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We show that every language in NP is recognized by a two-prover interactive proof
system with the following properties. The proof system is entanglement-resistant (i.e.,
its soundness is robust against provers who have prior shared entanglement), it has one
round of interaction, the provers’ answers are single bits, and the completeness-soundness

gap is constant (formally, NP ⊆ ⊕MIP∗

1−ε,1/2+ε[2], for any ε such that 0 < ε < 1/4).
Our result is based on the “oracularizing” property of a particular private information
retrieval scheme (PIR), and it suggests that investigating related properties of other
PIRs might bear further fruit.
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1 Introduction

Properties of interactive proof systems have been shown to change in fundamental ways when

the underlying setting changed from classical to quantum information. The first result along

these lines was discovered by Watrous [19], and several subsequent results have occurred (see,

for example, the survey paper [20] and references therein).

The present paper falls within the scope of multi-prover interactive proof systems (MIPs),

that were first proposed (in the classical setting) by Ben-Or et al. [2]. Roughly speaking,

the scenario is that a polynomial-time bounded verifier interacts with several provers whose

aResearch done while the author was at the David R. Cheriton School of Computer Science and Institute for
Quantum Computing, University of Waterloo, Canada.
bResearch done while the author was at the David R. Cheriton School of Computer Science and Institute for
Quantum Computing, University of Waterloo, Canada.
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computational power is unlimited, subject to not being able to communicate with one another

once the protocol starts. Such a system recognizes a language L if and only if: (a) whenever

x ∈ L, there exists a strategy for the provers that convinces the verifier that this is the case

(completeness); (b) whenever x 6∈ L, whatever strategy the provers employ, they will not

convince the verifier that x ∈ L (soundness). Usually some error probability is allowed, and

it is required that the gap between the acceptance probabilities of the verifier in cases (a) and

(b) be at least constant.

The class of languages having such proof systems is referred to as MIP. In a series of

fundamental results [1, 9] it was discovered, somewhat surprisingly, that MIP = NEXP (the

class of languages recognized in non-deterministic exponential time).

It has been noticed by Cleve et al. [4] that in a quantum-mechanical world the provers, even

when they are not able to communicate, can use shared quantum entanglement in order to

increase the probability that the verifier accepts some instances outside the language. Indeed,

in [4] it has been demonstrated that some classically-valid MIP systems are no longer valid

when shared entanglement is allowed.

The power of MIPs with entanglement remains poorly understood. In particular, as far

as we currently know, it can be the case that the class of languages recognized by MIPs with

entanglement is a subset of, a superset of, the same as, or incomparable to NEXP.

In the classical scenario, the strength of MIPs intuitively stems from the “oracularizing”

property of two non-communicating provers. Roughly speaking, this means that the verifier

can force one of the provers to answer non-adaptively (i.e., to behave like an oracle). Direct

application of the same technique to the case of entangled provers fails [4].

In this paper we give a new technique for oracularizing provers, which is based on the

properties of particular Private Information Retrieval schemes (PIRs). A PIR is a scheme

that enables information to be obtained from a database having multiple servers, without

revealing to any individual server what information is being queried (cf. [3, 10]).

Intuitively, this seems like a natural approach to oracularizing provers in an MIP protocol:

if the servers have no idea what was queried in the past, how can they make their answers

adaptive? Observe that the property of non-adaptiveness is operationally different from that

of privacy, as required by the definition of a PIR.cNon-adaptiveness can be viewed as an

additional requirement to a scheme (trivial examples can be given of valid PIRs that are not

non-adaptive).

We show that some PIRs are inherently non-adaptive. That is, the servers that constitute

a PIR cannot collaborate in order to make their answers satisfy certain properties that non-

trivially depends on the previous queries. Moreover, this remains true even if the servers

share quantum entanglement.

