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Compression of a message up to the information it carries is key to many tasks involved in
classical and quantum information theory. Schumacher [3] provided one of the first quantum
compression schemes and several more general schemes have been developed ever since [5, 6, 9].
However, the one-shot characterization of these quantum tasks is still under development, and often
lacks a direct connection with analogous classical tasks. Here we show a new technique for the
compression of quantum messages with the aid of entanglement. We devise a new tool that we call
the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling
procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols
with tight communication cost for quantum state merging, quantum state splitting and quantum
state redistribution (up to a certain optimization in the latter case). We also present a port-based
teleportation scheme which uses less number of ports in presence of information about input.

Quantum teleportation [1], one of the most cele-
brated features of quantum information, allows Alice
to send an unknown qubit to Bob using a classical
message of 2 bits, assuming that both share a copy
of the EPR state: 1√

2 |00〉 + 1√
2 |11〉. As an addi-

tional ‘security’ feature, the message sent by Alice is
completely random: it carries no information about
the state of the qubit being sent. It is not hard
to imagine a similar classical teleportation scheme:
Alice and Bob share a pair of perfectly correlated
random coins, both taking values 0 or 1 with equal
probability. Alice takes one sample from an unknown
coin given to her, another sample from the aforemen-
tioned coin shared with Bob. If the values of samples
match, Alice tells Bob to do nothing. Else she tells
Bob to flip his coin. Once again, the message sent
from Alice is completely random and independent of
the unknown coin given to her.

Now, imagine a situation where Alice and Bob did
not share any resource whatsoever, and Alice sent
a random message to Bob. Clearly, this situation
is completely futile for the purpose of transmitting
an unknown qubit or a coin. This leads to a nat-
ural question: how does the presence of a shared
resource bring such a dramatic change in this situa-
tion? The answer comes from the observation that
the presence of a shared resource, whether classi-
cal or quantum, lends to Alice a complete classical
knowledge or a quantum knowledge of the state of
the system present with Bob. This knowledge allows

Alice to orchestrate a desired state onto the system
with Bob, an idea that has had profound implications
in classical information theory.
The long history of classical information theory

has seen various simplifications of the protocols for
message transmission originally conceived, for exam-
ple, by Shannon[4] and Slepian and Wolf[2]. An
important simplification has been through the idea
of one-shot information theory, which has surpris-
ingly shown that studying single use of the channel
can bring substantial clarity in the structure of the
protocols. Another instance is the consideration of
protocols that use shared coins or randomness, giving
access of the aforementioned classical knowledge to
Alice. These developments have been pivotal in con-
structing protocols in more complicated settings of
classical network theory. An elegant technique that
has come for wide use in one-shot classical informa-
tion theory, as a consequence of above developments,
is the rejection sampling technique as expressed in
Figure 1. Several interesting generalizations of this
idea have been used to obtain communication bounds
in other more complicated settings in one-shot clas-
sical network theory [31–34].
On the other hand, quantum information is ar-

guably more counter-intuitive than classical informa-
tion, largely owing to the phenomena of entangle-
ment. An interesting platform for studying quantum
information is that of coherent quantum protocol, as
depicted in Figure 2. Let’s try to import the rejec-
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FIG. 1: The rejection sampling scheme: (a) Alice and Bob
start with many copies of the shared randomness, equally

taking the value m′ with probability p(m′) (represented with
red lines: red small circles represent the random variables
connected by the red lines). Alice wishes to transmit m to
Bob. (b) She finds a shared randomness which takes same
value as her input. Then she sends the index of the shared

randomness to Bob.

tion sampling procedure to the coherent quantum
setting, say in the simple setting when the registers
A,B are absent in Figure 2. The key challenge comes
from a very peculiar property of quantum informa-
tion: monogamy of entanglement [40]. The failure of
the tests, that Alice performs on her share of entan-
glement, lead to correlation between the register R
and parts of shared entanglement with Alice, which
is not compatible with the requirement that R be
correlated only with register C to be output by Bob.

Thus, it comes as no surprise that some non-trivial
techniques have been developed to handle quantum
information, such as arguments that involve random
unitaries (that have been employed in the works men-
tioned in Figure 2). Does this mean that quantum
protocols are somehow inherently distinct from clas-
sical protocols and necessarily need more sophisti-
cated techniques? In order to address this question,
we revisit the rejection sampling and observe two
of its important properties, one of which has been
mentioned earlier.

• Using pre-shared randomness, Alice holds com-
plete classical knowledge of the random vari-
able present with Bob.

• Bob’s strategy is simply to pick up the correct
register based on Alice’s message. Thus Alice
is largely responsible for creating the right dis-
tribution on Bob’s side.
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FIG. 2: A large body of work has been done towards
quantum state redistribution (a) and its subtasks quantum

state merging (b) and quantum state splitting (c) in
asymptotic and i.i.d setting ([5], [9], [10], [11], [12]). Various

one shot versions of these tasks have been developed
in [7],[8],[17, 19]

We propose a quantum scheme that bases itself
on these two properties and successfully performs
the task of quantum message compression. The first
property naturally lends itself in the setting of co-
herent quantum communication: Alice holds the pu-
rification of registers of both Bob and Referee, and
thus has complete quantum knowledge of their reg-
isters. We incorporate the second property in our
scheme by explicitly designing Bob’s strategy (right
hand side of Figure 3). For concreteness, we consider
the following task: Alice (AM), Bob (B) and Referee
(R) share a joint quantum state ΨRABM and Alice
wishes to send the register M to Bob with error at
most ε. This task may appear as a sub-routine in
any other quantum protocol and the register M is
to be interpreted as the message register. Our aim
is to minimize the amount of communication needed
to transfer M from Alice to Bob. We allow Alice and
Bob to share arbitrary prior entanglement, which
may be helpful in accomplishing this task.

For our compression protocol, we introduce a new
quantum state σM . Its purification serves as the
shared entanglement between Alice and Bob and both
parties share n copies of this state, for a choice of
n as made in Figure 3. The chosen value of n is in
terms of an information theoretic quantity known as
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max-relative entropy. For two quantum states ρ, σ
it is defined as Dmax (ρ‖θ) = min{λ : ρ ≤ 2λθ}. An
intuitive explanation of this quantity is as follows: if
we write θ as a convex combination pρ+(1−p)ρ′ (for
some arbitrary quantum state ρ′), then the largest
value of p that we can choose is 2−Dmax(ρ‖θ).

