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Flow Networks
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Directed graph G = (V ,E ) with edge capacities c : E → R
+.

Nodes may be sources or sinks of a flow.
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Maximum s-t Flow Problem

A flow is an assignment to each edge f : E → R
+

subject to capacity constraints and flow conservation.
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Given source s and sink t, find the maximum possible flow.
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Cuts of Flow Networks
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A cut S is a partitioning of vertices V into S and T = V − S

such that s ∈ S and t ∈ T .
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Minimum s-t Cut Problem

The capacity of a cut S is the sum of edge capacities from S to T .

s t
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Find a cut with minimum capacity.
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Ford-Fulkerson Algorithm (1954)

Maximum flow problems are related to minimum cut problems

Ford-Fulkerson algorithm solves both maximum flow and
minimum cut simultaneously in polynomial time

Theorem (Max-Flow Min-Cut)

The maximum flow between a source s and sink t

is equal to

the minimum capacity over all cuts separating s and t.
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Ford-Fulkerson Algorithm (1954)

Maximum flow problems are related to minimum cut problems

Ford-Fulkerson algorithm solves both maximum flow and
minimum cut simultaneously in polynomial time

Theorem (Max-Flow Min-Cut)

The maximum flow between a source s and sink t

is equal to

the minimum capacity over all cuts separating s and t.

Does this result apply to multiple-commodities?
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Max-Flow Min-Cut for Multiple Commodities

Commodities: independent flows that cannot mix
but must still share network capacity, e.g.

water and oil through pipes
individual TCP connections over the Internet
various shipments through a road network

NOT as simple as multiple sources and multiple sinks
Example: a flow of water from some source should not end
up at a sink for oil

The strong Max-Flow Min-Cut Theorem only applies
to single-commodity flow/cut problems
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Two Multi-Commodity Generalizations

1 Maximum Multi-Commodity Flow
Minimum Multi-Cut

2 Maximum Concurrent Multi-Commodity Flow
Sparsest Cut
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Two Multi-Commodity Generalizations

1 Maximum Multi-Commodity Flow (LP)
Minimum Multi-Cut (NP-Hard)

2 Maximum Concurrent Multi-Commodity Flow (LP)
Sparsest Cut (NP-Hard)
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Two Multi-Commodity Generalizations

1 Maximum Multi-Commodity Flow (LP)
Minimum Multi-Cut (NP-Hard)

2 Maximum Concurrent Multi-Commodity Flow (LP)
Sparsest Cut (NP-Hard)

* Typically defined with respect to undirected graphs;
the problems are much harder in directed graphs.
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Maximum Concurrent Multi-Commodity Flow
a.k.a. Demands Multi-Commodity Flow

Undirected Graph G = (V ,E ) with edge capacities c : E → R
+.

For k commodities, let
{

(s1, t1), ..., (sk , tk)
}

be the

set of source-sink pairs for each commodity.

The demand for the commodities is a function d : {1...k} → R
+.

The Flow Problem

Find a flow that maximizes throughput α, where α.d(i)
units of each commodity i are flowing simultaneously.

Demand constraint ensures “fairness”.
Commodities must flow in the specified demand ratio.
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Maximum Concurrent Multi-Commodity Flow
Cut Capacity

Define capacity of a cut c(S) to be the sum of edge capacities
between partitions S and S − V .

s
1

t
1

t
2

s
2

16

13

4

12

9

14

7

20

4

Group 5 (CS6234) Sparsest Cut April 12, 2013 11 / 66



Maximum Concurrent Multi-Commodity Flow
Cut Demand

Define demand of a cut d(S) to be the sum of the demands of
commodity pairs separated by the cut.

s
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s
2

d(1) = 3

d(2) = 5

d(S) = 3

Group 5 (CS6234) Sparsest Cut April 12, 2013 12 / 66



Maximum Concurrent Multi-Commodity Flow
Cut Demand

Define demand of a cut d(S) to be the sum of the demands of
commodity pairs separated by the cut.
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t2
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d(1) = 3

d(2) = 5

d(S) = 
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Maximum Concurrent Multi-Commodity Flow
An Observation

Given any valid flow with throughput α and any cut S ,

α.d(S) ≤ c(S)

Consequently, for optimal throughput α∗,

α∗ ≤ min
S⊂V

c(S)

d(S)
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Sparsest Cut

Same undirected graph with edge capacities,
k source-sink commodity pairs and demands.

Define the sparsity of a cut to be Φ(S) = c(S)
d(S) .

The Cut Problem

Find a cut S of minimum sparsity Φ(S).

This problem is NP-Hard. [Matula & Shahrokhi ’90]
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Max-Flow Min-Cut for Multiple Commodities
Continued...

Recall that minimum sparsity puts the most stringent

upper-bound on maximum throughput...

