 ppdpo 29 dirmngr 21 hcitool 20 systemctl 32 systemd-cgtop 25
cvt 13 psnup 14 enchant 20 bluemoon 21 vim.basic 45 dirmngr-client 13
eqn 36 tlasm 13 epsffit 13 btattach 21 hciconfig 25 systemd-escape 18
gtf 18 troff 15 faillog 18 fwupdate 19 brltty-ctb 21 systemd-notify 19
pic 13 uconv 13 gendict 14 gatttool 24 fusermount 19 wpa_passphrase 18
tbl 13 beemd 25 hex2hed 18 gencnval 13 journalctl 26 gammadscanimage 13
xxd 14 btmgmt 24 icuinfo 15 lessecho 13 sudoreplay 16 systemd-analyze 31
curl 32 busctl 37 kbxutil 14 loginctl 31 watchgnupg 18 systemd-inhibit 31
derb 23 catman 16 lastlog 14 makeconv 14 xmlcatalog 12 systemd-resolve 31
find 27 cd-it8 21 lesskey 13 ppdmerge 26 zlib-flate 13 ulockmgr_server 18
gawk 25 expiry 14 lexgrog 15 psresize 14 cupstestdsc 26 systemd-tmpfiles 34
grep 21 genbrk 14 manpath 14 psselect 14 cupstestppd 18 gpg-connect-agent 22
htop 26 gencfu 13 obexctl 35 t1binary 13 hostnamect] 30 kerneloops-submit 20
kmod 17 grotty 13 pkgdata 14 t1binary 13 systemd-run 29 evince-thumbnailer 21
ppde 30 12ping 21 ppdhtml 27 tldisasm 13 timedatectl 32 feitx-dbus-watcher 18
ppdi 30 12test 27 preconv 15 tidisasm 13 brltty-trtxt 22 systemd-detect-virt 18
qpdf 14 psbook 14 sdptool 22 transfig 15 dbus-monitor 31 dbus-cleanup-sockets 19
gpg2 27 pstops 14 ssh-add 20 vim.tiny 34 dbus-uuidgen 13 systemd-stdio-bridge 25
wget 29 rctest 25 tlascii 13 dbus-send 30 feitx-remote 23 systemd-ask-password 20
btmon 23 soelim 12 udevadm 27 gpg-agent 18 gpgparsemail 14 webapp-container-hook 26
genrb 13 whatis 20 volname 15 hciattach 18 systemd-hwdb 17 systemd-machine-id-setup 18
grops 14 rfcomm 19 xmllint 15 localectl 30 systemd-path 18 systemd-tty-ask-password-agent 25
mandb 27 bootctl 19 ciptool 20 pg_config 16 enchant-lsmod 13 dbus-update-activation-environment 31

Table 3. List of GNU utilities (138) tested with RATEL and the number of unique system calls invoked in their single execution.

inputs as native execution, RATEL produces the same outputs. The advantage of RATEL is that it makes no assumptions
about which specific implementation or version of 1ibc or higher-level API the application uses. To validate that
this assumption is indeed empirically preserved, we test RATEL with binaries that use different 1ibc implementations.
Specifically, we compile HBenchOS benchmark (12 binaries), which is an OS system stress testing benchmark, with
two different libc versions: glibc v2.23 and musl libc v1.2.0. We report that RATEL executes these benchmarks
out-of-the-box with both the libraries, without any modification or specialization to RATEL implementation.

Lastly, as a point of comparison, we report our experience on porting our micro-benchmarks to the state-of-the-art
library-compatibility system for SGX (Graphene-SGX) in Section 6.1.3. Of the 75 programs tested, Graphene-SGX fails

on 13. RATEL works correctly for all except 1, which failed only due to the virtual memory limits of SGX hardware.

6.1.2 Detailed Breakdown of Compatibility Tests. We provide a detailed breakdown of the compatibility observed

for our Linux utilities and other benchmarks.

Linux Utilities. Our tests include all the Linux built-in binaries available on our experimental Ubuntu system. These
comprise 229 shared-objected binaries in total, which are typically are in the directories /bin and /usr/bin.

We run each utility with the options and inputs, representative of their common usage. The specifics of the input
configurations are reported as a script in our released system publicly. Out of 229 benchmarked utilities, 195 worked
with our test machine natively and with vanilla DynamoRIO. Of these 195 binaries, a total of 138 have all system calls
presently supported in RATEL, all of which worked correctly in our tests out-of-the-box. The 57 programs that did not
work fail for 2 reasons: missing syscall support and virtual memory limits imposed by SGX. Table 3 and Table 4 list all
Linux utilities and binaries from real-world applications and benchmarks that ran successfully, and present the number
of unique system calls for each. Table 5 and Table 6 summarize the reasons for all binaries that fail in RATEL and in
native and DynamoRIO, respectively.

For the incompatible cases, 45 fail due to lack of multi-processing (fork) support in RATEL. As explained in Section 3.4,
not supporting fork is an explicit design decision in RATEL. 5 utilities use certain POSIX signals, which are outside the

32 standard signals in POSIX, for which presently RATEL has incomplete support (e.g., real-time signals SIGRTMIN + n).
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App # of sys.| App # of sys.| App # of sys.| App # of sys.| App # of sys.| App # of sys.
gee 43 dealll 43 leslie3d 43 xalancbmk 49 bw_mmap_rd 42 water_spatial 44
fmm 45 soplex 43 calculix 41 LFS-write 43 resnet50app 41 inceptionv3app 42
curl 55 povray 43 GemsFDTD 42 multiopen 41 densenetapp 42 multicreatemany 41
milc 42 barnes 45 specrand 42 multiread 41 multicreate 47 multicreatewrite 41
namd 42 iozone 47 specrand 42 Memcached 59 lat_fslayer 42 lat_syscall(sbrk) 42
bzip2 48 lat_fs 41 lenetapp 41 radiosity 44 lat_connect 42 lat_syscall(write) 42
gobmk 42 bw_tcp 42 vggl9app 43 ocean_ncp 44 resnext29app 42 lat_syscall(getpid) 42
hmmer 41 h264ref 42 raytrace 45 bw_mem_cp 42 resnet110app 41 lat_syscall(sigaction) 42
sjeng 42 omnetpp 43 ocean_cp 45 bw_mem_rd 42 wideresnetapp 43 lat_syscall(getrusage) 43
tonto 44 gromacs 46 volerand 45 bw_mem_wr 42 squeezenetapp 41 lat_syscall(gettimeofday) 42
astar 43 lat_sig 44 | bw_bzero 42 libquantum 42 LFS-smallfile 49

sqlite 47 lat_tcp 42 lat_mmap 42 multiwrite 41 LFS-largefile 42

zeusmp 43 lat_udp 42 cactusADM 43 bw_file_rd 42 water_nsquare 44

Table 4. List of applications (12) and individual benchmarks (63) tested with RATEL and the number of unique system calls invoked in
their single execution.

Reason category # unsuccessful Case examples

fork 49 strace, scp, lat_proc and lat_pipe from HBenchOS, etc.

execv 1 systemd-cat

signal 5 colormgr, cd-iccdump, bluetoothctl etc.

Unsupported syscalls 6 webapp-container, webbrowser-app, etc.

Out-of-memory 3 shotwell, mcf from SPEC 2006, lat_memsize from HBenchOS

Table 5. Summary of the reasons for failure of all 64 unsuccessful binaries tested with RATEL.

Reason category # unsuccessful Case examples

NTES related 16 ntfs-3g, ntfs-3g.probe, ntfs-3g.secaudit, etc.

Printer related 7 Ip, Ipoptions, Ipq, lpr, Iprm, etc.

Scanner related 2 sane-find-scanner, scanimage

Failure in native run 5 umax_pp, cd-create-profile, and bwaves from SPEC 2006, etc.
Failure in DynamoRIO run 8 ssh, ssh-keygen, dig, etc.

Table 6. Summary of the reasons for failure of all 38 unsuccessful binaries tested with Linux and DynamoRIO.