The quantum state depicted on the left hand side
of Figure 3 is the reduced state on the registers in-
volved with Bob and Referee, at the beginning of the
protocol. The right hand side of Figure 3 depicts
a quantum analogue of the second property men-
tioned above. It is a convex combination of states
ΦRBMj ⊗ σM1 . . . ⊗ σMj−1 ⊗ σMj+1 . . . ⊗ σMn , such
that if Bob knew which of these states he actually
shared with the Referee, he could simply go ahead
and pick the register Mj . Our main technical result
is that the states on the left hand and the right hand
side are close to each other (in fidelity) for sufficiently
large n. We refer to it as the convex-split lemma.
At the beginning of the protocol, Alice holds the

purification of the state on the left hand side in Fig-
ure 3. Appealing to Uhlmann’s Theorem [36] gives us
our desired protocol, as depicted in Figure 4. This
protocol allows Alice to send the register M with
error ε, and the number of qubits communicated
is 1

2 log(n) = 1
2Dmax (ΨRBM‖ΨRB ⊗ σM ) + 2 log 1

ε .
Now if we optimize over all possible σM , we can
obtain the smallest possible cost of communica-
tion. This cost is naturally captured by a quantity
called max-information, which is suitably defined as
Imax(RB : M)Ψ = minσM

Dmax(ΨRBM‖ΨRB ⊗ σM ).
Above we have exhibited a scheme for quantum

message compression which is based on a coherent
quantum analogue of the classical rejection sampling
technique. We point out that non-coherent analogues
of classical rejection sampling already exist in litera-
ture [31–33]. Next we discuss several applications
of our result. The first application is near opti-
mal communication bounds for the tasks of quan-
tum state splitting. We obtain a protocol which
makes an error of at most 2ε, and its communica-
tion is upper bounded by: 1

2 Iεmax (R : C)Ψ + log 1
ε ,

where the smooth max-information is defined as
Iεmax (A : B)ρ

def= infρ′
AB

:F(ρ′,ρ)≥1−εImax (A : B)ρ′ . It
is known that any one-shot one-way entanglement
assisted protocol for quantum state splitting that
makes an error at most ε must communicate at least
1
2 Iεmax(R : C)Ψ number of qubits [7]. Similar bounds
also hold for quantum state merging (in which reg-
ister A is trivial), as quantum state merging can be
viewed as a time-reversed version of quantum state

splitting [7]. A slightly weaker form of our result
was already known in [7], where the protocol used
1
2 Iεmax (R : C)Ψ + log log dim(C) + log

( 1
ε

)
qubits of

communication and embezzling quantum states as
pre-shared entanglement. We show a similar state-
ment for the case of quantum state redistribution,
where the communication cost is tightly character-
ized by a quantity that captures how well Bob can de-
couple the registers RB and C using local operations
and additional ancilla register T (without changing
the state in the registers RB). We leave further
understanding of the best possibly decoupling per-
formed by Bob to future work, providing further de-
tails in online version of this work[24]. Quantum
state redistribution can also be viewed in terms of
other related forms of decoupling, as has been re-
cently discussed in [22].
Another application of our work is in the context

of port-based teleportation. The works [38, 39] in-
troduced the elegant technique of port-based tele-
portation, where Alice and Bob share many copies of
maximally entangled states (called ports), and upon
receiving message from Alice (which she prepares af-
ter her local quantum operation), Bob simply picks
up the desired state in one of the ports. Port-based
teleportation has a very desirable property of be-
ing composable and has found important application
in relating quantum communication complexity and
Bell-violations [30]. Using the convex split lemma,
we provide a scheme for port-based teleportation
which can save on the number of ports (over the
scheme by [39]) for a non-uniform ensemble.

Conclusion- In this work, we have provided a new
framework for compression of quantum messages and
have given applications to quantum state redistri-
bution and port based teleportation. A key fea-
ture of our framework is that it is able to provide
bounds which match in form to that of the best
known bounds for analogous classical and classical-
quantum network tasks, given that one is able to
prove a suitable extension of the convex-split lemma.
The simplicity of its proof allows it to be adapted
to different settings. Very recently [25] have applied
our framework to several important settings in quan-
tum network theory, such as a quantum version of
the Gel’fand-Pinsker channel and the quantum broad-
cast channel. The work [26] has used present frame-
work to obtain a new achievability bound on quan-
tum state redistribution, in terms of smooth-max
information and hypothesis testing relative entropy.
Convex-split lemma has also found application in the
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FIG. 3: The small circles refer to physical registers. The blue circles represent the state ΨRB , the red circles represents the
state σM . The connected blue circles represent the state ΨRBM . The state on the left panel represents the actual state shared
between Referee and Bob; σM is the reduced state on Bob’s side in each copy of shared entanglement. If they shared the state
on right panel and Bob were told that the j-th state of the n states appearing in the convex combination were actually shared,
Bob would be able to directly pick up the corresponding register Mj to obtain the desired state. As a first step, we show that
the states on left and right panels are close to each other up to error ε, as long as logn ≥ Dmax(ΨRBM‖ΨRB ⊗ σM ) + 2 log 1

ε
.

This we refer to as the convex-split lemma.

work [23], in the context of catalytic decoupling. We
point out that the present version of this lemma (in
supplementary material) further improves the corre-
sponding result in [23]. Other recent applications
of the convex-split lemma include privacy in quan-
tum communication (the wiretap channel) in [29], a
generalized quantum Slepian-Wolf result in [28] and
a bound for the important and consequential task
of measurement compression using classical shared
randomness in [27]. Given the broad applicability of
the convex-split technique as exhibited in these re-
cent works, we expect more applications in quantum
network theory in the future.
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1 Preliminaries
In this section we present some notations, definitions, facts and lemmas that we will use later in our proofs.
Readers may refer to [CT91, NC00, Wat11] for good introduction to classical and quantum information
theory.

Information theory
Consider a finite dimensional Hilbert space H endowed with an inner product 〈·, ·〉 (in this paper, we only
consider finite dimensional Hilbert-spaces). The `1 norm of an operator X on H is ‖X‖1

def= Tr
√
X†X and

`2 norm is ‖X‖2
def=
√

TrXX†. A quantum state (or a density matrix or a state) is a positive semi-definite
matrix on H with trace equal to 1. It is called pure if and only if its rank is 1. A sub-normalized state is a
positive semi-definite matrix on H with trace less than or equal to 1. Let |ψ〉 be a unit vector on H, that
is 〈ψ,ψ〉 = 1. With some abuse of notation, we use ψ to represent the state and also the density matrix
|ψ〉〈ψ|, associated with |ψ〉. Given a quantum state ρ on H, support of ρ, called supp(ρ) is the subspace of
H spanned by all eigen-vectors of ρ with non-zero eigenvalues.

A quantum register A is associated with some Hilbert space HA. Define |A| def= dim(HA). Let L(A)
represent the set of all linear operators on HA. We denote by D(A), the set of quantum states on the Hilbert
space HA. State ρ with subscript A indicates ρA ∈ D(A). If two registers A,B are associated with the same
Hilbert space, we shall represent the relation by A ≡ B. Composition of two registers A and B, denoted AB,
is associated with Hilbert space HA⊗HB . For two quantum states ρ ∈ D(A) and σ ∈ D(B), ρ⊗ σ ∈ D(AB)
represents the tensor product (Kronecker product) of ρ and σ. The identity operator on HA (and associated
register A) is denoted IA.