α∗ ≤ min
S⊂V

Φ(S)

Are min sparsity and max throughput equivalent?

k = 1 (Single-Commodity): Yes! [Ford-Fulkerson ’54]

k > 1 (Arbitrary): Not necessarily.
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Counter-Example

Network with 4 commodity pairs (dotted lines) and 6 edges (solid lines)
with unit capacities and unit demands.
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Minimum sparsity is 1. (You can verify this.)
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Counter-Example

Ignore node e and its associated edges and commodities.

b

c

a

d

Group 5 (CS6234) Sparsest Cut April 12, 2013 17 / 66



Counter-Example

Start fulfilling demands of first 3 commodities with 3 edges.
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Counter-Example

Edges fully saturated, and half of each commodity’s demands are met.
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Counter-Example

Re-introduce node e and the remaining edges.

b

c

a
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e
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Counter-Example

Repeat assignment. Demands of first 3 commodities fully met.
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1
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Counter-Example

No more capacity to route last commodity!

b

c

a

d

e
1 1

1

?

Minimum sparsity 1, but maximum throughput strictly less than 1.
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Sparsest Cut

Without strong duality, cannot simply use max-flow
solution to solve Sparsest Cut in polynomial time.

BUT minimum sparsity cannot be arbitrarily larger than

maximum throughput.

Approximation algorithms put a bound on their ratio.

We can still derive approximate max-flow min-cut

theorems for multi-commodity flows.
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Applications

Building Robust Computer Networks

Balanced Cut

Edge Expansion

Conductance

Minimum Cut Linear Arrangement
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What is an Approximation Algorithm?

Used to find approximate solution to optimization

problems

Especially for NP-hard problems (no polynomial time
solution)

Better option than heuristics
Provable solution quality and run-time bound

Also being used for problems with large input size,

although has a known polynomial-time algorithms
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Related Work

Name Graphs Approximation Based on

Leighton et al. 1988 restricted O(log n) LP
Klein et al. 1995 general O(logC logD) LP
Linial et al. 1995 general O(log k) LP
Arora et al. 2008 general O(

√
log k log log k) SDP

Chakrabarti et al. 2008 restricted O(1) LP
Chekuri et al. 2010 restricted O(1) LP

We will be covering the O(log k) algorithm by Linial et al.
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Sparsity Ratio

Graph: G = (V ,E )

Cost: c(e), edge: e ∈ E

Vertex pair: (si , ti), i = 1, ..., k

I (S) = {i : |S ∩ {si , ti}| = 1}: terminal pairs that are disconnected by
S , where S is a subset of vertices (S ⊆ V )

Removed edges by S : δ(S) = {(u, v) ∈ E : u ∈ S , v /∈ S}

Sparsity ratio of S :

Φ(S) =
∑

e∈δ(s) c(e)∑
i∈I (S) d(i)

= total capacity of edges removed by S
total demand of commodities disconnected by S
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Sparsity Ratio

We extend the sparsity ratio to apply all removed edges F

We denote the new graph as Ḡ = (V ,E − F )

Set of connected components:
S = {S1,S2, ...,Sc} = {i : si ∈ Sj , ti ∈ Sk , j 6= k}

Sparsity ratio of S :

Φ(S) =
∑

e∈F c(e)
∑

i∈I (S) d(i)
= total capacity of all removed edges

total demand of all disconnected commodities

minSi∈SΦ(Si) ≤ Φ(S)
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IP Formulation

Pi denotes the set of paths for commodity i

Minimize

∑
e∈E c(e)x(e)

∑k
i=1 d(i)y(i)

subject to

∑

e∈P x(e) ≥ y(i). for each P ∈ Pi , i = 1, ..., k ,

y(i) ∈ {0, 1}, for each i = 1, ..., k ,

x(e) ∈ {0, 1}, for each e ∈ E .
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LP Relaxation

We replace
y(i) ∈ {0, 1}, for each i = 1, ..., k ,
x(e) ∈ {0, 1}, for each e ∈ E .

with
y(i) ≥ 0, for each i = 1, ..., k ,
x(e) ≥ 0, for each e ∈ E .

We add

∑k
i=1 d(i)y(i) = 1
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LP Formulation

Minimize

∑

e∈E c(e)x(e)

subject to

∑k
i=1 d(i)y(i) = 1

∑

e∈P x(e) ≥ y(i). for each P ∈ Pi , i = 1, ..., k ,

y(i) ≥ 0, for each i = 1, ..., k ,

x(e) ≥ 0, for each e ∈ E .
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What is a Metric

A metric on a set V is defined as a function d : V × V → R

d(x , y ) = 0 iff x = y

d(x , y ) = d(y , x)

d(x , y ) + d(y , z) ≥ d(x , z)

Example: d(x , y ) =
∑m

i=1 |xi − yi | is a metric on R
m

(called ℓ1 metric)

Example: d(x , y ) = (
∑m

i=1 |xi − yi |p)1/p is a metric on R
m

(called ℓp metric)
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What is a Cut Metric

A length function induced by a subset (cut) S of V is

defined as a function δS : V × V → R

δS(x , y) = 0 if x , y ∈ S or x , y ∈ S

δS(x , y) = 1 otherwise

Easy to check that cut metric is in fact a (semi) metric
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Metrics as Vectors in R
n(n−1)/2

Any n-point metric can be associated with a vector in

R
n(n−1)/2 with each coordinate corresponding to a pair

of vertices from the metric

Set of all metrics on V forms a convex cone in
R

n(n−1)/2.

