Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?
Chap-‘—er- 11 A. Theory says you're unlikely to find a poly-time algorithm.

. . Must sacrifice one of three desired features.
Approximation .

A|90ri1-hms « Solve problem in poly-time.

= Solve arbitrary instances of the problem.

p-approximation algorithm.

« Guaranteed to run in poly-time.

= Guaranteed fo solve arbitrary instance of the problem

» Guaranteed to find solution within ratio p of true optimum.

7 -
\

| Ngmﬂhm Jesinn

JON KLEINBERG - EVA TARDOS

PEARSON] Slides by Kevin Wayne.
| ALY

Radion T Copyright © 2005 Pearson-Addison Wesley. Challenge. Need to prove a solution's value is close to optimum, without
Wesley Il rights reserved . . .
e even knowing what optimum value is!

Load Balancing

111 LOCld Balcmcin Input. m identical machines; n jobs, job j has processing time 1;.
: 9 = Job j must run contiguously on one machine.

= A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machine iisL; = 2 5 t;.

Def. The makespan is the maximum load on any machine L = max; L.

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Schedulin Load Balancing: List Scheduling Analysis
9 9 9 9 Y

List-scheduling algorithm. Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
=« Consider n jobs in some fixed order. E =« First worst-case analysis of an approximation algorithm.
=« Assign job j to machine whose load is smallest so far. « Need to compare resulting solution with optimal makespan L*.

List-Scheduling(m, n, t,,t,,..,t;) {
for i =1 tom { Lemma 1. The optimal makespan L* = max; t;.
L, < 0 <«— load on machine i . P . .
N I ey Pf. Some machine must process the most time-consuming job. =

}

Lemma 2. The optimal makespan L* = L% 1.
for j =1 ton {

. X _ Pf.
i = argmin, Ly <«— machine i has smallest load . . .
J(i) « J(i) U {3} <« assign job tomchine « The fotal processing time is X; ;.
) Ly < L, + ty <« update load of machine i « One of m machines must do at least a 1/m fraction of total work. =
}
Implementation. O(n log n) using a priority queue.
Load Balancing: List Scheduling Analysis Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation. Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L; of bottleneck machine i. Pf. Consider load L; of bottleneck machine i.

« Let j be last job scheduled on machine i. « Let j be last job scheduled on machine i.

= When job j assighed to machine i, i had smallest load. Its load = When job j assighed to machine i, i had smallest load. Its load

before assignment isL;-t; = L;-1; =< L, foralll<ks=m. before assignment is L;- ¥; = Li-t; = L, foralllsksm.

» Sum inequalities over all k and divide by m:

1
Li-t s LY. L
. . = Ly 1t
blue jobs scheduled before j m Lok
o , Gintd
machine i | .

Lemmal — < L*

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle

machine 3 idle

machine 4 idle

m =10 machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

v

list scheduling makespan = 19

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t,,t,,..,t)) {
Sort jobs so that t; 2 t,2 .. 2 t,

for i =1 tom {
L;«< 0 <«— load on machine i
J(i) < ¢ <+ jobs assigned to machine i

}

for j =1 ton {
i = argmin, L. <«— machine i has smallest load
J(i) <« J(i) U {j} < assignjob tomachinei
Ly < L; + &y <— update load of machine i

}

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

optimal makespan = 10

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. =

Lemma 3. If there are more than m jobs, L* =21, ,;.
Pf.
« Consider first m+1 jobs t,, ..., t,.;.
« Since the 1;'s are in descending order, each takes at least t,,; time.
« There are m+1 jobs and m machines, so by pigeonhole principle, at
least one machine gets two jobs. =

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

L= (Li-t) + t; = L
[-
< L* =iL*

Lemma 3
(by observation, can assume number of jobs >m)

Load Balancing: LPT Rule

Q. Is our 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is 6raham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, .., 2m-1 and
one job of length m.

Center Selection Problem

Input. Set of nsitess,, .., s,.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

k=4

r(€)

@ center
W site

11.2 Center Selection

Center Selection Problem

Input. Set of nsitess,, .., s,.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
« dist(x, y) = distance between x and y.
« dist(s;, C) = min . dist(s;, ¢) = distance from s; to closest center.
= r(C) = max; dist(s;, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.
. dist(x,x)=0 (identity)
« dist(x, y) = dist(y, x) (symmetry)
« dist(x, y) = dist(x, z) + dist(z, y) (triangle inequality)

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

r(€)

@ center
W site

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site
farthest from any existing center.