Let ρAB ∈ D(AB). We define

ρB
def= TrA(ρAB) def=

∑
i

(〈i| ⊗ IB)ρAB(|i〉 ⊗ IB),

where {|i〉}i is an orthonormal basis for the Hilbert space HA. The state ρB ∈ D(B) is referred to as the
marginal state of ρAB. Unless otherwise stated, a missing register from subscript in a state will represent
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partial trace over that register. Given a ρA ∈ D(A), a purification of ρA is a pure state ρAB ∈ D(AB) such
that TrB (ρAB) = ρA. Purification of a quantum state is not unique.

A quantum map E : L(A) → L(B) is a completely positive and trace preserving (CPTP) linear map
(mapping states in D(A) to states in D(B)). A unitary operator UA : HA → HA is such that U†AUA =
UAU

†
A = IA. An isometry V : HA → HB is such that V †V = IA and V V † = IB. The set of all unitary

operations on register A is denoted by U(A).

Definition 1.1. We shall consider the following information theoretic quantities. Reader is referred to
[Ren05, TCR10, Tom12, Dat09] for many of these definitions. We consider only normalized states in the
definitions below. Let ε ≥ 0.

1. Fidelity For ρA, σA ∈ D(A),
F(ρA, σA) def= ‖√ρA

√
σA‖1 .

For classical probability distributions P = {pi}, Q = {qi},

F(P,Q) def=
∑
i

√
pi · qi.

2. Purified distance For ρA, σA ∈ D(A),

P(ρA, σA) =
√

1− F2(ρA, σA).

3. ε-ball For ρA ∈ D(A),
Bε(ρA) def= {ρ′A ∈ D(A)| P(ρA, ρ′A) ≤ ε}.

4. Von-neumann entropy For ρA ∈ D(A),

S(ρA) def= −Tr(ρA log ρA).

5. Relative entropy For ρA, σA ∈ D(A) such that supp(ρA) ⊂ supp(σA),

D(ρA‖σA) def= Tr(ρA log ρA)− Tr(ρA log σA).

6. Max-relative entropy For ρA, σA ∈ D(A) such that supp(ρA) ⊂ supp(σA),

Dmax(ρA‖σA) def= inf{λ ∈ R : 2λσA ≥ ρA}.

7. Mutual information For ρAB ∈ D(AB),

I(A : B)ρ
def= S(ρA) + S(ρB)− S(ρAB) = D(ρAB‖ρA ⊗ ρB) .

8. Conditional mutual information For ρABC ∈ D(ABC),

I(A : B |C)ρ
def= I(A : BC)ρ − I(A : C)ρ .

9. Max-information For ρAB ∈ D(AB),

Imax(A : B)ρ
def= infσB∈D(B)Dmax(ρAB‖ρA ⊗ σB) .
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10. Smooth max-information For ρAB ∈ D(AB),

Iεmax(A : B)ρ
def= infρ′∈Bε(ρ)Imax(A : B)ρ′ .

11. Conditional min-entropy For ρAB ∈ D(AB),

Hmin(A|B)ρ
def= −infσB∈D(B)Dmax(ρAB‖IA ⊗ σB) .

We will use the following facts.

Fact 1.2 (Triangle inequality for purified distance, [Tom12]). For states ρA, σA, τA ∈ D(A),

P(ρA, σA) ≤ P(ρA, τA) + P(τA, σA).

Fact 1.3 ([Sti55]). (Stinespring representation) Let E(·) : L(A)→ L(B) be a quantum operation. There
exists a register C and an unitary U ∈ U(ABC) such that E(ω) = TrA,C

(
U(ω ⊗ |0〉〈0|B,C)U†

)
. Stinespring

representation for a channel is not unique.

Fact 1.4 (Monotonicity under quantum operations, [BCF+96],[Lin75]). For quantum states ρ, σ ∈ D(A),
and quantum operation E(·) : L(A)→ L(B), it holds that

‖E(ρ)− E(σ)‖1 ≤ ‖ρ− σ‖1 and F(E(ρ),E(σ)) ≥ F(ρ, σ) and D(ρ‖σ) ≥ D(E(ρ)‖E(σ)) .

In particular, for bipartite states ρAB , σAB ∈ D(AB), it holds that

‖ρAB − σAB‖1 ≥ ‖ρA − σA‖1 and F(ρAB , σAB) ≤ F(ρA, σA) and D(ρAB‖σAB) ≥ D(ρA‖σA) .

Fact 1.5 (Uhlmann’s theorem, [Uhl76]). Let ρA, σA ∈ D(A). Let ρAB ∈ D(AB) be a purification of ρA and
σAC ∈ D(AC) be a purification of σA. There exists an isometry V : HC → HB such that,

F(|θ〉〈θ|AB , |ρ〉〈ρ|AB) = F(ρA, σA),

where |θ〉AB = (IA ⊗ V ) |σ〉AC .

Fact 1.6 ([BCR11], Lemma B.7). For a quantum state ρAB ∈ D(AB),

Imax(A : B)ρ ≤ 2 ·min{log |A|, log |B|}.

Fact 1.7 ([BCR11], Lemma B.14). For a quantum state ρABC ∈ D(ABC),

Imax(A : BC)ρ ≥ Imax(A : B)ρ .

Fact 1.8 (Pinsker’s inequality, [DCHR78]). For quantum states ρA, σA ∈ D(A),

F(ρ, σ) ≥ 2− 1
2 D(ρ‖σ).

This implies,
1− F(ρ, σ) ≤ ln 2

2 ·D(ρ‖σ) ≤ D(ρ‖σ) .

Lemma 1.9. Let ε > 0. Let |ψ〉〈ψ|A ∈ D(A) be a pure state and let ρAB ∈ D(AB) be a state such that
F(|ψ〉〈ψ|A , ρA) ≥ 1− ε. There exists a state θB ∈ D(B) such that F(|ψ〉〈ψ|A ⊗ θB , ρAB) ≥ 1− ε.
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Proof. Introduce a register C such that |C| = |A||B|. Let |ρ〉ABC ∈ D(ABC) be a purification of ρAB . Using
Uhlmann’s theorem (Fact 1.5) we get a pure state θBC such that

1− ε ≤ F(|ψ〉〈ψ|A , ρA)
= F(|ψ〉〈ψ|A ⊗ |θ〉〈θ|BC , |ρ〉〈ρ|ABC)
≤ F(|ψ〉〈ψ|A ⊗ θB , ρAB). (monotonicity of fidelity under quantum operation, Fact 1.4)

The following lemma is a tighter version of (one-sided) convexity of relative entropy.

Lemma 1.10. Let µ1, µ2, . . . µn, θ be quantum states and {p1, p2, . . . pn} be a probability distribution. Let
µ =

∑
i piµi be the average state. Then

D(µ‖θ) =
∑
i

pi(D(µi‖θ)−D(µi‖µ)).