Definition of Cone: If d1, d2 are in R
n(n−1)/2 then

αd1 + βd2 ∈ R
n(n−1)/2 for non-negative reals α, β.
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Sparsest Cut in R
n(n−1)/2

In this setting the sparsest cut problem can be restated as

min
all cut metrics S

c · δS
D · δS

c : vector in R
n(n−1)/2 with cij being the capacity of

the edge between vertex i and j

Dij : demand between vertex i and j

D · δS is the dot product of two corresponding vectors.
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ℓ1 and Cut Metric

Let us denote the positive cone generated by all cut metrics by CUTn.

CUTn = {d |d =
∑

S⊂V αSδS , αS > 0 ∀ S}

So the optimum to the above formulation will be achieved at some

extreme point on the cone.

Φ∗ = min
d∈CUTn

c · δS
D · δS

Now we can claim:

Cut metrics are the extreme rays of the cone of ℓ1 metrics

CUTn = set of all ℓ1 metrics
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Metric Cones

ℓ
1
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Consider any metric in CUTn.

For every S with αS > 0, we have a dimension and in that dimension we
put value 0 for x ∈ S and value αS for x ∈ S .

Hence CUTn ⊂ ℓ1 metrics.

Consider a set of n points from R
n.

Take one dimension d and sort the points in increasing value along that
dimension. Say we get v1, v2, ..vk as as the set of distinct values.

Define k − 1 cut metrics Si = {x |xd ≤ vi+1} and let αi = vi+1 − vi . Now
along this dimension, |xd − yd | =

∑k
i=1 αiδSi .

We can construct cut metrics for every dimension. Hence we have a
metric in CUTn for every n-point metric in ℓ1.
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ℓ1 Cone = CUTn Cone

Given a ℓ1 metric µ in R
D

we can decompose µ =
∑

S⊂V αSδS
to at most nD cut metrics where αS ≥ 0.
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Sparsest Cut over ℓ1

Now the formulation for sparsest cut can be written as

Φ∗ = min
d∈ℓ1metrics

c · δS
D · δS

But as sparsest cut is NP-hard, we cannot hope to solve over ℓ1 metrics.

Hence we consider a relaxation of this problem to the domain of set of all

metrics

Λ∗ = min
d∈all metrics

c · d
D · d
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The Integrality Gap

Clearly,

Λ∗ ≤ Φ∗.

We can solve for Λ∗ using a linear program

min
∑

cijdij
subject to:

dij ≤ dik + dkj
∑

Dijdij = 1
dij ≥ 0
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Bound on the Integrality Gap

Solve the LP to find d that achieves Λ∗.

Embed d in to ℓ1 metrics with low distortion.

Get a cut metric from the ℓ1 metric.

Depending on the distortion the we can bound the integrality gap.

Result: Suppose for each metric d there exist a ℓ1 metric µ such that

d(x , y) ≤ µ(x , y) ≤ αd(x , y), for all x , y ∈ V

Then sparsest cut LP has integrality gap at most α.
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Obtaining a Cut from an ℓ1 metric
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Obtaining a Cut from an ℓ1 metric

Given a metric d ∈ ℓ1 in space R
D

Repeat for all dimensions i = 1 . . .D
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Obtaining a Cut from an ℓ1 metric

Given a metric d ∈ ℓ1 in space R
D

Repeat for all dimensions i = 1 . . .D
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Obtaining a Cut from an ℓ1 metric

Given a metric d ∈ ℓ1 in space R
D

Repeat for all dimensions i = 1 . . .D
Sort vertices v ∈ V in increasing order of coordinates in dimension i

Number them accordingly so that we have fi (v1) ≤ fi (v2) ≤ . . . fi (vn)

Repeat for all j = 1 . . . n

Create Set Sij = {vk |v ′s are sorted according to dim i ; 1 ≤ k ≤ j}
Calculate the sparsity ratio for Sij = Φ(Sij)
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Obtaining a Cut from an ℓ1 metric

Given a metric d ∈ ℓ1 in space R
D

Repeat for all dimensions i = 1 . . .D
Sort vertices v ∈ V in increasing order of coordinates in dimension i

Number them accordingly so that we have fi (v1) ≤ fi (v2) ≤ . . . fi (vn)

Repeat for all j = 1 . . . n

Create Set Sij = {vk |v ′s are sorted according to dim i ; 1 ≤ k ≤ j}
Calculate the sparsity ratio for Sij = Φ(Sij)

Take the cut Sij which has the minimum sparsity ratio,
giving the required approximate cut.
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Obtaining a Cut from an ℓ1 metric
Continued...