Another 5 utilities fail because they invoke other system calls which the restriction R3 in SGX fundamentally does not
permit (e.g., shared memory syscalls such as shmat, shmdt, shmct1, etc.). These syscalls are not supported in RATEL.
1 utility which fails is because of the virtual memory limit in SGX, as it loads more than 100 shared libraries. The

remaining 1 utility fails because RATEL has no support to execv syscall.

Other Benchmarks & Applications. From the 81 binaries from micro-benchmarks and real applications, 11 do not
work with RATEL. 5 binaries from HBenchOS(lat_proc, lat_pipe, lat_ctx, lat_ctx2, bw_pipe) either use fork or
shared memory system calls disallowed by R3. 2 binaries (1at_memsize from HBenchOS, mcf from SPEC 2006) with
DynamoRIO require virtual memory larger than SGX limits on our experimental setup. The remainder (e.g., bwaves

from SPEC 2006) fail to run even on the baseline setup of our Linux OS with vanilla DynamoRIO.

6.1.3 Comparison to Graphene-SGX. Applications using Graphene-SGX have to work only with a specific library
interface, namely a custom glibc, which requires re-linking and build process changes. RATEL, in contrast, has been
designed for binary compatibility which is a fundamental difference in design. To demonstrate the practical difference,

we reported in Section 6.1 that HBenchOS benchmark works out-of-the-box when built with both glibc and musl.

SNote that the ioct1 syscall involves more than 100 variable parameters. RATEL syscall stubs currently does not cover all of them.

Manuscript submitted to ACM



22 J. Cui et al.

Graphene-SGX requires a manifest file, for each application, that specifies the main binary name as well as dynamic
libraries, directories, and files used by the application. By default, Graphene-SGX does not allow creation of new files
during runtime. We use the allow_file_creation to disable this default. We tested all 75 benchmark and application
binaries (HBenchOS, Parsec-SPLASH2, SPEC, I0Zone, FSCQ, SQLite, cURL, Memcached, Privado), out of which 62
work with Graphene-SGX. Of the 13 that fail on Graphene-SGX, all except 1 work on RATEL, with the only failure being
due to virtual memory limits. For Graphene-SGX, 3/9 Parsec-SPLASH2 binaries (water_nsquare, water_spatial and
volrend), I0Zone binary, and SQLite database workload [56] failed due to I/O error, (e.g., [40]) which is an open issue.
3/24 binaries from SPEC 2006 failed. Graphene-SGX fails for cactusAMD due failed due to a signal failure, which is
mentioned as an existing open issue on its public project page [15]. The calculix program fails with a segmentation
fault. The omnetpp could not process the input file in spite of making the input file as allowed in the corresponding
manifest file. 4 networking related binaries from HBenchOS namely lat_connect, lat_tcp, lat_udp and bw_tcp
could not run, resulting in a bad address error while connecting to localhost. lat_memsize from HBenchOS fails on

Graphene-SGX as it fails on RATEL too due to the virtual memory limit.

6.1.4 Implications of Two-copy Design. The two-copy design employed by RATEL replaces the original reads and
writes in the application code with updated memory addresses. As discussed in Section 4.3, this design is safe for all
programs, including the ones that have multi-threading, as long as the enclave code is thread-safe. However, RATEL
does not guarantee correctness if the original program has race conditions. To demonstrate this, we test synthetic and

real-world multi-threaded applications under various race conditions.

1#define EXPECTED_FLAG '‘a’'

2static char *buf = NULL; // Global variable

3void threadl_task() {

4 FILE *fp;

5 fp = fopen("data.txt", "r");

6 fread(buf, 4096, 1, fp); // Read from the data file
7 fclose(fp);

8 ... // Do something else

9}

10void thread2_task() {

11 msleep(1000); // Sleep for varying time

12 char c_flag = buf[4001];
13 if (c_flag == EXPECTED_FLAG) // Do checks
14 printf("Succeeded\n");

15 else

16 printf("Failed\n");

17 ... // Do something else
18}

19int main() {

20 ... // Do initialization

21 buf = malloc(BUF_SIZE);

22 memset(buf, @, sizeof(char) x BUF_SIZE);

23 pthread_create(&tid[0], NULL, &threadl_task, NULL); // Create threads
24 pthread_create(&tid[1], NULL, &thread2_task, NULL);

25 ... // Do something else

Listing 1. Example of code snippets with potential data races. Thread 1 reads data from a file into a global buffer. Thread 2 reads this
global buffer at a particular offset and checks if the value is valid. If the check on Line 13 fails, we flag it as a data race. For RATEL, the
one-copy operations happen at line 6 where trusted thread 1 copies data to the trusted enclave memory (e.g., buf). If thread 2 sleeps a
little or no time, it may occur data races since thread 1 needs time to complete the copy operations.

First, we hand-coded a synthetic multi-threaded program to study the effect of bad synchronization. Listing 1 shows
a snippet for application code that creates two threads to perform different tasks on the same data (e.g., buffer write

and buffer read). However, we do not add any explicit locks before accessing the data. Instead, to exhibit thread-unsafe
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Frequency of data races per sleep time

Settings

Oms Ims 10ms 100ms 1000ms
Linux 74% 1% 0 0 0
DR 97% 1% 0 0 0
Ratel 100% 100% 4% 1% 0

Table 7. The frequency of data races for the example in Listing 1 when executed on Linux, DynamoRIO and RATEL.

water_nsquare water_spatial ~ barnes  fmm raytrace radiosity ocean_cp ocean_ncp volrend Memcached

Linux 25R 25R 25C 25T 17C/8R 21C /4R 25T 25T 21T / 4R 25R
DR 25R 25R 21C /4T 25T 25R 11C / 14R 25T 25T 25T 25R
RATEL 25R 25R 25C 25T 25R 12C / 13R 25T 25T 25T 25R

Table 8. Testing data race impact in Parsec-SPLASH2 and Memcached with one crafted synchronization bug (in 25 runs). R denotes
correct , W denotes incorrect outputs, C denotes crash, and T denotes non-termination.

execution, we add sleep statements with varying time duration, specifically 0, 1, 10, 100, and 1000 milliseconds. We
execute these configurations on native Linux, vanilla DynamoRIO, and RATEL for 100 runs. For each configuration,
we log the number of data races and report it in Table 7. We observe that shorter the sleep duration, the higher the
frequency of data races across all platforms. However, Linux is less prone to race conditions compared to DynamoRIO
and RATEL. Thus, for a thread-unsafe program, RATEL two-copy mechanism exacerbates the race-conditions.

Next, we select multi-threaded programs: 9 individual benchmarks from Parsec-SPLASH2 and a real-world application
Memcached. We execute them 25 times with 4 threads per program on native Linux, vanilla DynamoRIO, and RATEL.
For each run, we check the correctness of their outputs. We do not observe any program crashes, non-termination, or
incorrect outputs on RATEL. This empirically shows that for thread-safe code, RATEL does not introduce race conditions.

Finally, we emulate thread-unsafe code in these 10 applications. For each application, we inject one synchronization
bug by randomly removing lock operations. We execute the 10 modified applications 25 times with 4 threads on native
Linux, vanilla DynamoRIO, and RATEL. On execution, we observe four different outcomes: correct output, wrong output,
crash, and non-termination. As shown in Table 8, 3 applications are unaffected while other 3 non-termination on all
platforms. The remaining 4 applications exhibit mixed behavior. More importantly, the execution on RATEL is similar to
either native Linux or DynamoRIO, but it is not identical.

In summary, we empirically validate that if the application is thread safe, RATEL does not introduce any race conditions.
On the other hand, RATEL does not guarantee race-free execution of applications that have thread-unsafe code. Further,

the two-copy mechanism exacerbates the impact of race conditions.

6.2 TCB Breakdown

We trust Intel SGX support software (SDK and PSW) that executes inside the enclave and interfaces with the hardware.
This choice is the same as any other system that uses enclaves. RATEL comprises one additional trusted component—
DynamoRIO. Put together RATEL amounts to 277, 803 LoC TCB. This is comparable to existing SGX frameworks that
have 100K to 1M LoC [16, 30], but provide library-based compatibility at best.

