
1

Chapter 11

Approximation
Algorithms

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

2

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?

A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

! Solve problem to optimality.

! Solve problem in poly-time.

! Solve arbitrary instances of the problem.

!-approximation algorithm.

! Guaranteed to run in poly-time.

! Guaranteed to solve arbitrary instance of the problem

! Guaranteed to find solution within ratio ! of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without

even knowing what optimum value is!

11.1 Load Balancing

4

Load Balancing

Input. m identical machines; n jobs, job j has processing time tj.

! Job j must run contiguously on one machine.

! A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machine i is Li = "j # J(i) tj.

Def. The makespan is the maximum load on any machine L = maxi Li.

Load balancing. Assign each job to a machine to minimize makespan.

5

List-scheduling algorithm.

! Consider n jobs in some fixed order.

! Assign job j to machine whose load is smallest so far.

Implementation. O(n log n) using a priority queue.

Load Balancing: List Scheduling

List-Scheduling(m, n, t1,t2,…,tn) {

 for i = 1 to m {

 Li % 0

 J(i) % &
 }

 for j = 1 to n {

 i = argmink Lk
 J(i) % J(i) ' {j}
 Li % Li + tj
 }

}

jobs assigned to machine i

load on machine i

machine i has smallest load

assign job j to machine i

update load of machine i

6

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

! First worst-case analysis of an approximation algorithm.

! Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* $ maxj tj.

Pf. Some machine must process the most time-consuming job. !

Lemma 2. The optimal makespan

Pf.

! The total processing time is "j tj .

! One of m machines must do at least a 1/m fraction of total work. !!

L * " 1

m
t jj# .

7

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load Li of bottleneck machine i.

! Let j be last job scheduled on machine i.

! When job j assigned to machine i, i had smallest load. Its load

before assignment is Li - tj (Li - tj) Lk for all 1) k) m.

j

0
L = LiLi - tj

machine i

blue jobs scheduled before j

8

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load Li of bottleneck machine i.

! Let j be last job scheduled on machine i.

! When job j assigned to machine i, i had smallest load. Its load

before assignment is Li - tj (Li - tj) Lk for all 1) k) m.

! Sum inequalities over all k and divide by m:

! Now !

!

Li " t j # 1

m
Lkk$

= 1

m
tkk$

L *

!

Li = (Li " t j)

L*

1 2 4 3 4
+ t j

L*

{
 # 2L *.

Lemma 2

Lemma 1

9

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?

A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle

machine 3 idle

machine 4 idle

machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

list scheduling makespan = 19

m = 10

10

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?

A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

m = 10

optimal makespan = 10

11

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of

processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t1,t2,…,tn) {

 Sort jobs so that t1 ! t2 ! … ! tn

 for i = 1 to m {

 Li % 0

 J(i) % &

 }

 for j = 1 to n {

 i = argmink Lk
 J(i) % J(i) ' {j}

 Li % Li + tj
 }

}

jobs assigned to machine i

load on machine i

machine i has smallest load

assign job j to machine i

update load of machine i

12

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.

Pf. Each job put on its own machine. !

Lemma 3. If there are more than m jobs, L* $ 2 tm+1.

Pf.

! Consider first m+1 jobs t1, …, tm+1.

! Since the ti's are in descending order, each takes at least tm+1 time.

! There are m+1 jobs and m machines, so by pigeonhole principle, at

least one machine gets two jobs. !

Theorem. LPT rule is a 3/2 approximation algorithm.

Pf. Same basic approach as for list scheduling.

 !

!

Li = (Li " t j)

L*

1 2 4 3 4
+ t j

1
2
L*

{
 # 3

2
L *.

Lemma 3

(by observation, can assume number of jobs > m)

13

Load Balancing: LPT Rule

Q. Is our 3/2 analysis tight?

A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.

Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?

A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, …, 2m-1 and

one job of length m.