For d ∈ ℓ1, from the previous algorithm we have the representation:
d =

∑

S∈S αSδS .
Consider φ to be the sparsity ratio obtained from the values of d . So,
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Obtaining a Cut from an ℓ1 metric
Continued...

For d ∈ ℓ1, from the previous algorithm we have the representation:
d =

∑

S∈S αSδS .
Consider φ to be the sparsity ratio obtained from the values of d . So,

φ =

∑

e∈E c(e)x(e)
∑k

i=1 d(i)y(i)

=

∑

e∈E c(e)
∑

S∈S αSδS (e)
∑

i d(i)
∑

S∈S αSδS (si , ti )
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Obtaining a Cut from an ℓ1 metric
Continued...

For d ∈ ℓ1, from the previous algorithm we have the representation:
d =

∑

S∈S αSδS .
Consider φ to be the sparsity ratio obtained from the values of d . So,

φ =

∑

e∈E c(e)x(e)
∑k

i=1 d(i)y(i)

=

∑

e∈E c(e)
∑

S∈S αSδS (e)
∑

i d(i)
∑

S∈S αSδS (si , ti )

=

∑

S∈S αS

∑

e∈E c(e)δS (e)
∑

S∈S αS

∑

i d(i)δS (si , ti )

Contd...
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Obtaining a Cut from an ℓ1 metric
Continued...

By definition, δS (u, v) = 1 only when e = (u, v) crosses the cut defined by
S i.e. e ∈ δ(S). This means,

∑

S∈S αS

∑

e∈E c(e)δS (e)
∑

S∈S αS

∑

i d(i)δS (si , ti)
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Obtaining a Cut from an ℓ1 metric
Continued...

By definition, δS (u, v) = 1 only when e = (u, v) crosses the cut defined by
S i.e. e ∈ δ(S). This means,

∑

S∈S αS

∑

e∈E c(e)δS (e)
∑

S∈S αS

∑

i d(i)δS (si , ti)
=

∑

S∈S αS

∑

e∈δ(S) c(e)
∑

S∈S αS

∑

i∈I(S) d(i)
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Obtaining a Cut from an ℓ1 metric
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By definition, δS (u, v) = 1 only when e = (u, v) crosses the cut defined by
S i.e. e ∈ δ(S). This means,
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∑
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∑
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Obtaining a Cut from an ℓ1 metric
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Obtaining a Cut from an ℓ1 metric
Continued...

By definition, δS (u, v) = 1 only when e = (u, v) crosses the cut defined by
S i.e. e ∈ δ(S). This means,

∑

S∈S αS

∑

e∈E c(e)δS (e)
∑

S∈S αS

∑

i d(i)δS (si , ti)
=

∑

S∈S αS

∑

e∈δ(S) c(e)
∑

S∈S αS

∑

i∈I(S) d(i)

≥ min
S∈S

αS

∑

e∈δS c(e)

αS

∑

i∈I(S) d(i)

= min
S∈S

∑

e∈δ(S) c(e)
∑

i∈I(S) d(i)
= min

S∈S
Φ(S)

⇒ ∃S ∈ S s.t. Φ(S) ≤ φ
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What are Metric Embeddings?
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What are Metric Embeddings?

Definition

Given metric spaces (X , d) and (X ′, d ′), a map g : X → X ′ is an isometric
embedding if, d(x , y) = d ′(g(x), g(y)) ∀ x , y ∈ X
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Definition

Given metric spaces (X , d) and (X ′, d ′), a map g : X → X ′ is an isometric
embedding if, d(x , y) = d ′(g(x), g(y)) ∀ x , y ∈ X

Non-isometric embeddings:
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What are Metric Embeddings?

Definition

Given metric spaces (X , d) and (X ′, d ′), a map g : X → X ′ is an isometric
embedding if, d(x , y) = d ′(g(x), g(y)) ∀ x , y ∈ X

Non-isometric embeddings:

1 Contraction of g : α = max
x ,y∈X

d(x , y)

d ′(g(x), g(y))
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What are Metric Embeddings?

Definition

Given metric spaces (X , d) and (X ′, d ′), a map g : X → X ′ is an isometric
embedding if, d(x , y) = d ′(g(x), g(y)) ∀ x , y ∈ X

Non-isometric embeddings:

1 Contraction of g : α = max
x ,y∈X

d(x , y)

d ′(g(x), g(y))

2 Expansion of g : β = max
x ,y∈X

d ′(g(x), g(y))

d(x , y)
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What are Metric Embeddings?

