Chapter 5

Divide and Conquer

\ Mgt i

JON KLEINBERG - EVA TARDOS

PEARSON|  Slides by Kevin Wayne

Copyright © 2005 Pearson-Addison Wesley.

Wesley| Al rights reserved

Fast Fourier Transform: Applications

Applications.

Optics, acoustics, quantum physics, telecommunications, control
systems, signal processing, speech recognition, data compression,
image processing.

DVD, JPEG, MP3, MRI, CAT scan.

Numerical solutions to Poisson's equation.

The FFT is one of the truly great computational
developments of this [20th] century. It has changed the
face of science and engineering so much that it is not an
exaggeration to say that life as we know it would be very
different without the FFT. -Charles van Loan

5.6 Convolution and FFT

Fast Fourier Transform: Brief History

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.
Runge-Konig (1924). Laid theoretical groundwork.
Danielson-Lanczos (1942). Efficient algorithm.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and

tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.



Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

n-1l

2
AX)=ag+ax+ax” +---+a,_|x

B(x)=by+bx+byx> +---+ b,_x""

Add: O(n) arithmetic operations.

A(x) + B(x) = (ay +by) +(a, +b)x+---+(a,_, +b,_)x""

Evaluate: O(n) using Horner's method.

Ax)=ayg+(x(ay+x(ay +--+x(a,_p +x(a,_;))))

Multiply (convolve): O(n?) using brute force.

2n-2 X i
Ax)x B(x)= ¥ ¢;x', wherec; = Y a;b,_;
i=0 j=0

Polynomials: Point-Value Representation

Polynomial. [point-value representation]

A(x): (Xgs Yo)s -0 K Vit
B(x): (Xg» 29)s s (Xpops Zp)

Add: O(n) arithmetic operations.

AX)+ B(x): (Xg> Yo +20)s -+ Kpps Voot + Zut)
Multiply: O(n), but need 2n-1 points.
A(x) x B(x): (Xgs Yo X 20)s s Xopts Yoane1 X Zanoy)

Evaluate: O(n2) using Lagrange's formula.

- H(x—xj)

A= Tz ———
x /E)ykn(xk_xj)

Jj=k

Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n
polynomial with complex coefficients has n complex roots.

Corollary. A degree n-1 polynomial A(x) is uniquely specified by its
evaluation at n distinct values of x.

=

y; = AlX;)

Converting Between Two Polynomial Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

Representation Multiply

Coefficient 0o(n?) O(n)
Point-value O(n) 0o(n?)

Goal. Make all ops fast by efficiently converting between two
representations.

9,81, By (X0, Yo)s s (Xyps V1)
coefficient point-value
representation representation



Converting Between Two Polynomial Representations: Brute Force

Coefficient to point-value. Given a polynomial ay+ay x + ... + a4 X"1,
evaluate it at n distinct points xg, ... , X,.1.

O(n?) for matrix-vector multiply

Yo 1 x Xg ot X a,
2 n-1
b4l 1 x x - X a
— 2 n-1
B2 =11 x, x5 X, a,
1 2 s n-1 a . A .
V-1 Xn-1 Xp-1 Xn-1 n-1 O(n3) for Gaussian elimination

Vandermonde matrix is invertible iff x; distinct

Point-value to coefficient. Given n distinct points x,, ..., X,,; and values
Yo. - Y1, Tind unique polynomial ay + a; x + ... + a,_; x"! that has given
values at given points.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial ay +ay x + ... + a4 X"1,
evaluate it at n distinct points xg, ... , X,.1.

Divide. Break polynomial up into even and odd powers.
- A(X) = Gp+ QX + ApX2 + a3x3 + ax? + agxd + agxé +a,x7.
s Agen(X) = Gp+ aX + ayx2 + agXxS.
e Ay (X) = ag+azx +agx? + a,x3.
 A(X) = AL n(X®) + x A gy(X3).
o A(-X) = A en(X®) - X A gq(X?).