Proof. Proof proceeds by direct calculation. Consider∑
i

pi(D(µi‖θ)−D(µi‖µ)) =
∑
i

pi(Tr(µi logµi)− Tr(µi log θ)− Tr(µi logµi) + Tr(µi logµ))

= Tr(
∑
i

piµi log(µ))− Tr(
∑
i

piµi log θ) = Tr(µ logµ)− Tr(µ log θ) = D(µ‖θ) .

2 A convex-split lemma
We revisit the statement of convex split lemma and state its connection to a previous work. The lemma has
been proved in main text.

Lemma 2.1 (Convex-split lemma). Let ρPQ ∈ D(PQ) and σQ ∈ D(Q) be quantum states such that
supp(ρQ) ⊂ supp(σQ). Let k def= Dmax(ρPQ‖ρP ⊗ σQ). Define the following state

τPQ1Q2...Qn

def= 1
n

n∑
j=1

ρPQj
⊗ σQ1 ⊗ σQ2 . . .⊗ σQj−1 ⊗ σQj+1 . . .⊗ σQn

(1)

on n+ 1 registers P,Q1, Q2, . . . Qn, where ∀j ∈ [n] : ρPQj
= ρPQ and σQj

= σQ. Then,

D(τPQ1Q2...Qn
‖τP ⊗ σQ1 ⊗ σQ2 . . .⊗ σQn

) ≤ log(1 + 2k

n
).

Using Pinsker’s inequality (Fact 1.8), we conclude,

F2(τPQ1Q2...Qn
, τP ⊗ σQ1 ⊗ σQ2 . . .⊗ σQn

) ≥ 1
1 + 2k

n

.

In particular, for δ > 0 and n = d 2k

δ e,

D(τPQ1Q2...Qn
‖τP ⊗ σQ1 ⊗ σQ2 . . .⊗ σQn

) ≤ log(1 + δ)

and
F2(τPQ1Q2...Qn , τP ⊗ σQ1 ⊗ σQ2 . . .⊗ σQn) ≥ 1− δ.
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The proof is as follows.

Proof of Convex-split Lemma. We use the abbreviation σ−j def= σQ1 . . .⊗ σQj−1 ⊗ σQj+1 . . .⊗ σQn
and σ def=

σQ1 ⊗ σQ2 . . . σQn
. Then τPQ1Q2...Qn

= 1
n

∑n
j=1 ρPQj

⊗ σ−j . Now, we use Lemma 1.10 to express

D(τPQ1...Qn
‖ρP ⊗ σ) = 1

n

∑
j

D
(
ρPQj

⊗ σ−j
∥∥ρP ⊗ σ)− 1

n

∑
j

D
(
ρPQj

⊗ σ−j
∥∥τPQ1Q2...Qn

)
. (2)

The first term in the summation on right hand side, D
(
ρPQj

⊗ σ−j
∥∥ρP ⊗ σ), is equal to D

(
ρPQj

∥∥ρP ⊗ σQj

)
.

The second term D
(
ρPQj

⊗ σ−j
∥∥τPQ1Q2...Qn

)
is lower bounded by D

(
ρPQj

∥∥τPQj

)
, as relative entropy

decreases under partial trace. But observe that τPQj
= 1

nρPQj
+ (1− 1

n )ρP ⊗ σQj
. By assumption, ρPQj

≤
2kρP ⊗ σQj

. Hence τPQj
≤ (1 + 2k−1

n )ρP ⊗ σQj
. Since log(A) ≤ log(B) if A ≤ B for positive semidefinite

matrices A and B (see for example, [Car10]), we have

D
(
ρPQj

∥∥τPQj

)
= Tr(ρPQj

log ρPQj
)− Tr(ρPQj

log τPQj
)

≥ Tr(ρPQj
log ρPQj

)− Tr(ρPQj
log(ρP ⊗ σQj

))− log(1 + 2k − 1
n

)

= D
(
ρPQj

∥∥ρP ⊗ σQj

)
− log(1 + 2k − 1

n
).

Using in Equation 2, we find that

D(τPQ1Q2...Qn
‖ρP ⊗ σ) ≤ 1

n

∑
j

D
(
ρPQj

∥∥ρP ⊗ σQj

)
− 1
n

∑
j

D
(
ρPQj

∥∥ρP ⊗ σQj

)
+ log(1 + 2k − 1

n
)

= log(1 + 2k − 1
n

).

Thus, the lemma follows.

A converse to Lemma 2.1
We now prove a converse in the following sense.

Lemma 2.2 (A converse to convex-split lemma). Let ρPQ ∈ D(PQ) and σQ ∈ D(Q) be quantum states such
that supp(ρQ) ⊂ supp(σQ). Let k def= I(P : Q)ρ. For an integer `, define the following state

τPQ1Q2...Q`

def= 1
`

∑̀
j=1

ρPQj
⊗ σQ1 ⊗ σQ2 . . .⊗ σQj−1 ⊗ σQj+1 . . .⊗ σQ`

on `+ 1 registers P,Q1, Q2, . . . Q`, where ∀j ∈ [`] : ρPQj
= ρPQ and σQj

= σQ. Then,

Dmax(τPQ1Q2...Q`
‖τP ⊗ σQ1 ⊗ σQ2 . . .⊗ σQ`

) ≥ log(2k

`
− 2).

Proof. For brevity, set Dmax (τPQ1Q2...Q`
‖τP ⊗ σQ1 ⊗ σQ2 . . .⊗ σQ`

) def= α and σQ1 ⊗ σQ2 . . . ⊗ σQ`

def= σ(`).
Define the following state related to τPQ1Q2...Q`

, but on m registers, where m is a multiple of `:

τPQ1Q2...QmJ
def= 1

m

m∑
j=1

ρPQj ⊗ σQ1 ⊗ σQ2 . . .⊗ σQj−1 ⊗ σQj+1 . . .⊗ σQm ⊗ |j〉〈j|J
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It is easy to see that

τPQ1Q2...Qm

def= `

m

m/`∑
j=1

τPQ`·(j−1)+1...Q`·(j−1)+`
⊗ σ(`)

Q1...Q`
⊗ . . .⊗ σQ`·(j−2)+1...Q`·(j−2)+`

⊗ σQ`·(j)+1...Q`·(j)+`
. . .

Then from Lemma 2.1, we conclude that

D(τPQ1Q2...Qm
‖τP ⊗ σQ1 . . . σQm

) ≤ log(1 + 2α · `
m

).

Now, observe that

I(P : Q1Q2 . . . QmJ)τ ≤ I(P : Q1Q2 . . . Qm)τ + logm ≤ D(τPQ1Q2...Qm
‖τP ⊗ σQ1 . . . σQm

) + logm.

Thus, we conclude that

I(P : Q)ρ = I(P : Q1Q2 . . . QmJ)τ ≤ log(1 + 2α · `
m

) + logm = log(m+ 2α · `).

Setting m = 2`, the lemma follows.

Connection to previous work
Following result appears as main theorem in the work of Csiszar et. al.[CHP07],

lim
n→∞

D(τQ1Q2...Qn
‖σQ1 ⊗ σQ2 . . . σQn

) = 0.