Using this approach, we show that the languages in NP are recognized by certain types

of proof systems with entangled provers, which we denote by ⊕MIP∗[2]. These proof systems

are closely related to the classical proof systems ⊕MIP[2], where the verifier makes one query

of polynomial length to each of 2 provers and receives a binary answer to each query. The

verifier’s acceptance condition is a function of the queries he made, his private coins and the

cThis distinction is reminiscent of the distinction between malleable cryptography and non-malleable cryp-
tography [6]. For example, a crypto-system may be immune against attacks aiming to deduce x from its
encryption, and nevertheless it may be possible to construct an encryption of y that is somehow related to x.
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XOR of the answers. An ⊕MIP∗[2] proof system is an ⊕MIP[2] system with allowed shared

entanglement between the provers.

It is known ([11]) that ⊕MIP[2] = NEXP.dOn the other hand, it has been shown recently

in [13] that ⊕MIP∗ [2] is a subset of PSPACE (the class of languages recognizable using

polynomial space). Therefore, NEXP is not contained in ⊕MIP∗[2], unless NEXP = PSPACE

(as opposed to a widely believed conjecture). Nevertheless, our technique demonstrates the

potential viability of the general approach of using PIRs as “oracularizing tools” in the MIP

setting.

1.1 Related work

Recently (independently to our work and using different techniques) several multi-prover

systems have been found that allow shared entanglement between the provers.

Ito et al. [12] constructed three-prover one-round entanglement-immune systems with

single-bit answers that (1) recognize NP with inverse-polynomial gap between completeness

and soundness parameters; (2) recognize NEXP with inverse-exponential gap between com-

pleteness and soundness parameters.

In earlier work, Kempe et al. [14] gave one-round entanglement-immune proof systems

for NP (with inverse-polynomial gap) and for NEXP (with inverse-exponential gap) that

(1) consist of two provers but requires a quantum verifier; (2) consists of three provers.

2 Preliminaries

2.1 Notation

For s, t ∈ {0, 1}m, let s · t ∈ {0, 1} denote the inner product modulo 2 of s and t, and

s ⊕ t ∈ {0, 1}m denote the bit-wise exclusive-or of s and t. For j ∈ {1, 2, . . . ,m}, let ej ∈
{0, 1}m denote the characteristic vector of {j}, which is 1 in coordinate j and 0 in all other

coordinates.

2.2 The class ⊕MIP∗
q,p[2]

Let 0 ≤ p < q ≤ 1. A language L is said to be in the language class ⊕MIP∗
q,p [2] if it has

a two-prover protocol of the following form. Let x ∈ {0, 1}n be the input received by the

provers P1 and P2, who share prior entanglement, and the verifier V .

1. V generates messages s and t and a privateestring r. The strings (s, t, r) are chosen

from a joint distribution which is samplable in time polynomial in n. V then sends s, t

to P1 and P2 respectively.

2. P1 and P2 (after possibly making some measurements on their parts of the shared

entangled state) respond with bits a and b, respectively.

3. V accepts x if and only if a⊕ b = fx(s, t, r), where fx is computable in time polynomial

in n.

The protocol must satisfy the following completeness and soundness properties.

dIn this paper we will use the same notation to denote a proof system and the class of languages it recognizes,
as it is customary in the complexity theory.
eThis is a string that verifier V , keeps to himself and does not send to any of the provers; in this sense we
refer to it as the private string. He uses this string later though in the final acceptance decision.
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Completeness: If x ∈ L then there exists a strategy for provers P1 and P2 such that V

accepts with probability at least q.

Soundness: If x /∈ L then, for all strategies of provers P1 and P2, V accepts with probability

at most p.

2.3 H̊astad’s 3-query PCP

Let L ∈ NP and ε ∈ (0, 1/4). H̊astad [11] showed that there exists a Probabilistically

Checkable Proof (PCP) system for L of the following form. There is a proof verification

procedure VPCP(L) that, for any n-bit string x (n large enough depending on ε), takes an

m-bit string w as input (where m is polynomial in n) and accepts or rejects w as a certificate

of x ∈ L based on the parity of three bits of w as follows. VPCP(L) probabilistically generates

distinct i, j, k ∈ {1, 2, . . . ,m} and δ ∈ {0, 1}, from a polynomial time (in n) samplable joint

distribution θ, and accepts if and only if wi ⊕ wj ⊕ wk = fx(i, j, k, δ), where function fx is

computable in time polynomial in n. The completeness and soundness properties of the PCP

are as follows.

