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Flow Networks
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Directed graph G = (V/, E) with edge capacities ¢ : E — R™.

Nodes may be sources or sinks of a flow.
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Maximum s-t Flow Problem

A flow is an assignment to each edge f : E — R*
subject to capacity constraints and flow conservation.
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Given source s and sink t, find the maximum possible flow.
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Maximum s-t Flow Problem

A flow is an assignment to each edge f : E — R*
subject to capacity constraints and flow conservation.

Given source s and sink t, find the maximum possible flow.
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Cuts of Flow Networks
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A cut S is a partitioning of vertices VintoSand T=V - S
suchthats€ Sandte T.
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Minimum s-t Cut Problem

The capacity of a cut S is the sum of edge capacities from S to T.
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Find a cut with minimum capacity.
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Minimum s-t Cut Problem

The capacity of a cut S is the sum of edge capacities from S to T.

Find a cut with minimum capacity.
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Ford-Fulkerson Algorithm (1954)

@ Maximum flow problems are related to minimum cut problems

o Ford-Fulkerson algorithm solves both maximum flow and
minimum cut simultaneously in polynomial time

Theorem (Max-Flow Min-Cut)

The maximum flow between a source s and sink t
is equal to
the minimum capacity over all cuts separating s and t.
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Ford-Fulkerson Algorithm (1954)

@ Maximum flow problems are related to minimum cut problems

o Ford-Fulkerson algorithm solves both maximum flow and
minimum cut simultaneously in polynomial time

Theorem (Max-Flow Min-Cut)

The maximum flow between a source s and sink t
is equal to
the minimum capacity over all cuts separating s and t.

Does this result apply to multiple-commodities?
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Max-Flow Min-Cut for Multiple Commodities

o Commodities: independent flows that cannot mix
but must still share network capacity, e.g.

o water and oil through pipes
o individual TCP connections over the Internet
o various shipments through a road network

o NOT as simple as multiple sources and multiple sinks

o Example: a flow of water from some source should not end
up at a sink for oil

o The strong Max-Flow Min-Cut Theorem only applies
to single-commodity flow/cut problems
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Two Multi-Commodity Generalizations

© Maximum Multi-Commodity Flow
o Minimum Multi-Cut

@ Maximum Concurrent Multi-Commodity Flow
o Sparsest Cut
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Two Multi-Commodity Generalizations

@ Maximum Multi-Commodity Flow (LP)
o Minimum Multi-Cut (NP-Hard)

@ Maximum Concurrent Multi-Commodity Flow (LP)
o Sparsest Cut (NP-Hard)
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Two Multi-Commodity Generalizations

@ Maximum Multi-Commodity Flow (LP)
o Minimum Multi-Cut (NP-Hard)

@ Maximum Concurrent Multi-Commodity Flow (LP)
o Sparsest Cut (NP-Hard)

* Typically defined with respect to undirected graphs;
the problems are much harder in directed graphs.
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Maximum Concurrent Multi-Commodity Flow

a.k.a. Demands Multi-Commodity Flow

Undirected Graph G = (V, E) with edge capacities ¢ : E — R*.

For k commodities, let {(51, t1), ..., (Sk, tk)} be the
set of source-sink pairs for each commodity.

The demand for the commodities is a function d : {1...k} — R™.

The Flow Problem

Find a flow that maximizes throughput o, where a.d(/)
units of each commodity / are flowing simultaneously.

Demand constraint ensures “fairness’.
Commodities must flow in the specified demand ratio.
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Maximum Concurrent Multi-Commodity Flow

Cut Capacity

Define capacity of a cut ¢(S) to be the sum of edge capacities
between partitions S and S — V.
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Maximum Concurrent Multi-Commodity Flow
Cut Demand

Define demand of a cut d(S) to be the sum of the demands of
commodity pairs separated by the cut.

\\\ d(1)=3
©.0 =
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Maximum Concurrent Multi-Commodity Flow
Cut Demand

Define demand of a cut d(S) to be the sum of the demands of
commodity pairs separated by the cut.
d(1)=3
d(2) =5
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Maximum Concurrent Multi-Commodity Flow
An Observation

Given any valid flow with throughput o and any cut S,

a.d(S) < ¢(S)

Consequently, for optimal throughput as,

* < min ()
= d(S)
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Same undirected graph with edge capacities,
k source-sink commodity pairs and demands.

