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Abstract

Previous defenses against untrusted COTS software h&gMES. Our technique is able to selectively confine the
been focused primarily on stand-alone applications. \@€tions performed on behalf of an untrusted plug-in with-
develop a new approach in this paper that enables th@dkrestricting the actions performed by the host applica-
defenses to be applicable to the context of shared-mem@jp- Our approach is designed for contemporary plug-in
extensions (SMEs) available in the form of binaries, sugiichitectures such as those of today’s web browsts

as browser plug-ins that have become very popular in ¢t needing any code changesaccess to their source
last few years. Central to our approach is a new technicéle: It does not require an understanding of the seman-
for secure attributiorof sensitive operations to an SME ofiCS Of (potentially complex) host/extension interfacer n

its host application. This enables selective confinementd§tes it make strong assumptions about the host applica-
an untrusted SME's actiongithout having to restrict the tion’s ability to defend itself from attacks mounted by a
activities of its (trusted) host applicatiorOur approach Plug-in (including attacks that simply involve calling fos
requires no modifications to SMEs or their host applic&P! functions with malicious arguments). Yet, itis strong
tions, and does not require source-code access. Itis rol§iiugh to work against malicious plugins that employ ac-
against maliciously crafted SMEs that actively attempt fty® €vasion techniques, and practical enough to secure
evade our defenses. Our experimental evaluation shd#any Of today’s plug-ins. Finally, itimposes only modest
that the approach is effective with contemporary plug-Rerformance overheads in practice.

architectures and several SMEs, and introduces relatively Challenges of Securing SMEs

low overheads. The central challenge in extending application confine-

1 Introduction ment mechanisms to SMEs is that of distinguishing the ac-

Users are increasingly relying on untrusted software tiir?nS of the SME (which need to be confined) from those

their daily activities such as viewing documents and it the hOfSt appllca_ltlon (which ShOL.'Id r_10t be confm_ed,_or
ages, listening to music, watching video, instant mess&g=C we_nsk breaking the host apphcauop). Such (_jlscnm—
ing, multimedia communication, file-sharing, and playinI Ef‘t.'on IS Elqrd _bef,:z?\use an SME can r_ude mghmous_ ac-
games. The explosive increase in malware, which oft ties by tn_ckmg its host application into doing thei
hides in software from untrusted sources, highlights t édd'ng' For instance, an SME may:
need for secure execution techniques for such software® Subvert the control-flow of its host application by mod-
Previous techniques for securing untrusted code havdfying the code pointers used by the host application,
been focused mainly on stand-alone applicati@ystem- including function pointers, return addresses, etc.
call based policy enforcement techniqu8d, 3, 23, 28] e corrupt host application data, including file names, data
are based on limiting an untrusted application’s systembuffers, etc. As a result, an SME can control which files
calls and their parametersinformation-flow based in- are opened by the host, and what data is written to them.
tegrity techniqueg5], which have experienced a resurs employ a slew of powerful stealth and evasion tactics
gence of late 18, 15, 31], are based on labeling the out- that are available in a shared memory environment,
puts of untrusted applications with low integrity, and en- e.g., incorporate memory errors that make it difficult
suring that low-integrity data cannot flow into (and hence to analyze or predict an SME’s behavior, modify the
influence) the operation of benign applications. Unfor- data structures (say, the runtime stack) used to attribute
tunately, these techniques do not address the emergingecurity-sensitive operations to the plug-in or its host,
trends towards plug-in and module-based software archiincorporate and/or exploit concurrency bugs, etc.
tectures, where the behavior of a (benign) application {sperform attacks that violate low-level assumptions
extended by addingoftware extension® it. Examples  made in binary code, e.g., modifying registers (or

of such shared-memory extensions (SMEs) include: call-return semantics) in a manner that violates the
e browser plug-ins for viewing various document for- platform-defined application-binary interface (ABI).

mats, multimedia, presentations and animations, For instance, a modification to the stack pointer will al-
e libraries for image decoding and display, low an SME to exert considerable control over the con-
« audio and video codecs, trol flow within benign code after a return from SME.

e Photoshop (or GIMP) image processing filters, areince the basis of many of the above attacks is shared
add-ons to packages such as Office, Gaim, Apache &€mory, some research efforts such as XH] have been

We develop an approach in this paper that enables exl%fllt over memory isolation. Unfortunately, although

ing untrusted code containment techniques to be applmﬁ_mory isolation prowde_s an important primitive for Se-
curing untrusted SMEs, it also negates many of the pri-

*This author is now at University of California, Berkeley mary advantages of plug-in architectures. Specifically:



e SMEs are popular because they can exchange compakle to a stand-alone untrusted application to be reused
data structures easily. The host-extension interface danan SME providing the same functionality.
use aggregate data structurgs that contain multl'ple Ie)‘(tgé Contributions
of pointers to memory regions allocated at differen _
points in the code of the extension or the host. Enfore-Analysis of the range of threats posed by SMESec-
ing memory isolation require the scope of legitimate ac- tion 2, we present a comprehensive analysis of the dif-
cesses (e.g., which pointers will be accessed, how man\frem ways an SME can compromise the integrity of its
levels of indirection will be followed, etc.) to be identi- Nost application. Previous dynamic information-flow
fied in advance by a programmer. The host and/or SMEracking techniques, including those that applied taint-
code needs to be redesigned/modified so that all shardfacking to malware39, 10], do not address this range
able data is allocated within shared memory regions, or0f threats. In contrast, we develop taint-tracking tech-
is explicitly copied at the SME/host boundary. More- Niques that are secure in this environment.
over, any data residing in a shared region becomes smsSecure attribution.In Section4, we present a secure
ceptible to attacks by a malicious SME. technique for attributing the actions of an application

The scope of this problem is magnified in the context of t0 the SME or the host application. This attribution
large and complex host-application APIs. For instance,technique provides the basis for containment policies,
browser plug-ins on Linux can access the Netscap@es_crib_ed in Seption.a The salient features of our
plug-in API [4] as well as APIs provided by the C and attribution technique are as follows.

C++ standard libraries, GUI libraries, etc.; altogether, a— We present an simple and elegant technique for at-
plug-in can access a few to several thousand functions. tributing control flow context to the host or the SME.

e Memory isolation does not prevent attacks on host-AP|— We present a novel technique for defeating race con-
functions that involve maliciously-crafted arguments. dition attacks, where untrusted code attempts to ex-
The host API functions need to perform adequate san- ploit the time interval between data and metadata up-
ity checks on their arguments to protect against these dates to corrupt taint-tracking. Our technique avoids
attacks. Given the large size of the host-API men- the use of locks and to provide an efficient solution.
tioned above, it becomes far too cumbersome to iden- We provide an concise analysis of low-level evasion
tify which functions can be safely exposed to untrusted techniques that may be employed by malicious code.
extensions, and if so, with what parameter values. We describe several new techniques designed to de-
Moreover, existing host-extension APIs have been de- feat such evasion attacks.
signed for flexibility and programmability, with the as-e Analysis of protection provided by secure attribution.
sumption that extensions are benign. Hence, for manyin Sections4 and5, we justify why our techniques can
API calls, it may be difficult to predict the security ram- effectively mitigate the threats described in Secon
ifications or identify ways to limit them. o Efficient and robust binary instrumentation framework.