Greedy-Center-Selection(k, n, s;,s,,..,s8;) {

cC=¢

repeat k times {
Select a site s; with maximum dist(s;, C)
Add s; to C

} site farthest from any center
return C

Observation. Upon termination all centers in C are pairwise at least
r(C) apart.
Pf. By construction of algorithm.

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce the
covering radius each time by as much as possible.

Remark: arbitrarily bad!

I.I. [L] : =
) ° mn'n
[L] reedy center 1 L
" 9 L
@ center
k = 2 centers W site

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*) < 3 r(C).

. For each site c; in C, consider ball of radius 3 r(C) around it.

« Exactly one ¢;* in each ball; let ¢; be the site paired with ¢*.

. Consider any site s and its closest center ¢;* in C*.

« dist(s, C) = dist(s, ¢;) = dist(s, ¢;*) + dist(c*, ¢;) = 2r(C*).

. Thusr(C) = 2r(C*). = \ N

A-inequality < r(C*)since ¢* is closest center

e C*
W sites

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*). 11 4 The Pr'iCing Me*hOd: ver'Te.X COVCP

Theorem. Greedy algorithm is a 2-approximation for center
selection problem.

Remark. Greedy algorithm always places centers at sites, but is still

within a factor of 2 of best solution that is allowed to place centers
anywhere.

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no p-approximation for center-selection
problem for any p < 2.

21

Weighted Vertex Cover Weighted Vertex Cover
Weighted vertex cover. Given a graph G with vertex weights, find a Pricing method. Each edge must be covered by some vertex i. Edge e
vertex cover of minimum weight. pays price p, = 0 to use vertex i.

Fairness. Edges incident to vertex i should pay < w; in total.

Claim. For any vertex cover S and any fair prices p,: 3, p, = w(S).

Proof. 2P = 2 XPe= 2w o= wS) .
weight =2+2+4 weight = 9 eEE ' €S e=(1.)) =

each edge e covered by sum fairness inequalities
at least one node in S for each node in S

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx (G, w) {
foreach e in E E po=w
P. =0 e=J) el l

while (Jedge i-j such that neither i nor j are tight)
select such an edge e
increase p, without violating fairness

}

S < set of all tight nodes
return S

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.
. Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

« Let S = set of all tight nodes upon termination of algorithm. Sis a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

« Let S* be optimal vertex cover. We show w(S) < 2w(5*).

WS=Sw=3 Sp s 3 Sp=23p 5 2w .

ies i€S e=(i,)) i€V e=(i,j) eEE
! f t f

all nodes in S are tight sScv, each edge counted twice fairness lemma
prices = 0

Pricing Method

Figure 11.8

11.6 LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; = O, find a minimum weight subset of nodes S such
that every edge is incident o at least one vertex in S.

10 (&) 9

16 (& 10
6 H 9
23 33
7 J) 32

total weight = 55

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

(ILP) min Y w;x,
eV
S.t. X +X; = 1 (i,)EE
x; e {0,1} i€V

i

Observation. If x* is optimal solution to (ILP), then S={i€V: x* =1}
is a min weight vertex cover.

31

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; = O, find a minimum weight subset of nodes S such
that every edge is incident o at least one vertex in S.

Integer programming formulation.
= Model inclusion of each vertex i using a 0/1 variable x;.

{ 0 if vertex i is not in vertex cover
1

1 if vertex i is in vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
S={ieV:ix =1

= Objective function: maximize Z;w; x;.

« Must take eitherior ji x;+x; = 1.

Integer Programming

INTEGER-PROGRAMMING. Given integers a;; and b;, find integers x;
that satisfy:

n

max c'x 2a;%; = b Isi=m
j=l
s.t. Ax = b x; = 0 l=j=n
X integral : g
X, integral l=<j=<n

J

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.

even if all coefficients are 0/1 and
at most two variables per inequality

Linear Programming

Linear programming. Max/min linear objective function subject to
linear inequalities.
« Input: integers c;, by, a;;.

= Output: real numbers x;.
n
(P) max ‘Elchj
=
(P) max c'x
s.t. Ax = b
x = 0 x; =2 0 lsj=n

n
s.t. Yag;x; = b lsism

Linear. No x2, xy, arccos(x), x(1-x), etfc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min Y w;x;
iV
St X +x; = 1 (,))EE
X: = 0 ieV

i

Observation. Optimal value of (LP) is < optimal value of (ILP).
Pf. LP has fewer constraints.

