
1

Chapter 10

Extending the Limits
of Tractability

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

2

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?

A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

! Solve problem to optimality.

! Solve problem in polynomial time.

! Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that

arise in practice.

10.1 Finding Small Vertex Covers

4

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a

subset of vertices S ! V such that |S| " k, and for each edge (u, v)

either u # S, or v # S, or both.

3

6

10

7

1

5

8

2

4 9

k = 4
S = { 3, 6, 7, 10 }

5

Finding Small Vertex Covers

Q. What if k is small?

Brute force. O(k nk+1).

! Try all C(n, k) = O(nk) subsets of size k.

! Takes O(k n) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to O(2k k n).

Ex. n = 1,000, k = 10.

Brute. k nk+1 = 1034 $ infeasible.

Better. 2k k n = 107 $ feasible.

Remark. If k is a constant, algorithm is poly-time; if k is a small

constant, then it's also practical.

6

Finding Small Vertex Covers

Claim. Let u-v be an edge of G. G has a vertex cover of size " k iff

at least one of G & { u } and G & { v } has a vertex cover of size " k-1.

Pf. $

! Suppose G has a vertex cover S of size " k.

! S contains either u or v (or both). Assume it contains u.

! S & { u } is a vertex cover of G & { u }.

Pf. '

! Suppose S is a vertex cover of G & { u } of size " k-1.

! Then S ({ u } is a vertex cover of G. !

Claim. If G has a vertex cover of size k, it has " k(n-1) edges.

Pf. Each vertex covers at most n-1 edges. !

delete v and all incident edges

7

Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of

size " k in O(2k kn) time.

Pf.

! Correctness follows previous two claims.

! There are " 2k+1 nodes in the recursion tree; each invocation takes

O(kn) time. !

boolean Vertex-Cover(G, k) {

 if (G contains no edges) return true

 if (G contains % kn edges) return false

 let (u, v) be any edge of G

 a = Vertex-Cover(G - {u}, k-1)

 b = Vertex-Cover(G - {v}, k-1)

 return a or b

}

8

Finding Small Vertex Covers: Recursion Tree

k

k-1k-1

k-2k-2k-2 k-2

0 0 0 0 0 0 0 0

k - i

nkcknT
kcknknT

kcn
knT

k2),(
 1if)1,(2

 1if
),(!"

#
$
%

>+&

=
!

10.2 Solving NP-Hard Problems on Trees

10

Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality

subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has

at least two leaf nodes.

Key observation. If v is a leaf, there exists

a maximum size independent set containing v.

Pf. (exchange argument)

! Consider a max cardinality independent set S.

! If v # S, we're done.

! If u , S and v , S, then S ({ v } is independent $ S not maximum.

! IF u # S and v , S, then S ({ v } & { u } is independent. !

v

u

degree = 1

11

Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality

independent set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. !

Remark. Can implement in O(n) time by considering nodes in postorder.

Independent-Set-In-A-Forest(F) {

 S) *
 while (F has at least one edge) {

 Let e = (u, v) be an edge such that v is a leaf

 Add v to S

 Delete from F nodes u and v, and all edges

 incident to them.

 }

 return S

}

12

Weighted Independent Set on Trees

Weighted independent set on trees. Given a tree and node weights wv > 0,

find an independent set S that maximizes +v#S wv.

Observation. If (u, v) is an edge such that v is a leaf node, then either

OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

! OPTin (u) = max weight independent set

rooted at u, containing u.

! OPTout(u) = max weight independent set

rooted at u, not containing u.

r

u

v w

!

OPT
in

(u) = w
u

+ OPT
out

(v)
v " children(u)

#

OPT
out

(u) = max OPT
in

(v), OPT
out

(v){ }
v " children(u)

#

x

children(u) = { v, w, x }

13

Independent Set on Trees: Greedy Algorithm

Theorem. The dynamic programming algorithm find a maximum

weighted independent set in trees in O(n) time.