It is clear from this discussion that in the context of com- Unlike previous taint-tracking techniques that required
plex and large host-API interfaces such as those used igource-code acces8q| or relied on dynamic binary
web browsers, isolation-based approaches require signifinstrumentation techniques that have high overheads
cant effort to modify existing host applications and plug- [22, 24], our approach is based on static binary rewrit-
ins in order to make them secure. Moreover, even aftefing. Moreover, we achieved this efficiency without
expending this effort, these modifications and validation making optimistic assumptions such as those made in
checks can not easily be correlated with higher level se{25] that do not hold in the context of untrusted SMEs.
curity objectives, e.g., preventing SMEs from controlling Experimental evaluation of effectivene¥ée have built
data that is ultimately transmitted over the network. a prototype, called SafeBind, that embodies our ap-
For these reasons, our approach does not rely on isolaproach. As described in Sectidh SafeBind is robust
tion or validation checks at the SME/host boundary. In- enough to deal with moderately large programs such as
stead, we develop eefficienttaint-tracking technique to  Firefox and Konqueror, and incurs modest overheads
label and track data “controlled” by an SME, and en- (10% to 30%) under realistic deployment scenarios.
force confinement policies on any system-calls whose in-The downside of a conservative approach such as ours
vocations or arguments are controlled in this way. Sinceis the possibility of false positives. Our experiments
system-call APIs are much smaller (consisting of a few show that for many commonly used plug-ins, our ap-
hundred functions), and have been designed with secuproach can avoid false positives.
rity objectives in mind, specification and enforcement of )
policies at this interface is significantly simplified as con? 1 hreat Model and Related Assumptions
pared to the host/SME interface. Moreover, our approalhthis paper, the term “untrusted SME” refers to plug-
enables system-call (or information-flow) policies applins obtained from untrusted sources. We assume that only



the binary code for the host application and the SMEs arealso use system features such as signals, exceptions,
available. The SME may take the form of one or more andl ongj np to transfer control to unintended code.
libraries that are linked (either statically or dynamigall ¢ Corrupting host application data.An SME may di-
with the host application code to form an executable thatrectly corrupt host application data that is stored within
runs within a user-level process. the process address space. It may start from one of the
Our goal is to defend the integrtyof a host system  pointers contained in the data structures passed by the
from an SME that purports to provide some benign func- host application to the SME, and traverse down several
tionality, but turns out to be malicious. We take a conser-levels of pointers to identify candidate data structures
vative approach that ensures that untrusted SMEs won'that can be corrupted — such corruption attacks are
violate integrity, but in doing so, may have to reject some easy in the context of APIs designed for benign exten-
benign SMEs, e.g., an SME that incorporates code obfussijons, (e.g., the Netscape AR]jwhere the exchanged
cation that prevents disassemblyAlthough our current  interface data structures contain several pointers to ob-
implementation does not support dynamic code generajects owned by the host application. Even if no useful
tion, it is relatively easy to do so: our instrumentation, data (or pointers) are explicitly passed into an SME,
which is currently performed statically, needs to be per-it may still be able to find critical host data structures
formed at runtime to newly generated code before it ishased on knowledge about the location of global vari-
run. ables, or by scanning the stack or the heap. Finally, in-
For the sake of concreteness, we assume that confingstead of using its own code to perform data corruption,
ment policies will be stated in terms of system calls thatan SME may utilize a host API function (or a snippet
can be accessed by the SME, the value and the taint assef host code) to do the actual copying.
ciated with each of their parameters, and (in case of sYSgyading taint-tracking. Dynamic taint analysis tech-
tems'that support file integrity labels) the integrity label niques can accurately reason about explicit flows, i.e.,
of objects accessed by the system call. We assume thg{ataflows that take place via the assignment of a tainted
the goal of a malicious SME writer is to execute systemya)ye to a variable. However, data may flow as a result
calls that violate this policy. An SME may achieve this of impjicit flowsthat cannot be detected without using
by “controlling” the flow of execution that invokes a vio- - gtatic analysis. Unfortunately, it is difficult to perform
lating system call, or by “controlling” the parameter val- jmpjicit flow analysis in binaries due to their low-level
ues provided to a violating system call. (Being unable to nature, and the use of address arithmetic, pointer in-
identify operations effected by the host program on be-gjrection, and so on. As a result, implicit flows have
half of the SME leads to the commonly known_ “confus_ed been ignored by previous dynamic taint analysis tech-
deputy” problem.) Our defense, based on taint-tracking.iques, including those used in the context of malware
defeats such attacks by (a) using a conservative attrioutio analysis 10, 39]. Although this is acceptable in the
technique that identifies any such “control” attempt; and .ontext of trusted code, where it is reasonable to as-
(b) by preventing evasion and subversion of taint-trackingsyme the absence of significant “covert channels” due
and attribution logic. _ o to implicit flows, it is trivial for malicious code to use
A malicious SME has the following choices in terms implicit flows for propagating large amounts of data.
of possible gpprogches. fpr evasion and/or subversion O(See B3] or [6] for examples.) We therefore rely on a
higher-level integrity policies: conservative approach that taints all writes within un-
e Subverting program control-flawUntrusted code may  trusted SME code, while making less conservative as-
subvert program flow of the trusted host by corrupting sumptions on the trusted host application code.
function pointers, and return addresses to directly exg-circumvention or subversion of instrumentation logic.
cute sensitive operations, or execute host code that il jnjine reference monitoring approach such as ours,
turn invokes sensitive operations. Moreover, Corrup-yhere the instrumentation resides within the same ad-
tion of its own code pointers may allow an SME 10 ress space as untrusted code, is subject to following
inject new code or execute code that may be hiddenyes of attacks: (a) corruption of instrumentation data,
from disassemblers by obfuscation. Extensions May(p) bypassing instrumentation code, (c) invalidating as-

1Although information-flow based techniques such as the onelde sum_pﬂons made by_ mstrumentatlon.CO(.je, and (d) ex-
oped in this paper can handle both confidentiality and iitiegolicies, ploiting program logic to confuse attribution.
our primary focus in this paper is on integrity. As a result,dea’t han- — Metadata Corruption. With a taint-tracking based
dle SMEs that manipulate highly confidential data, such asanusted defense. a malicious SME can defeat detection if it
password manager extension to a browser. I - i
2Malware analysis techniques do need to cope with obfustatio ~ modifies critical data structures while ensuring that

since it is routinely employed by malware. However, our goasd the corresponding taint tags do not reflect this change.

require support or analysis of malware, so our approach igmes to . . . .
detect code features that can defeat our instrumentatiopaiiey en- + Direct metadata corruption. To achieve this, an

forcement techniques, and mark the corresponding SME asainsaf SME may attempt to overwrite the taint tags either




directly, or by “tricking” the host code to overwritequasi-static disassembly approach, where most parts of an
the taint tags. executable are disassembled (and instrumented) stwticall
+ Race-conditions. With a binary instrumentation While a small part of the code that cannot be statically dis-

technique such as ours, there is a small wind@gsembled is instrumented at runtime. This approach can
time between data updates and taint tag updatwg)_l'k well with our technique, but since the focus of this
This makes race condition attacks possible inR&per is not on disassembly techniques, we have simpli-
multi-threaded application. In a write/write racefied our implementation task by assuming that the binary
an SME may race with a benign thread so that ti§@ntains information about entry points of all functions,
data update reflects the data written by the SNV which point the simpler techniques froi7] 26] can
thread, while the taint tags reflect the data writté?te employed. We do not assume the availability of any
by the benign thread. In a read/write race, a benigdditional symbol table or debug information.

thread reads the taint tags preceding a data updatéfter disassembly, our technique constructs the con-
by an SME thread, while the data read reflects tHi®! flow graph for each function, and records all its entry
update. points. Next, it performs the actual instrumentation,dntr
ducing code for taint-tracking and other security checks.