11.2 Center Selection

15

center

r(C)

Center Selection Problem

Input. Set of n sites s1, …, sn.

Center selection problem. Select k centers C so that maximum

distance from a site to nearest center is minimized.

site

k = 4

16

Center Selection Problem

Input. Set of n sites s1, …, sn.

Center selection problem. Select k centers C so that maximum

distance from a site to nearest center is minimized.

Notation.

! dist(x, y) = distance between x and y.

! dist(si, C) = min c # C dist(si, c) = distance from si to closest center.

! r(C) = maxi dist(si, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

! dist(x, x) = 0 (identity)

! dist(x, y) = dist(y, x) (symmetry)

! dist(x, y)) dist(x, z) + dist(z, y) (triangle inequality)

17

center
site

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the

plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

r(C)

18

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location

for a single center, and then keep adding centers so as to reduce the

covering radius each time by as much as possible.

Remark: arbitrarily bad!

greedy center 1

k = 2 centers site
center

19

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site

farthest from any existing center.

Observation. Upon termination all centers in C are pairwise at least

r(C) apart.

Pf. By construction of algorithm.

Greedy-Center-Selection(k, n, s1,s2,…,sn) {

 C = &

 repeat k times {

 Select a site si with maximum dist(si, C)

 Add si to C

 }

 return C

}

site farthest from any center

20

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C)) 2r(C*).

Pf. (by contradiction) Assume r(C*) < ! r(C).

! For each site ci in C, consider ball of radius ! r(C) around it.

! Exactly one ci* in each ball; let ci be the site paired with ci*.

! Consider any site s and its closest center ci* in C*.

! dist(s, C)) dist(s, ci)) dist(s, ci*) + dist(ci*, ci)) 2r(C*).

! Thus r(C)) 2r(C*). !

C*
sites

! r(C)

ci

ci*s

) r(C*) since ci* is closest center

! r(C)

! r(C)

*-inequality

21

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C)) 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center

selection problem.

Remark. Greedy algorithm always places centers at sites, but is still

within a factor of 2 of best solution that is allowed to place centers

anywhere.

Question. Is there hope of a 3/2-approximation? 4/3?

e.g., points in the plane

Theorem. Unless P = NP, there no !-approximation for center-selection
problem for any ! < 2.

11.4 The Pricing Method: Vertex Cover

23

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a

vertex cover of minimum weight.

4

9

2

2

4

9

2

2

weight = 2 + 2 + 4 weight = 9

24

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e

pays price pe $ 0 to use vertex i.

Fairness. Edges incident to vertex i should pay) wi in total.

Claim. For any vertex cover S and any fair prices pe: +e pe) w(S).

Proof. !

4

9

2

2

i
jie
e wpi !"

=),(

:x each vertefor

).(
),(

Swwpp
Si

i
jie
e

SiEe
e =!! """"

#=##

sum fairness inequalities
for each node in S

each edge e covered by
at least one node in S

25

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx(G, w) {

 foreach e in E

 pe = 0

 while (- edge i-j such that neither i nor j are tight)
 select such an edge e

 increase pe without violating fairness

 }

 S % set of all tight nodes

 return S

}

i
jie
e wp =!

=),(

26

Pricing Method

vertex weight

Figure 11.8

price of edge a-b

27

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.

Pf.

! Algorithm terminates since at least one new node becomes tight

after each iteration of while loop.

! Let S = set of all tight nodes upon termination of algorithm. S is a

vertex cover: if some edge i-j is uncovered, then neither i nor j is

tight. But then while loop would not terminate.

! Let S* be optimal vertex cover. We show w(S)) 2w(S*).

!

w(S) = wi
i" S

=
i" S

pe
e=(i, j)

$
i"V

pe
e=(i, j)

= 2 pe
e" E

$ 2w(S*).

all nodes in S are tight S , V,
prices $ 0

fairness lemmaeach edge counted twice

11.6 LP Rounding: Vertex Cover

29

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with

vertex weights wi $ 0, find a minimum weight subset of nodes S such

that every edge is incident to at least one vertex in S.