Definition

Given metric spaces (X , d) and (X ′, d ′), a map g : X → X ′ is an isometric
embedding if, d(x , y) = d ′(g(x), g(y)) ∀ x , y ∈ X

Non-isometric embeddings:

1 Contraction of g : α = max
x ,y∈X

d(x , y)

d ′(g(x), g(y))

2 Expansion of g : β = max
x ,y∈X

d ′(g(x), g(y))

d(x , y)

3 Distortion of g : ||g ||dist = α · β
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Embedding into an ℓ1 metric
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Embedding into an ℓ1 metric

Space of terminal vertices T = {si , ti |i = 1 . . . k}, where
|T | = 2k = 2τ
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Embedding into an ℓ1 metric

Space of terminal vertices T = {si , ti |i = 1 . . . k}, where
|T | = 2k = 2τ

distx(u, v) = shortest path distance u, v ∈ V w.r.t metric x
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Embedding into an ℓ1 metric

Space of terminal vertices T = {si , ti |i = 1 . . . k}, where
|T | = 2k = 2τ

distx(u, v) = shortest path distance u, v ∈ V w.r.t metric x

For A ⊆ V and u ∈ V : distx(u,A) = minv ∈ A distx(u, v)
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Embedding into an ℓ1 metric

Space of terminal vertices T = {si , ti |i = 1 . . . k}, where
|T | = 2k = 2τ

distx(u, v) = shortest path distance u, v ∈ V w.r.t metric x

For A ⊆ V and u ∈ V : distx(u,A) = minv ∈ A distx(u, v)

For the dimensions of the embedding (D):
D = τL where, L = q log k ; τ = log k ;⇒ D = O(log2 k)

Group 5 (CS6234) Sparsest Cut April 12, 2013 52 / 66



Embedding into an ℓ1 metric

Space of terminal vertices T = {si , ti |i = 1 . . . k}, where
|T | = 2k = 2τ

distx(u, v) = shortest path distance u, v ∈ V w.r.t metric x

For A ⊆ V and u ∈ V : distx(u,A) = minv ∈ A distx(u, v)

For the dimensions of the embedding (D):
D = τL where, L = q log k ; τ = log k ;⇒ D = O(log2 k)

Embedding

Repeat for l = 1 . . . L, t = 1 . . . τ :
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Embedding into an ℓ1 metric

Space of terminal vertices T = {si , ti |i = 1 . . . k}, where
|T | = 2k = 2τ

distx(u, v) = shortest path distance u, v ∈ V w.r.t metric x

For A ⊆ V and u ∈ V : distx(u,A) = minv ∈ A distx(u, v)

For the dimensions of the embedding (D):
D = τL where, L = q log k ; τ = log k ;⇒ D = O(log2 k)

Embedding

Repeat for l = 1 . . . L, t = 1 . . . τ :

Construct sets Atl each of which has k
2t = 2τ−t points sampled with

replacement from T
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Embedding into an ℓ1 metric

Space of terminal vertices T = {si , ti |i = 1 . . . k}, where
|T | = 2k = 2τ

distx(u, v) = shortest path distance u, v ∈ V w.r.t metric x

For A ⊆ V and u ∈ V : distx(u,A) = minv ∈ A distx(u, v)

For the dimensions of the embedding (D):
D = τL where, L = q log k ; τ = log k ;⇒ D = O(log2 k)

Embedding

Repeat for l = 1 . . . L, t = 1 . . . τ :

Construct sets Atl each of which has k
2t = 2τ−t points sampled with

replacement from T

Also, define ftl(v) = distx(v ,Atl ) ∀ v ∈ V
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Is it a Good Embedding?

Lemmas

Lemma 1 : For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)
Lemma 2 : With probability at least 1

2 :
||f (si )− f (ti)||1 ≥ L · y(i)/88 for each i = 1 . . . k

From (2):
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Lemma 1 : For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)
Lemma 2 : With probability at least 1

2 :
||f (si )− f (ti)||1 ≥ L · y(i)/88 for each i = 1 . . . k

From (2):

k
∑

i=1

di ||f (si )− f (ti )||1 ≥
k

∑

i=1

diy(i)L/88 = Ω(L

k
∑

i=1

diy(i))
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Is it a Good Embedding?

Lemmas

Lemma 1 : For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)
Lemma 2 : With probability at least 1

2 :
||f (si )− f (ti)||1 ≥ L · y(i)/88 for each i = 1 . . . k

From (2):

k
∑

i=1

di ||f (si )− f (ti )||1 ≥
k

∑

i=1

diy(i)L/88 = Ω(L

k
∑

i=1

diy(i))

= Ω(L) (∵
k

∑

i=1

diy(i) = 1)
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Is it a Good Embedding?
Continued...