— By-passing instrumentation codén SME may at- This instrumentation typically introduces one or more ad-

tempt to subvert instrumentation by jumping into thgitional taint computation instructions for each instroot
middle or the end of instrumentation code. Alterna- P

tively. it may attempt to return to a different loca." the original binary. As a result, function bodies ex-
Y. Y P and, requiring them to be relocated. If the code uses

tion than that of the call, with the intent of bypassmﬁmction pointers, they may continue to point to the orig-

additional checks that are inserted at the original re- . o :
: , Ihal code version. Hence the original version cannot be
turn site to ensure safety of return values. This claas

of threats falls under the general classlafv-level €leted 1], bgt needs to be 'T'Od'f'e‘?' SO that any target
. . address that is reachable using an indirect control-flow
control-flow integritythreats.

lidati ) de by i _transfer will now contain a jump to the corresponding lo-
—Invalidating assumptions made by instrumentatiqtlyion, in the instrumented version. The rest of instruction

on register usage, fl'Jrlcnon-caIImg. convgnnons, e1C. our instrumentation framework is designed to handle
For example, it specifies that certain registers (Callﬁﬂge COTS binaries such as those of Firefox and Kon-
“callee saved registers”) are left unmodified acroS§@eror browsers, and Apache server and modules. It
funcu_on call. S|m|larly,_ea(_:h_ t_hread Is expected tQ op st in the face of typical compiler optimizations
have its own stack that is disjoint from other thréad,cy a5 frame pointer omission and tail calls, as well
stacks, and the global/heap memory. Il attack 55 hang.written assemBly It can also handle position-
an SME violates thes_e constraints in ord(_ar to Confuﬁfdependent code (PIC), C++ exceptions, UNIX signals,
the defense mechanisms, and/or to modify data (€44 5o onwithout making many assumptions about the
data in a callee-saved register) without being noticedy,ijers involvedAdditional details on our static instru-
by the instrumentation mechanism. mentation techniques, including an explanation of how we

— Exploiting program logic within trusted code to conhandle these features, can be found2§] |
fuse action attribution.Included in this class are at-

tacks that exploit control dependences and implic’)?t2 Instrumentation for Taint-Tracking

flows in trusted code. As done in some of the previous works on taint-tracking
) ) ) [36], we maintain the taint information in an arrayg.
3 Basic Instrumentation Techniques For a location, tag|l] indicates if this location is tainted
3.1 Static Binary Instrumentation or not. Tag space could be allocated statically, or using an

The first step in instrumentation is that of disassembling’@-demand allocation as ir3¢. We associate 8 bits of
binary. Robust disassembly of so-called stripped binarfgént with each 32-bitword. o
continues to be an active area of research. Kruegel et gin addition to memory, taint bits need to be maintained
[16] have described a combination of static analysis aff €ach register. For the purposes of this discussion, it is
statistical techniques that have been shown to be robiis€ful to think of this data as being storediirtual regis-
even in the presence of some degree of obfuscation in g&§S In the code snippets in Figuiewe use a virtual reg-
grams. Unfortunately, their techniques cannot guarantgtrr -t to store the taint associated with a CPU register
accurate disassembly of all code. More recently, Nandd etAdditional virtual register&/R1 throughVR3 will be

al [21] developed a robust disassembly technigque that iSsyany popular applications such as Firefox and GIMP, as vell a
suitable for instrumenting binaries. Their approach usesany media codecs, make use of hand-coded assembly.




mov eax, VR1

mov ecx, VR2

| ahf

mov eax, VR3

| ea [ ebp+0x1lc], eax
shr 0x2, eax

nmov ebp.t, cl

mov eax, VRL

| ahf

mov eax, VR3

| ea [ ebp+0x1lc], eax
shr 0x2, eax

control flow to one of three contexts: (a) plug-in, (b) host
application, or (c) a host-application function called by a
plug-in. We then develop secure data attributiotech-
nique that states whether the value of a data item (e.g.,
a system call parameter) is entirely under the control of
the host, or has been significantly influenced by the SME.

or [eax+tag], cl

or ebxt, cl We begin by summarizing the differences between taint-

mov cl, [eax+tag] mov 0x1, [eax+tag] tracking for benign and untrusted code. Following this,
mov VR3, eax mov VR3, eax - . . .
sahf sahf we address evasion attacks outlined in Sec#ipimclud-

ing metadata races (Secti@gn3) and low-level evasion
attacks (Sectior.4). As described in Sectiod.5, dif-
ferentsystem-call based sandboxipglicies can be en-
forced based on this attribution, thereby enabling SME
operations to be sandboxed without having to restrict op-

erations being performed by the host application.
used for address computation (i.e., computing the location

of tag|l] from [) and taint-tag computation. Since virtuaft-1  Instrumentation for Control Attribution

registers will ultimately be realized using memory, the if9ne obvious technique for control attribution is to exam-

strumentation shown in Figudeuses them like a memoryine the return addresses on the stack. Unfortunately, this

operand rather than a register operand. Virtual registégshnique is insecure since a malicious SME can corrupt

are saved in thread-specific storage that is accessed usingpoof stack contents. Although secure attribution tech-

standard OS conventions. (Unlike LIF24], we do not nhiques have been developed in the context of Java, this

rely on the availability of unused processor registers feglies on the type-safety of the language. In contrast, we

implementing taint-tracking; instead, our technique redlevelop a technique for secure attribution on COTS bina-

izes virtual registers using main memory.) ries. Our technique uses two context flagsandC,, as
Figurel shows the basic taint-tracking instrumentatiof@!lows:

for an instruction that adds thebx register to memory e C; is set whenever the instruction currently being exe-

locationebx+0x1c, leaving the result in memory. The cuted is within the body of a trusted function.

first step is to saveax, ecx and CPU condition flags ¢ ¢, is set whenever the current control flow is directly

so that they could be used for computations in the instru-determined by untrusted code, e.g., when untrusted
mentation code. Theeax is used to compute the ad- code is currently active on the runtime stack.

dress where the taint tags of the memory operand are\jgs \;se 4 simple and elegant instrumentation technique to
cated. In the trusted code, which does taint propagatigiyyatec, and(, that avoids runtime operations to scan
we treat the data accessed using a pointer to be tainjedsiack or to determine whether callee addresses belong

if the pointer itself is tainted. This is whgl , which is , 4;sted or untrusted code. This simplifies the instru-
used to compute the taint tag of the result of the add OPRlantation and makes it efficient. Specifically:

ation, is initialized with the tag of the pointebp. Next, . - .
we compute the logical “or” of this value with the taint o ¢ .Ct is set at the beginning of each trusted function, and

the two operands tadd. The result is then stored as the :Z]rg?iltattﬁéys:e:]ﬁnr?al); elnz:rucg?rn Irt](;:js fb%(1¥10|;'san q
taint of the destination operanflebp+0x1c] . Finally, S ginning Very untrus unction,

the original values of the flags and registers are res'[ored',mmedlately following all calls within its body.

and the originahdd instruction is inserted into the instru-® Cu IS set at the beginning of each untrusted function
mented code. and immediately following evergal | in its body. It

Since constants have a taint tag of zero, binary operalS réset at the end of each untrusted function.

tions involving constants need not update the taint tag & IS also set whenever a call is made within trusted
all. A few exceptions that require special handling are in- code using a tainted pointer, and is reset on return.
struction patterns of “xor reg, reg” or “sub reg, reg” whiciNote that untrusted code can directly exercise control over
are pervasively used to clear a register, complex instr@xecution flow by executing its own instructions or by
tions such as string instructions which logically implezalling other functions within trusted or untrusted code.
ment the semantics of more than one basic instruction, dndhese cases, it is clear that, will be set. It can indi-
instructions that have implicit operands such as “leave™rectly control the flow of execution by corrupting a func-
o . tion pointer used by the trusted code. From the above
4 Secure Attribution and Policy Enforcement description, it is clear that’, will be set in this case as
In this section, we first develop secure control attri- well. Other ways for untrusted code to directly control the
butiontechnique (see Sectighl) to classify the current flow of execution are: (a) corruption of return addresses

mov VR2, ecx

mov VR, eax mov VR, eax

add ebx, [ebp+0xic] add ebx, [ebp+0xic]
Figure 1: Instrumentation Figure 2: Instrumentation
for trusted code. for untrusted code.