3

6

10

7

A

E

H

B

D I

C

F

J

G

6

16

10

7

23

9

10

9

33

total weight = 55

32

30

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with

vertex weights wi $ 0, find a minimum weight subset of nodes S such

that every edge is incident to at least one vertex in S.

Integer programming formulation.

! Model inclusion of each vertex i using a 0/1 variable xi.

Vertex covers in 1-1 correspondence with 0/1 assignments:

 S = {i # V : xi = 1}

! Objective function: maximize "i wi xi.

! Must take either i or j: xi + xj $ 1.

!

x
i
 =

 0 if vertex i is not in vertex cover

 1 if vertex i is in vertex cover

"

$

31

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

Observation. If x* is optimal solution to (ILP), then S = {i # V : x*i = 1}

is a min weight vertex cover.

!

(ILP) min wi xi

i " V

#

s. t. xi + x j $ 1 (i, j)" E

xi " {0,1} i "V

32

Integer Programming

INTEGER-PROGRAMMING. Given integers aij and bi, find integers xj

that satisfy:

Observation. Vertex cover formulation proves that integer

programming is NP-hard search problem.

!

aij x j
j=1

n

" # bi 1$ i $ m

xj # 0 1$ j $ n

x j integral 1$ j $ n

even if all coefficients are 0/1 and
at most two variables per inequality

!

max c
t
x

s. t. Ax " b

x integral

33

Linear Programming

Linear programming. Max/min linear objective function subject to

linear inequalities.

! Input: integers cj, bi, aij .

! Output: real numbers xj.

Linear. No x2, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.

Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

!

(P) max cj x j
j=1

n

"

s. t. aij x j
j=1

n

" # bi 1$ i $ m

xj # 0 1$ j $ n

!

(P) max c
t
x

s. t. Ax " b

x " 0

34

LP Feasible Region

LP geometry in 2D.

x1 + 2x2 = 6

2x1 + x2 = 6

x2 = 0

x1 = 0

35

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

Observation. Optimal value of (LP) is) optimal value of (ILP).

Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover?

A. Solve LP and round fractional values.

!

(LP) min wi xi

i " V

#

s. t. xi + x j $ 1 (i, j)" E

xi $ 0 i "V

!!

!

36

Weighted Vertex Cover

Theorem. If x* is optimal solution to (LP), then S = {i # V : x*i $!} is

a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

! Consider an edge (i, j) # E.

! Since x*i + x*j $ 1, either x*i $! or x*j $! ((i, j) covered.

Pf. [S has desired cost]

! Let S* be optimal vertex cover. Then

!

w
i

i " S*

$ w
i
x
i

*

i " S

$ 1

2
w
i

i " S

#

LP is a relaxation x*i $!

37

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P . NP, then no !-approximation

for ! < 1.3607, even with unit weights.

Open research problem. Close the gap.

10 /5 - 21

* 11.7 Load Balancing Reloaded

39

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.

! Job j must run contiguously on an authorized machine in Mj , M.

! Job j has processing time tj.

! Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machine i is Li = "j # J(i) tj.

Def. The makespan is the maximum load on any machine = maxi Li.

Generalized load balancing. Assign each job to an authorized machine

to minimize makespan.

40

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. xij = time machine i spends processing job j.

LP relaxation.

!

(IP) min L

s. t. xi j
i

" = t j for all j # J

xi j
j

" $ L for all i # M

xi j # {0, t j} for all j # J and i # M j

xi j = 0 for all j # J and i % M j

!

(LP) min L

s. t. xi j
i

" = t j for all j # J

xi j
j

" $ L for all i # M

xi j % 0 for all j # J and i # M j

xi j = 0 for all j # J and i & M j

41

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal

makespan L* $ L.

Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* $ maxj tj.

Pf. Some machine must process the most time-consuming job. !