Define the sparsity of a cut to be ¢(S) = ;gg

The Cut Problem
Find a cut S of minimum sparsity ®(S).

This problem is NP-Hard. [matula & Shahrokni '90]
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Max-Flow Min-Cut for Multiple Commodities

Continued...

Recall that minimum sparsity puts the most stringent
upper-bound on maximum throughput...

ax < min ®(S)
scv

Are min sparsity and max throughput equivalent?

o k=1 (Single—Commodity): Yes! [Ford-Fulkerson '54]
o k > 1 (Arbitrary): Not necessarily.
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Counter-Example

Network with 4 commodity pairs (dotted lines) and 6 edges (solid lines)
with unit capacities and unit demands.

Minimum sparsity is 1. (You can verify this.)
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Counter-Example

Ignore node e and its associated edges and commodities.

Group 5 (CS6234) Sparsest Cut April 12, 2013 17 / 66



Counter-Example

Start fulfilling demands of first 3 commodities with 3 edges.
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Counter-Example

Edges fully saturated, and half of each commodity's demands are met.
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Counter-Example

Re-introduce node e and the remaining edges.
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Counter-Example

Repeat assignment. Demands of first 3 commodities fully met.
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Counter-Example

No more capacity to route last commodity!

Minimum sparsity 1, but maximum throughput strictly less than 1.
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Without strong duality, cannot simply use max-flow
solution to solve Sparsest Cut in polynomial time.

BUT minimum sparsity cannot be arbitrarily larger than
maximum throughput.

Approximation algorithms put a bound on their ratio.

We can still derive approximate max-flow min-cut
theorems for multi-commodity flows.
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Applications

o Building Robust Computer Networks
o Balanced Cut

o Edge Expansion

o Conductance

o Minimum Cut Linear Arrangement
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What is an Approximation Algorithm?

o Used to find approximate solution to optimization
problems

o Especially for NP-hard problems (no polynomial time
solution)

o Better option than heuristics
@ Provable solution quality and run-time bound

o Also being used for problems with large input size,
although has a known polynomial-time algorithms
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Related Work

Name Graphs Approximation Based on
Leighton et al. 1988 restricted | O(log n) LP

Klein et al. 1995 general O(log Clog D) LP
Linial et al. 1995 general O(log k) LP
Arora et al. 2008 general O(y/log k log log k) | SDP
Chakrabarti et al. 2008 | restricted | O(1) LP
Chekuri et al. 2010 restricted | O(1) LP

We will be covering the O(log k) algorithm by Linial et al.
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Sparsity Ratio

Graph: G = (V,E)
Cost: c(e), edge: ec E

(]

(]

(]

Vertex pair: (s, ti), i=1,...,k

(]

1(S) ={i:|SN{si, ti}| = 1}: terminal pairs that are disconnected by
S, where S is a subset of vertices (S C V)
Removed edges by S: §(S) = {(u,v) € E:ue S,v¢ S}

(]

Sparsity ratio of S:

o Zeeé(s) c(e) _ total capacity of edges removed by S
®(S)
- Ziel(s) d(i) — total demand of commodities disconnected by S
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Sparsity Ratio

@ We extend the sparsity ratio to apply all removed edges F
@ We denote the new graph as G = (V,E — F)

@ Set of connected components:
S= {51,52, ...,SC} = {i TS Sj, ti € Sk,j # k}

@ Sparsity ratio of S:

¢(S) _ 2ecrcle) _ total capacity of all removed edges
- Ziel(s) d(i) — total demand of all disconnected commodities

o mins,cs®(S;) < P(S)
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IP Formulation

@ P; denotes the set of paths for commodity i
Minimize

2eck c(e)x(e)
i1 d(y ()

subject to
Y ecpx(e) > y(i). foreach P € P;,i =1,..., k,
y(i) € {0,1}, for each i =1,..., k,

x(e) € {0,1}, for each e € E.
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LP Relaxation

@ We replace
y(i) € {0,1}, for each i =1,..., k,
x(e) € {0,1}, for each e € E.