used by trusted code, (b) jumping past instrumentatiariated metadata could be out of sync. Similarly, there can
(c) jumping into runtime generated code (which has nbé a read/write race, where reads metadata just before
been instrumented), and (d) using exceptions and/or sigs updated byM, but reads the data updated bi.
nals to effect control-flow transfers. All of these attempts The narrow window of time between data and metadata
are prevented by control-flow integrity checks describegidates makes the likelihood of successful race attack to
in Section4.4. As a result, we conclude that the aboviee very low. However, malicious threads may introduce
instrumentation can be used to securely attribute currelata races on purpose in order to exploit metadata races.
control-flow context of any thread: By repeatedly racing with a benign thread, a malicious
e C, = false,C, = true: execution is entirely underthread may be able to increase the probability of a suc-
the control of untrusted code cessful attack to a considerable value.
e C; = true,C, = false: execution is entirely under AN obvious approach to eliminate such races is to use
the control of trusted code, and locks to ensure that data and metadata updates occur
e C, = true,C, = true: trusted code is executing Onatomically. However, given that every memory update in-
behalf of untrusted code. voI\_/es a metadata gpdate, such an approach will have a
i o . _ major performance impact. We have therefore developed
C\, andC; are accessible within policies, thus enabling new |ock-free techniqudor to address data/metadata

different policies to be enforced in different contextg$gces. Our technique is based on the following assump-
They are stored in thread specific memory, and is pkgyns:

tected from direct corruption, much like the other data . . .
: o If a race condition leads to benign data being labeled
structures used by the instrumented code.

as tainted, that is acceptable. However, tainted data
4.2 Taint-Tracking in Untrusted Code should never be labeled benign. The latter condition is
identified as the “dangerous conditioW'C' in the dis-
cussion below. The reasoning for allowing the former
condition is that in the context of non-malicious SMEs,
data/metadata races should be rare; and if they do oc-

The source of taint is all data written by the untrusted then thev lead to a denial-of . ther th
code. Note that this conservative approach is more appro_gur’ 1en they lead to a denial-ol-service rather than an
integrity violation.

priate for untrusted code as compared to other choices, i . ) ]
e.g., treating constants as untainted. An approach titaRaces involving multiple benign threads are not ex-
treats constants as untainted would not detect an attacRloitable by an SME. The reasoning here is that a data-
where security-critical data is overwritten by a malicious Metadata race implies a race condition on the data in-

SME with a constant value, e.g., a variable with a valueVolved in the access. Such race conditions lead to
/ bi n/ | ogi n is overwritten by bi n/ sh. erroneous (or unpredictable) behavior, and hence be-

g hign code will typically incorporate some logic to avoid

code is simpler than that of trusted code: any write by thethem' _Wh'le itis pO_SS|bIe thqt Some race condl'_uons

untrusted code causes the corresponding taint tag to pE1ay still be present in progiu_ctlon code, they are likely

set. Thus, the constant “1” is moved into the correspond-_to be rare, and moreover, itis unclear that a,n SME. can

ing tag location instead of performing any taint compu- mter_ltlonally exercise '_[hem. Hence we don't consider

tations. No metadata accesses are needed for read Opeljg_ulu—way races involving multiple benign threads.

tions performed by untrusted code. The first key idea in our lock-free technique is to perform
We note that the conservative approach of tainting gipta and metadata updates in different orders for read and

writes by SME effectively thwarts any attempts to evadWite operations within benign code: (1) read operations

dynamic taint analysis using implicit flows. In particu‘-"’i” read the metadata after the data read, while (2) write

lar, it does not matter whether data written by untrust@@€rations will write metadata before the data. The sec-
code is implicitly or explicitly dependent on tainted datg"d key idea is that (3) within untrusted code, metadata

(or even independent of tainted data), as data written il P& updated once before a data write, and then again
untrusted SMEs is always marked tainted. after the data write. We now argue that these techniques

_ eliminate the dangerous conditidnC' identified above.
4.3 Instrumentation to Handle Metadata Races , \yyite-write races. In this case, both the benign thread

The instrumentation described above performs data and3, and the untrusted thredd, write to the same mem-
metadata updates in separate instructions. If two concurery location. If both threads write “unsafe” or “1” taint,
rent thread3 (“benign”) andM (“malicious”) update the then there is no issue. However, i writes a “0”, it
same data, it is possible thaf’s data update will occur intends to write benign data in the location whére
after B's, while M's metadata update precedes thaBof  writes untrusted data simultaneously. HO€' to oc-
As aresult of such a write/write race, the data and its assoeur, (i) U’s data write must follow that oB. Note that

The primary basis for control and data attribution is taint-
tracking. The instrumentation for untrusted code per-
forms “taint propagation” as described in Sectigr2

As shown in Figure, the instrumentation for untruste



our instrumentation (2) ensures that ()s metadata CFI criteria for trusted code.

update will precede its data update, and instrument@pirect control-flow transfers are not checked within
tion (3) ensures that (i will update metadata once trysted code: they are assumed to be satisfied since we

after its data update. Putting together the ordering con+ryst this code, and expect that it was compiled with a
straints (i) through (iii), it is easy to see that whenever penign compiler.

U's data update follows that oB, at least one oU's £qr indirect control transfers, the instrumentation en-

metadata updates will follow that @8, thus avoiding g res that the pointer involved in indirection is un-
DC. tainted, or otherwis€’,, is marked set. Moreover, it is

* Read-Write races Since untrusted code neverads  ensured that the transfer goes to the beginning of some
metadata, such a race condition involves a write operfynction within trusted or untrusted code.

ation by and a read operation b. By (3), U up-  Return addresses should not be tainted — this can hap-

dates metadata W.i'[h a“1” before and after it; d.ata,write.pen only due to corruption by untrusted code, and hence
So, the only possible way de_C to occur is if (i) B's execution is aborted if this is detected.

metadata read precedes the first metadata upddte by o )

and (i) B’'s data read followd/’s data update. How- CFl criteria for SME/Host interface. All control trans-

ever, this is not possible as our instrumentation (1) digrs across the host-extension interface require a stricte
sures thatB’s metadata read will follow its data read'enforcement. We detect all such transfers either during

and hence either (i) or (i) cannot hold, thus avoidin@ur static transformation, or using runtime range checks
DC 4 on the control pointers used in indirect control transfer in
a§tructions and returns.
For cross-interface control transfer, SafeBind ensures
at calls and returns match, and that the ESP is left re-
stored across the interface. This is to prevent the unttuste
4.4 Defending Against Low-Level Evasion Attacksde from using the return address or the ESP to arbi-
4.4.1 Control-Flow Integrity (CFI) Restrictions trarily choose its control transfer location. Note that the
%?im associated with the return address and ESP can not be
ted. For instance, when control returns from a trusted

Thus, we conclude thd?C can never arise, ensuring th
our taint-tracking instrumentation is safe against raee ﬁ%
tacks perpetrated by an SME thread.

A malicious SME may attempt to evade our policies

jumping past the instrumentation code that enforces th . ) )

Jpoligieg F())r updates data (such as teandC, flags or routine back to an untrusted routine, since the return ad-
I t

the taint information) used in these policies. To preveﬂ ess will always be tainted. The same is true &S
this, we define and enforce the following CFI criteria. when control return from untrusted code to trusted code.

To ensure that such critical state is preserved across in-

CFI criteria for untrusted code. Our instrumentation terface procedure calls, our enforcement uses an auxiliary

enforces the following CFI properties: protected stack which strictly copies these values to and
o Allintra-procedure transfers of control are to the begiifirom the main stack. This auxiliary stack also forms the
ning of one of the basic blocks in the same procedufsis of other ABI conformance described subsequently.