42

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge

from machine i to job j if xij > 0. Then G(x) is acyclic.

Pf. (deferred)

G(x) acyclic
job

machine

can transform x into another LP solution where
G(x) is acyclic if LP solver doesn't return such an x

G(x) cyclic

xij > 0

43

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root

forest G(x) at some arbitrary machine node r.

! If job j is a leaf node, assign j to its parent machine i.

! If job j is not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.

Pf. If job j is assigned to machine i, then xij > 0. LP solution can only

assign positive value to authorized machines. !

job

machine

44

Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then xij = tj.

Pf. Since i is a leaf, xij = 0 for all j . parent(i). LP constraint

guarantees "i xij = tj. !

Lemma 6. At most one non-leaf job is assigned to a machine.

Pf. The only possible non-leaf job assigned to machine i is parent(i). !

job

machine

45

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.

Pf.

! Let J(i) be the jobs assigned to machine i.

! By Lemma 6, the load Li on machine i has two components:

– leaf nodes

– parent(i)

! Thus, the overall load Li) 2L*. !

!

t j
 j " J(i)
j is a leaf

= xij
 j " J(i)
j is a leaf

$ xij
j " J

$ L $ L *

Lemma 5 Lemma 1 (LP is a relaxation)

!

tparent(i) " L *

LP

Lemma 2

optimal value of LP

46

Flow formulation of LP.

Observation. Solution to feasible flow problem with value L are in one-

to-one correspondence with LP solutions of value L.

Generalized Load Balancing: Flow Formulation

0

!

xi j
i

" = t j for all j # J

xi j
j

" $ L for all i # M

xi j % 0 for all j # J and i # M j

xi j = 0 for all j # J and i & M j

47

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an

edge from machine i to job j if xij > 0. We can find another solution

(x', L) such that G(x') is acyclic.

Pf. Let C be a cycle in G(x).

! Augment flow along the cycle C.

! At least one edge from C is removed (and none are added).

! Repeat until G(x') is acyclic.

Generalized Load Balancing: Structure of Solution

3

4

4

3

2

3

1

2

6

5

G(x)

3

4

4

3

3

4

1

6

5

G(x')
augment along C

flow conservation maintained

48

Conclusions

Running time. The bottleneck operation in our 2-approximation is

solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:

given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

! Job j takes tij time if processed on machine i.

! 2-approximation algorithm via LP rounding.

! No 3/2-approximation algorithm unless P = NP.

11.8 Knapsack Problem

50

Polynomial Time Approximation Scheme

PTAS. (1 + 1)-approximation algorithm for any constant 1 > 0.

! Load balancing. [Hochbaum-Shmoys 1987]

! Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades

off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

51

Knapsack Problem

Knapsack problem.

! Given n objects and a "knapsack."

! Item i has value vi > 0 and weighs wi > 0.

! Knapsack can carry weight up to W.

! Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.
1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

we'll assume wi) W

52

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights wi, nonnegative

values vi, a weight limit W, and a target value V, is there a subset S , X

such that:

SUBSET-SUM: Given a finite set X, nonnegative values ui, and an integer

U, is there a subset S , X whose elements sum to exactly U?

Claim. SUBSET-SUM) P KNAPSACK.

Pf. Given instance (u1, …, un, U) of SUBSET-SUM, create KNAPSACK

instance:

!

w
i

i"S

$ W

v
i

i"S

% V

!

v
i
= w

i
= u

i
 u

i

i"S

$ U

V =W =U u
i

i"S

% U

53

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.

! Case 1: OPT does not select item i.

– OPT selects best of 1, …, i–1 using up to weight limit w

! Case 2: OPT selects item i.

– new weight limit = w – wi

– OPT selects best of 1, …, i–1 using up to weight limit w – wi

Running time. O(n W).

! W = weight limit.

! Not polynomial in input size!

!