@ with
y(i) >0, foreach i = 1,..., k,
x(e) >0, for each e € E.

o We add

> d(iy(i) =1

Group 5 (CS6234) Sparsest Cut April 12, 2013 32 / 66



LP Formulation

Minimize
> ece c(e)x(e)
subject to
> d(iy(i) =1
Y ecp x(e) > y(i). foreach P € P;,i =1,..., k,
y(i) >0, for each i =1, ..., k,

x(e) >0, for each e € E.
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A metric on a set V is defined as a functiond: V x V = R
o d(x,y)=0iffx=y
o d(x,y)=d(y,x)
o d(x,y)+d(y,z) > d(x,2)

Example: d(x,y) =>"", |x — yi| is a metric on R™
(called ¢1 metric)

Example: d(x,y) = (3.7, |x; — yi|P)Y/P is a metric on R™
(called ¢, metric)
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What is a Cut Metric

A length function induced by a subset (cut) S of V' is
defined as a function s : V x V — R

o 0s(x,y)=0ifx,y€ Sorx,ye$S
o 0s(x,y) = 1 otherwise

Easy to check that cut metric is in fact a (semi) metric
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Metrics as Vectors in R"(n—1)/2

o Any n-point metric can be associated with a vector in
R"("=1)/2 with each coordinate corresponding to a pair
of vertices from the metric

o Set of all metrics on V forms a convex cone in
Rn(n—l)/2

Definition of Cone: If d;, d» are in R"("~1)/2 then
ady + Bdy € R""=1)/2 for non-negative reals a, 3.
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Sparsest Cut in R"(n—1)/2

In this setting the sparsest cut problem can be restated as

C -

&

min —
all cut metrics S [ -

&

o C : vector in R""=1)/2 with ¢ being the capacity of
the edge between vertex i and j

° ﬁu : demand between vertex /i and j

o D - {5 is the dot product of two corresponding vectors.
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¢y and Cut Metric

Let us denote the positive cone generated by all cut metrics by CUT,,.

CUT, = {d|d = Y scv asds, as >0V S}

So the optimum to the above formulation will be achieved at some

extreme point on the cone.
. C:
CD* = min ——
decut, D -

SIS

Now we can claim:

@ Cut metrics are the extreme rays of the cone of 1 metrics

o CUT, = set of all £1 metrics
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Metric Cones
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Consider any metric in CUT,,.

For every S with as > 0, we have a dimension and in that dimension we
put value 0 for x € S and value agfor x € S.

Hence CUT, C #1 metrics.
Consider a set of n points from R".

Take one dimension d and sort the points in increasing value along that
dimension. Say we get vi, v, ..V as as the set of distinct values.

Define k — 1 cut metrics S; = {x|xq4 < vj11} and let o; = vjy1 — vi. Now
along this dimension, |xy — y4| = Zf-;l a;ds,.

We can construct cut metrics for every dimension. Hence we have a
metric in CUT,, for every n-point metric in /1.
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¢1 Cone = CUT, Cone

Given a /1 metric ;1 in RP
we can decompose (= Y o, Qsds
to at most nD cut metrics where g > 0.
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Sparsest Cut over /

Now the formulation for sparsest cut can be written as

ol
&

o =

= min _—
delymetrics [) . 55

But as sparsest cut is NP-hard, we cannot hope to solve over ¢; metrics.

Hence we consider a relaxation of this problem to the domain of set of all
metrics

C -

Q|

A=  min ——
deall metrics [ - d
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The Integrality Gap

Clearly,
N < oF,

We can solve for A* using a linear program
e min ) ¢jdj
e subject to:
o d,‘j < dy + dkj

OZDUCIIU:].
o d; >0
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Bound on the Integrality Gap

Solve the LP to find d that achieves A*.
Embed d in to /1 metrics with low distortion.
Get a cut metric from the ¢; metric.

Depending on the distortion the we can bound the integrality gap.

Result: Suppose for each metric d there exist a {1 metric p such that
d(x,y) < pu(x,y) < ad(x,y), forallx,y € V

Then sparsest cut LP has integrality gap at most a.
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Obtaining a Cut from an ¢; metric
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Obtaining a Cut from an ¢; metric

o Given a metric d € /; in space R?
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Obtaining a Cut from an ¢; metric

o Given a metric d € /; in space R?

o Repeat for all dimensions i =1...D
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Obtaining a Cut from an ¢; metric

o Given a metric d € /; in space R?

o Repeat for all dimensions i =1...D

@ Sort vertices v € V in increasing order of coordinates in dimension /

Group 5 (CS6234) Sparsest Cut April 12, 2013 47 / 66



Obtaining a Cut from an ¢; metric

o Given a metric d € /; in space R?

