
Advanced Sampling Algorithms

1 Markov Chain Monte Carlo (MCMC) (vs) Ex-
act Sampling

Markov Chain approach - On a continuous state space, Markov Chain
theory starts with a transition kernel P(x,A) where x ∈ Rd and A ∈ B where
B is the Borel sigma field on Rd i.e., formed by operations of countable union,
countable intersection, and relative complement. Since, the transitions of a
particular x is a distribution function, P(x,Rd) = 1. An x also permits a
transition to itself. The major concern here is to estimate the existence and
convergence of the iterations of the transition kernel to an invariant distribution
π.

Markov Chain Monte Carlo (MCMC) - MCMC methods however turn
the theory around. Given the invariant density, π, without the transition kernel
we need methods to find and utilize a transition kernel P whose nth (n → ∞)
iteration leads to the invariant density. This is done in order to generate samples
from the invariant distribution. The process is generated at an arbitrary x and
iterated a large number of times. After these large number of iterations the
distribution of the observations generated from the simulation is approximately
equal to the target distribution.

Metropolis-Hastings [1] - The problem now is to find an appropriate transi-
tion kernel that will converge to the desired distribution π eventually. Metropolis-
Hastings devised a method to generate the transition matrix by introducing
the concept of Markov Chains into acceptance-rejection (A-R) sampling. A-R
sampling generates samples from a target density π(x) = f(x)/K. K is the
normalizing constant for the unnormalized density f(x). If h(x) is some known
density such that f(x) ≤ ch(x), it can generate candidates Z for a random
sample from π(x). Along with a random number generator from U [0, 1], which

generates u, Z is accepted as a sample from π(x) if u ≤ f(Z)
cH(Z) and rejected oth-

erwise. The selection of c is crucial to reduce the number of rejections. Markov
Chain is introduced here to check the reversibility condition that is mandatory
for attaining a stationary distribution.

Exact Sampling - The problem with all MCMC methods is this: a given
algorithm can be guaranteed to produce samples from the target density π
asymptotically, ‘once the chain has converged to the equilibrium distribution’.
But if one runs the Markov chain for too short a time T , then the samples
will come from some other distribution PT . For how long must the Markov
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chain be run before it has ‘converged’? Propp and Wilson (1996) allows one,
for certain chains, to answer this very question (how long to run the Markov
Chain?); furthermore Propp and Wilson show how to obtain ‘exact’ samples
from the target distribution π.

Propp-Wilson [2] - ‘Coupling from the past’ as the algorithm is called, works
on three basic concepts:

• Coalescence of Coupled Markov Chains: If several Markov chains starting
from different initial conditions share a single random-number generator,
then their trajectories in state space may coalesce; and having, coalesced,
will not separate again.

• Coupling from the Past: We can obtain exact samples by sampling from
a time T0 in the past, up to the present. If coalescence has occurred, the
present sample is an unbiased sample from the invariant distribution; if
not, we restart the simulation from a time T0 further into the past, reusing
the same random numbers.

• Monotonicity: For some Markov chains, it may be possible to detect co-
alescence of all trajectories without simulating all those trajectories. Or-
dering the states and finding two boundary states, the trajectories of the
rest of the states are confined within the two boundary state trajectories
which never cross.
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2 Markov Chain Monte Carlo (MCMC)

In MCMC algorithms, we want to obtain samples from a target distribution
π(.). For this purpose, we need to find and use a transition kernel P whose nth
iterate converges to π(.) for large n.

Moreover, P has to satisfy the reversibility condition w.r.t π(.) in order to
prove that π(.) is the stationary distribution of P.

Before to explain how Metropolis Hasting Algorithm works, we should recall
some definitions and theorems.

Definition 1: Let (X0, X1, ...) be a Markov chain with state space S =
s1, ..., sk and transition matrix P . A probability distribution π on S is said to
reversible for the chain (or for the transition matrix P ) if for all x, y ∈ {1, ..k}
we have:

π(x)p(x, y) > π(y)p(y, x) (1)

Theorem 1: Let (X0, X1, ...) be a Markov chain with state space S = s1, ..., sk
and transition matrix P . If π is a reversible distribution for the chain, then it
is also a stationary distribution for the chain.

2.1 Metropolis Hasting Algorithm (MH)

Input: A target distribution π(.)