(ST
(N

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover? 1
A. Solve LP and round fractional values.

LP Feasible Region

LP geometry in 2D.

x, =0
The region satisfying the inequalities
x120,%20
6 X1+ 2x,26
2x1+ x, 26

Weighted Vertex Cover

Theorem. If x* is optimal solutionto (LP),thenS={ieV :x* =3}is
a vertex cover whose weight is at most twice the min possible weight.

Pf. [Sis a vertex cover]
« Consider an edge (i, j) € E.

.« Since x*; + X*.i = 1, either x*;z $ or x* =% = (i, j) covered.

i
Pf. [S has desired cost]
« Let S* be optimal vertex cover. Then

W= Ewix; = %Ewi
i€ §* i€S i€ES

f f

LP is a relaxation x* =

Nl

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P = NP, then no p-approximation
for p < 1.3607, even with unit weights.
\

10V5 - 21

Open research problem. Close the gap.

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.
» Job j must run contiguously on an authorized machine in M; € M.
» Job j has processing time t;.
« Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The
load of machine iisL; = =;c 5 1.

Def. The makespan is the maximum load on any machine = max; L;.

Generalized load balancing. Assign each job to an authorized machine
to minimize makespan.

*11.7 Load Balancing Reloaded

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x; = fime machine i spends processing job .

(IP) min

s. t.

LP relaxation.

(LP) min

s. t.

L

2%
1

Exij
J

X;j

X;j

A

1 foralljE€J

L foralli e M

{0, #;} foralljE/andiE€EM,;
0 forallj € Jand i & M;

t. foralljeJ

~.

foralli e M

foralljEJandi€M;
foralljEJandi & M;

© o I~

40

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal
makespan L* = L.
Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* = max; t;.
Pf. Some machine must process the most time-consuming job. =

41

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root
forest 6(x) at some arbitrary machine node r.

« If job jis aleaf node, assign j to its parent machine i.

« If job jis not aleaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job j is assigned to machine i, then x;; > 0. LP solution can only
assign positive value to authorized machines. =

O job
[] machine

43

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be solution to LP. Let 6(x) be the graph with an edge
from machine i to job j if x;; > 0. Then 6(x) is acyclic.

can transform x into another LP solution where
6(x) is acyclic if LP solver doesn't return such an x

Pf. (deferred)

6(x) acyclic O job 6(x) cyclic

[] machine

Generalized Load Balancing: Analysis

Lemma 5. If job jis aleaf node and machine i = parent(j), then x;; = ;.
Pf. Sinceiis aleaf, x;; = O for all j = parent(i). LP constraint
guarantees ; x;; = t;. =

Lemma 6. At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i). =

O job
[] machine

42

44

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.
Pf.
« Let J(i) be the jobs assigned to machine i.
» By Lemma 6, the load L; on machine i has two components:

- leaf nodes Lemma 5 LP Lemma 1 (LP is a relaxation)
Etj= Exij sExUSLsL*
j e Ji) j e J jieJ T
jisaleaf Jjis a leaf
optimal value of LP
Lemma 2
- par‘em‘(i) tparent(i) = L*

. Thus, the overall load L, < 2L*. =

45

Generalized Load Balancing: Structure of Solution

Lemma 3. Let (x, L) be solution to LP. Let 6(x) be the graph with an
edge from machine i to job j if x; > 0. We can find another solution
(x', L) such that 6(x") is acyclic.

Pf. Let C be a cycle in 6(x).
. AugmenT flow along the cycle C. — flow conservation maintained
« At least one edge from C is removed (and none are added).
= Repeat until 6(x") is acyclic.

3()-3 3(}37 }
6 6
s 0K, > s O<, >
1 5 5
4 (OL, 4(}4>[y

augment along C
6(x) - 6(x")
47

Generalized Load Balancing: Flow Formulation

Flow formulation of LP.

Yx; = t; forallj€J Supply = ¢

i

>x; < L forallieM

J

x; = 0 foralljEJandiEM,; Demand = 3, 4
x;, = 0 forallj€Jandi¢M,

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

46

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
« Job j takes 1;; time if processed on machine i.
=« 2-approximation algorithm via LP rounding.
= No 3/2-approximation algorithm unless P = NP.

48

11.8 Knapsack Problem

Knapsack Problem

Knapsack problem.
= Given n objects and a "knapsack."
« Item i has value v; > 0 and weighs w;> 0. +~— we'll assume w; = W
= Knapsack can carry weight up to W.
« Goal: fill knapsack so as to maximize total value.