Lemmas

Lemma 1 : For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)
Lemma 2 : With probability at least 1

2 :
||f (si )− f (ti)||1 ≥ L · y(i)/88 for each i = 1 . . . k

From (1):
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Lemmas

Lemma 1 : For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)
Lemma 2 : With probability at least 1

2 :
||f (si )− f (ti)||1 ≥ L · y(i)/88 for each i = 1 . . . k

From (1):

∑

(u,v)=e∈E

c(e)||f (u)− f (v)||1 ≤
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(u,v)=e∈E

Dc(e)x(e)
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Is it a Good Embedding?
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Lemmas

Lemma 1 : For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)
Lemma 2 : With probability at least 1

2 :
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c(e)||f (u)− f (v)||1 ≤
∑

(u,v)=e∈E
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= D
∑

(u,v)=e∈E
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Is it a Good Embedding?
Continued...

Lemmas

Lemma 1 : For each edge e = (u, v), ||f (u)− f (v)|| ≤ Dx(e)
Lemma 2 : With probability at least 1

2 :
||f (si )− f (ti)||1 ≥ L · y(i)/88 for each i = 1 . . . k

This implies,

Group 5 (CS6234) Sparsest Cut April 12, 2013 55 / 66



Is it a Good Embedding?
Continued...

Lemmas

Lemma 1 : For each edge e = (u, v), ||f (u)− f (v)|| ≤ Dx(e)
Lemma 2 : With probability at least 1

2 :
||f (si )− f (ti)||1 ≥ L · y(i)/88 for each i = 1 . . . k

This implies,

Φ =

∑

(u,v)=e∈E c(e)||f (u)− f (v)||1
∑k

i=1 di ||f (si)− f (ti )||1
≤ O(log2 k)

∑

e∈E c(e)x(e)

Ω(L)
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Is it a Good Embedding?
Continued...

Lemmas

Lemma 1 : For each edge e = (u, v), ||f (u)− f (v)|| ≤ Dx(e)
Lemma 2 : With probability at least 1

2 :
||f (si )− f (ti)||1 ≥ L · y(i)/88 for each i = 1 . . . k

This implies,

Φ =

∑

(u,v)=e∈E c(e)||f (u)− f (v)||1
∑k

i=1 di ||f (si)− f (ti )||1
≤ O(log2 k)

∑

e∈E c(e)x(e)

Ω(L)

= O(
log2 k

log k
)
∑

e∈E

c(e)x(e)

= O(log k)
∑

e∈E

c(e)x(e)

= O(logk) Φ∗
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Proving Lemma 1

Lemma

For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)
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For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)

Proof : For any A ⊆ V , e = (u, v) ∈ E ,
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Proving Lemma 1

Lemma

For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)

Proof : For any A ⊆ V , e = (u, v) ∈ E ,

distx(u,A) ≤ distx(u, v) + distx(v ,A)

distx(v ,A) ≤ distx(u, v) + distx(v ,A)
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Proving Lemma 1

Lemma

For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)

Proof : For any A ⊆ V , e = (u, v) ∈ E ,

distx(u,A) ≤ distx(u, v) + distx(v ,A)

distx(v ,A) ≤ distx(u, v) + distx(v ,A)

⇒ distx(u,A)− distx(v ,A) ≤ x(e) (∵ distx(u, v) = x(e); e = (u, v))

distx(v ,A)− distx(u,A) ≤ x(e)
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Proving Lemma 1

Lemma

For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)

Proof : For any A ⊆ V , e = (u, v) ∈ E ,

distx(u,A) ≤ distx(u, v) + distx(v ,A)

distx(v ,A) ≤ distx(u, v) + distx(v ,A)

⇒ distx(u,A)− distx(v ,A) ≤ x(e) (∵ distx(u, v) = x(e); e = (u, v))

distx(v ,A)− distx(u,A) ≤ x(e)

⇒ ||f (u)− f (v)||1 =
∑

t,l

|ftl(u)− ftl(v)|
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Proving Lemma 1

Lemma

For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)

Proof : For any A ⊆ V , e = (u, v) ∈ E ,

distx(u,A) ≤ distx(u, v) + distx(v ,A)

distx(v ,A) ≤ distx(u, v) + distx(v ,A)

⇒ distx(u,A)− distx(v ,A) ≤ x(e) (∵ distx(u, v) = x(e); e = (u, v))

distx(v ,A)− distx(u,A) ≤ x(e)

⇒ ||f (u)− f (v)||1 =
∑

t,l

|ftl(u)− ftl(v)|

=

τ
∑

t=1

L
∑

l=1

| distx(u,Atl)− distx(v ,Atl )|
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Proving Lemma 1

Lemma

For each edge e = (u, v), ||f (u)− f (v)||1 ≤ Dx(e)

Proof : For any A ⊆ V , e = (u, v) ∈ E ,

distx(u,A) ≤ distx(u, v) + distx(v ,A)

distx(v ,A) ≤ distx(u, v) + distx(v ,A)

⇒ distx(u,A)− distx(v ,A) ≤ x(e) (∵ distx(u, v) = x(e); e = (u, v))

distx(v ,A)− distx(u,A) ≤ x(e)

⇒ ||f (u)− f (v)||1 =
∑

t,l

|ftl(u)− ftl(v)|

=

τ
∑

t=1

L
∑

l=1

| distx(u,Atl)− distx(v ,Atl )|

≤ τLx(e) = Dx(e)
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Proof of Lemma 2: ||f (si)− f (ti)||1 ≥ L.y(i)/88, for

i = 1, ...., k

Lemma 2

||f (si )− f (ti)||1 ≥ L.y(i)/88, for i = 1, ...., k .