Table 9 (columns 2-3) summarizes the breakdown of the LoC included in the trusted components of the PSW, the
SGX SDK, the DynamoRIO system, as well as the code contributed by each of the sub-systems supported by RATEL. The

original DynamoRIO engine comprises 353, 139 LoC. We reduce it to 129, 875 LoC (trusted) and 66, 629 LoC (untrusted)
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. Trusted Untrusted
Function

SDK+PSW DR Total SDK+PSW DR Driver Host Total
Original 147928 129875 277803 49838 66629 2880 1769 121116
Loader 69 1604 1673 27 89 N/A 332 448
MM 46 2241 2287 44 0 N/A 0 44
Syscalls 0 1801 1801 0 0 N/A 1432 1432
Instr 0 45 45 0 0 N/A 26 26
TLS 18 60 78 18 0 N/A 0 18
Signals 201 236 437 136 0 N/A 0 136
Threading 389 393 782 130 0 N/A 157 287
Sync 0 173 173 0 0 N/A 0 0

Table 9. Breakdown of RATEL TCB.

by removing the components that are not required or used by RATEL. Then we add 8, 589 LoC to adapt DynamoRIO to
SGX as per the design outlined in Section 4. Apart from this, as described in Section 5, we change the libraries provided
by Intel SGX (SDK and PSW) and add 1,078 LoC.

Of the 277, 803 LoC of trusted code, 123,322 LoC is from the original DynamoRIO code base responsible for loading
the binaries, code cache management, and syscall handling. 110, 848 LoC and 37, 080 LoC are from Intel SGX SDK and
PSW respectively. RATEL implementation adds only 6,553 LoC on top of this implementation. A large fraction of our
added TCB (27.5%) is because of the OCALL wrappers that are amenable to automated testing and verification [51, 77].
Rest of the 4,752 LoC are for memory management, handling signals, TLS, and multi-threading interface.

RATEL relies on, but does not trust, the code executing outside the enclave in the host process (e.g., OCALLs). This
includes 2,391 LoC changes. We give a detailed breakdown of this in Table 9 (Columns 5-9).

6.3 Performance Analysis

We present the performance implications of our design choices made in RATEL. We have two main findings. First, the
performance overheads vary significantly based on the application workload. Second, most of the overheads come from
SGX restrictions R1-R5 and the enclave physical memory limits specific to our present test hardware. We point out
that future SGX implementations may have over a 1000x larger private physical memory (1 TB EPC) compared to our
test system [4]. Therefore, we expect that the performance bottlenecks due to physical memory limitations can be
eliminated and are not fundamental to RATEL design. For completeness, we report RATEL memory footprint and impact
of 90 MB limit in Section 6.3.2.

Methodology for Performance Measurement. For each target binary, we record the execution time in 3 settings:

e Baseline 1 (Linux). We execute the application binary with the native Linux (without SGX and DynamoRIO).

o Baseline 2 (DynamoRIO). We execute the application binary directly with DynamoRIO (without SGX) on Linux.

o RATEL. We use RATEL to execute the application binary in the enclave. We offset the execution time by deducting
the overhead to create, initialize, load DynamoRIO and the application binary inside the enclave, and to destroy
the enclave. It is well-known that SGX incurs a high overhead for enclave creation and attestation. However, this
is a one-time cost per application. Server-end applications, as studied in this work, have a long execution time and
can tolerate high initialization time. To avoid skewing the performance overheads, we deduct the enclave setup
and tear-down overheads. This allows us to present a fair comparison of the actual execution overheads of RATEL
with respect to Linux and DynamoRIO. Several previous works adopt the same measurement setup [20, 75].
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Fig. 7. RATEL performance for SPEC 2006 (CPU). Vanilla DynamoRIO execution time w.r.t. Linux, RATEL execution time w.r.t. Linux,
and RATEL execution time w.r.t. vanilla DynamoRIO; lower value of overheads indicates better performance.
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Fig. 8. RATEL performance for |IOZone. Vanilla DynamoRIO bandwidth w.r.t. Linux, RATEL bandwidth w.r.t. Linux, and RATEL bandwidth
w.r.t. vanilla DynamoRIO; value close to 0 indicates smaller bandwidth loss and hence better performance.

To measure performance overheads, we collect various statistics of the execution profile of 58 programs in our
micro-benchmarks and 4 real-world applications (12 binaries in total). Specifically, we log the target application LoC,
binary size, number of OCALLs, ECALLs, syscalls, enclave memory size, peak virtual memory (VmPeak) for Linux and
DynamoRIO, untrusted and trusted VmPeak for RATEL, number of page faults, and number of context switches. We
refer readers to Appendix A.1 and A.2 for detailed performance breakdowns. Table 11 provides detailed statistics. We
also provide the overheads comparison between our Baseline 2 (DynamoRIO) and Baseline 1 (Linux) in all the related

tables and figures to provide a breakdown of the performance overhead.

6.3.1 Performance Breakdown. There are two main avenues of overhead costs we observe.

First, fundamental limitations of SGX result in increased memory-to-memory operations (e.g., two-copy design) or
usage of slower constructs (e.g., spin-locks instead of fast futexes). Our evaluation on system stress workloads for each
subsystem measure the worst-case cost of these operations. We report that on an average, SPEC CPU benchmarks
result in 217.80% and 34.91% overheads (Figure 7), when compared to vanilla Linux (without DynamoRIO or SGX) and
to DynamoRIO (without SGX) baselines respectively, while I/O-intensive workloads cost 87.5% and 66.2% slowdown
(Figure 8 for I0Zone benchmarks). Further, the performance overheads increases with larger I/O record sizes. The same
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Performance Overhead (in %)

Property Sub-property
Linux DR RATEL Graphene-SGX DR RateL.  R-DR  Graphene-SGX
Raw Memory Read 17915.33 24976.73 24665.05 23210.89 39.42 37.68 -1.25 29.56
Memory Raw Memory Write 9928.48 12615.13 12580.36 12114.76 27.06 26.71 -0.28 22.02
Intensive Bzero Bandwidth 62393.29 60877.42 65072.41 47844.32 -2.43 4.29 6.89 -23.32
Operations Memory copy libc aligned 41565.35 56883.67 60377.04 63423.44  36.85 45.26 6.14 52.59
Bandwidth (MB/s) Memory copy libc unaligned 9497.17 56270.52 61543.81 69444.44 4925  548.02 9.37 631.21
More iteration =~ Memory copy unrolled aligned 9221.96 12272.93 12351.22 12161.04  33.08 33.93 0.64 31.87
Less Chunk Memory copy unrolled unaligned  9151.18 12279.55 12295.40 10079.86  34.19 34.36 0.13 10.15
size Mmapped Read 706.63 423.85 190.73 3814.69  -40.02 -73.01 -55.00 439.84
File Read 74.16 29.15 12.05 325.52  -60.69 -83.75 -58.66 338.94
Raw Memory Read 10708.64 13292.24 5717.96 531006 2413 -46.6  -56.98 -50.41
Memory Raw Memory Write 9008.42 10664.76  4563.60 349586 1839  -4934  -57.21 -61.19
Intensive Bzero Bandwidth 2179454 31315.64 4166.62 404679  43.69  -80.88  -86.69 -81.43
Operations Memory copy libc aligned 12948.37 12969.82  1570.94 1534.59 0.17  -87.87  -87.89 -88.15
Bandwidth (MB/s) Memory copy libc unaligned 12870.26 13141.00 1556.58 1545.08 21 -8791  -88.15 -87.99
Less iteration ~ Memory copy unrolled aligned 6609.18  6714.93  2054.55 2009.46 1.6  -6891  -69.40 -69.6
More Chunk ~ Memory copy unrolled unaligned 6035.19  5853.26  2081.05 1999.58  -3.01  -65.52  -64.45 -66.87
size Mmapped Read 4839.57 7163.38  3299.77 1454.30 48.02 -31.82 -53.94 -69.95
File Read 285.39  3724.39 769.66 134.42 1205 169.68 -79.33 -52.9
Filesystem create 2.37 32.43 115.34 1272.86 1268.35 4766.67 255.66 53607.17
. Filesystem delforward 0.94 18.41 33.53 1185.10 1858.51 3467.02 82.13 125974.47

File System .

