(CS3230 : Tutorial - 2

Bakh Khoussainov
28-Aug-2011, 1pm deadline

1. Design an algorithm that given n points p1, ..., p, in a line, outputs two
points with the closest distance. Is your algorithm greedy? Give a very
short explanation to your answer.

2. Say you are in country X. The currency of country X uses coins in values
of 1, 5, 10, 20, 25, and 50. Assume that you have unlimited number of coins
of each type. Given amount M, you would like to find minimum number
of coins that sum up to M. This is known as the change problem. Prove
or disprove that the greedy algorithm that takes the maximal number of
coins of the highest value solves the change problem. For instance, for
M = 197 the coins produced by this algorithm are 50, 50, 50, 25,20, 1, 1.

3. One algorithm that sorts lists is called the Selection Sort Algorithm. The
input to the algorithm is a list A = a4, ..., a, of integers. The number n
is called the size of the input. The Selection Sort Algorithm proceeds as
follows:

e Find the smallest number in A.
e Swap the smallest number with the value in the first position of A.

e Repeat the steps above for the reminder of the list.

The basic operation in execution of this algorithm is the comparison
operation. For instance putting the smallest element into the first position
requires n — 1 comparisons by scanning the whole list from left to right.

Prove that the Selection Sort Algorithm on input A of size n makes at
most n? comparisons in order to give a sorted output.

4. Our algorithms from the lectures for solving problems related to intervals
use two basic operations. The first operation determines if one interval
overlaps with the other. The second operation is the comparison oper-
ation that is used for sorting the intervals either by their finishing time
(Interval scheduling problem) or by starting time (Interval partitioning
problem) or by earliest deadlines (lateness minimisation problem). The
comparison operation compares the intervals by the finishing or starting
times or deadlines depending on the problem. For each of these algorithms



inputs are intervals of Iy, ..., I,. The number n is called the size of the
input. For each of these algorithm, given an input of size n, find the upper
bound on the total number of basic operations needed to obtain a solution
to the problem. Your bound should be expressed in terms of n. You need
to give your answer in the following two cases:

Case 1. The inputs are sorted. Namely, for the interval scheduling prob-
lem the intervals are sorted by finishing time, for the interval partitioning
problem the intervals are sorted by their starting time, and for the lateness
minimisation problem the requests are sorted by their deadlines.

Case 2. The inputs are not sorted.

5. Apply Dijkstra algorithm (proved in the lecture) to the graph depicted
below. Your starting vertex is vertex a. Write down each stage of your
algorithm, the set S, and the distance values d for the vertices in the
graph.

6. Let G be a directed weighted graph. We always assume that the weights
are non-negative. Let vy, v1,...,v, be a path P. Recall that the weight
(or the cost) of this path P, denoted by w(P), is the sum of the weights
of its edges, that is:

n—1
w(P) = w(e),
=0

where e; is the edge from v; to v; 1.



The shortest path-distance from a vertex u to a vertex v is the mini-
mum weight among the weights of all paths from u to v. We denote this
shortest path-distance by d(u,v). Thus,

0(u,v) = min {w(P) | P is a path from u to v in G}.

A shortest path from u to v is then any path P whose weight is equal
to the shortest path-distance 6(u,v) from u to v.

(a) Show by example that if negative weights are allowed, then the short-
est path-distance from u to v might not exist even if there is a path
from u to v.

(b) Prove that a subpath of a shortest path is again a shortest path.

(c) For all vertices x,y,z € V of the directed weighted graph G, the
following triangle inequality is true:

0(x,2) < 0(z,y) + 0(y, 2).

7. Consider the lateness minimisation problem.

(a) Suppose we use the following rule to schedule the intervals. Always
select the intervals that require the most amount of time (that is
start by selecting the interval whose length is the largest among all
intervals). Prove or disprove that the greedy algorithm based on this
rule produces an optimal solution.

(b) Suppose we use the following rule to schedule the intervals. Always
select the intervals that require the least amount of time. Prove or
disprove that the greedy algorithm based on this rule produces an
optimal solution.