o Repeat for all dimensions i =1...D
@ Sort vertices v € V in increasing order of coordinates in dimension /

o Number them accordingly so that we have fi(v1) < fi(v2) < ...fi(vp)
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Obtaining a Cut from an ¢; metric

o Given a metric d € /; in space R?

o Repeat for all dimensions i =1...D
@ Sort vertices v € V in increasing order of coordinates in dimension /
@ Number them accordingly so that we have f;(v1) < fi(v2) < ... f(vy)
o Repeatforall j=1...n
o Create Set Sjj = {v|V's are sorted according to dim i;1 < k < j}
@ Calculate the sparsity ratio for S;; = ®(S;)
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Obtaining a Cut from an ¢; metric

o Given a metric d € /; in space R?

o Repeat for all dimensions i =1...D
@ Sort vertices v € V in increasing order of coordinates in dimension /
@ Number them accordingly so that we have f;(v1) < fi(v2) < ... f(vy)
o Repeatforall j=1...n
o Create Set Sjj = {v|V's are sorted according to dim i;1 < k < j}

@ Calculate the sparsity ratio for S;; = ®(S;)

o Take the cut S;; which has the minimum sparsity ratio,
giving the required approximate cut.
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Obtaining a Cut from an ¢; metric

Continued...

For d € ¢1, from the previous algorithm we have the representation:

Consider ¢ to be the sparsity ratio obtained from the values of d. So,
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Obtaining a Cut from an ¢; metric

Continued...

For d € ¢1, from the previous algorithm we have the representation:

Consider ¢ to be the sparsity ratio obtained from the values of d. So,

2ece c(e)x(e)

S T W
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Obtaining a Cut from an ¢; metric

Continued...

For d € ¢1, from the previous algorithm we have the representation:

Consider ¢ to be the sparsity ratio obtained from the values of d. So,

> eck c(e)x(e)
> d(i)y (i)
ZeeE c(e) ZSeS asds(e)
221 d(i) D oses asds(sis ti)
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Obtaining a Cut from an ¢; metric

Continued...

For d € ¢1, from the previous algorithm we have the representation:

Consider ¢ to be the sparsity ratio obtained from the values of d. So,

> eck c(e)x(e)
i d()y (i)
> ecke €(€) D sesasis(e
2.1 d(i) D ses asds(sis ti
Dses 05 Deck c(€)ds(e
> oses s 2 d(i)ds(si, ti

~— | ~— ~— | —

Contd...
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Obtaining a Cut from an ¢; metric

Continued...

By definition, ds(u,v) = 1 only when e = (u, v) crosses the cut defined by
Si.e. e €(S). This means,

D 5es s D _ece c(€)ds(e)
> ses s 2. d(i)ds(si, ti)
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Obtaining a Cut from an ¢; metric

Continued...

By definition, ds(u,v) = 1 only when e = (u, v) crosses the cut defined by
Si.e. e €(S). This means,

2ses @5 Dece €(€)s(e) 2 o5e5 S Decs(s) <€)
> ses s > d(i)ds(si, ti) 2 oses s 2iez(s) (i)
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Obtaining a Cut from an ¢; metric

Continued...

By definition, ds(u,v) = 1 only when e = (u, v) crosses the cut defined by
Si.e. e €(S). This means,

Yses @5 Yoece c(€)ds(e)  Dses @S Decs(s) c(€)
Sses sy d()ds(sit)  Dses s Yjer(sy d(i)
min as Y ecss c(e)
SeS as ZIGI(S) d(i)

v
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Obtaining a Cut from an ¢; metric

Continued...

By definition, ds(u,v) = 1 only when e = (u, v) crosses the cut defined by
Si.e. e €(S). This means,

Yses @5 Yoece c(€)ds(e)  Dses @S Decs(s) c(€)
Sses sy d()ds(sit)  Dses s Yjer(sy d(i)
min as Y ecss c(e)
SeS as ZIGI(S) d(i)

v
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Obtaining a Cut from an ¢; metric

Continued...

By definition, ds(u,v) = 1 only when e = (u, v) crosses the cut defined by

Si.e. e €(S). This means,

Dses s 2eck €(€)ds(e)

D _ses s Zeea(S) c(e)

> ses s > d(i)ds(si, ti)

v

2 oses s 2iez(s) (i)
05 D eess c(€)
min .
SeSs as ZIGI(S) d(/)
cle
min EGL)(_) =min®(S)
SeSs ZIGI(S) d(/) Ses
ISeSst. d(S) <o

49 / 66
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What are Metric Embeddings?
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What are Metric Embeddings?