Attacks involving jumps to the middle of instructionsgg criteria regarding exceptional flows. SafeBind
or to instructions inserted during instrumentation atfsy deals with signals, setjmp/longjmp in C, and C++
thus thwarted. In addition, during the |nstrumentatlogxceptionS (which uses setjmp/longjmp based implemen-
the absence of implicit control-flow transfer instructiogytion on our platform). SafeBind trusts all signal han-
(such as software interrupts) is verified. dler registration made in the trusted code, but ensures that
e All inter-procedural control-flow transfers are to vali@intrusted code registers valid function start addresses in
function entry points, which are required to be alignegs code as signal handlers. This is sufficient to ensure
as specified by the ABI. that the attribution for control using',, andC, works as
e All return instructions return to legitimate return pointexpected. Setjmp/Longjmp are C functions and do not re-
although the calls and returns need not match. Retutpsre special handling. The attack that involves corrugptin
that cross trust boundaries require additional care, ahé control pointer used by longjmp is handled by our CFI
are described separately. restrictions — untrusted code can only return to valid re-
turn points when using longjmp. As indicated in Section
4We did not consider the case where the taint was “1” after tee p4.1, this will immediate set thé’, flag. Similarly, such an

write metadata update by, but became *0" befords read it. For this - a4k will disallow arbitrary control transfers into ptsn
to happen, a third thread must have updated the metadata, aadveanr in trusted code

this thread should be benign as a “0” can be written only byidren

threads. Thus, for this condition to occur, there should beree-way : : P
race involving two benign threads and a malicious thread. évew Instrumentation  for enforcmg CFI criteria. When

this conflicts with our assumption that races involving migipenign th€ control-flow target is _Statica”y known., enforceme_nt
threads are either not present or not exploitable. amounts to a check that is performed at instrumentation




time. Otherwise, instructions are inserted into the code toWe believe that the framework presented so far can
perform this check. To implement this, we make use sfipport a range of security policies for confining un-
a bit-valued arrayC' F'T" that is indexed by code addresdrusted SMEs, while providing a level of flexibility, power,
CFT[A] is setiff A is a valid control flow target. Sinceand ease of policy development that is similar to previ-
code addresses are aligned on 4-bytes on most systesus,works on securing stand-alone untrusted applications.
CF'T array will only requirel /32th of the total code size. However, for brevity, we only discuss system-call poli-
cies below. A system call can be attributed to an exten-

4.4.2 Runtime ABI-conformance checks . X -
L o sion if C,, is set, or if any of the arguments to the system
Similar to CFl, ABI semantics is assumed to be preserve : .
) - call are tainted. System calls attributed to the host are un-
by trusted code, but is explicitly enforced on untruste : o .
o ) L cqnstrained, whereas a specified system-call policy can be
code. As per our tainting technique, it is simple to see thal

violation of most ABI conventions, such as ensuring theelpforced on the rest. Moreover, if a sandboxing policy is

p ,o available for a stand-alone version of the extension that
callee-save” registers are left unchanged, are harmle?ﬁ . .
offers the same function, we can reuse the same policy.

when they happen entirely within untrusted code. How- This basic approach can be further refined, e.g., to ig-

ever, ABl semantics needs to beplicitly enforced when taint A I ts that don't i i
control transfer takes place from a trusted to untrustgd'< faint on system-cafl arguments that don't impact se-
rity, or to attribute certain system calls to the host when

context and then back. This is ensured using additiorfa! ) .
instrumentation at points where trusted code calls LJ?]chC“ andC; are set. Moreover, if some extension API

trusted code. This instrumentation explicitly saves ealle unctions are known to perform adequate input validation,

save registers before the call and restores them afterwapagn we can untaint the arguments to such functions at the

Note that the alternative of relying on the taint status B8P int of call. (This is often referred to #ndorsemeny

callee-saved registers does not Wor!<: since they are sagedEffectiveness Against Threat Model

and restored by untrusted code, their values would alw:ws . . . .
. . : e now analyze the techniques described in the previous

be tainted, even when the original values assigned to them

by trusted code are preserved. As described above, a 5’%:-“0” with respect to the threats described in Se&ion

tected auxiliary stack is used for saving these registers.® Subverting program control-flawfhis was already ad-
As part of ABI requirement, runtime validity checks are dressed in Sectiod.1
performed orESP before calls from untrusted to trustede Corrupting host application dataAll data written by
code — specifically, on the x86 we check that ESP is inthe untrusted code is tainted. In addition, all static data
the thread’s stack region and is below the value at the timén the extension, which is typically a shared library, is
of last entry in the untrusted code. It should also be clearinitialized as tainted. Moreover, if an SME uses a host
that the protected auxiliary stack ensures &P is left ~ function to copy some data into its intended target data
restored for all returns from untrusted code explicitlg-di ~ structure, it needs to pass in the location of this destina-
allowing usage of such callee-saved registers as means 0N using a parameter, or by modifying a global vari-
violate integrity in trusted callers. able used by the host. In either case, our taint-tracking
We point out that previous work&(, 39| don’t treatthe  technigue will mark the destination as tainted, thus en-
full range of attacks against attribution mechanisms, andsuring that in all cases, a security policy based on taint-
are hence vulnerable to some of the above attack avenuegdness of ?Stem C?” argun;ents cannot be subverted by
s . . . corrupting host application data.
4.5 Specifying and Enforglhg Security Policies e Evading taint-tracking. We already pointed out that
In our framework, security policies can be enforced at the g a5ion techniques such as the use of implicit flows
point of invocation of any f_unct|on_ within the hQSt SYSteM. cannot thwart our conservative tainting technique that
A security policy is a predicate with the following inputs: o < Il data written by untrusted code as tainted.

o the fuhctlon bellng mvgked and its parameters e Circumvention or subversion of instrumentation logic.
e the taint associated with each of the parameters — Metadata corruption.

e the control attribution flagé€’, andC;.

While it is possible to develop a high-level policy lan-
guage that takes these inputs, that is not the goal of this
paper. We assume that high-level policies may be com-
piled into a piece of code, and provide the ability to in-
terpose this code before and/or after the call to each hosénote that any instructions in (trusted or untrusted) code tiites

function for which a policy is specified. into any memorym will be preceded by an instruction that updates
tag[m]. If tag[l] is left unmapped for all locationsthat we want to

5|f the function uses global variables that are relevant fiicy en-  protect from direct access by the (trusted or untrustedg ctiten any
forcement, then, from the perspective of policies, they teaccansidered such access will cause a memory exception, causing the prdagraen
as parameters to the function. aborted.

x Direct metadata corruptionThis is prevented us-
ing the technique described iB°. This tech-
nique can be used to protect all metadata, including
the tagmap and all other data used by the instru-




nmovd eax, xnmmD nmovd eax, xnmmD
movd xmml, eax
» ) ) ) movd esi, xmmil
* Race-conditionsWe previously established in Sectest 0xa, al
tion 4.3 that metadata races cannot be exploited t& |618
or X0,

defeat our technique.

mentation code, such as thg andC, tags.

a

L1: add ebx, edx add ebx, edx
cmp ebx, 0 cmp ebx, 0
— By-passing instrumentation codd@he control-flow ! ahf

integrity checks described in Sectidmwere specif- | €5 [ 2E336Xilc] osi

ically designed to defeat these attacks. shr 2, esi

— Invalidating assumptions made by instrumenta‘tidfrﬁ*th][‘Z [tagmap+esi ] "Ui’gbg;o s01c)

. . sa X

code.Our_ABI enforcement techniques (Sectiéd) ebx, [ebp+0xic] nov_ebx,
were designed to address these threats. nmovd xmi, esi [ ebp+0x1ic]

— Exploiting program logic within trusted code to conm’Vg eax, xmmi rovd x cax

. . . movd xnmmD, eax no,

fuse action attribution. The most powerful subver-j e 0x40000 j e 0x40000

sion mechanism involves corrupting pointers (or aﬁ : ]

ray indices) used by trusted code so that they po urlg 3: InstrurPer)te?. COde;'grl]”e 4: Fastpathver-

to data sources or destinations chosen by the S eriiveness optimization. :