Latency(us) F*lesystem delrand 0.92 21.17 37.28 1073.69 2201.09 3952.17 76.10 116605.43
Filesystem delreverse 0.99 18.31 33.13 1266.38 1749.49  3246.46 80.94 127817.17
getpid 0.0087  0.0065  0.0058 00901 -2512 -33.18  -10.77 938.02
getrusage 04831  0.6401  7.4504 0.0903  32.50 144221 1063.94 -81.31
System Call  gettimeofday 0.0276  0.0239  6.5986 6.8500 -13.28 23842.67 27509.21 24754.86
Latency(us)  sbrk 0.0076  0.0064  0.0065 00102 -1623  -14.92 1.56 33.51
sigaction 0.6269 2.2101 2.7903 0.5904  252.56 345.11 26.25 -5.82
write 0.4927 0.5104 7.2301 0.5303 3.59 1367.44 1316.56 7.63
Signal Handler  Installing Signal 0.48 2.24 2.79 0.60 36575  480.11 24.55 24.76
Latency(us) Handling Signal 1.18 8.88 81.58 0.37 6529 6816.84  818.69 -68.63

Table 10. Summary of HBenchOS benchmark results for Graphene-SGX along with Linux, DynamoRIO and RATEL.

is observed for HBenchOS binaries as reported in Table 10. The expensive spin-locks incur cost that increases with
number of threads (Figure 9 for Parsec-SPLASH2 benchmarks). Overall, we observe that benchmarks that require large
memory copies consistently exhibit significant slow-downs compared to others, highlighting the costs imposed by the
two-copy design. The cost of signal handling also increases due to added context saves and restores in RATEL, as seen in
a dedicated benchmark of HBenchOS (see last two rows in Table 10).

Second, the current SGX hardware implementation has limited secure physical memory (called the EPC) of 90 MB.
Executing anything on a severely limited memory resource results in large slow-downs (e.g., increased page-faults).
Further, cost of each page-in and page-out operation itself is higher in SGX because of hardware based memory
encryption. We measure the impact of this limitation by executing benchmarks and applications that exceed the
working set size of 90 MB for both data and code. For example, we test varying download sizes in cURL (Figure 11a) and
database sizes in SQLite (Figure 10a). When the data exceeds 90 MB, we observe a sharp increase in throughput loss.
Similarly, when we execute varying sizes of ML models that require increasing size of code page memory, we observe
increase in page faults and lowered performance (Figure 11b). We observe similar loss of latency and throughput when
applications reach a critical point in memory usage as in Memcached (Figure 10b). Appendix A.1 and A.2 detail the

performance breakdown. The memory footprint of our system is reported separately in Section 6.3.2 as well.

Performance Comparison with Graphene-SGX. The performance overheads in RATEL vary based on workloads.
This is observed for Graphene-SGX as well. As a direct point of comparison, we tested HBenchOS—a benchmark
with varying workloads—with Graphene-SGX and find similar variation in performance based on the workload. The
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Fig. 9. RATEL performance for Parsec-SPLASH2 (multi-threading): (a), (b), (c), and (d) shows vanilla DynamoRIO execution time
overhead w.r.t. Linux, RATEL execution time overhead w.r.t. Linux, and RATEL execution time overhead w.r.t. vanilla DynamoRIO, with
1, 4, 8, and 16 thread(s) respectively; the data for 2 threads has been included in Table 11; lower value indicates better performance.
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Fig. 10. RATEL performance for SQLite and Memcached. (a) shows SQLite’s average time per operation (micros/op) with increasing
database size represented as number of primary keys in thousands (K) across Linux, vanilla DynamoRIO, and RATEL; (b) shows the
throughput versus latency of Memcached on Linux, vanilla DynamoRIO, and RATEL.
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Fig. 11. RATEL performance for (a) cURL and (b) Privado. Vanilla DynamoRIO execution time w.r.t. Linux, RATEL execution time w.r.t.
Linux, and RATEL execution time w.r.t. vanilla DynamoRIO.

performance overheads of Graphene-SGX for HBenchOS benchmarks as compared to Linux, DynamoRIO, and RATEL
is reported in Table 10. The slowdown in both RATEL and Graphene-SGX systems is comparable for I/O benchmarks,
since both of them incur two copies. Graphene-SGX is significantly faster than the DynamoRIO baseline and RATEL
for syscall and signal handling, because it implements a library OS inside the enclave and avoids expensive context
switches. RATEL delegates most of the system calls to the OS and does not emulate it like Graphene-SGX, offering
compatibility with multiple libraries in contrast. Further, RATEL offers instruction-level instrumentation capability.
Some performance overheads in Graphene-SGX are expected to be better than RATEL due to the differing design choices.
Graphene-SGX does not use spin-locks and tunnels all signal handling through libc as it prioritizes performance over
binary compatibility, and has reduced overheads compared to RATEL. On the other hand, RATEL offers better binary

compatibility as opposed to Graphene-SGX which provides compatibility with glibc, as shown in Section 6.1.1.

6.3.2 Effects of Memory Constraints on RATEL. On our current experimental setup, SGX has a maximum of 128 MB
EPC i.e., private physical memory, of which approximately 90 MB is available for user-enclaves. Further, the platform

supports at most 64 GB of virtual memory per enclave. These limitations adversely impact RATEL performance.

Physical Memory Footprint. We report the physical memory required to execute each application with RATEL
(Column 5, Table 11), the smallest being 236 MB for FSCQ benchmark binaries. RATEL uses this memory for the target
application as well as for DynamoRIO binaries and the code cache. Since the EPC size is only 90MB, executing enclaves
with a physical memory footprint larger than this size (236MB or more in our experiments) causes a high number of

page faults (Column 12, Table 11). This is one of the main sources for RATEL performance overheads.

Virtual Memory Footprint. We monitor the peak virtual memory usage for Linux and DynamoRIO using ptrace and
procmaps. We use sgxtop to monitor the enclave peak virtual memory at run time (Column 8, Table 11 [9]). Further,
we monitor the peak virtual memory used by the untrusted host application corresponding to the enclave (Column9,
Table 11). On average, DynamoRIO incurs a high memory overhead of 205X compared to Linux. However, RATEL only
imposes 24X overhead compared to Linux. There are two reasons why RATEL incurs significantly lower virtual memory
usage compared to DynamoRIO.

First, DynamoRIO reserves 2 GB of heap memory region as a scalability improvement for Linux x64 [5]. Our analysis
of DynamoRIO with several binaries shows that this region is rarely used. SGX has a limited EPC and requires pre-
specifying maximum heap size. We disable this reservation logic in RATEL to reduce its virtual memory usage and
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Suite Benchmark Compile Stats Runtime Stats Time (sec) Overhead (in %)
Name /Application Binary Mem Linux DR Trust. Untru. Out Sys Page Ctx .

Name Loc Size Y Size VmP. VmP. VmP. VmP. Calls C zlls Fauglts Swt Linux DR Rarer DR Rater - R-DR
astar 4280 56KB 237.68  21.48 3101.62 257.94 101.34 26561 618555 271544 181 7.25 877 10.71 20.97 47.72  22.01
bzip2 5734 73KB 519.05 208.98 3289.13 1024 248.13 26048 618115 443869 238 19.21 21.74 34.49 13.17 79.54  58.99
gobmk 157650 4.4 MB 244.84 35.70 3115.85 258.07 107.43 26594 618629 272957 150 0.82 173 4.37 110.98 432.93 152.60