Definition

Given metric spaces (X, d) and (X’,d’), a map g : X — X' is an isometric
embedding if, d(x,y) = d'(g(x),g(y)) Vx,y € X
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What are Metric Embeddings?

Definition
Given metric spaces (X, d) and (X’,d’), a map g : X — X' is an isometric
embedding if, d(x,y) = d'(g(x),g(y)) Vx,y € X

Non-isometric embeddings:
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What are Metric Embeddings?

Definition
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Given metric spaces (X, d) and (X’,d’), a map g : X — X' is an isometric
embedding if, d(x,y) = d'(g(x),g(y)) Vx,y € X

Non-isometric embeddings:

d(x,y)

© Contraction of g: @« = max ——————~
xyex d'(g(x),8(y))

d'(g(x),8(y))

© Expansion of g: 8 = er;ag)(( d(x,y)
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What are Metric Embeddings?

Definition

Given metric spaces (X, d) and (X’,d’), a map g : X — X' is an isometric
embedding if, d(x,y) = d'(g(x),g(y)) Vx,y € X

Non-isometric embeddings:

: d(x,y)
© Contraction of g: @« = max ——————~
xyex d'(g(x), g(y))

!
© Expansion of g: § = max M
x,y€X d(x,y)

© Distortion of g: ||g||dist = - 3
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Embedding into an /1 metric
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Embedding into an /1 metric

@ Space of terminal vertices T = {s;, tj|i = 1...k}, where
IT| =2k =27
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IT| =2k =27

o dist,(u, v) = shortest path distance u,v € V w.r.t metric x
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Embedding into an /1 metric

@ Space of terminal vertices T = {s;, tj|i = 1...k}, where

IT| =2k =27
o dist,(u, v) = shortest path distance u,v € V w.r.t metric x
@ For ACV and u € V :distc(u,A) = min, ¢ adisty(u,v)
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Embedding into an /1 metric

@ Space of terminal vertices T = {s;, tj|i = 1...k}, where
IT| =2k =27
o dist,(u, v) = shortest path distance u,v € V w.r.t metric x
@ For ACV and u € V :distc(u,A) = min, ¢ adisty(u,v)
@ For the dimensions of the embedding (D):
D = 7L where, L = glog k; 7 = log k; = D = O(log? k)
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Embedding into an /1 metric

@ Space of terminal vertices T = {s;, tj|i = 1...k}, where
IT| =2k =2
o dist,(u, v) = shortest path distance u,v € V w.r.t metric x
@ For ACV and u € V :distc(u,A) = min, ¢ adisty(u,v)
@ For the dimensions of the embedding (D):
D = 7L where, L = glog k; 7 = log k; = D = O(log? k)

Embedding

Repeat for I=1...L,t=1...7:
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Embedding into an /1 metric

@ Space of terminal vertices T = {s;, tj|i = 1...k}, where
IT| =2k =2
o dist,(u, v) = shortest path distance u,v € V w.r.t metric x
@ For ACV and u € V :distc(u,A) = min, ¢ adisty(u,v)
@ For the dimensions of the embedding (D):
D = 7L where, L = glog k; 7 = log k; = D = O(log? k)

Embedding

Repeat for I=1...L,t=1...7:

@ Construct sets Ay each of which has % = 27" points sampled with
replacement from T
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Embedding into an /1 metric

@ Space of terminal vertices T = {s;, tj|i = 1...k}, where
IT| =2k =2
o dist,(u, v) = shortest path distance u,v € V w.r.t metric x
@ For ACV and u € V :distc(u,A) = min, ¢ adisty(u,v)
@ For the dimensions of the embedding (D):
D = 7L where, L = glog k; 7 = log k; = D = O(log? k)

Embedding

Repeat for I=1...L,t=1...7:

@ Construct sets Ay each of which has % = 27" points sampled with
replacement from T

@ Also, define fy(v) = disty(v,Ay) Vv € V
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Is it a Good Embedding?

Lemma 1: For each edge e = (u,v), ||f(u) — f(v)||1 < Dx(e)
Lemma 2: With probability at least %:
||f(si) — f(ti)|}l1 > L-y(i)/88 foreachi=1...k

From (2):
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From (2):
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Is it a Good Embedding?