This is a special case of convex-split lemma in the limit δ → 0 (and hence n → ∞) when the register P is
trivial. But it is also equivalent to convex-split lemma in the limit δ → 0 (and hence n→∞), as we argue
below. Given an arbitrary hermitian operator M ∈ L(P ), consider the normalized states ρ′Q = TrP (MρP Q)

Tr(MρP )

and τ ′Q1Q2...Qn
= TrP (MτP Q1Q2...Qn )

Tr(MτP ) . It is easy to observe that

τ ′Q1Q2...Qn

def=

1
n

n∑
j=1

ρ′Qj
⊗ σQ1 ⊗ . . .⊗ σQj−1 ⊗ σQj+1 ⊗ . . .⊗ σQn

From the main theorem in [CHP07], this state is arbitrarily close to σQ1 ⊗σQ2 . . .⊗σQn , for large enough
n. This means that any measurement M ∈ L(P ) on the state τPQ1Q2...Qn

does not change the marginal
on registers Q1Q2 . . . Qn. Thus registers P and Q1Q2 . . . Qn are independent in the state τPQ1Q2...Qn

. This
coincides with the statement of convex-split lemma if we let δ → 0 (and hence n→∞).

3 Compression of one-way quantum message
Consider a state ΦRAMB shared between Alice(AM), Bob(B) and Referee(R). The register M serves as a
message register, which Alice sends to Bob. Following theorem shows that this message can be compressed.
An idea of the proof appears in the Figure 1.

Theorem 3.1 (Quantum message compression). There exists an entanglement-assisted one-way protocol P,
which takes as input |Φ〉RAMB shared between three parties Referee (R),Bob (B) and Alice (AM) and outputs
a state Φ′RAMB shared between Referee (R),Bob (BM) and Alice (A) such that Φ′RAMB ∈ Bε(ΨRAMB) and
the number of qubits communicated by Alice to Bob in P is upper bounded by:

1
2Imax(RB : M)Φ + log

(
1
ε

)
.
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|Φ〉RBAM

RB

A
M

L1

L2

L3

Ln

M1

M2

M3

Mn

Referee

Alice Bob

|θ〉L1L2...LnM1M2...Mn

1√
n

|Φ〉RBL1M1

⊗
|σ〉L2M2

⊗

⊗

⊗
|σ〉LnMn

⊗

|1〉J

Referee

Alice BobRB

L1

L2

L3

Ln

M1

M2

M3

Mn

+ 1√
n

|Φ〉RBL2M2

⊗

⊗

⊗

⊗
|σ〉LnMn

⊗

|2〉J

Referee

Alice BobRB

L1

L2

L3

Ln

M1

M2

M3

Mn

V

Figure 1: The state on left hand side |Φ〉RBAM ⊗ |θ〉L1L2...LnM1...Mn
, a purification of ΦRB ⊗ τM1...Mn

. The
state on right hand side is |µ〉JRBL1L2...LnM1M2...Mn

, a purification of τRBM1M2...Mn
. Using convex-split

lemma, Alice can apply an isometry V on |Φ〉RBAM ⊗ |θ〉L1L2...LnM1...Mn
to obtain |µ〉JRBL1L2...LnM1M2...Mn

with high fidelity.

Proof. Let k def= Imax(RB : M)Φ, δ
def= ε2 and n def= d 2k

δ e. Let σM be the state that achieves the infimum in
the definition of Imax(RB : M)Φ. Consider the state,

µRBM1...Mn

def= 1
n

n∑
j=1

ΦRBMj
⊗ σM1 ⊗ . . .⊗ σMj−1 ⊗ σMj+1 ⊗ . . .⊗ σMn

.

Note that ΦRB = µRB . Consider the following purification of µRBM1...Mn
,

|µ〉RBJL1...LnM1...Mn

def= 1√
n

n∑
j=1
|j〉J

∣∣Φ̃〉
RBLjMj

⊗ |σ〉L1M1
⊗ . . .⊗ |σ〉Lj−1Mj−1

⊗ |σ〉Lj+1Mj+1
⊗ . . .⊗ |σ〉LnMn

Here, ∀j ∈ [n] : |σ〉LjMj
is a purification of σMj

and
∣∣Φ̃〉

RBLjMj
is a purification of ΦRBMj

. Consider the
following protocol P1.

1. Alice, Bob and Referee start by sharing the state |µ〉RBJL1...LnM1...Mn
between themselves where Alice

holds registers JL1 . . . Ln, Referee holds the register R and Bob holds the registers BM1M2 . . .Mn.
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2. Alice measures the register J and sends the measurement outcome j ∈ [n] to Bob using log(n)
2 qubits of

quantum communication. Alice and Bob employ superdense coding ([BW92]) using fresh entanglement
to achieve this.

3. Alice swaps registers Lj and L1 and Bob swaps registers Mj and M1. Note that the joint state on the
registers RBL1F1 at this stage is

∣∣Φ̃〉
RBL1M1

.

4. Alice applies an isometry V : HL1 → HA on the state
∣∣Φ̃〉

RBL1M1
such that the joint state in registers

RAM1B is ΦRBAM1 , as given by Uhlmann’s theorem (Fact 1.5)

Consider the state,
ξRBM1...Mn

def= ΦRB ⊗ σM1 . . .⊗ σMn
.

Let |θ〉L1...LnM1...Mn
= |σ〉L1M1

⊗ |σ〉L2M2
. . . |σ〉LnMn

be a purification of σM1 ⊗ . . . σMn
. Let

|ξ〉RABML1...LnM1...Mn

def= |Φ〉RABM ⊗ |θ〉L1...LnM1...Mn
.

Using convex-split lemma (Lemma 2.1) and choice of n we have,

F2(ξRBM1...Mn
, µRBM1...Mn

) ≥ 1− ε2.

Let |ξ′〉RBJL1...LnM1...Mn
be a purification of ξRBM1...Mn

(guaranteed by Uhlmann’s theorem, Fact 1.5) such
that,

F2(|ξ′〉〈ξ′|RBJL1...LnM1...Mn
, |µ〉〈µ|RBJL1...LnM1...Mn

) = F2(ξRBM1...Mn
, µRBM1...Mn

) ≥ 1− ε2.

Let V ′ : HAML1...Ln → HJL1...Ln be an isometry (guaranteed by Uhlmann’s theorem, Fact 1.5) such that,

V ′ |ξ〉RABML1...LnM1...Mn
= |ξ′〉RBJL1...LnM1...Mn

.

Consider the following protocol P.

1. Alice, Bob and Referee start by sharing the state |ξ〉RABML1...LnM1...Mn
between themselves where Alice

holds registers AML1 . . . Ln, Referee holds the register R and Bob holds the registers BM1 . . .Mn.
Note that |Ψ〉RABM is provided as input to the protocol and |θ〉L1...LnM1...Mn

is additional shared
entanglement between Alice and Bob.