This r_nechamsm_ls already thwarted by our curregty | gw-level Optimizations

technique, since it marks any data read or written us- . _ . o _
ing a tainted pointer to be tainted. This leaves on|§liné code-instrumentation requires maintaining  dif-
conditional dependences and implicit flows withiffT€nt execution contexts between application and
trusted code as the only means for evading data t@int-tracking code. Additional registers to perform
tribution. While one cannot rule out the possibi|it>'ynstrumentation-related computations need to be saved
that these may be exploited, we point out that existin%ior to each instrumentation snippet and restored after-
work on taint-based attack detectic®®| 36, 24] does wards resulting in expensiv@ntext switchesThe basic

not consider this covert channel to pose a significaﬁfnt instrumentation adds 10 to 20 instructions for each
threatsince we are dealing with trusted coddore- Instruction in the original code that needs taint-tracking
over, this avenue requires attackers to fimgloitable Worse, about 10 additional memory references are added
control dependences or implicit flows within trustefPr €ach original memory reference. To improve perfor-
code, and craft an attack to exploit them. To furthéfance, we developed the following optimizations.

limit the attacker’s choices we plan to consider incore Reducing register usage through instruction selection.
porating limited forms of control dependence track- — ysing CPU flags to perform taint computatio@ur
ing on benign code. (However, we do not consider jnjtial instrumentation in Figurd needed 3 physical
|mpI|C|t flows within trusted code as a serious threat.) registers for rea”zing the virtual registers, p|u3 an-
other register to hold a pointer to the thread-specific
6 Optimization register taint data. We reduced this by 1 register
by using the CPU flag register for intermediate taint

Performance is critical for realizing a practical systeatth ~ computation.

relies on heavy instrumentation such as fine-grained taint- Packing register taint and saved CPU flags into one
tracking. Instrumentation for taint propagation is the mos ~ register. By packing the taint for all CPU registers
significant factor, and hence is the focus of our optimiza- into a 8-bit quantity, and using the remaining bits in
tion techniques. The best known overheads for binary- @ 32-bit register for saving CPU flags, we further re-
based taint-tracking on CPU-intensive benchmarks has duced the number of registers to just 2.

been achieved in our previous workq (90% to 180%). e Reducing memory accesses by using rarely used XMM
However, this performance is obtained using optimiza-registers. XMM (eXtended Multi-Media) registers
tions that are not sound in the context of untrusted codeare unused in most programs, so we utilized them
In particular, it relies on a number of optimizations that as a scratchpad for saving general-purpose registers
assume that local variables of one procedure won'’t be acheeded for computation. Although XMM registers do
cessed by another procedure unless their addresses are aot provide a significant performance boost over L1-
plicitly passed as parameters. A malicious SME can de-cache (which approximates the speed of accessing fre-
feat the taint-tracking mechanism by intentionally vielat quently used memory locations), they are a win in
ing this assumption. We have therefore developed alternamulti-threading code because these registers are thread-
tive optimizations, as described below, that were expicit specific, and thus eliminate the virtual register needed
designed to be sound in the face of untrusted code. to hold the base of thread-specific store. When XMM



registers are used by the application itself, we resortrient from Pin 19] in its x86 specific backend for decod-
memory resident scratchpads. thread-specific store.ing. The transformation subcomponent uses LEBY] [
6.2 Higher Level Optimizations for ELF editing, XED for higher level information about

) operand usage, amhs massembler for encoding.
In this SeCtion, we describe several hlgher level Optimiza'We evaluated our system ina practica| online dep|0y_
tions that we have adapted from previous works to egent setting on typical host applications such as web
sure that they are sound in the context of untrusted Cog%wsers and web servers. All our experiments were con-
We have implemented them, and have obtained significgiitted on an Intel Pentium M equipped with 1.6GHz pro-
performance boost as a result of these optimizations. cessor, 512MB RAM, and running Linux kernel version

Liveness optimizations This optimization is aimed at re-2-6-17. We tested our transformation system systemati-
ducing the context switch overhead by improving the sg@ly with & series of tests on variety of programs ranging
lection of physical registers that are used as virtual regf?m Linux utilities like cp, gzi p to large applications
ters. It is conceptually similar to those used in previo@!Ch agi np- 2. 2, gai m pdf t ops, vl ¢ xms, Fire-
works such asJ4]. However, as compared to dynamiéox (56K functions, 5 MLOC) and all the needed libraries
rewriting systems, our liveness analysis is more efficieftthe KDE 3.5.6 platform (over 2 MLOC).

as it is applied across basic blocks. 7.1 Effectiveness

_Currently, we have used a simple strategy — we dine primary goal of these experiments was to show that it
vide each application code basic block into sub-blocks ejatively easy to apply well-known policies for stand-
such that each sub-block has at least two unused regisigfshe applications to their plug-in counterparts. In most
These registers can be used for taint computation. Thgjrg,r experiments, we had to make no changes to the
values need to be saved only once per sub-block instead gfypje policies, with requirement for some adjustments
once every instruction. We also eliminate need for saviggpe made when the host performs certain actions on be-
and restoring conditional code register when it is Unusggis of the plugin. We believe that our approach is appli-
subsequently. cable to popular web applications such as browsers, email

After the low-level optimizations and liveness optiglients allow multiple extension mechanisms, given nearly
mization, the instrumented code size comes down g@pthese applications allow full binary code execution via
shown in Figure3. In this figure, the instructions arespared library plugins. To give an estimate of the extent of
shown in bold-face underlined are the original instrugsage of SMEs, we point out that for Mozilla Firefox on
tions, and the rest correspond to our instrumentation. TWgndows platform alone, there are 130 MIME types sup-
instrumentation is simplified for ease of understandingorted, with 78 plugins to handle these mime types. We
eliminating out-of-order tainting for preventing racesda \yere able to identify (by mere inspection of the shipped
ignoring extra instructions for misaligned accesses. A'EQckage or public package desciptions) that at least 52
note that we cover only the taint-tracking instrumentatigfw shared libraries could be attributed to these packages,
here, and don’t show CFI, ABI or other instrumentationssot considering Firefox “extensions” that may contain bi-

Generating multiple code versionsSimilar to [24], and Nary code in addition to scripts Written_in other sandboxgd
as described in25], we generate fastpathandslowpath languages such as_Javascrlpt. Our primary target in policy
versions of the code for each function. The slowpath vé&forcement experiments were two popular web browsers
sion is unchanged from before the optimization. The fastKonqueror and Mozilla Firefox, and a web server. We
path assumes that all registers are untainted, which me3f#W experiments on plugins of different sizes and func-
that the output of every instruction will be untainted dipnality.

well. As a result, taint-related instrumentation can bB€nqueror kpdf PDF viewer plugin. We considered
avoided on the fastpath except for memory loads (whehe plugin version of the core of the KPDF viewiakpdf-

a check for taintedness is made and control transferpatt.soas untrusted. We used existing policies for a stand-
to the slowpath version in that case) and memory stowdsene document viewer that were developed in the con-
(where a zero value is stored intay.) Figure4 illustrates text of our model-carrying code worRg, 27]. This pol-

the fastpath optimization. icy allows arbitrary file reads, while restricting file write

. . to a small set of files that were “owned” by the appli-
7 Implementation and Evaluation cation (e.g., KPDF preference files). This policy does
SafeBind currently works on Ubuntu Linux desktop enviaot permit the extension to make any network reads and
ronments. Much like previous static transformation syswxites, which achieves the intended goals of operation in
tems [L7, 37], it has two major subcomponents — a bithe browser. These policy restrictions were imposed on
nary analysis subcomponent and a static transformatgystem calls that had tainted arguments, or were made
subcomponent. The analysis subcomponent is writteith the context flag”,, set. For system calls where none
from scratch using C++, uses Intel's XED library compaaf these conditions hold, no restrictions were applied. As
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Frame Rate Standard CPU Overhead (%) WebStone 2.5 benchmark. When the size of web pages
24 fps Cinema film 10.7 was increased from 2K to 16K, the overheads decreased
25 fps PAL progressive 10.8 from a maximum of 28% to 0.6% on slowpath, and from

29.97 fps | NTSC progressive 10.8 7% to 0.2% on the fast path, averaged over 5 runs. This
50 fps PAL 19.9 is because as page size increases the server becomes more

59.94 fps NTSC 28.1 IO bound than CPU bound. The code size overhead is
60 fps Monitor framerate 30.1 higher for the fastpath version because two versions of

the code are generated.