Lemma 1: For each edge e = (u,v), ||f(u) — f(v)||1 < Dx(e)
Lemma 2: With probability at least %:
||f(si) — f(ti)|}l1 > L-y(i)/88 foreachi=1...k

From (2):
k k k
Z dil|f(si) — F(t)|ln > Z diy(i)L/88 = Q(LZ diy(i))

k
= ) (Y dyli) =1)
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Is it a Good Embedding?

Continued...

Lemma 1: For each edge e = (u,v), ||f(u) — f(v)||1 < Dx(e)
Lemma 2: With probability at least %:
[|f(si) — f(ti)]]ls > L-y(i)/88 foreachi=1...k

From (1):
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Lemma 2: With probability at least %:
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From (1):
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Lemma 1: For each edge e = (u,v), ||f(u) — f(v)||1 < Dx(e)
Lemma 2: With probability at least %:
[|f(si) — f(ti)]]ls > L-y(i)/88 foreachi=1...k

From (1):
Y. c@lf(—fWIh < Y Dele)x(e)
(u,v)=ecE (u,v)=e€E
= D Z c(e)x(e)
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Is it a Good Embedding?

Continued...

Lemma 1: For each edge e = (u,v), ||f(u) — f(v)|| < Dx(e)
Lemma 2: With probability at least %:
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Lemma 1: For each edge e = (u,v), ||f(u) — f(v)|| < Dx(e)
Lemma 2: With probability at least %:
[|f(si) — f(ti)|]ls > L-y(i)/88 foreachi=1...k

This implies,
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Lemma 2: With probability at least %:
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Is it a Good Embedding?

Continued...

Lemma 1: For each edge e = (u,v), ||f(u) — f(v)|| < Dx(e)
Lemma 2: With probability at least %:
[|f(si) — f(ti)|]ls > L-y(i)/88 foreachi=1...k

This implies,
Pwwy=ece CONIF (W) —FWlls _ O(log? k) 3o er cle)x(e)
S dillf(si) = £(8)]]a B Q(L)
_ Iog k)z ()x(e)

Iogk gy

= O(log k) Z c(e)x(e)
eckE
= O(logk) ®*
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Proving Lemma 1

For each edge e = (u,v),||f(u) — f(v)||1 < Dx(e)
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Proof: For any AC V, e = (u,v) € E,
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Proving Lemma 1

For each edge e = (u,v),||f(u) — f(v)||1 < Dx(e)

Proof: For any AC V, e = (u,v) € E,

disty(u, A)
disty (v, A)

disty(u, v) + dist, (v, A)

<
< disty(u, v) + disty(v, A)
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Proving Lemma 1

For each edge e = (u,v),||f(u) — f(v)||1 < Dx(e)

Proof: For any AC V, e = (u,v) € E,

disty(u, A) < disty(u, v) + disty(v, A)
disty(v,A) < disty(u, v) + disty(v, A)
= disty(u, A) — distx(v,A) < x(e) (. distyx(u, v) = x(e); e = (u, v))
disty(v, A) — disty(u, A) < x(e)
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Proving Lemma 1

For each edge e = (u,v),||f(u) — f(v)||1 < Dx(e)

Proof: For any AC V, e = (u,v) € E,

disty(u, A) < disty(u, v) + disty(v, A)
disty(v,A) < disty(u, v) + disty(v, A)
= disty(u, A) — distx(v,A) < x(e) (. distyx(u, v) = x(e); e = (u, v))
disty(v, A) — disty(u, A) < x(e)

= [[f(v) = F(V)lh

> [fa(u) = fa(v)]
t,/
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Proving Lemma 1

For each edge e = (u,v),||f(u) — f(v)||1 < Dx(e)

Proof: For any AC V, e = (u,v) € E,

disty(u, A) < disty(u, v) + disty(v, A)
disty(v,A) < disty(u, v) + disty(v, A)
= disty(u, A) — distx(v,A) < x(e) (. distyx(u, v) = x(e); e = (u, v))
disty(v, A) — disty(u, A) < x(e)

= [[f(v) = F(V)lh

> [fa(u) = fa(v)]
t,/

T L
= > |disty(u, Ay) — dist (v, Ay)|

t=1 I=1
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Proving Lemma 1

For each edge e = (u,v),||f(u) — f(v)||1 < Dx(e)

Proof: For any AC V, e = (u,v) € E,

disty(u, A) < disty(u, v) + disty(v, A)
disty(v,A) < disty(u, v) + disty(v, A)
= disty(u, A) — distx(v,A) < x(e) (. distyx(u, v) = x(e); e = (u, v))
disty(v, A) — disty(u, A) < x(e)

= [[f(v) = F(V)lh

> [fa(u) = fa(v)]
t,/

T L
= > |disty(u, Ay) — dist (v, Ay)|
t=1 I=1
TlLx(e) = Dx(e)

IN
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Proof of Lemma 2: ||f(s;) — f(t;)||1 > L.y(i)/88, for
i=1, ...k

1F(s:) — F(£)]]1 > L.y(i)/88, for i =1, ...., k.