Completeness: For all x ∈ L, there exists a witness string w ∈ {0, 1}m such that VPCP(L)

accepts w with probability at least 1 − ε.

Soundness: For all x 6∈ L, for all w ∈ {0, 1}m, VPCP(L) accepts w with probability at most
1
2 + ε.

2.4 Transversal XOR games

Let m, l be positive integers. A transversal XOR game G(g, π), specified by a function g :

{0, 1}m × {0, 1}l → {0, 1} and a distribution π on {0, 1}m × {0, 1}l, is an interactive game

between a referee R, and two parties A and B sharing entanglement. The operation of the

game is as follows.

1. R generates (z, r) ∈ {0, 1}m × {0, 1}l according to the distribution π. The string r is a

private string of R, which is not send to the provers, but is used later while accepting

or rejecting. R produces two shares, namely s and t, of z by generating s ∈ {0, 1}m

uniformly and independently of z and setting t = s ⊕ z. R then sends s to A and t to

B.

2. A and B produce bits a and b respectively, possibly by making measurements on their

parts of the shared quantum state, and send them to R.

3. A and B win as a team if and only if a ⊕ b = g(s ⊕ t, r); otherwise R wins.

The transversal XOR games that we consider are a generalization of the games considered

by Linden et al. [18]. In these games, the referee R does not generate the private string r.

We show the following result about transversal XOR games that we will need later. It is a

relatively straightforward generalization of a result in [18], where the corresponding result

was shown without involving the sting r. We provide its proof in Appendix 1.

Lemma 1 Let G(g, π) be a transversal XOR game specified by g : {0, 1}m × {0, 1}l → {0, 1}
and the distribution π on {0, 1}m × {0, 1}l. Let a, b, s, t, r be as in the description above. A
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strategy that maximizes (A,B)’s probability of winning, that is Pr[a ⊕ b = g(s ⊕ t, r)], does

not use any entanglement and is of the following form. For some u ∈ {0, 1}m and γ ∈ {0, 1}
(that depend on g and π), A responds with a = (u · s) ⊕ γ and B responds with b = u · t.

3 Main result: NP ⊆ ⊕MIP∗[2]

Our main result is as follows.

Theorem 1 Let ε ∈ (0, 1/4) be a constant and let L ∈ NP. Then L ∈ ⊕MIP∗
1−ε,1/2+ε[2].

Proof. Let ε ∈ (0, 1/4) be a constant and let L ∈ NP. Recall the PCP procedure

VPCP(L) defined previously. Consider the following ⊕MIP∗[2] protocol P for L.

Protocol P: On receiving input x (|x| = n), V interacts with provers P1 and P2 as follows.

1. V simulates VPCP(L) in the generation of i, j, k ∈ {1, 2, . . . ,m} and δ ∈ {0, 1}.

2. V chooses s ∈ {0, 1}m, uniformly distributed and independent of i, j, k, δ, and sets

t = s ⊕ ei ⊕ ej ⊕ ek.

3. V sends s to P1 and t to P2, receiving one-bit answers a and b from them respectively.

4. V accepts if and only if a ⊕ b = fx(i, j, k, δ).

It is easily seen that P is a valid ⊕MIP∗[2] protocol. It remains to show that P satisfies

the desired completeness and soundness properties.

Completeness:

If x ∈ L then we know from the PCP procedure VPCP(L) (assuming n is large enough) that

there exists a PCP-witness w ∈ {0, 1}m such that VPCP(L) accepts w with probability at least

1 − ε. Consider the strategy in which P1, on receiving s from V , sends back to V the bit

a = w · s, and P2, on receiving t from V , sends back to V the bit b = w · t. Now,

a ⊕ b = w · (s ⊕ t)

= w · (ei ⊕ ej ⊕ ek)

= wi ⊕ wj ⊕ wk.

Therefore V accepts whenever VPCP(L) accepts the PCP string w, and hence the probability

of acceptance of V is at least 1 − ε.