Figure 6: Summary of Micro Test benchmarks for VLGirefox. For this test, we used a benchmark tool from
media player transformed as untrusted Mozilla Corp. used internally for performance testing.
It uses a script that displays 350 web pages sequentially.

, ) ; i ) The web pages are selected to including various features
a resglt, br.owser functionality wasn't restricted in anyway¢ the web page contents such as CSS, JavaScript, images,
by this policy. animations and so on. We measured the native CPU over-
Firefox with VLC media player plug-in. We used a pol- heads, and as in the case of Apache, overheads for the
icy developed in23] for a stand-alone media player (“km-optimized slowpath and fastpath versions of transformed
player”) to the VLC plug-in. This policy restricts theFirefox code. On optimized slowpath, we measured a
player to make network accesses to a local DNS ser¢?U overhead of 17.3 % while on the fastpath version
and to remote web sites, but disallows writes to any filesf,the code we measured 6.1 %, averaged over 4 runs.

with the exception of its preference files. Movie Player. We ran VLC media player, configured to

Firefox with only MPEG decoding library. Libmpegis not drop any late frames, in order to measure if there was
used for decoding mpeg images and is widely used any latency in viewing a movie file. We instrumented
desktop applications. We used this in conjunction wiMLC as untrusted, along with with all the mpeg codec
Firefox to view streaming video online. We allowed thibraries. The elapsed time of the test movie files was
library to make connection to the display server, and renaffected, and no perceivable deterioration video qualit
stricted all data from the library to a single external intewas observed. To confirm this, we performed a series of
face for display, namely, a unix domain socket connectingicro benchmarks to measure the interframe latency for
to the X server. No other tainted data was allowed in attye VLC player for commonly used frame rates summa-
other system calls. The normal functioning of the browsgred in 7.2 In all cases, the elapsed time of the samples
(as well as that of MPEG library) was unaffected. remained unchanged. Both the mean interframe latency
(speed of video delivery) and the frame jitter (measured
monly used sound library libalsa.so on Linux, which {ay the standard deviation of interframe latencies) showed

shared by many web applications running in the brow<df10St no change after instrumentation — at most 1%(and
for streaming audio. We restricted it to use the sound ¢dten negative) increase, which could be due to experi-
vice interface on our system, and allowed read/writes Rental error. _

this interface. Once again, the policy could be enforcedFOr untrusted transformation on VLC player, we mea-

without impairing the functionality of any component. sured a CPU overhead increasing from 10.7% (24 fps file)
to 30.1% (60 fps file) as the frame rate increases, with an

Apachenod.confi g1 og module. In this experiment 4 erage of 18.4 % slowdown over the uninstrumented ver-

we took the case of another extension that is less trusi&gh, over 6 runs. The code size increased by a factor of
than its host system, specifically, a logging extension 8f; 4,

the Apache web server that logs web server requests files

in a specified (“logs”) directory. As a policy for this plu-7.3 Defense against malware

gin, we restrict writes of data controlled by this module tBxperimental evaluation of the defensive capabilities of

files in the “logs” directory only. SafeBind against real-world malware is complicated by

7.2 Performance two factors. First, due to our choice of platform, namely,
Linux, we could not find any shared-memory malware.

Our performance tests were focussed on evaluating OMKE addressed this complication by using stand-alone mal-

heads observed under realistic deployment scenariosmrre that is available on Linux, and packaging them into
plug-ins._Ins_trumentation times were roughly comparabéﬁjg_ins_ The second (and mo're important) complication
to the build times of the components transformed. is that existing malware has been developed in an environ-
Apache. The trasnformed Apache server was connectatent where there are no practical defenses against shared-
to a client machine by a 100 Mbps link. We configureshemory threats. Hence such malware deploy techniques
100 clients to query web pages of different sizes usitizat can be very easily detected, and hence do not satis-

Firefox with ALSA sound library. We used a com-
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Apache Results Firefox Results
y [2K  [3K [4K [8K [16K [ ACodeSize| CPUOv. | ACodeSize|
Slowpath| 28.5% | 13.9%| 0.8% | 1.1% | 0.6% | 6.8x Slowpath 17.3% 7.1x
FastPath| 7.1% | 3.6% | 0.0% | 0.5% | 0.2% | 10.3x FastPath| 6.1 % 10.5x

Figure 5: CPU Overheads and code size increase for (LeftgiAga Server Throughput Reduction on Apache web
server for various web page sizes (in K) and total code siaease. (Right) Firefox : CPU Performance for loading
350 pages from disc, and total code size increase.

factorily test the capabilities of our defense. We addresscode, since only code that is disassembled is allowed
this complication by developing malware with features to be executed. This policy thwarted several existing
designed to evade our defenses. malware samples that employ disassembly techniques,
We point out that the above complications in malware unpacking techniques and so on. SafeBind correctly
evaluation should not be a reason for concern. The confidetected these and flagged them as malicious
dence in defense against malware should be based ondl®ugins injecting code from remote users.
principled analyses provided in the paper, rather thas testgeyeral plugins such as Flash player and PDF viewer
involving malware samples that simply do not incorpo- have recently been subjected to untrusted inputs that
rate any evasion techniques. At best, these tests involvinga;se them to be corrupted and behave maliciously. In
malware simply provide another test case that providesmany such attacks, code injection is a first step which is
evidence regarding the correctness (and robustness) of O4fwarted by our default policy. Certain malicious plu-
implementation. For this reason, the emphasis of oureval-gins may purport benign intent, hiding such malicious
uation has been on usability and performance of benigrhehavior p] until a remote attacker uses them for its

plug-ins rather than malicious ones. o own controlled action. SafeBind successfully thwarts
Specifically, for evaluation, we used existing malware gych malware.

of other kinds and ported them as a PDF viewer Firefox
plugin. We set a default policy for several plugins disal-.4 False Positives

lowing network activity, allowing file 1/0 to PDF viewers many of the experiments described in the above sec-

owned files, and dlsgllowmg any tainted system calls ftl%n, SafeBind incurs no false positives, i.e., none of the
trusted context outside the untrusted scope. We tested

8 malware from 1] which consists over existin LinuxSyStem calls made in the trusted context had tainted argu-
9 nts. For instance, with Firefox/VLC we observed no

. ) m
gﬁiﬁgggrﬁlgw a:ZOtllég?,ir?;gnsciferig\?v;\:zsssgfa:g gﬁ;@?e positives. This is because these plug-ins primarily
hole attempts to éxecum(ecve 'a shell bromot which F&ad input data (or parameters) from their host, but their

P promp ubsequent actions simply involve making system calls

s prqhibiteq by our _default policy. Similarly, user Ieve_ hemselves, without involving Firefox code. Some false
rootkit functionality displayed by malware such as bobki ositives were initially observed with Firefox/PDF, Fire-

tuxkit and Irk5 was detected by SafeBind, disallowing t x/ALSA and Firefox/MPEG. On closer examination.

actions to overwrite system utility files such/asi n/ ps we found that these involved certain benign system calls

outside the policy’s allowed domain, such as gettimeofday, scheetaffinity, and read/write op-