Proof Sketch: We want to
o Concentrate on single (s;, t;).

@ Show that f embeds s;, t; s.t. they are far apart compared to y(/).
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Proof of Lemma 2: ||f(s;) — f(t;)||1 > L.y(i)/88, for
i=1, ...k

1F(s:) — F(£)]]1 > L.y(i)/88, for i =1, ...., k.

Proof Sketch: We want to
o Concentrate on single (s;, t;).
@ Show that f embeds s;, t; s.t. they are far apart compared to y(/).
@ Show each coordinate f; contributes (r: — r;—1) with high probability.
@ By summing over all /, they all would most likely contribute
Q(L(re — re—1))-
@ Summing the bound for t = 1,....,f, We get sum =
Q(Lry) = Q(L.y(7))
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Concentrating on single commodity

T:{S,',t,' = 1,...,k},|T‘ =2k
For v € {S,', t,'}

Bu(v,r) ={w e T :disty(v,w) < r}
Bo(v,r) ={w e T :disty(v,w) < r}

April 12, 2013 59 / 66
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Concentrating on single commodity

T = {S,’,t,' = 1,...,k},|T‘ =2k
For v € {S,', t,'}
Bu(v,r) ={w e T :disty(v,w) < r}
Bo(v,r) ={w e T :disty(v,w) < r}
o Let rp = 0 and r; be the smallest r s.t. |By(u,r)| > 2, for both
uc {S,', t,'}
o Let % be the smallest t s.t. r; > y(i)/4,
Set ; = y(i)/4
@ But y(i) < distx(si, ti)
@ Thus Balls are disjoints.
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Proof of Lemma 2: ||f(s;) — f(¢;)|[1 > L.y(i)/88

Observation:
o ANBY(si,r:) = 0 < disty(si, A) > r;
© AN By(ti, re—1) # 0 < disty(ti, A) < r_1
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Proof of Lemma 2: ||f(s;) — f(¢;)|[1 > L.y(i)/88

Observation:
o ANBY(si,r:) = 0 < disty(si, A) > r;
o AN By(tj, re—1) # 0 < disty(ti, A) < rp—q
o Let, Ey,t=1,.....t,/ =1,...,L denote the event that
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Proof of Lemma 2: ||f(s;) — f(¢;)|[1 > L.y(i)/88

Observation:
o ANBY(si,r:) = 0 < disty(si, A) > r;
o AN By(tj, re—1) # 0 < disty(ti, A) < rp—q
o Let, Ey,t=1,.....t,/ =1,...,L denote the event that
Ay N B2(si,re) =0 and Ay N By(tiy re—1) # 0
@ E; implies
fu(si) — fu(ti)| = | distx(si, Ay) — distx(ti, Au)| > (re — re—1)
@ We will show that E; is likely to occur

Group 5 (CS6234 Sparsest Cut April 12, 2013
p
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Facts of Probability

o Let G,BC X

@ A is formed by selecting p elements of X independently, uniformly at
random

@ PrlANG # 0 and AN B =]
=Pr[ANG #0ANB =0].Pr]AN B = (]
> Pr[AN G £ 0].Pr[An B =]
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Facts of Probability

o Let G,BC X

@ A is formed by selecting p elements of X independently, uniformly at
random

@ PrlANG # 0 and AN B =]
=PrlANG #0AN B = 0].Pr][AN B = (]
> Pr[AN G # 0].Prf[AN B = (]

ovygxPMnY:mzﬂ—%V
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Facts of Probability

Let G, BC X

A is formed by selecting p elements of X independently, uniformly at
random

PrIANG # 0 and AN B =]
=PrfANG #0|ANB =10].Pr[An B =]
> Pr[AN G £ 0].Pr[An B =]

(]

(]

o VY C X, PrlANY =0] = (1- [zl
o lf p= % and tends to infinity
(1- %)p approaches 1/e and always in the interval [, 1]
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Facts of Probability