§ hmmer 20680 331 KB 238.25 7.93 3088.11 258.62 101.66 26144 629203 271106 139 0.19 0.98 0.85 415.79 347.37 -13.27
& sjeng 10549 162 KB 355.39 178.86 3259.00 512 217.64 26606 618638 2049404 382 2.98 508 4.57 70.47 53.36 -10.04
Z libquantum 2611 51KB  237.29 7.32 3087.46  257.1 101.33 25969 618004 271071 150 0.03 050 047 1566.67 1466.67 -6.75
© h264ref 36097 602 KB 240.59  34.64 3114.79 259.16 102.18 27033 619033 272100 284 8.87 18.25 34.83 105.75  292.67 90.16
8 omnetpp 26652 871 KB 239.82 20.67 3100.81 258.42 102 26961 618990 271813 151 0.26 247 2.72 850.00 946.15  10.12
% Xalan 267376 6.3 MB 248.73 23.53 3103.68 261.93 105.84 28121 620185 273953 198 0.05 5.53 4.05 10960.00 8000.00 -26.76
gee 385783 3.8 MB 251.16 20.17 3100.28 265.15 105.44 25758 656241 56201 454 5.38 12.85 6.30 138.85 17.10 -51.16
gromac 87921 1.1MB 23991  24.17 3104.32 259.62 102.28 26783 654600 55019 633 048 285 479 49375 897.92 68.07
leslie3d 2983 177KB 238.86 28.49 3108.63 258.54 101.39 26831 618865 271723 204 5.25 18.80 21.63 258.10 312.00 14.89
milc 9580 150 KB 238.41 16.04 3096.18 256 101.45 32551 624587 271506 192 7.27 13.05 22.41 79.50 208.25  70.99
namd 3892 330KB 238.46 58.14 3138.29 256 101.6 28550 620582 271665 173 8.13 18.86 19.41 131.98 138.75 2.65
cactusADM 60235 819KB 596.88 415.05 3495.19 1027.35 454.19 27619 619634 370217 190 1.13 534 778 37257 58850 45.69
3 calculix 105123 1.8 MB  395.25 169.34 3249.48 512 208.48 27319 629243 313313 174 0.03 3.06 3.90 10100.00 12900.00  27.45
I dealll 94458 43MB 27737  97.08 3177.76 515.73 138.61 26858 618872 273471 240 1029 24.68 24.73 139.84  140.33 0.00
& GemsFDTD 4883 440 KB 1021.82 841.85 3924.16 2048 883.48 25207 617226 366889 177 1.24 544 2.08 338.71 67.74 -61.76
8 povray 78684 1.2 MB 242.70 16.54 3096.69 262.25 102.47 29082 621108 272267 166 0.35 4.42 4.72 1162.86 1248.57 6.79
E soplex 28282 507 KB 239.68 16.90 3097.04 256 101.71 26880 618909 271861 164 0.01 2.07 2.08 20600.00 20700.00 0.48
@ specrand (998) 54 87KB 236.76 4.25 3084.39 256.01 101.3 25863 617897 270924 150 023 035 0.27 52.17 1739 -22.41
specrand (999) 54 87KB 236.76 4.25 3084.39 256  101.3 25863 617897 270990 164 021 034 033 61.90 57.14 -2.94
tonto 107228 4.6 MB  248.28  20.54 3100.68 264.75 105.57 30562 622574 273669 186 043 6.89 6.65 1502.33 1446.51 -3.48
zeusmp 19030 280 KB 1357.84 1132.98 4213.13 2051.73 1219.49 27163 619201 1755130 434 7.55 20.65 52.03 173.51 589.14 15243
read/reread 26545 1.1MB 241.64 48.23 312837 257.86 105.12 27254 622791 23785 1215 0.06 0.88 0.89 1366.67 1383.33 1.14
=] random r./w. 26545 1.1MB 241.64 48.23 3128.37 257.86 105.12 27376 622913 23744 844 0.07 0.88 1.09 1157.14 1457.14 23.86
% backward read 26545 1.1MB 241.64 48.23 3128.37 257.86 105.12 27431 622968 23854 1159 0.07 0.84 138 1100.00 187143 64.29
8‘ fwrite/frewrite 26545 1.1 MB 241.64 48.36 3128.50 257.86 105.12 27212 622750 24317 581 0.07 0.87 0.86 1142.86 1128.57 -1.15
= fread/freread 26545 1.1 MB 241.64 48.36 3128.50 257.86 105.12 27223 622760 23742 374 0.06 0.86 0.65 1333.33 983.33 -24.42
fscq large file 383 25KB 236.82 4.26 3084.40 256.27 101.3 25889 1165892 270914 168 0.12 047 3.41 291.67 2741.67 625.53
fscq small file 161 19KB 236.82 4.29 3084.43 256.19 101.34 26352 929795 270959 181 0.01 0.34 0.17  3300.00 1600.00 -50.00
fscq write file 74 18KB 236.82 4.25 3084.39 256.04 101.3 262015 930226 270867 143 0.01 0.31 0.13  3000.00 1200.00 -58.06
multicreatewrite 20 11KB 236.81 4.24 3084.39 257.5 101.3 65721 969595 270969 248 0.11 0.38 0.83 245.45 654.55 120.74
8‘ multiopen 14 9.8KB 236.81 4.24 3084.39 257.5 101.3 225719 1129593 270842 452 0.16 0.57 2.44 256.25 1425.00 328.07
4] multicreate 18 9.9KB 236.81 4.24 308439  257.5 101.3 55720 949625 270866 212 0.07 031 0.67 34286 857.14 116.13
multiwrite 16 9.9KB 236.81 4.24 308439  257.5 101.3 35720 939594 270864 152 0.01 0.23 0.30 2200.00 2900.00 28.21
multicreatemany 19 11KB 236.81 4.24 308439  257.5 101.3 45729 959605 271034 198 0.07 036 0.77 414.29 1000.00 115.08
multiread 17 99KB 236.81 4.24 3084.39 257.5 101.3 325721 1229595 270901 589 0.21 0.62 3.70 195.24 1661.90 494.86
water_nsquare 2885 46 KB 239.27 18.07 3098.21 258.53 129.22 27109 622992 25093 199 0.05 094 0.88 1780.00 1660.00 -6.08
~ water_spatial 3652 46 KB 456.63 145.71 3225.85 514.88 256.86 27171 622991 61992 164 0.04 1.05 231 2525.00 5675.00 120.00
E barnes 4942 46 KB 247.13 67.42 3147.56 257.68 178.57 26801 622748 28191 287 0.19 0.85 1.02 347.37 436.84 20.14
5 fmm 7611 64KB 455.38 146.11 3226.25 513.14 257.26 27218 622909 62025 58 0.01 0.97 2.18 9600.00 21700.00 125.44
7] raytrace 200091 92KB 455.63 186.00 3266.15 512.05 297.15 27291 623175 65323 194 0.05 1.23 2.59 2360.00 5080.00 110.57
;(_'J‘_} radiosity 21586 230 KB 455.63  63.15 3143.30 512.01 1743 27609 623118 26162 139 1.92 430 5.82 123.96  203.13 35.35
2 ocean_cp 10519 81KB 238.63 31.76 311191 25831 14291 27234 622990 25480 86 0.05 1.19 1.05 2280.00 2000.00 -11.76
é ocean_ncp 6275 65KB 23825 40.36 3120.51 257.11 151.51 27052 622948 25362 91 0.05 1.03 1.08 1960.00 2060.00 4.85
volrend 27152 271KB 238.00 146.02 3226.17 256.01 129.17 27309 623167 25082 178 0.01 0.75 0.88 7400.00 8700.00 17.02
SQLite(10K keys) 140420 13 MB 241.24  24.58 3104.72 256 101.39 400548 1818195 272323 1261 505 582 6.94 15.25 37.43  19.24
cURL (10 MB) 22064 30KB 266.07 76.77 3156.91 512,95 127.22 35897 940802 272552 1031 0.07 178 1.17 244286 157143 -34.27
Memcach.(100K) 44921 795 KB 1589.42 595.55 3547.69 2048 1408.99 1021241 1118691 540649 104765 528 599 9.46 13.45 79.17  57.93
densenetapp 12551 32MB 752.04 575.70 3655.41 1028.5 614.41 27826 616749 123894 354 3.74 7.25 1290 93.85 24492 7793
a lenetapp 230 313KB 237.29 8.12 3088.26 256.38 101.59 26029 616411 21166 362 0.01 0.49 0.26 4800.00 2500.00 -47.05
g resnet110app 9528 110 MB  270.43 94.42 3175.39 512 134.38 27238 696291 23716 200 0.34 1.98 2.45 482.35 620.59  23.74
_; resnet50app 2826 98 MB 605.50 430.67 3511.61 1025.7 470.62 26591 616291 136139 274 5.09 7.64 1181 50.10 132.02  54.45
E: resnext29app 1753 132 MB  575.01 400.85 3481.00 1025.08 439.99 26410 616728 187284 411 9.76 11.38 16.33 16.60 67.32  42.98
< squeezenetapp 914 48MB 24215 59.41 3139.55 258.15 106.07 26258 616290 23001 252 040 122 1.11  205.00 177.50  -9.02
vggl9app 990 77 MB 345.78 171.65 3252.65 514.15 211.46 26192 630872 96647 402 0.66 1.40 2.44 112.12 269.70  74.29
wideresnetapp 1495 140 MB  564.14 390.19 3470.72 1025.43 429.71 26352 631004 172712 303  19.25 20.02 55.38 4.00 187.69 177.00
inceptionv3 4875 92MB 656.53 481.82 3561.96 1024 520.96 26862 1088344 250880 355 11.39 13.25 24.63 16.33 116.24  84.96