Ex: { 3,4} has value 40.

1 1 1
2 6 2
W=l 3 18 5
4 Ee 6
5 28 7

51

Polynomial Time Approximation Scheme

PTAS. (1 +¢)-approximation algorithm for any constant ¢ > 0.
« Load balancing. [Hochbaum-Shmoys 1987]
« Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades
off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights w;, nonnegative
values v;, a weight limit W, and a target value V, is there a subset S C X

such that:
Swo o= W

i€s

Sv, =V

i€s

SUBSET-SUM: Given a finite set X, nonnegative values u;, and an integer
U, is there a subset S C X whose elements sum to exactly U?

Claim. SUBSET-SUM = p KNAPSACK.
Pf. Given instance (uy, ..., u,, U) of SUBSET-SUM, create KNAPSACK
instance:

Vi=W=1u; Su = U
€S
V=W=U 3Su = U

i€s

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.

« Case 1: OPT does not select item i.

- OPT selects best of 1, ..., i-1 using up to weight limit w
« Case 2: OPT selects item i.

- new weight limit = w - w;

- OPT selects best of 1, ..., i-1 using up to weight limit w

0
OPT(i,w)=] OPT(i-1,w)
max{ OPT(i-1,w), v,+ OPT(i-1,w-w;)}

Running time. O(n W).
« W = weight limit.
= Not polynomial in input size!

Knapsack: FPTAS

Intuition for approximation algorithm.
= Round all values up to lie in smaller range.
« Run dynamic programming algorithm on rounded instance.
« Return optimal items in rounded instance.

1 134,221 1 1 2

2 656,342 2 2 7

3 1,810,013 5 = 3 19

4 22,217.800 6 4 23

5 28343199 7 5 29
W=t

original instance

- w;

if i=0
if w,>w

otherwise

rounded instance

Knapsack Problem: Dynamic Programming IT

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value

exactly v.
. Case 1: OPT does hot select item i.

- OPT selects best of 1, ..., i-1 that achieves exactly value v

« Case 2: OPT selects item i.
- consumes weight w;, new value needed = v - v,

- OPT selects best of 1, ..., i-1 that achieves exactly value v
0 if v=0
o if i=0,v>0
OPT(i,v)= , .
OPT(i-1,v) if vi>v

min{ OPT(i-1,v), w;+ OPT(i-1,v-v)} otherwise

V*<ny,

%
Running time. O(n V*) = O(n2v,).
« V* = optimal value = maximum v such that OPT(n, v) = W.
« Not polynomial in input size!

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: ¥, =[%l 0, W =[

- Vpax = largest value in original instance
- € = precision parameter

-8 = scaling factor=e v, /n

max

Observation. Optimal solution o problems with V or V are equivalent.

Intuition. V close to v so optimal solution using Vis nearly optimal;
V small and integral so dynamic programming algorithm is fast.

Running time. O(n3 / ¢).
« Dynamic program II running time is O(n*9,,,,), where

SERE

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: v, = [%l 0

Theorem. If S is solution found by our algorithm and S* is any other
feasible solution then (1+&)Y v, = > v,

i€S SR

Pf. Let S* be any feasible solution satisfying weight constraint.

2 v = 2 7. always round up
iEer &
= 37 solve rounded instance optimally
iEs
< E v, + 0) never round up by more than 6
igs
= Yv,+ nd Islsn
i€S DP alg can take v, .,
|
= (+e) v N0 = &Vyn, Viax < Zics Vi
i€S
57
Load Balancing on 2 Machines
Claim. Load balancing is hard even if only 2 machines.
Pf. NUMBER-PARTITIONING < , LOAD-BALANCE.
\
NP-complete by Exercise 8.26
a b c d
e f g
length of job f
machine 1 a d f
yes
machine 2 b c e g

v

0 Time L

Extra Slides

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no p-approximation algorithm for
metric k-center problem for any p < 2.

Pf. We show how we could use a (2 - £) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.
. Let G=(V, E), k be an instance of DOMINATING-SET. +— seeExercise 829
. Construct instance G' of k-center with sites V and distances
-d(u,v)=2if (u v)EE
-d(u,v)=1if (u,v)¢E
« Note that G' satisfies the triangle inequality.
=« Claim: G has dominating set of size k iff there exists k centers C*
with r(C*) = 1.
« Thus, if 6 has a dominating set of size k, a (2 - £)-approximation
algorithm on 6' must find a solution C* with r(C*) = 1 since it
cannot use any edge of distance 2.