Intuition. Choose four points to be =1, +i.
- A( 1) = Aeven( 1) +1 Aodd( 1)
s ACD = AL (D -TA (D) Can evaluate polynomial of degree < n
o ACD) = Agen (1) + i Agy(-1). at 4 points by evaluating two polynomials
. A(-I) - Aeven(-l) - Aodd(-l)' of degr‘ee = %h at 2 points.

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial ay +ay x + ... + a4 X"1,
evaluate it at n distinct points xg, ... , X,.1.

Divide. Break polynomial up into even and odd powers.
- A(X) = Gp+ QX + ApX2 + a3x3 + ax? + agxd + agxé +a,x.
s Agen(X) = Gpt+ aX +ayx2 + agXxS.
Ay (X) = ag+azx +agx? + ax3.
 A(X) = A n(X2) + x A gy(X3).
o A(-X) = Agen(X?) - X A gq(X?).

Intuition. Choose two points to be 1.
- A( 1) = Aeven(l) +1 Aodd(l)'
» ACD = AL (D) -1 A Q). Can evaluate polynomial of degree = n
at 2 points by evaluating two polynomials
of degree < 3h at 1 point.

Discrete Fourier Transform

Coefficient to point-value. Given a polynomial ay+ay x + ... + a4 X"1,
evaluate it at n distinct points xg, ... , X,.1.

Key idea: choose x, = wk where w is principal n*" root of unity.

Yo (1 1 1 1 1] ag
M 1 o ®? @ " 4
v, 1 o2 ! @8 e 2D a
vs = 0 @ ° @ . @D as
Yo 1 o™ @D H3eh o eDeeD a,,
Discrete Fourier transform Fourier matrix F,



Roots of Unity

Def. Ann'h root of unity is a complex number x such that x" = 1.

Fact. The nth roots of unity are: w9, o!, ..., o"! where w = e 2vi/n,
Pf. (k) = (e 2nik/m)n = (exiY2k = (-1)2k = 1,

Fact. The $n™ roots of unity are: v0, vl, .., vW2-1 where v = e 4ri/n,
Fact. w2=v and (w?)k = vk

wd=pl=i
(1)1
wo=v0=1
? w’
wé =V3 =i
13
FFT Algorithm
£ft(n, ag,a;,..,2,3) {
if (n == 1) return a,

(€p,€1,../€,/2-1) < FFT(n/2, a;,a,,a;,..,3,,)
(dy,dy,..,dy/p-1) < FFT(n/2, a;,a;,as,..,a,;)

for k =0 ton/2 - 1 {
@F — e2mik/n
Yx < e + 0F 4
Yien/z < € - ©F dy

return (¥o,¥1,-s¥n-1)

Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial A(x) = a4 + ... + a,4 X! at its nth
roots of unity: w0, w!, ..., w"L

Divide. Break polynomial up into even and odd powers.
+ Agen(X) = Go* QX +uXP + .+ 0y XOD/Z,

v Agg (X) = @+ agx +agX? + L+ ay, XD,

- A(X) = Aeven(xz) + X Aodd(xz)'

Conquer. Evaluate degree A,,..(x) and A 44(x) at the $n™ roots of
unity: vO, v, ., vn/2-1,

Combine.

o Aok )= AL (V) + ok Ay(VK), Osk<n/2

k = k)2 = k+n)2
. A(0R) = A (VK) - ok Ay (vK), Os<k<n/2 vk = (wk) (ook*n)

ok = -k

FFT Summary

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of
the nth roots of unity in O(n log n) steps. f

assumes n is a power of 2

Running time. T(2n) = 2T(n) + O(n) = T(n) = O(n log n).

O(n log n)

0 -
A, Ay, dpy (@, ¥9)s s (@", ¥0y)

<

coefficient point-value
representation representation



Recursion Tree

o, Gy, 0z, A3, A4, 05, Gg, A7

perfect shuffle

ag, @y, G4, Gg a,, a3, s, Gy

NN

Qo, G4 Qz, Qg ay, Gg as, a7
ag a, a, ag a as az ay
000 100 010 110 001 101 on 111

"bit-reversed" order

Inverse FFT

Claim. Inverse of Fourier matrix is given by following formula.