Table 11. RATEL statistics for benchmarks and real-world applications. Columns 3 — 4: total application LoC and binary size. Columns

5: maximum physical memory size (in MB) required to execute each application with RATEL. Columns 6 — 7: peak virtual memory
usage (in MB) on Linux and DynamoRIO. Columns 8 — 9: trusted and untrusted peak virtual memory usage (in MB) on RATEL.
Columns 10 — 13: total OCALLs, system calls, page faults, and context switches recorded in one run. Columns 14 — 16: execution time
on Linux, vanilla DynamoRIO, and RATEL. Column 17 — 19: execution overhead of DynamoRIO w.r.t. Linux, RATEL w.r.t. Linux, and
RATEL w.r.t. DynamoRIO. RATEL performs better than DynamoRIO in some cases (denoted by negative overheads)—SGX loads the
binaries during enclave attestation and we do not include the enclave creation time in RATEL execution time.

subsequent page faults for loading physical pages. Further, a low memory footprint speeds up the enclave creation and

attestation because SGX has to initialize and measure a smaller memory region. Thus, RATEL virtual memory peak is

always smaller than DynamoRIO by at least a margin of 2 GB (see Column 7 and 8 in Table 11).
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Second, DynamoRIO executes directly on Linux. Thus, it can demand arbitrarily large physical memory (as long as it
is available on the RAM). It uses the default Linux memory manager to optimize memory allocations. On the other
hand, RATEL has to pre-specify the maximum physical footprint before execution and it uses a modified SGX SDK
memory manager for its own heap (see Section 4.2). We initialize just enough enclave memory such that RATEL can
execute target applications and not any more than that. Such conservative allocation allows RATEL to quickly create
and launch enclaves. This explains why RATEL has lower virtual memory peaks (typically between 256 MB to 2 GB)
compared to DynamoRIO (1-2 GB, after accounting for 2 GB for the above optimizations). To empirically verify our
hypothesis, we perform a controlled experiment. For each binary from SPEC 2006, we run RATEL with increasing size of
maximum heap memory (ranging from 256 MB to 4 GB) and measure the virtual memory peak. We report that the
virtual memory peak continues to increase with increasing maximum heap size and then it plateaus at a certain point.
The plateau point of each binary matches the corresponding DynamoRIO peak. This confirms our claim that RATEL has
a smaller virtual memory peak because we limit the maximum heap size in our configuration. These two phenomena
explain why RATEL has a much smaller virtual memory footprint compared to DynamoRIO.

Note that RATEL additionally incurs virtual memory overheads in the untrusted host application (Column 9, Table 11).

The two copy model used in RATEL design accounts for a high virtual memory peak in the untrusted part of the process.

Code Cache Size. RATEL and DynamoRIO allow users to configure the maximum code cache size via a configuration
file before launching the enclave. The cache is used to store basic blocks and traces. At run time, the DBT engine is
allowed to use a cache up to this size. Often, the peak cache size is smaller than the maximum because the basic blocks
and traces may fit in a smaller memory for a given application. We execute applications with different code cache sizes
for both DynamoRIO and RATEL. Our tests start with a maximum cache size of 4 KB and we double the size up to 64
MB. For each run, we measure the peak basic block cache and trace cache size in DynamoRIO and RATEL.

Once the maximum cache size is large enough for the application, both of them execute successfully. Further, the
peak size stays constant even if we keep increasing the maximum size. In the case of Memcached executing YCSB
workload A, DynamoRIO peaks at 231.24 KB basic block cache and 92.78 KB for the trace cache. RATEL peaks at 201.54
KB and 32.84 KB respectively. Increasing the cache size beyond the peak value does not improve the performance of
DynamoRIO or RATEL. Specifying a large cache size for RATEL results in a larger enclave physical memory. RATEL takes
more time to initialize and create the enclave, it also incurs more frequent page faults. Thus, beyond the peak size, these
two factors slow-down the application with an increase in the cache size. When we reduce the cache size below the
peak value, DynamoRIO suffers an order of magnitude slowdown. This is a well-known and expected behavior [27].
Relatively, RATEL does not suffer such a slowdown, partly because a smaller cache size results in fewer page faults.
However, if the specified code cache size is small compared to the peak value, RATEL fails to execute a given application.

In summary, the limited EPC size in SGX v1 not only results in high execution overhead but also invalidates expected

performance gains via a large code cache.

6.4 Compatibility with Built-in Profilers

RATEL primarily achieves binary compatibility by leveraging the complete interposition offered by DynamoRIO.
Additionally, this instruction-level interposition allows RATEL to monitor various in-enclave behavior (e.g., events,
instructions, control-flows, etc.) out-of-the-box. Specifically, DynamoRIO provides 26 built-in profilers for dynamically
tracing, analyzing, and fine-tuning the target application. Table 12 summarizes the names and the profiling services

they offer. When we run vanilla DynamoRIO on our experiment platform, 25/26 profilers work stably. One profiler,
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Built-in Profiler Support Description

-opt_memory Reduce memory usage, but potentially at the cost of performance.

-prof_pcs A simple sampler to periodically interrupt DBT engine and query which part of DBT engine was running.
-stack_size <number> Increase the size of DBT engine’s per-thread stack.
-signal_stack_size <number> Specify the size of signal handling stack.
-thread_private Request code caches that are private (shared across threads by default) to each thread.
-disable_traces Disable trace building (e.g., basic block cache and trace cache), which can have a negative performance impact.
-enable_full_api Default internal options balance performance with API usability.
-max_bb_instrs Stop building a basic block if it hits this application instruction count limit.
-max_trace_bbs Build a trace with less than this number of constituent basic block.
-synch_at_exit In debug builds, synchronize with all remaining threads at process exit time.
-syntax_intel Output all disassembly using Intel syntax rather than the default AT&T-style syntax.
-tracedump_text A text dump option to output all traces that were created to the log file traces-shared.0.TID.html.
-tracedump_binary A binary dump option to output all traces that were created to the log file traces-shared.0.TID.html.
-tracedump_origins Dump only a text list of the constituent basic block tags of each trace to the trace log file.
-reachable_heap Guarantee all of the heap memory is reachable from the code cache, at the risk of running out of memory.
-multi_thread_exit Avoid synchronizing with all remaining threads at process exit time.
-cache_bb_max Set maximum basic block code cache sizes.
-cache_trace_max Set maximum trace code cache sizes.
-msgbox_mask 0xN Control whether the system waits for a key press, when presenting information.
-stderr_mask 0xN Control the output to standard error.

-pause_on_error Suspend the process so that a debugger can be attached when encountering an assert or crash.

-debug Use the DBT engine debug library for debugging.
-loglevel N Print out a log of DBT engine’s actions. The greater the value of N, the more information the system prints.
-logmask 0xN Select which DBT engine modules print out logging information, at the -loglevel level.

-ignore_assert_list Ignore all DBT engine asserts of the form "<file>:1234".

AN NN N N NN 0 NN 2

-logdir <path> Specify the directory to use for log files.