Pf. Takes O(n) time since we visit nodes in postorder and examine

each edge exactly once. !

Weighted-Independent-Set-In-A-Tree(T) {

 Root the tree at a node r

 foreach (node u of T in postorder) {

 if (u is a leaf) {

 Min [u] = wu
 Mout[u] = 0

 }

 else {

 Min [u] = +v#children(u) Mout[v] + wv
 Mout[u] = +v#children(u) max(Mout[v], Min[v])
 }

 }

 return max(Min[r], Mout[r])

}

ensures a node is visited after
all its children

14

Context

Independent set on trees. This structured special case is tractable

because we can find a node that breaks the communication among the

subproblems in different subtrees.

Graphs of bounded tree width. Elegant generalization of trees that:

! Captures a rich class of graphs that arise in practice.

! Enables decomposition into independent pieces.

u u

see Chapter 10.4, but proceed with caution

10.3 Circular Arc Coloring

16

Wavelength-Division Multiplexing

Wavelength-division multiplexing (WDM). Allows m communication

streams (arcs) to share a portion of a fiber optic cable, provided they

are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if

k colors suffice in O(km) time by

trying all k-colorings.

Goal. O(f(k)) - poly(m, n) on rings.

1

3

24

f

b
c

d

a

e

n = 4, m = 6

17

Wavelength-Division Multiplexing

Wavelength-division multiplexing (WDM). Allows m communication

streams (arcs) to share a portion of a fiber optic cable, provided they

are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if

k colors suffice in O(km) time by

trying all k-colorings.

Goal. O(f(k)) - poly(m, n) on rings.

1

3

24

f

b
c

d

a

e

n = 4, m = 6

18

Review: Interval Coloring

Interval coloring. Greedy algorithm finds coloring such that number of

colors equals depth of schedule.

Circular arc coloring.

! Weak duality: number of colors % depth.

! Strong duality does not hold.

h

c

a e

f

g i

jd

b

maximum number of streams at one location

max depth = 2
min colors = 3

19

(Almost) Transforming Circular Arc Coloring to Interval Coloring

Circular arc coloring. Given a set of n arcs with depth d " k,

can the arcs be colored with k colors?

Equivalent problem. Cut the network between nodes v1 and vn. The

arcs can be colored with k colors iff the intervals can be colored with

k colors in such a way that "sliced" arcs have the same color.

colors of a', b', and c' must correspond

to colors of a", b", and c"

v1

v2v4

v3
v1 v2 v3 v4

v0

v0
v0

20

Circular Arc Coloring: Dynamic Programming Algorithm

Dynamic programming algorithm.

! Assign distinct color to each interval which begins at cut node v0.

! At each node vi, some intervals may finish, and others may begin.

! Enumerate all k-colorings of the intervals through vi that are

consistent with the colorings of the intervals through vi-1.

! The arcs are k-colorable iff some coloring of intervals ending at cut

node v0 is consistent with original coloring of the same intervals.

3

2

1

c'

b'

a'

3

2

1

1

2

3

e

b'

d

3

2

1

1

2

3

e

f

d

3

2

1

1

2

3

e

f

c"

3

2

1

1

2

3

2

3

1

2

1

3

a"

b"

c"

v0 v1 v2 v3 v4 v0

yes

21

Circular Arc Coloring: Running Time

Running time. O(k! - n).

! n phases of the algorithm.

! Bottleneck in each phase is enumerating all consistent colorings.

! There are at most k intervals through vi, so there are at most k!

colorings to consider.

Remark. This algorithm is practical for small values of k (say k = 10)

even if the number of nodes n (or paths) is large.

Extra Slides

Vertex Cover in Bipartite Graphs

24

Vertex Cover

Vertex cover. Given an undirected graph G = (V, E), a vertex cover is a

subset of vertices S ! V such that for each edge (u, v) # E, either

u # S or v # S or both.

1

3

5

1'

3'

5'

2

4

2'

4'

S = { 3, 4, 5, 1', 2' }
|S| = 5

25

Vertex Cover

Weak duality. Let M be a matching, and let S be a vertex cover.