1 1 1 1 1
1 a2 =B e @D
o 1 o ot w0 . 2D
n Tl e o s R ()
1 o@D 2D SBeh DD

Consequence. To compute inverse FFT, apply same algorithm but use
ol = e -2i/n ag principal n™h root of unity (and divide by n).

Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the valuesyy, ..., y,.1 of a degree n-1 polynomial at the n
points %, w!, ..., o™, find unique polynomial a, + a; x + ... + a, 4 x"! that
has given values at given points.

-1
a, 1 1 1 1 1 Yo
4 1 @ o’ o " M
a, 1 o2 i o° 2D v
a, - 1 o ® ® @D Y3
a,, T e G P O RN R VO ) Voo
Inverse DFT Fourier matrix inverse (F,)*!

Inverse FFT: Proof of Correctness
Claim. F, and 6, are inverses.
Pf.

(Fn Gn)kk' = 1 E_(ijm_jk/ =

1
n = n =

n-1 IRUEST 1 ifk=k
0 T 0 otherwise

summation lemma

Summation lemma. Let w be a principal nth root of unity. Then

nE_l & n ifk=0modn
w' =
=0 0 otherwise

Pf.
« If kis amultiple of nthen wk =1 = sums to n.

« Each n'" root of unity ok is aroot of x" - 1= (x-1) (1+x + x2+ ..+ x"1),
Y

« ifok=1wehave: 1+wk+ k@ + + kD=0 = sumsto 0. =



Inverse FFT: Algorithm Inverse FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial

given values at each of the n* roots of unity in O(n log n) steps.
t

assumes n is a power of 2

ifft(n, ay,a;,..,a,) {
if (n == 1) return a,

(ep,€1,../€n/2-1) < FFT(n/2, a;,a,,a,,..,3,,)
(dord1r~~~rdn/2_1) < FFT(n/2, a;,a;3,a5,..,8,1)

for k =0 ton/2 - 1 {
@F « e-2nik/n
Vi «— (e + 05 d) / n

Yienz < (8 - @ &) / n

O(n log n)
return (yo,¥1s-s¥n-1) >
} g, A,y (wO,yO), ...,(w”'l,yn_l)
coefficient O(n log n) point-value
representation representation
21
Polynomial Multiplication FFT in Practice
Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps. Fastest Fourier transform in the West. [Frigo and Johnson]

= Optimized C library.
« Features: DFT, DCT, real, complex, any size, any dimension.
= Won 1999 Wilkinson Prize for Numerical Software.

coefficient « Portable, competitive with vendor-tuned code.
representation coefficient
representation I | tati detail
Ay, Ap,.ens Ay mplementation details.
by, b, b, C0> €15+ Con2 « Instead of executing predetermined algorithm, it evaluates your
b, by

) hardware and uses a special-purpose compiler to generate an

optimized algorithm catered to "shape" of the problem.
FFT O(n log n) inverse FFT | O(n log n) « Core algorithm is nonrecursive version of Cooley-Tukey radix 2 FFT.
« O(n log n), even for prime sizes.

Reference: http://www.fftw.org
A(xg), ..., A(xy, ) point-value multiplication

B(Xg), ..., B(xy,) O(n)

> C(x), C(x)), ..., Clxp,)



Integer Multiplication

Integer multiplication. Given two n bit integers a = a4 ... a;a,and
b=b,;..bby, compute their product c = axb.

Convolution algorithm.
« Form two polynomials.
. Note: a= A(2), b = B(2). B(x)=by+bx +b2x2 I bn,lx"*l
= Compute C(x) = A(x) x B(x).
. Evaluate C(2)=ax b.
« Running time: O(n log n) complex arithmetic steps.

A(x) = ag +a;x +a,x* +--+a, x""

Theory. [Schaonhage-Strassen 1971] O(n log n log log n) bit operations.

Practice. [6GNU Multiple Precision Arithmetic Library] GMP proclaims
to be "the fastest bignum library on the planet." It uses brute force,
Karatsuba, and FFT, depending on the size of n.