Soundness:

Recall the definition of transversal XOR games mentioned previously. In protocol P, the

verifier on receiving x can be thought of as playing (as referee R) a transversal XOR game

G(g, π) with the provers P1, P2 (as players A,B respectively) by setting z = ei ⊕ ej ⊕ ek,

r = δ, θ = π and g : {0, 1}m × {0, 1} → {0, 1} be such that g(ei ⊕ ej ⊕ ek, δ) = fx(i, j, k, δ).

Let x 6∈ L. From Lemma 1 a strategy for the provers in which they are trying to maximize

the acceptance probability of the verifier V is as follows. P1 and P2 ignore the entanglement

and for some u ∈ {0, 1}m and γ ∈ {0, 1}, P1 outputs a = (u · s) ⊕ γ and P2 outputs b = u · t.
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It can be easily shown that Pr[V accepts x] = Pr[a⊕ b = g(s⊕ t, δ)] ≤ 1/2 + ε as follows.

Consider the following PCP witness w. For all j ∈ {1, 2, . . . ,m}, set wj = uj ⊕ γ. Note that

this witness satisfies

wi ⊕ wj ⊕ wk = ui ⊕ uj ⊕ uk ⊕ γ

= u · (ei ⊕ ej ⊕ ek) ⊕ γ

= u · (s ⊕ t) ⊕ γ

= a ⊕ b.

Combining this with the fact that fx(i, j, k, δ) = g(s ⊕ t, δ) enables us to conclude that

Pr[a ⊕ b = g(s ⊕ t, δ)] = Pr[wi ⊕ wj ⊕ wk = fx(i, j, k, δ)] ≤ 1

2
+ ε.

The last inequality comes from the soundness property of the PCP procedure VPCP(L). Thus

Pr[V accepts x] in the protocol P is at most 1
2 + ε and hence the soundness property is

satisfied. .

4 Concluding remarks

In this work, we have used a basic PIR scheme to construct a protocol that is robust against

cheating provers who share entanglement. Since the PIR construction that we use requires

polynomial-length questions from the verifier, we are only able to capture the class NP. This

naturally suggests an investigation of other, more sophisticated, PIR schemes for constructing

other protocols that may be robust against provers that share entanglement.

In our proof system, the completeness and soundness errors are not exponentially small,

because these parameters arise from the PCP scheme used by H̊astad [11]. However, we can

apply the proof system a constant number of times in parallel to make the completeness and

soundness errors arbitrarily small constants (by applying the direct-product result of [5]).

Note that, in so doing, the size of each prover’s answer increases in proportion to the number

of repetitions.

Recently it has been demonstrated that ⊕MIP∗ [2] ⊆ PSPACE [13], and combined with

our result this gives NP ⊆ ⊕MIP∗[2] ⊆ PSPACE. Closing the gap between the two bounds is

a natural open problem.
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Appendix A Proof of Lemma 1

Our proof is along the lines of the proof of Linden et al. [18]. In the transversal XOR game

G(g, π) (as defined in Section 2.4), let players A and B share a pure quantum state |φ〉 between

them. It can be seen via standard arguments, which we will not get into here, that the shared

state can be assumed to be pure without loss of generality. Let Z,R be a pair of random

variables jointly distributed according to π. Here R represents the private random string of

the referee R in the game G(g, π). Let S ∈ {0, 1}m be a random variable corresponding to

the string sent by the referee R to player A. Let T
△
= S⊕Z be the string sent by R to player

B. From the properties of the transversal XOR game G(g, π), S is uniformly distributed and

independent of (Z,R). Let A,B represent the random variables corresponding to the answers
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by A and B respectively. It is well-known (and can be verified by direct calculations) that

Pr[g(z, r) = A⊕B | (S,Z,R) = (s, z, r)] can be expressed without loss of generality as:

Pr[g(z, r) = A⊕B | (S,Z,R) = (s, z, r)] =
1

2
(1 + (−1)g(z,r)〈φ|As ⊗ Bs⊕z|φ〉),

where As, Bs⊕z are Hermitian operators with eigenvalues in {−1, 1} (which are also sometimes

referred to as observables). Therefore we have,

Pr[R accepts] =
∑

s,z,r

Pr[(S,Z,R) = (s, z, r)] Pr[g(z, r) = A⊕B | (S,Z,R) = (s, z, r)]

=
∑

s,z,r

Pr[(S,Z,R) = (s, z, r)] · 1

2
(1 + (−1)g(z,r)〈φ|As ⊗ Bs⊕z|φ〉)

=
1

2
+
∑

s,z,r

Pr[(S,Z,R) = (s, z, r)] · 1

2
(−1)g(z,r)〈φ|As ⊗ Bs⊕z|φ〉)

=
1

2
+
∑

s,z

1

2n
(
∑

r

Pr[(R,Z) = (r, z)] · 1

2
(−1)g(z,r))〈φ|As ⊗ Bs⊕z|φ〉.