Table 12. Names and description of built-in Profilers in DynamoRIO that are available directly in RATEL. v indicates that the
profiler is supported out-of-the-box in RATEL. X indicates that the profiler is not supported because it crashes even in vanilla
DynamoRIO [10, 11].

-prof_pcs, is unstable and causes time-outs. This is a well-documented issue with DynamoRIO [10, 11]. Of all the 25
profilers that work with DynamoRIO, RATEL retains support for all of them. We experimentally demonstrate that RATEL
maintains compatibility with built-in profilers. We randomly choose 4 application binaries from each of the 6 categories
listed in Table 11. We run a total of 24 applications that exhibit diverse execution behavior with all of the 25 profilers.
We report that all of 25 profilers worked with all our applications.

7 RELATED WORK
7.1  SGX Frameworks

Several prior works have targeted SGX compatibility. There are two main ways that prior work has overcome these
challenges. The first approach is to fix the application interface. The target application is either re-compiled or is
relinked to use such interfaces. The approach that enables the best compatibility exposes specific Libc (glibc or musl
libc) versions as interfaces. This allows them to adapt to SGX restrictions at a layer below the application. Container or
library OS solutions use this to execute re-compiled/re-linked code inside the enclave as done in Haven [20], Scone [16],
Graphene-SGX [30], Ryoan [49], SGX-LKL [68], and Occlum [72]. Another line of work is compiler-based solutions.
They require applications to modify source code to use language-level interface [41, 62, 75, 86].

Both style of approaches can have better performance than RATEL, but require recompiling or relinking applications.
For example, library OSes like Graphene-SGX and containerization engines like Scone expose a particular glibc and
musl version that applications are asked to link with. New library versions and interfaces can be ported incrementally,
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but this creates a dependence on the underlying platform interface provider, and incurs a porting effort for each library
version. Applications that use inline assembly or runtime code generation also become incompatible as they make
direct access to system calls, without using the API. RATEL’s approach to handle R1-R5 comprehensively offers complete

interposition, without any assumptions about specific interfaces beyond that implied by binary compatibility.

Security Considerations. As in RATEL, other approaches to SGX compatibility eventually have to use OCALLs, ECALLs,
and syscalls to exchange information between the enclave and the untrusted software. This interface is known to be
vulnerable [31, 37, 81]. Several shielding systems for file [28, 77] and network IO [18], provide specific mechanisms to
safeguard the OS interface against these attacks. For security, defense techniques offer compiler-based tools for enclave
code for memory safety [54], ASLR [71], preventing controlled-channel leakage [73], data location randomization [22],
secure page fault handlers [66], and branch information leakage [47].

RATEL uses DynamoRIO’s in-built intra-process isolation primitives for separating application code from DynamoRIO
code. It supports multi-threading within an enclave but does not support multi-processing. Recent library OSes such as
Occlum support multi-process applications by executing them in the same enclave together with software-based fault
isolation (SFI) to isolate within the process boundary. The combined use of SFI with RATEL instrumentation engine,

instead of a library OS, constitutes promising future work to support multi-processing.

Performance. Several other works build optimizations by modifying existing enclave-compliant library OSes. Hot-
calls [88] and Eleos [65] add exit-less calls to reduce the overheads of OCALLs. These optimizations are now available in
the default Intel SGX SDK.

Language Run-times. Recent body of work has shown that executing either entire [85] or partial [33] language
runtimes inside an enclave can help to port existing code written in interpreted languages such as Python [60, 69],
Java [33], web-assembly [45], Go [44], and JavaScript [46].

Programming TEE Applications. Intel provides a C/C++ SGX software stack which includes a SDK and OS drivers
for simulation and PSW for running local enclaves. There are other SDKs developed in memory safe languages such as
Rust [41, 62, 86]. Frameworks such as Asylo [17], OpenEnclave [64], and MesaTEE [61] expose a high-level front-end
for writing native TEE applications using a common interface. They support several back-end TEEs including Intel SGX

and ARM TrustZone. Many of the challenges faced by RATEL are common to these frameworks.

7.2 Future TEEs & SGX v2

New enclave TEE designs have been proposed [29, 36, 39, 55, 76]. Micro-architectural side-channels [21] and new
oblivious execution capabilities [36, 57] are significant concerns in these designs. Closest to our underlying TEE is the
recent Intel SGX v2 [13, 58, 89].

Dynamic Permission Management. On SGX v1, once an enclave is initialized completely, enclave pages can no
longer be added, removed, or modified with their permissions. On SGX v2, such restriction has been removed due to new
SGX instructions. Thus, RATEL can address R2. Recall that, to dynamically load programs into an enclave, DynamoRIO
has to reserve a large block of enclave memory region with full permissions (RWX) during the RATEL enclave setup.
This is a common design choice in existing SGX runtimes, such as Occlum and Graphene-SGX. With SGX v2, the RWX
code cache region in RATEL can be protected (execute-only) via dynamic permission management.

Larger EPC. Until recently, SGX v1 only supported 128 MB EPC memory. Intel recently started shipping machines for
SGX v1 with 256 MB EPC and publicly released the plans to support 1 TB EPC [4]. With a larger EPC, the performance

effect due to R1, R3, R4, and R5 will be greatly improved. Specifically, a larger code cache capacity can speedup RATEL
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enclave creation and application execution. Moreover, the page swapping frequency will significantly be reduced since
a large memory usage is involved in RATEL (see Columns 84AS9 in Table 11).

Dynamic Scaling of Virtual Memory and TCS. SGX v2 introduces several instructions for dynamic enclave mem-
ory management. This allows an enclave to perform dynamic heap allocation, stack expansion, and thread context
creation [58, 89]. These features can improve performance by alleviating R2. RATEL performs dynamic heap allocation,
stack expansion, and TCS management. With SGX v2, RATEL can manage these allocations in an on-demand way instead
of using fixed pre-allocated memory. This can save EPC memory and speed up the program execution by reduced page
swapping. For dynamic TCS control, RATEL will no longer need multiplexing the limited TCS entries that are fixed at

enclave creation time (Section 4.3). Instead, RATEL can create threads on-demand in SGX v2.

Conditional Exception Handling. SGX categorizes hardware exceptions (AEX events) into two groups: unconditional
and conditional exceptions. On SGX v1, only 8 exception types (e.g., #DE) can be handled unconditionally while other 3
(e.g., #GP, #PF, and #CP) are not supported by default in vanilla SDK. RATEL enables these 3 exceptions by modifying
the SGX SDK. On SGX v2, RATEL can configure the enclave parameter (e.g., MiscSelect) to support these exceptions.

In summary, SGX v2 features can improve RATEL performance and simplify security. The features can address R2 to

some extent but do not address other restrictions. Thus, RATEL design largely applies to SGX v2 as well.

8 CONCLUSION

We present the design of RATEL, which enables dynamic binary translation inside SGX enclaves. It offers the ability to
interpose on all the instruction executed in an enclave, which serves as a foundation for implementing other security
monitors to safeguard enclaves from bugs and from the untrusted OS. RATEL also provides the first evidence that binary
compatibility with existing Linux software on SGX is feasible. We empirically report on an extensive evaluation with
over 200 common Linux applications and multiple scripting language runtimes. Our observations about the restrictive

design choices made in SGX may be of independent interest to designers of next-generation enclave systems.
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A PERFORMANCE BREAKDOWN
A.1 Detailed Breakdown for Micro-benchmarks

We measure the performance on diverse workloads to explain the costs associated with executing with RATEL.

System Stress Workloads. We use HBenchOS [23]—a benchmark to measure the performance of primitive function-
ality provided by an OS and hardware platform. In Table 10 we show the cost of each system-level operation such as
system calls, memory operations, context switches, and signal handling. Memory-intensive operation latencies vary
with benchmark setting: (a) when the operations are done with more iterations (in millions) and less memory chunk
size (4 KB) the performance is comparable; (b) when the operations are done with less iterations (1 K) and more memory
chunk size (4 MB) RATEL incurs bandwidth loss ranging from —169.68% to 87.91% and 53.94% to 88.15% over Linux
and DynamoRIO, respectively. This happens because when the chunk size is large, we need to allocate and de-allocate
memory inside enclave for every iteration as well as copy large amounts of data.