Let G, BC X

A is formed by selecting p elements of X independently, uniformly at
random

PrIANG # 0 and AN B =]
=Pr[ANG #0ANB =0].Pr]AN B = (]

> Pr[AN G £ 0].Pr[An B =]

VY C X, PrANY =0] = (1 - X

(]

(]

° ]
o lf p= % and tends to infinity
(1- %)p approaches 1/e and always in the interval [, 1]

o lfp= ﬁ% interval is [(3)7, ()7]
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Coming back to the proof
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Coming back to the proof

[+ A:At/
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Coming back to the proof

[+ A:At/
o X=T,|X|=2"
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Coming back to the proof

[+ A:At/
o X=T,|X|=2"
@ B=B2(si,r),|B| <2t
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Coming back to the proof

o A=Ay

e X=T,X|=27

@ B=B2(si,r),|B| <2t

o G = By(ti,rr_1),|G| >2t71
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Coming back to the proof

o A=Ay

e X=T,X|=27

@ B=B2(si,r),|B| <2t

o G = By(ti,rr_1),|G| >2t71
0o p=27"t
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Coming back to the proof

A= Ay

X=T,|X|=2"

B = B(si,rt),|B| <2

G = B(ti, rt—1), |G| > ot-1
p=27"t

Hence, p < % and p > %%
S PIANB =] > 1

— PrIAN G # 0] 2(1_(%)%)

e 6 6 ¢ ¢ ¢
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Coming back to the proof

A=Ay

X=T,X|=2"

B = B2(si, rt),|B| < 2t

G = Bi(ti,ri_1),|G| > 2t71
p=27"t

Hence, p < % and p > %%
—~ PrlANB=0] > 1
—PIANG #0] > (1-(1)?)

_(1\} .
PriEy) > U > L for =1, % =1,..,1L

e 6 6 ¢ ¢ ¢

(]
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Using Chernoff Bound to Summarize

o If we fix a particular t =1, ..., t
define indicator variable, X; € {0,1} for I =1,...,L
X, =1 — E; occurs

We use Chernoff bound to show that Zf‘:l x; does not deviate too much
from its expectation E[x] > &
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Using Chernoff Bound to Summarize

o If we fix a particular t =1, ..., t
define indicator variable, X; € {0,1} for I =1,...,L
X, =1 — E; occurs

We use Chernoff bound to show that Zf‘:l x; does not deviate too much
from its expectation E[x] > &

Chernoff Bound
If E[x;] = p then Pr[Zf‘:1 x; < 5] < exp(—p/8)

Group 5 (CS6234) Sparsest Cut April 12, 2013 63 / 66



Using Chernoff Bound to Summarize

o If we fix a particular t =1, ..., t
define indicator variable, X; € {0,1} for I =1,...,L
X, =1 — E; occurs

We use Chernoff bound to show that Zf‘:l x; does not deviate too much
from its expectation E[x] > &

Chernoff Bound

If E[x;] = p then Pr[Zf‘:1 x; < 5] < exp(—p/8)

@ Since u > 1—L1 = %, if say g = 200 — Probability is at most
1
2k log 2k "
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Using Chernoff Bound to Summarize

o If we fix a particular t =1, ..., t
define indicator variable, X; € {0,1} for I =1,...,L
X, =1 — E; occurs

We use Chernoff bound to show that Zf‘:l x; does not deviate too much
from its expectation E[x] > &

Chernoff Bound

If E[x;] = p then Pr[Zﬁ‘:1 x; < 5] < exp(—p/8)

@ Since u > 1—L1 = %, if say g = 200 — Probability is at most
1
2k log 2k "

@ Most importantly, if >, x > % then we know that for % of the
components fy, | =1,....,L E; occurs

o so, iy Ifu(si) — fu(ti)] = (re — re—1) 5
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Final pieces of the proof

o b Ifuls) — fult) = (re — ree1) s
@ We showed that for any fixed value of t = 1,.., £, above fails to hold

with probability less than 52z

@ Since t < log(2k), the above holds for every t = 1, .., with
probability at least 1 — %

@ Hence, with Probability > 1 — ﬁ

! A .
Sioi i fu(si) = fa(t)] = Yt (e —re—1) 5 = ns = y( &

Finally, we can conclude that using the above results and union bounds,
Lemma 2 holds for all / with high probability.
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