Proof Sketch: We want to

Concentrate on single (si , ti ).

Show that f embeds si , ti s.t. they are far apart compared to y(i).
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Proof of Lemma 2: ||f (si)− f (ti)||1 ≥ L.y(i)/88, for

i = 1, ...., k

Lemma 2

||f (si )− f (ti)||1 ≥ L.y(i)/88, for i = 1, ...., k .

Proof Sketch: We want to

Concentrate on single (si , ti ).

Show that f embeds si , ti s.t. they are far apart compared to y(i).

Show each coordinate ftl contributes (rt − rt−1) with high probability.

By summing over all l , they all would most likely contribute
Ω(L(rt − rt−1)).

Summing the bound for t = 1, ...., t̂ , We get sum =
Ω(Lrt̂) = Ω(L.y(i))
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Concentrating on single commodity

T = {si , ti : i = 1, ..., k}, |T | = 2k
For v ∈ {si , ti}
Bx(v , r) = {w ∈ T : distx(v ,w) ≤ r}
Bo
x (v , r) = {w ∈ T : distx(v ,w) < r}
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Concentrating on single commodity

T = {si , ti : i = 1, ..., k}, |T | = 2k
For v ∈ {si , ti}
Bx(v , r) = {w ∈ T : distx(v ,w) ≤ r}
Bo
x (v , r) = {w ∈ T : distx(v ,w) < r}

Let r0 = 0 and rt be the smallest r s.t. |Bx(u, r)| ≥ 2t , for both
u ∈ {si , ti}
Let t̂ be the smallest t s.t. rt̂ ≥ y(i)/4,
Set rt̂ = y(i)/4

But y(i) ≤ distx(si , ti)

Thus Balls are disjoints.
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Proof of Lemma 2: ||f (si)− f (ti)||1 ≥ L.y(i)/88

Observation:

A ∩ B0
x (si , rt) = ∅ ⇔ distx(si ,A) ≥ rt

A ∩ Bx(ti , rt−1) 6= ∅ ⇔ distx(ti ,A) ≤ rt−1
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Proof of Lemma 2: ||f (si)− f (ti)||1 ≥ L.y(i)/88

Observation:

A ∩ B0
x (si , rt) = ∅ ⇔ distx(si ,A) ≥ rt

A ∩ Bx(ti , rt−1) 6= ∅ ⇔ distx(ti ,A) ≤ rt−1

Let, Etl , t = 1, ...., t̂ , l = 1, ..., L denote the event that
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Observation:

A ∩ B0
x (si , rt) = ∅ ⇔ distx(si ,A) ≥ rt

A ∩ Bx(ti , rt−1) 6= ∅ ⇔ distx(ti ,A) ≤ rt−1

Let, Etl , t = 1, ...., t̂ , l = 1, ..., L denote the event that
Atl ∩ Bo

x (si , rt) = ∅ and Atl ∩ Bx(ti , rt−1) 6= ∅
Etl implies
|ftl(si )− ftl(ti )| = | distx(si ,Atl )− distx(ti ,Atl )| ≥ (rt − rt−1)

We will show that Etl is likely to occur
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Facts of Probability

Let G ,B ⊆ X

A is formed by selecting p elements of X independently, uniformly at
random

Pr[A ∩ G 6= ∅ and A ∩ B = ∅]
= Pr[A ∩ G 6= ∅|A ∩ B = ∅].Pr[A ∩ B = ∅]
≥ Pr[A ∩ G 6= ∅].Pr[A ∩ B = ∅]
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∀Y ⊆ X , Pr[A ∩ Y = ∅] = (1− |Y |

|X | )
p
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Facts of Probability

Let G ,B ⊆ X

A is formed by selecting p elements of X independently, uniformly at
random

Pr[A ∩ G 6= ∅ and A ∩ B = ∅]
= Pr[A ∩ G 6= ∅|A ∩ B = ∅].Pr[A ∩ B = ∅]
≥ Pr[A ∩ G 6= ∅].Pr[A ∩ B = ∅]
∀Y ⊆ X , Pr[A ∩ Y = ∅] = (1− |Y |

|X | )
p

If p = |Y |
|X | , and tends to infinity

(1− |Y |
|X |)

p approaches 1/e and always in the interval [14 ,
1
e
]
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Facts of Probability