OPT(i, w) =

0 if i = 0

OPT(i "1, w) if wi > w

max OPT(i "1, w), v
i

+ OPT(i "1, w"w
i
){ } otherwise

$
%

&
%

54

Knapsack Problem: Dynamic Programming II

Def. OPT(i, v) = min weight subset of items 1, …, i that yields value

exactly v.

! Case 1: OPT does not select item i.

– OPT selects best of 1, …, i-1 that achieves exactly value v

! Case 2: OPT selects item i.

– consumes weight wi, new value needed = v – vi

– OPT selects best of 1, …, i-1 that achieves exactly value v

Running time. O(n V*) = O(n2 vmax).

! V* = optimal value = maximum v such that OPT(n, v)) W.

! Not polynomial in input size!

!

OPT (i, v) =

0 if v = 0

" if i = 0, v > 0

OPT (i #1, v) if vi > v

min OPT (i #1, v), w
i
+ OPT (i #1, v# v

i
){ } otherwise

$

%

&
&

'

&
&

V*) n vmax

55

Knapsack: FPTAS

Intuition for approximation algorithm.

! Round all values up to lie in smaller range.

! Run dynamic programming algorithm on rounded instance.

! Return optimal items in rounded instance.

Item Value Weight

1 134,221 1

2 656,342 2

3 1,810,013 5

4 22,217,800 6

5 28,343,199 7

W = 11

Item Value Weight

1 2 1

2 7 2

3 19 5

4 23 6

5 29 7

original instance rounded instance

W = 11

56

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

– vmax = largest value in original instance

– 1 = precision parameter

– 2 = scaling factor = 1 vmax / n

Observation. Optimal solution to problems with or are equivalent.

Intuition. close to v so optimal solution using is nearly optimal;

 small and integral so dynamic programming algorithm is fast.

Running time. O(n3 / 1).

! Dynamic program II running time is , where

!

v
i
=

v
i

"

$ $
%

& &
 ", ˆ v

i
=

v
i

"

$ $
%

& &

!

ˆ v

!

v

!

v

!

v

!

ˆ v

!

O(n
2

ˆ v max)

!

ˆ v
max

 =
v

max

"

$ $
%

& &
 =

n

'

$ $
%

& &

57

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

Theorem. If S is solution found by our algorithm and S* is any other

feasible solution then

Pf. Let S* be any feasible solution satisfying weight constraint.

!

v
i

i " S*

$ v
i

i " S*

#

$ v
i

i " S

#

$ (v
i

i " S

+ %)

$ v
i

i" S

+ n%

$ (1+&) v
i

i" S

#

always round up

solve rounded instance optimally

never round up by more than 2

!

(1+") v
i
 # v

i

i $ S*

%
i$ S

%

|S|) n

n 2 = 1 vmax, vmax) "i#S vi

DP alg can take vmax

!

v
i
=

v
i

"

$ $
%

& &
 " Extra Slides

59

Machine 2

Machine 1a d f

b c e g

yes

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines.

Pf. NUMBER-PARTITIONING) P LOAD-BALANCE.

a d

f

b c

ge

length of job f

Time L0

machine 1

machine 2

NP-complete by Exercise 8.26

60

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no !-approximation algorithm for

metric k-center problem for any ! < 2.

Pf. We show how we could use a (2 - 1) approximation algorithm for k-

center to solve DOMINATING-SET in poly-time.

! Let G = (V, E), k be an instance of DOMINATING-SET.

! Construct instance G' of k-center with sites V and distances

– d(u, v) = 2 if (u, v) # E

– d(u, v) = 1 if (u, v) 3 E

! Note that G' satisfies the triangle inequality.

! Claim: G has dominating set of size k iff there exists k centers C*

with r(C*) = 1.

! Thus, if G has a dominating set of size k, a (2 - 1)-approximation

algorithm on G' must find a solution C* with r(C*) = 1 since it

cannot use any edge of distance 2.

see Exercise 8.29