These file operation latencies match with latencies we observed in our I/O intensive workloads (Figure 8). Specifically,
the write operation incurs large overhead. Hence, the create workload incurs 4766.67% and 255.66% overhead over
Linux and DynamoRIO because the benchmark creates a file and then writes predefined sized data to it. Costs of system
calls that are executed as OCALLs vary depending on return value and type of the system call. For example, system calls
such as getpid, sbrk, sigaction that return integer values are much faster. Syscalls such as getrusage, gettimeofday
returns structures or nested structures. Thus, copying these structures back and forth to/from enclaves causes much
of the performance slowdown. RATEL has a custom mechanism for registering and handling signal (Section 4.5); it
introduces a latency of 480.11% and 6816.84% with respect to Linux as well as 24.55% and 818.69% with respect to

DynamoRIO respectively. Registering signals is cheaper because it does not cause a context switch as in the case of
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handling the signal. Further, after accounting for the OCALL costs, our custom forwarding mechanism does not introduce

any significant slowdown.

CPU-bound Workloads. RATEL incurs 217.80% and 34.91% overhead averaged over 24 applications from SPEC 2006 [78]
with respect to Linux and DynamoRIO, respectively. Table 11 shows the individual overheads for each application with
respect to all baselines. From Table 11 we observe that applications that incur higher number of page faults and OCALLs
suffer larger performance slow-downs. Thus, similar to other SGX frameworks, the costs of enclave context switches

and limited EPC size are the main bottlenecks in RATEL.

10-bound Workloads. RATEL performs OCALLs for file I/O by copying read and write buffers to and from enclave. We
measure the per-API latencies using FSCQ suite for file operations [32]. Table 11 shows the costs of each file operation
and file access patterns respectively. Apart from the cost of the OCALL, writes are more expensive compared to reads in
general; the multiple copy operations in RATEL amplify the performance gap between them. Next we use I0Zone [63],
a commonly used benchmark to measure the file I/O latencies. Figure 8 shows the bandwidth over varied file sizes
between 16 MB to 1024 MB and record sizes between 4 KB to 4096 KB for common patterns. The trend of writes being
more expensive holds for I0Zone too. RATEL incurs an average slowdown of 87.5% and 66.2% over all operations, record

sizes, and file sizes with respect to Linux and DynamoRIO, respectively.

Multi-threaded Workloads. We use the standard Parsec-SPLASH2 [67] benchmark suite. It comprises a variety of
high performance computing (HPC) and graphics applications. We use it to benchmark RATEL overheads for multi-
thread applications. Since some of the programs in Parsec-SPLASH2 mandate the thread count to be power to 2 (e.g.,
ocean_ncp), we fixed the maximum number of threads in our experiment to 16. RATEL changes the existing SGX design
to handle thread creation and synchronization primitives, as described in Section 4.3 and 4.4. We measure the effect of
this specific change on the application execution by configuring the enclave to use varying number of threads between
1-16. The data for 2 threads is shown in Table 11.

Figure 9 shows a performance overhead of 10156.52% and 92.55% compared to Linux and DynamoRIO, on average,
across all benchmarks and thread configurations. Particularly, DynamoRIO imposes an average overhead of 5010.07%
over Linux with the same setting. For single-threaded execution, on average, RATEL causes an overhead of 2050.92% and
3.17% with respect to Linux and DynamoRIO, respectively, while they increase to 21238.0% and 159.78% in 16-thread
execution. We measure the breakdown of costs and observe that, on average: (a) creating each thread contributes to a
fixed cost of 57 ms; (b) shared access to variables becomes expensive by a factor of 1 — 7 times compared to the elapsed
time of futex synchronization with increase in number of threads. This is expected because synchronization is cheaper
in Linux and DynamoRIO execution, in which they use unsafe futex primitives exposed by the kernel. On the other
hand, RATEL uses expensive spinlock mechanism exposed by SGX hardware for security. Particularly, some of the
individual benchmarks, such as water_spatial, fmm and raytrace that involve lots of lock contention events and have
extremely high frequency of spinlock calls (e.g., the spinning counts of about 423, 000 ms in RATEL while the futex calls

of about 500 ms in DynamoRIO for the raytrace with 8 threads). Thus, they incur large overheads in synchronization.

A.2 Real-world Case-studies

We work with 4 representative real-world applications: a database server (SQLite), a command-line utility (cURL), a
machine learning inference-as-a-service framework (Privado), and a key-value store (Memcached). These applications

have been used in prior work [75].
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SQLite is a popular database [79]. We select it as a case-study because of its memory-intensive workload. We configure
it as a single-threaded instance. We use a database benchmark workload [56] and measured the throughput (ops/sec)
for each database operation with varying sizes of the database (total number of entries). Table 11 shows the detailed
breakdown of the runtime statistics for a database with 10, 000 entries. Figure 10a shows the average throughput over all
operations. With RATEL, we observe a throughput loss of 36.88% and 28.71% on average over all database sizes compared
to Linux and DynamoRIO. The throughput loss increases with increase in the database size. The drop is noticeable at
500K where the database size crosses the maximum enclave size threshold and results in significant number of page

faults. This result matches with observations from other SGX frameworks that report SQLite performance [16].

cURL is a widely used command line utility to download data from URLs [38]. It is network intensive. We test it with
RATEL via the standard library test suite. Table 11 shows detailed breakdown of the execution time on RATEL. We
measure the cost executing cURL with RATEL for downloading various sizes of files from an Apache (2.4.41) server on
the local network. Figure 11a shows the throughput for various baselines and file sizes. On average, RATEL causes a loss
of 604.11% and 142.11% throughput as compared to Linux and DynamoRIO. For all baselines, small files (below 100 MB)
have smaller download time; larger file sizes naturally take longer time. This can be explained by the direct copying
of packets to non-enclave memory, which does not add any memory pressure on the enclave. The only remaining

bottleneck in the cost of dispatching OCALLs which increase linearly with the requested file size.

Privado is a machine learning framework that provides secure inference-as-a-service [47]. It comprises of several state
of the art models available as binaries that can execute on an input image to predict its class. The binaries are CPU
intensive and have sizes ranging from 313 KB to 140 MB (see Table 11). We execute models from Privado on all the
images from the corresponding image dataset (CIFAR or ImageNet) and measure inference time. Figure 11b shows the
performance of baselines and RATEL for 9 models in increasing order of binary size. We observe that RATEL performance
degrades with increase in binary size. This is expected because the limited enclave physical memory leads to page faults.
Hence, largest model (140 MB) exhibit highest inference time and smallest model (313 KB) exhibit lowest inference time.
Thus, RATEL and enclaves in general can add significant overheads, even for CPU intensive server workloads, if they

exceed the working set size of 90 MB.

Memcached is an in-memory key-value cache. We evaluate it with YCSB’s all four popular workloads A (50% read
and 50% update), B (95% read and 5% update), C (100% read) and D (95% read and 5% insert). We run it with 4 default
worker threads running in Linux, DynamoRIO and RATEL settings. We vary the YCSB client threads with Load and
Run operations (to load the data and then run the workload tests, respectively). We fix the data size to 1,000,000 with
Zipfian distribution of key popularity. We increase the number of clients from 1 to 100 to find out a saturation point of
each targeted/scaled throughput for the settings. Here, we only present workload A (throughput vs average latency for
the read and update); the other workloads display similar behavior.

As shown in Figure 10b, the client latencies of the DynamoRIO and RATEL settings for a given throughput are slightly
similar until approximately 10, 000 ops/sec while it nearly keeps unchanged on Linux until more than 40, 000 ops/sec.
Specifically, RATEL jitters until it achieves maximum throughput around 17, 000 ops/sec, while DynamoRIO is flat until
15, 000 ops/sec (the maximum is 21, 000 operations per second). The shared reason of the deceleration for both is that
DynamoRIO slows down the speed of Read and Update. For RATEL, the additional bottleneck is the high frequency of
lock contention with spin-lock primitive. For e.g., RATEL costs 18, 320, 000 ms while DynamoRIO’s the futex calls cost

only around 500 ms for a given throughput of 10000 with 10 clients.
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