2. Alice applies isometry V ′ to obtain state |ξ′〉RBJL1...LnM1...Mn
, where Alice holds registers JL1 . . . Ln,

Referee holds the register R and Bob holds the registers BM1 . . .Mn.

3. Alice and Bob simulate protocol P1 from Step 2. onwards.

Let Φ′RABM be the output of protocol P. Since quantum maps (the entire protocol P1 can be viewed as
a quantum map from input to output) do not decrease fidelity (monotonicity of fidelity under quantum
operation, Fact 1.4), we have,

F2(ΦRABM ,Φ′RABM ) ≥ F2(|ξ′〉〈ξ′|RBJL1...LnM1...Mn
, |µ〉〈µ|RBJL1...LnM1...Mn

) ≥ 1− ε2. (3)

This implies ΦRABM ∈ Bε(|Ψ〉〈Ψ|RABC).
The number of qubits communicated by Alice to Bob in P is upper bounded by:

log(n)
2 ≤ 1

2Imax(RB : M)Φ + log
(

1
ε

)
.
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ΨRABC

θS1
A
S1

B

θ′
S2

A

θ′
S2

B

ΦRABC

R

A

C

B

S1
A

S1
B

S2
A

S2
B

M
S1
B

TA

A

B

C

TB

U

V

Referee

Alice

Bob

Figure 2: Graphical representation of one-way entanglement assisted quantum state redistribution.

4 Communication bounds on quantum state redistribution
We begin with definition of quantum state redistribution. Please note that we allow Alice and Bob to share
arbitrary prior entanglement. In comparison, the previous works [BCT16, DHO16] use EPR states and also
take into account the amount of entanglement used by the protocol.

Definition 4.1 (Quantum state redistribution). The quantum state |Ψ〉RABC ∈ D(RABC) is shared between
three parties Referee (R),Bob (B) and Alice (AC). In addition, Alice and Bob are allowed to share an arbitrary
pure state |θ〉S1

A
S1

B
, where register S1

A belongs to Alice and register S1
B belongs to Bob. Let M represent

the message register. Alice applies an encoding map E : L(ACS1
A)→ L(AM) and sends the message M to

Bob. Bob applies a decoding map D : L(MBS1
B)→ L(BC). The resulting state ΦRABC is the output of the

protocol. Quantum communication cost of the protocol is log |M |.

Using Stinespring representation (Fact 1.3), the quantum maps E and D can be realized as unitary
operations using additional ancillas. Let the ancillary register needed for map E by Alice be S2

A, holding
the state θ′

S2
A
, and the ancillary register needed for map D by Bob be S2

B , holding the state θ′
S2

B
. Introduce

registers SA
def= S1

AS
2
A and SB

def= S1
BS

2
B . Let the joint state in registers SASB be |θ〉SASB

. Then following is
equivalent to Definition 4.1. Alice applies a unitary UACSA

on her registers, leading to the registers AMTA
on her side (with MTA ≡ CSA). She sends M to Bob, who applies a unitary VMBSB

and discards all his
registers except BC. Let the registers discarded by Bob be TB . The output of protocol is the state ΦRABC
in register RABC. Figure 3 elaborates upon this description.

Before proceeding to our upper and lower bounds, we present the following definition.
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Definition 4.2. Let ε ≥ 0 and ΨRABC ∈ D(RABC) be a pure state. Define,

Qε
|Ψ〉RABC

def= infT,UBCT ,σ′T ,κRBCT
Imax(RB : CT )κRBCT

= infT,UBCT ,σ′T ,σCT ,κRBCT
Dmax(κRBCT ‖κRB ⊗ σCT )

with the conditions UBCT ∈ U(BCT ), σ′T ∈ D(T ), σCT ∈ D(CT ) and

(IR ⊗ UBCT )κRBCT (IR ⊗ U†BCT ) ∈ Bε(ΨRBC ⊗ σ′T ) , κRB = ΨRB .

Lower bound
We have the following lower bound result.

Theorem 4.3 (Lower bound). Let ε > 0 and ΨRABC ∈ D(RABC) be a pure state. Let Q be an entanglement-
assisted one-way protocol (with communication from Alice to Bob), which takes as input |Ψ〉RABC shared
between three parties Referee (R),Bob (B) and Alice (AC) and outputs a state ΦRABC shared between
Referee (R),Bob (BC) and Alice (A) such that ΦRABC ∈ Bε (ΨRABC). The number of qubits communi-
cated by Alice to Bob in Q is lower bounded by:

1
2Qε
|Ψ〉RABC

.

Proof. Protocol Q can be written as follows (see Figure 2 ):

1. Alice and Bob get as input |Ψ〉RABC shared between Alice (AC), Referee (R) and Bob (B). In addition
Alice and Bob use shared entanglement and local ancillas for their protocol. Let these additional
resources be represented by a pure state |θ〉SASB

where register SA is held by Alice and register SB is
held by Bob.

2. Alice applies a unitary UACSA
on the registers ACSA. Let κRMATABSB

be the joint state at this
stage shared between Alice (MATA), Referee (R) and Bob (BSB), where MTA ≡ CSA. Note that
κRB = ΨRB and κRBSB

= ΨRB ⊗ θSB
.

3. Alice sends the message register M to Bob.

4. Bob applies a unitary VBSBM on the registers BSBM . Let ΦRABCTATB
be the joint state at this stage

shared between Alice (ATA), Referee (R) and Bob (BCTB) where SBM ≡ CTB .

5. The state ΦRABC is considered the output of the protocol Q.

Using Fact 1.6, we know that there exists a state ωM , such that:

2 log |M | ≥ Dmax(κRBSBM‖κRBSB
⊗ ωM ) = Dmax(κRBSBM‖ΨRB ⊗ θSB

⊗ ωM ) . (4)

We have F2(ΦRABC , |Ψ〉〈Ψ|RABC) ≥ 1 − ε2 and |Ψ〉〈Ψ|RABC is a pure state. From Lemma 1.9 and mono-
tonicity of fidelity under quantum operation (Fact 1.4) we get a state σ′TB

such that,

F2(ΦRBCTB
,ΨRBC ⊗ σ′TB

) ≥ 1− ε2.

We have,
ΦRBCTB

= (IR ⊗ VBSBM )κRBSBM (IR ⊗ V †BSBM
), κRB = ΨRB . (5)

Recall that SBM ≡ CTB . Define σCTB

def= θSB
⊗ ωM . Eq. (4) and Eq. (5) imply,

2 log |M | ≥ Dmax(κRBCTB
‖ΨRB ⊗ σCTB

) ,
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with the conditions

F2(ΦRBCTB
,ΨRBC ⊗ σ′TB

) > 1− ε2,ΦRBCTB
= (IR ⊗ VBCTB

)κRBCTB
(IR ⊗ V †BCTB

), κRB = ΨRB .

From above and the definition of Qε|Ψ〉RABC
we conclude

log |M | ≥ 1
2Q

ε
|Ψ〉RABC

.

Upper bound
We show a nearly matching upper bound on the quantum communication cost of quantum state redistribution.