Let G ,B ⊆ X

A is formed by selecting p elements of X independently, uniformly at
random

Pr[A ∩ G 6= ∅ and A ∩ B = ∅]
= Pr[A ∩ G 6= ∅|A ∩ B = ∅].Pr[A ∩ B = ∅]
≥ Pr[A ∩ G 6= ∅].Pr[A ∩ B = ∅]
∀Y ⊆ X , Pr[A ∩ Y = ∅] = (1− |Y |

|X | )
p

If p = |Y |
|X | , and tends to infinity

(1− |Y |
|X |)

p approaches 1/e and always in the interval [14 ,
1
e
]

If p = β |Y |
|X | interval is [(

1
4)

β , (1
e
)β]
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Coming back to the proof
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Coming back to the proof

A = Atl

X = T , |X | = 2τ

B = Bo
x (si , rt), |B | < 2t

G = Bx(ti , rt−1), |G | ≥ 2t−1

p = 2τ−t
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Coming back to the proof

A = Atl

X = T , |X | = 2τ

B = Bo
x (si , rt), |B | < 2t

G = Bx(ti , rt−1), |G | ≥ 2t−1

p = 2τ−t

Hence, p < |X |
|B| and p ≥ 1

2
|X |
|G |

→ Pr[A ∩ B = ∅] ≥ 1
4

→ Pr[A ∩ G 6= ∅] ≥ (1− (1
e
)
1
2 )
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Coming back to the proof

A = Atl

X = T , |X | = 2τ

B = Bo
x (si , rt), |B | < 2t

G = Bx(ti , rt−1), |G | ≥ 2t−1

p = 2τ−t

Hence, p < |X |
|B| and p ≥ 1

2
|X |
|G |

→ Pr[A ∩ B = ∅] ≥ 1
4

→ Pr[A ∩ G 6= ∅] ≥ (1− (1
e
)
1
2 )

Pr[Etl ] ≥ (1−( 1
e
)
1
2 )

4 ≥ 1
11 , for t = 1, ..., t̂ , l = 1, ...., L
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Using Chernoff Bound to Summarize

If we fix a particular t = 1, ..., t̂
define indicator variable, Xl ∈ {0, 1} for l = 1, ..., L
Xl = 1 → Etl occurs

We use Chernoff bound to show that
∑L

l=1 xl does not deviate too much
from its expectation E [xl ] ≥ L

11
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define indicator variable, Xl ∈ {0, 1} for l = 1, ..., L
Xl = 1 → Etl occurs

We use Chernoff bound to show that
∑L

l=1 xl does not deviate too much
from its expectation E [xl ] ≥ L

11

Chernoff Bound

If E [xl ] = µ then Pr[
∑L

l=1 xl <
µ
2 ] ≤ exp(−µ/8)
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If we fix a particular t = 1, ..., t̂
define indicator variable, Xl ∈ {0, 1} for l = 1, ..., L
Xl = 1 → Etl occurs

We use Chernoff bound to show that
∑L

l=1 xl does not deviate too much
from its expectation E [xl ] ≥ L

11

Chernoff Bound

If E [xl ] = µ then Pr[
∑L

l=1 xl <
µ
2 ] ≤ exp(−µ/8)

Since µ ≥ L
11 = q log k

11 , if say q = 200 → Probability is at most
1

2k log 2k .

Group 5 (CS6234) Sparsest Cut April 12, 2013 63 / 66



Using Chernoff Bound to Summarize

If we fix a particular t = 1, ..., t̂
define indicator variable, Xl ∈ {0, 1} for l = 1, ..., L
Xl = 1 → Etl occurs

We use Chernoff bound to show that
∑L

l=1 xl does not deviate too much
from its expectation E [xl ] ≥ L

11

Chernoff Bound

If E [xl ] = µ then Pr[
∑L

l=1 xl <
µ
2 ] ≤ exp(−µ/8)

Since µ ≥ L
11 = q log k

11 , if say q = 200 → Probability is at most
1

2k log 2k .

Most importantly, if
∑

l xl ≥ L
22 then we know that for L

22 of the
components ftl , l = 1, ..., L Etl occurs

so,
∑L

l=1 |ftl (si )− ftl (ti)| ≥ (rt − rt−1)
L
22
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Final pieces of the proof

∑L
l=1 |ftl (si )− ftl (ti)| ≥ (rt − rt−1)

L
22

We showed that for any fixed value of t = 1, .., t̂ , above fails to hold
with probability less than 1

2k log 2k .

Since t̂ < log(2k), the above holds for every t = 1, .., t̂ with
probability at least 1− 1

2k .

Hence, with Probability ≥ 1− 1
2k ,

∑t̂
t=1

∑L
l=1 |ftl (si)− ftl(ti )| ≥

∑t̂
t=1(rt − rt−1)

L
22 = rt̂

L
22 = y(i) L

88

Finally, we can conclude that using the above results and union bounds,
Lemma 2 holds for all i with high probability.
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