Here the last equality follows since S is uniformly distributed and independent of (Z,R). Now

define,

θz =
∑

r

Pr[(R,Z) = (r, z)] · 1

2
(−1)g(z,r)

|α〉 =
1√
2n

∑

s

(As ⊗ I ⊗ I)(|φ〉 ⊗ |s〉)

|β〉 =
1√
2n

∑

t

(I ⊗ Bt ⊗ I)(|φ〉 ⊗ |t〉)

Φ =
∑

s,z

θz|s〉〈s⊕z|.

In the definitions of |α〉 and |β〉 above, only the last identity acts on |s〉, |t〉 respectively. Note

that |α〉, |β〉 are unit vectors and Φ is Hermitian. Using the definitions above we have (below

identity I acts on the Hilbert space corresponding to |φ〉),

Pr[R accepts] =
1

2
+
∑

s,z

1

2n
θz〈φ|As ⊗ Bs⊕z|φ〉

=
1

2
+ 〈α|(I ⊗ Φ)|β〉

≤ 1

2
+ ||〈α|||2||(I ⊗ Φ)||∞|||β〉||2

=
1

2
+ ||(I ⊗ Φ)||∞

=
1

2
+ ||Φ||∞.
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Above ||Φ||∞ represents the highest singular value of Φ and since Φ is Hermitian it means

the highest modulus eigenvalue.

Below we show that the eigenvectors of Φ are precisely the Hadamard vectors

|u〉 =
∑

v∈{0,1}n(−1)u·v|v〉 (for u ∈ {0, 1}m) with eigenvalues λu =
∑

z(−1)u·zθz. This can

be calculated as,

Φ|u〉 = (
∑

s,z

θz|s〉〈s⊕z|)(
∑

v∈{0,1}n

(−1)u·v|v〉)

=
∑

s,z

(−1)u·(s⊕z)θz|s〉

= (
∑

z

(−1)u·zθz)
∑

s

(−1)u·s|s〉

= λu|u〉.

Next we show that there exists a classical strategy by A and B such that Pr[R accepts] =
1
2 + ||Φ||∞ and we will be done. Let |w〉 be the eigenvector of Φ corresponding to the highest

modulus eigenvalue, that is |λw| = ||Φ||∞. Let γ = 0 if λw ≥ 0 and 1 otherwise. Now let A
send back (w · s)⊕γ on receiving string s and let B send back (w · t) on receiving string t.

Then we see that,

Pr[R accepts] =
∑

s,z,r

Pr[(S,Z,R) = (s, z, r)] Pr[g(z, r) = (w · s)⊕γ⊕(w · (s⊕z))]

=
∑

s,z,r

Pr[(S,Z,R) = (s, z, r)] Pr[g(z, r) = (w · z)⊕γ]

=
∑

s,z,r

Pr[(S,Z,R) = (s, z, r)](
1

2
+

1

2
(−1)g(z,r)+(w·z)+γ)

=
1

2
+
∑

s,z,r

Pr[(S,Z,R) = (s, z, r)] · 1

2
· (−1)g(z,r)+(w·z)+γ

=
1

2
+
∑

z,r

Pr[(Z,R) = (z, r)] · 1

2
· (−1)g(z,r)+(w·z)+γ

=
1

2
+
∑

z

(

∑

r

1

2
· Pr[(Z,R) = (z, r)] · (−1)g(z,r)

)

(−1)(w·z)+γ

=
1

2
+
∑

z

θz · (−1)(w·z)+γ

=
1

2
+ |λw| =

1

2
+ ||Φ||∞.

.