Theorem 4.4 (Upper bound). Let ε ∈ (0, 1/3) and ΨRABC ∈ D(RABC) be a pure state. There exists
an entanglement-assisted one-way protocol P, which takes as input |Ψ〉RABC shared between three parties
Referee (R),Bob (B) and Alice (AC) and outputs a state ΦRABC shared between Referee (R),Bob (BC) and
Alice (A) such that ΦRABC ∈ B2ε (ΨRABC). The number of qubits communicated by Alice to Bob in P is
upper bounded by:

1
2Qε
|Ψ〉RABC

+ log
(

2
ε

)
.

Proof. The definition of Qε
|Ψ〉RABC

involves an infimum over various quantities. There exists a collection
(T,UBCT , σ′T , σCT , κRBCT ) along with the conditions,

(IR ⊗ UBCT )κRBCT (IR ⊗ U†BCT ) ∈ Bε(ΨRBC ⊗ σ′T ) , κRB = ΨRB ,

such that Imax(RB : CT )κ ≤ QεΨRABC
+ 1.

Define the state
ρRBCT

def= (IR ⊗ UBCT )κRBCT (IR ⊗ U†BCT ).
Since κRB = ΨRB, then for any purification |κ〉RBCTS of κRBCT , there exists an isometry V1 : HAC →

HCTS such that
|κ〉〈κ|RBCTS = V1ΨRBACV

†
1 (6)

We start with the following protocol P1.

1. Alice(CTS), Bob(B) and Referee(R) start with the state |κ〉RBCTS and shared entanglement as required
in the protocol described in Theorem 3.1.

2. Using the protocol described in Theorem 3.1, the parties produce a state κ′RBCTS with registers BCT
belonging to Bob, S belonging to Alice and R belonging to Referee, such that F2(κ′RBCTS , κRBCTS) ≥
1− ε2. In other words,

P(κ′RBCTS , κRBCTS) ≤ ε (7)

3. Bob applies the unitary UBCT on registers BCT .

The number of qubits communicated in P1 is 1
2 Imax(RB : CT )κ + log( 1

ε ).
At the end of the protocol, the state in registers RBCT is UBCTκ′RBCTU

†
BCT . By definition of ρRBCT ,

the relation P(ρRBCT ,ΨRBC⊗σ′T ) ≤ ε and Equation 7, we find (using triangle inequality for purified distance
(Fact 1.2)) that

P(ΨRBC ⊗ σ′T , UBCTκ′RBCTU
†
BCT ) ≤ 2ε.

Thus, there exists an isometry V2 : HS → HAE such that for a purification |σ′〉ET of σT ,

P(ΨRABC ⊗ |σ′〉〈σ′|ET , V2 ⊗ UBCTκ′RBCTSU
†
BCT ⊗ V

†
2 ) ≤ 2ε (8)

Now, we describe the protocol P that achieves the desired task.
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1. Alice(AC), Bob(B) and Referee(R) start with the state |Ψ〉RABC and the shared entanglement as
required to run the protocol P1 below.

2. Alice applies the isometry V1 on her registers. The parties run the protocol P1. Finally, Alice applies
the isometry V2 on her registers.

Let the final state produced in registers RABC be ΦRABC . Using equations 8 and 6, we find that
P(ΨRABC ,ΦRABC) ≤ 2ε.

Since the quantum communication cost of P is equal to the quantum communication cost of P1, the
number of qubits communicated by Alice to Bob in P is upper bounded by:

log(n)
2 ≤ 1

2Qε
|Ψ〉RABC

+ 1
2 + log

(
1
ε

)
≤ 1

2Qε
|Ψ〉RABC

+ log
(

2
ε

)
.

5 Communication bounds on quantum state splitting and quan-
tum state merging

In this section, we describe near optimal bound for quantum communication cost of quantum state splitting
and quantum state merging protocols. We recall that quantum state splitting is a special case of quantum
state redistribution in which the register B is trivial and quantum state merging is a special case of quantum
state redistribution in which register A is trivial.

Quantum state splitting
We show the following lemma, which along with our upper bound (Theorem 4.4) and lower bound (Theo-
rem 4.3) immediately gives the desired upper and lower bound on quantum communication cost of quantum
state splitting.

Lemma 5.1. Let ΨRABC ∈ D(RABC) be a pure quantum state and let B be a trivial register, that is,
|B| = 1. Then Qε

|Ψ〉RABC
= Iεmax(R : C)ΨRC

.

Proof. Since register B is trivial, we drop the notation B from the quantum states discussed below. Given
the quantum state κRCT as appearing in definition of Qε|Ψ〉RAC

(Definition 4.2), we define the state

ρRCT
def= (IR ⊗ UCT )κRCT (IR ⊗ U†CT ).

It holds that ρRCT ∈ Bε(ΨRC ⊗ σ′T ). Note that the condition κR ∈ Bε(ΨR) is now redundant (is implied by
above using ρR = κR and monotonicity of fidelity under quantum operation, Fact 1.4). Consider,

Qε
|Ψ〉RAC

= infT,UCT ,σCT ,σ′T ,κRCT
Dmax(κRCT ‖κR ⊗ σCT )

= infT,UCT ,σCT ,σ′T ,κRCT
Dmax

(
(IR ⊗ U†CT )ρRCT (IR ⊗ UCT )

∥∥∥κR ⊗ σCT)
= infT,UCT ,σCT ,σ′T ,κRCT

Dmax

(
ρRCT

∥∥∥κR ⊗ UCTσCTU†CT)
= infT,µCT ,σ′T ,κRCT

Dmax(ρRCT ‖κR ⊗ µCT ) (with µCT
def= UCTσCTU

†
CT )

= infT,σ′
T
,ρRCT∈Bε(ΨRC⊗σ′T )Imax(R : CT )ρRCT

(using ρR = κR)

= infT,σ′
T

Iεmax(R : CT )ΨRC⊗σ′T
.

12



Now,

Iεmax(R : C)ΨRC
≥ infT,σ′

T
Iεmax(R : CT )ΨRC⊗σ′T

(by setting T to be trivial register)
= infT,σ′

T
,ρRCT∈Bε(ΨRC⊗σ′T )Imax(R : CT )ρRCT

≥ infρRC∈Bε(ΨRC)Imax(R : C)ρRC

(using monotonicity of max-information under quantum operation, Fact 1.7)
= Iεmax(R : C)ΨRC

.

Therefore,
Qε
|Ψ〉RAC

= infT,σ′
T

Iεmax(R : CT )ΨRC⊗σ′T
= Iεmax(R : C)ΨRC

.

Quantum state merging
Now, we consider the case of quantum state merging. It has been noted in [BCR11] that quantum state
merging can be viewed as ‘time reversed’ version of quantum state splitting, and their optimal quantum
communication cost is the same.

Lemma 5.2 ([BCR11]). Let ε > 0 be error parameter. Following two statements are equivalent, with registers
A and B such that A ≡ B.