Then, |M| " |S|.

Pf. Each vertex can cover at most one edge in any matching.

1

3

5

1'

3'

5'

2

4

2'

4'

M = 1-2', 3-1', 4-5'
|M| = 3

26

Vertex Cover: König-Egerváry Theorem

König-Egerváry Theorem. In a bipartite graph, the max cardinality of

a matching is equal to the min cardinality of a vertex cover.

1

3

5

1'

3'

5'

2

4

2'

4'

M* = 1-1', 2-2', 3-3', 5-5'
|M*| = 4

S* = { 3, 1', 2', 5'}
|S*| = 4

27

Vertex Cover: Proof of König-Egerváry Theorem

König-Egerváry Theorem. In a bipartite graph, the max cardinality of

a matching is equal to the min cardinality of a vertex cover.

! Suffices to find matching M and cover S such that |M| = |S|.

! Formulate max flow problem as for bipartite matching.

! Let M be max cardinality matching and let (A, B) be min cut.

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

.

28

Vertex Cover: Proof of König-Egerváry Theorem

König-Egerváry Theorem. In a bipartite graph, the max cardinality of

a matching is equal to the min cardinality of a vertex cover.

! Suffices to find matching M and cover S such that |M| = |S|.

! Formulate max flow problem as for bipartite matching.

! Let M be max cardinality matching and let (A, B) be min cut.

! Define LA = L / A, LB = L / B, RA = R / A, RB = R / B.

! Claim 1. S = LB (RA is a vertex cover.

– consider (u, v) # E

– u # LA, v # RB impossible since infinite capacity

– thus, either u # LB or v # RA or both

! Claim 2. |S| = |M|.

– max-flow min-cut theorem $ |M| = cap(A, B)

– only edges of form (s, u) or (v, t) contribute to cap(A, B)

– |M| = cap(A, B) = |LB| + |RA| = |S|. !

Register Allocation

30

Register Allocation

Register. One of k of high-speed memory locations in computer's CPU.

Register allocator. Part of an optimizing compiler that controls which

variables are saved in the registers as compiled program executes.

Interference graph. Nodes are "live ranges" (variables or

temporaries). There is an edge between u and v if there exists an

operation where both u and v are "live" at the same time.

Observation. [Chaitin, 1982] Can solve register allocation problem iff

interference graph is k-colorable.

Spilling. If graph is not k-colorable (or we can't find a k-coloring), we

"spill" certain variables to main memory and swap back as needed.

typically infrequently used
variables that are not in inner loops

say 32

31

A Useful Property

Remark. Register allocation problem is NP-hard.

Key fact. If a node v in graph G has fewer than k neighbors,

G is k-colorable iff G & { v } is k-colorable.

Pf. Delete node v from G and color G & { v }.

! If G & { v } is not k-colorable, then neither is G.

! If G & { v } is k-colorable, then there is at least one remaining color

left for v. !

delete v and all incident edges

k = 2

G is 2-colorable even though

all nodes have degree 2

v

k = 3

32

Chaitin's Algorithm

Vertex-Color(G, k) {

 while (G is not empty) {

 Pick a node v with fewer than k neighbors

 Push v on stack

 Delete v and all its incident edges

 }

 while (stack is not empty) {

 Pop next node v from the stack

 Assign v a color different from its neighboring

 nodes which have already been colored

 }

}

say, node with fewest neighbors

33

Chaitin's Algorithm

Theorem. [Kempe 1879, Chaitin 1982] Chaitin's algorithm produces a

k-coloring of any graph with max degree k-1.

Pf. Follows from key fact since each node has fewer than k neighbors.

Remark. If algorithm never encounters a graph where all nodes have

degree % k, then it produces a k-coloring.

Practice. Chaitin's algorithm (and variants) are extremely effective

and widely used in real compilers for register allocation.

algorithm succeeds in k-coloring
many graphs with max degree % k