In add|t|o_n (o these, we evaluateq our defense agaiBRttions involving files opened by the plug-in. Hence we
other techniques that are common in malware, or rela xed the policy to permit these operations

to plugins we consider by crafting or own integrity violat-

ing “malware”. Specifically, the techniques we employed: 10 @ certain extent, the lack of false positives is ex-
plained by the fact that dataflows in the higher level host

e Subversion by overwriting the .dtor section entriegyge are not closely intertwined with the dataflows in the
function pointer overwrites, embedding exploits i8),q.in. Instead, most dataflows involve the plug-in and
code such as buffer overflows/heap overflows, mak|ﬂ(‘ge general purpose (but still trusted) libraries provithgd
network calls to attacker's remote host to fetch data jfe platform, such as the C++ library, glibc, KDE library
host buffers, overwriting critical system files and pretynq o on, As a result, we observe tainted data being pro-
erence files. SafeBind was able to thwart all of theggssed in library calls made by untrusted code, but other-
stealthy attacks that take advantage of the large shafgge we don't often see the use of tainted data. For plug-
address space. ins that involve close interactions with the browser code,

e Self-modifying code and Unpacking code there is reason to expect that there will be more false posi-
Note, by default our mechanism prevents execution tbfes. They will need to be addressed using a combination
code generated on the fly or any self-modifications ¢ validation checks and endorsements (see below), and
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refinement of policies (e.g., gettimeofday example.)  flow during execution. These arguments also hold true
There was a point when we did experience some falgainst other extension isolation mechanisms such as Pal-
positives due taral | oc, when a buffer freed by un-ladium [8].Recent works9, 13] have proposed redesign-
trusted code is subsequently returned by an malloc-daly the browser using isolation techniques ranging from
made by trusted code. To eliminate this false positivértualization to process separation. Our technique based
it is necessary to develop a wrapper faree (and re- on automatic rewriting and require no modifications to
lated routines) that first checks its argument for validite host, making them applicable to existing popular web
(i.e., it was a buffer that was previously allocated and hbswsers and give strong guarantees even in cases of large
not yet been freed), and the untaints the pointer before sbaring.
turning it to the free list. The discussion above reflects
the false positives observed after the inclusion of suchraint Tracking Information flow has been a topic of re-
wrapper. Itis easy to see that reuse of shared resourceséarch for a long time. Most research in the past decade
buffers) across trusted and untrusted code can lead to félas been on static analysis based information-flow tech-
positives in general, and need to be handled using sumgues RO, 29, 14] that achieves non-interferenc&?.
endorsements. Our experience to data provides evideRcactical application of these techniques have required
that need for manual effort for developing such wrappesgnificant programmer effort in the form program anno-
will be relatively infrequent. tations, and hence aren'’t very practical for large-scade sy

8 Related Work tems.

. . . Fine-grained dynamic taint analysis has emerged re-
Securing ExtensionsSFI[33] is a language-based teChbently as a practical alternative to static-analysis based

nique to provide higher performance memory prmec“éi;%ormation flow techniques. By focusing on explicit
I

at finer granularity than is possible with OS-based tech- that take bl th h . i dbvl |
niques. Nooks32] and follow-on works such SafeDrive, WS fhat fae place through assighments and by 1argely

. . - . ignoring control dependences and implicit flows, these
[40] aim do memory region based policies at d'ﬁererfichniques have avoided the need for manual annota-

granularity, but discove_ring these regions can be quite fibns. However, they have suffered from significant per-
volved wheq deal!ng with complex Qata structures. Th%rmance problems2P), or required architectural support
work target is mainly kernel extensions, and the focus 5 30]. The performance was improved significantly us-

fault isolation and recovery from error-prone extensior g a source-code transformatic3§] instead of a binary
but not protection from malicious ones. transformation

The closest research to our work is XAI1], which ) ]
builds on some of the ideas from SFI and control-flow in- 1heré has been several recent works on using taint-
tegrity (CFI) [2]. It is designed to work in user space a§acking to detect malware, 39]. In contrast to previ-
well as kernel space. It targets applications where th&@s WOrk, our techniques addresses the threat model and
exists a narrow interface between trusted and untrustedesigned to defend against an adaptive malware author.
code, with memory sharing limited to a few contiguou@ore rece_ntly, there has been offline analysis of hook-
ranges. It handles some of the low-level attacks that d0f Pehavior of malwareg] that does account for some
technique aims to handle. However, SafeBind shows h8{{acks perpetrated by the malware. However, these tech-
to achieve high-level security objectives on simple as wafdues have focussed on offline behavior monitoring and
as complex extensions (e.g., browser plug-ins) that d@ge different challenges when dealing with the adversary
make system calls, or utilize large system libraries weifén ours. SafeBind is designed togfécientin an online
not considered by them. Second, our goals are differ&f{ting, and its goal is to allow benign extensions to oper-
from isolation based techniques — we address the pra@ff While giving strong guarantees against host integrity
cal problems that arise when there needs to be sharifgfruption.

Defining XFI policies for memory sharing, and for safe More recently, 4] et al improved the performance of
usage of the large APIs used by such complex extensitnsary taint tracking significantly. They rely on dynamic
can be very cumbersome as opposed to policies at the amary translation rather than the static transformatjen a
row system call interface. In contrast, we have shovgmoach used in our approach. This has enabled us to de-
that the approach developed in this paper can be apphetbp several static analysis based optimizations tha hav
to complex extensions with relative ease. Moreover, ogielded significantly better performance than that rembrte
taint-tracking approach makes more realistic assumptidnsthem, improving the performance by a factor of two or
about vulnerabilities in trusted code — rather than assumere. Another important improvement in our approach is
ing that it can defend against arbitrary shared memdhat it is multi-thread safe. Our previous work5 has
changes (or input parameters provided to trusted fumrevided considerable improvements in performance, but
tions), our approach allows data provided by untrustédelies on optimizations that are unsafe in the context of
code to be treated with adequate caution by tracking itstrusted SMEs.
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9 Conclusion [16] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disasseofbly
obfuscated binaries. 2004.

In this paper we presented a new technique for securt James R. Larus and Eric Schnarr. EEL: Machine-independent executable
; H ; H editing. InProceedings of the ACM SIGPLAN'95 Conference on Program-
Ing untrusted SOftWare extensions. Our tech_nlque is able ming Language Design and Implementation (PLPBges 291-300, La Jolla,

to support both simple and complex extensions such as california, 18-21 June 1995.

browser plug_lns that use Complex data structures anG%Ninghui Li, Ziging Mao, and Hong Chen. Usable mandatory integpity-
tection for operating systems. IREE Symposium on Security and Privacy

very large API to interact with its host application. We de-  2007. To appear.
veloped a new static binary transformation technique fidp] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Keays
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tive optimization techmques to Improve Its performance. mentation. InPLDI, pages 190-200, 2005.
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i i i ] Susanta Nanda, Wei Li, Lap chung Lam, and Tzi cker Chiueh. BIRD: Binary
tematic anaIySIS to Support our claim that they can Bé interpretation using runtime disassemblyIEHEE/ACM Conference on Code

selectively confined using security policies that are Sim- Generation and Optimization (CGQylarch 2006.

ilar to those used for stand-alone applications providi[[@] James Newsome and Dawn Song. Dynamic taint analysis for automatiz det
h f . i 0 hni b h tion, analysis, and signature generation of exploits on commodity acdtw
the same functiona |t)/- ur tec niques are ro ust €Nougn |, Network and Distributed System Security SymposR0a5.

to be used on large applications such as the Firefox arejNiels Provos. Improving host security with system call policies. 18th

: USENIX Security Symposiu2003.
Kongueror brov_vsers.. They enab!e effective enforcem?ﬂl Feng Qin, Cheng Wang, Zhenmin Li, Ho seop Kim, Yuanyuan Zhou, and
of simple security policies to provide concrete assurances voufeng Wu. LIFT: A low-overhead practical information flow tracking sys-

i i _i i tem for detecting general security attacks.|EHEE/ACM International Sym-
about system integrity from untrusted plug-ins, without DoSILIM 0N MicToRhiteQtUIbeCembor 2006,
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code. Our experimenta| results suggest that performancementation with applications to taint tracking. ACM/IEEE International
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overheads can b_e kept low (abOUt _20 A)) in reaIIStI_C 126] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code
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