1. There exists an entanglement assisted quantum state splitting protocol P with quantum communication
cost c, that starts with a state ΨRAC ∈ D(RAC), with AC on Alice’s side and R on Referee’s side, and
outputs a state ΦRAC , with C on Bob’s side, such that ΦRAC ∈ Bε(ΨRAC).

2. There exists an entanglement assisted quantum state merging protocol Q with quantum communication
cost c, that starts with the state ΨRBC ∈ D(RBC), with C on Alice’s side and B on Bob’s side, and
outputs a state Φ′RBC , with (BC) on Bob’s side, such that Φ′RBC ∈ Bε(ΨRBC).

Proof. We show that (1) =⇒ (2). Let the protocol P start with the overall pure state ΨRAC ⊗ µE ,
where the register E include shared entanglement and other ancilla registers used by P. Let the final pure
state of the protocol be ΦRACE , with F2(ΦRAC ,ΨRAC) ≥ 1 − ε2. To describe the quantum state merging
protocol, we now relabel register A with register B. Since protocol P is a collection of unitary operations
(which are invertible, see discussion after Definition 4.1), it implies that there exists a protocol P ′ (which
is inverse of the protocol P) that starts with the state ΦRBCE , and leads to the state ΨRBC ⊗ µE with
F2(ΨRBC ,ΦRBC) ≥ 1− ε2. From Uhlmann’s theorem (Fact 1.5), there exists a pure state µ′E that satisfies

F2(ΨRBC ⊗ µ′E ,ΦRBCE) = F2(ΨRBC ,ΦRBC) ≥ 1− ε2.

Let Q be a protocol that starts with the pure state ΨRBC ⊗ µ′E , and then follows the protocol P ′. Let the
overall state at the end of Q be Φ′RBCE . Then,

F2(ΨRBC ,Φ′RBC) ≥ F2(ΨRBC ⊗ µE ,Φ′RBCE) = F2(ΦRBCE ,ΨRBC ⊗ µ′E)) ≥ 1− ε2.

It is clear that the communication between Alice and Bob is the same in P and Q.
(2) =⇒ (1) can be proved using similar arguments.

6 Port-based teleportation
We consider the problem of port-based teleportation, when the sender Alice and the receiver Bob know that
the set of possible states to be teleported belong to the ensemble {pi, |ψ〉〈ψ|i}i, with

∑
i pi = 1. Alice is given

the state
∣∣ψi〉〈ψi∣∣ with probability pi which she wishes to teleport to Bob.

Before proving our result, we will prove the following useful Lemma. It can be seen as a one-sided analogue
of the relation between optimal fidelity of teleportation and maximal singlet fraction as proven in [HHH99].

13



Lemma 6.1. Given a quantum channel E : M → M with Kraus-representation E(ρ) =
∑
k AkρA

†
k and an

ensemble {pi, |ψ〉〈ψ|iM}i with ψiM ∈ D(M), define the state |Ψ〉RM
def=
∑
i

√
pi |i〉R |ψ〉

i
M . Then it holds that

〈Ψ|RM E(ΨRM ) |Ψ〉RM ≤
∑
i

pi 〈ψ|iM E(ψiM ) |ψ〉iM .

Proof. We proceed as follows.

〈Ψ|RM E(ΨRM ) |Ψ〉RM =
∑
k

| 〈Ψ|RM IR ⊗Ak |Ψ〉RM |
2 =

∑
k

|
∑
i

piTr(ψiMAk)|2

≤
∑
k

(
∑
i

pi) · (
∑
i

pi|Tr(ψiMAk)|2) =
∑
i

pi
∑
k

|Tr(ψiMAk)|2

The inequality above is due to the Cauchy-Schwartz inequality. Now, we observe that∑
i

pi 〈ψ|iM E(ψiM ) |ψ〉iM =
∑
i

pi
∑
k

|Tr(ψiMAk)|2,

which completes the proof.

Now we proceed to our main theorem of this section.

Theorem 6.2. Consider an ensemble of pure quantum states {pi, |ψ〉〈ψ|iM}i, with ψiM ∈ D(M). Introduce
a register R and define the state |Ψ〉RM

def=
∑
i

√
pi |i〉R |ψ〉

i
M . Let σM be an arbitrary state and k

def=
Dmax(ΨRM‖ΨR ⊗ σM ). Suppose Alice and Bob share n copies of a purification of σM . Then there exists a
port-based teleportation protocol such that Bob outputs the register M ′ ≡ M and for each i, the final state
with Bob is φiM ′ such that

∑
i piF2(ψiM ′ , φiM ′) ≥ 1− 2k

n .

Proof. We define the state

τRM1M2...Mn

def= 1
n

∑
j

ΨRMj
⊗ σM1 ⊗ . . . σMj−1 ⊗ σMj+1 . . .⊗ σMn

.

Consider the following purification of τ iRM1M2...Mn
,

∣∣τ i〉
JL1L2...LnRM1M2...Mn

def= 1√
n

∑
j

|j〉J |Ψ〉RMj
|σ〉L1M1

⊗. . . |σ〉Lj−1Mj−1
⊗|0〉Lj

⊗|σ〉Lj+1Mj+1
. . .⊗|σ〉LnMn

,

where |σ〉LiMi
is a purification of σMi

and |0〉Lj
is some fixed state.

From convex split lemma 2.1, it holds that

F2(τRM1M2...Mn ,ΨR ⊗ σM1 ⊗ σM2 . . .⊗ σMn) ≥ 1
1 + 2k

n

.

Thus, there exists an isometry V : HML1L2...Ln
→ HJL1L2...Ln

(guaranteed by Uhlmann’s theorem,
Fact 1.5), such that

F2(|τ〉〈τ |JL1L2...LnRM1M2...Mn
, V |Ψ〉〈Ψ|RM ⊗ |σ〉〈σ|L1M1

⊗ |σ〉〈σ|L2M2
. . .⊗ |σ〉〈σ|LnMn

V †) ≥ 1
1 + 2k

n

. (9)

We consider the following protocol P:

1. Alice and Bob share n copies of the state |σ〉LM in registers L1M1, L2M2, . . . LnMn.

2. Alice applies the isometry V and measures the register J . Then she sends the outcome j to Bob.
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3. Upon receiving the outcome j, Bob picks up the register Mj and swaps it with his output register M ′.

Consider the action of P when the input to it is the state ΨRM . Let the state in the registers RM ′ upon
the completion of P be P(ΨRM ). From Equation 9 and monotonicity of fidelity under quantum map (Fact
1.4), it holds that F2(P(ΨRM ),ΨRM ) ≥ 1

1+ 2k

n

≥ 1− 2k

n .
Since P is a quantum map, we can apply Lemma 6.1 to conclude that∑

i

piF2(φiM ′ , ψiM ′) =
∑
i

piF2(P(ψiM ), ψiM ) ≥ F2(P(ΨRM ),ΨRM ) ≥ 1− 2k

n
.

This proves the theorem.
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