Output: Set of samples

Algorithm 1

1: procedure MH
2: Initialize X0 and t = 0
3: loop
4: Sample Y from the proposal distribution q(.|Xt)
5: Sample a Uniform(0,1) random variable U
6: if U ≤ r(Xt, Y ) then
7: Xt+1 = Y
8: else
9: set Xt+1 = Xt

10: end if
11: Increment t
12: end loop
13: end procedure

Where the acceptance probability is r(X,Y ):

r(X,Y ) = min

(
1,
π(Y )q(X|Y )

π(X)q(Y |X)

)
(2)
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The explanation of Metropolis-Hastings is as follows:

• Metropolis Hasting Algorithm use a Proposal Distribution (q(x, y)) in or-
der to generate candidates.

• If q(x, y) satisfies the reversibility condition (Definition 1) by itself, then
we can be sure that π(.) is the stationary distribution (Theorem 1).

• Otherwise, we might have the case that for some x, y

π(x)q(x, y) > π(y)q(y, x) (3)

In words, it means that the movement from x to y is too often and from
y to x is too rarely.

• Due on this case, Metropolis-Hastings tries to correct this inequality re-
ducing the number of moves from x to y. And it introduces a probability
r(x, y) < 1 when move is made. If the move is not made, the process
returns x as value from the target distribution. It worthwhile to recall
that r(x, y) is the acceptance probability or the probability of move.

• Thus, transition from x to y are:

PMH(x, y) ≡ q(x, y)r(x, y) where x 6= y (4)

• The value of proposal distribution PMH(x, y) is essentially the value for
the transition matrix entry Px,y of the transition matrix P for the Markov
Chain. Here x and y are the states in the sate space S.

How is r(x, y) determined ?

• From (3), we know that the movement from y to x is not often. So r(y, x)
should be as large as possible, where its upper limit is 1 (because r(x, y)
is probability).

• Because it is important that PMH satisfies the reversibility condition then
we have that :

π(x)q(x, y)r(x, y) = π(y)q(y, x)r(y, x)

π(x)q(x, y)r(x, y) = π(y)q(y, x)

r(x, y) =
π(y)q(y, x)

π(x)q(x, y)
(5)

• If the inequality (3) is reversed then r(x, y) = 1 and

r(y, x) =
π(x)q(x, y)

π(y)q(y, x)
(6)
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• Then (5) and (6) ensure that the two sides of (3) are in balanced. In
other words, PMH(x, y) satisfies the reversibility . Thus its stationary
distribution is π(x).

How do we choose the proposal Distribution q(x, y):

For practical simulation studies, we can choose the q(x, y) from different
options:

1. We can consider q(x, y) as only symmetric proposals, having the form
q(y|x) = q(x|y) for all x and y. This option was given by Metropolis
Algorithm (1953).

2. Candidates might be drawn independently of the current location x. Also
these candidates are drawn uniformly from the set of states.

3. Other option is to exploit the known form of π to specify a candidate-
generating distribution.

2.2 Metropolis-Hastings and Ising Model

The Ising model can be described as in the framework of a d-dimensional
lattice. Let G = Ld is d dimensional lattice. We can attach the value of a
random variable Xi to the states of the Ising Model. A state in Ising model
space is combination of {−1,+1} at each site. So in d dimension one state
consists of a vector of the form −1,+1d. Now collecting samples from the state
space when an stationary distribution is reached is quite hard. We start with a
sample and generate the next sample from the current sample. The transitions
between samples are constructed so that in steady state the samples we obtain
from a stationary distribution.

For Ising model collecting samples from exact distribution when the transi-
tion matrix is unknown is an appropriate example of metropolis-hasting algo-
rithm.

The metropolis-hasting algorithm requires two things as follows,

1. A target probabbility distribution πX .

2. A proposal distribution q(x′|x) that tells how to generate x′ given a current
sample x.

The method has been outlined in Algorithm 1.
As discussed in the previous section choosing correct proposal distribution

is an important task and many subsequent calculations and the efficiency of
the algorithm will depend on q. For Ising model the situation is same except
few more intuitive notions are involved to form a better q. We can denote the
the spins as {t1, . . . , ti, . . . , tn} where ti ∈ {−1,+1}. We can further define a
function Wi : {t1, . . . , ti, . . . , tn} → {t1, . . . ,−ti, . . . , tn} which in other words
can be termed as one-spin-flip. This configuration can be denoted as s. Let the
probability of state s is P (s) and probability that ith spin takes the value ti is
Peq(ti).

For Ising model

ri(ti) = min{1, exp(−2β(titi+1 + ti−1ti))}
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Algorithm 2

1: procedure IsingMH(ri,MAXCOUNT)
2: Specify an initial configuration
3: Choose a lattice site i
4: Compute ri
5: loop
6: Generate a random number U ∈ [0, 1]
7: if ri(ti) > U then
8: ti → −ti
9: else

10: Continue until MAXCOUNT is reached
11: end if
12: end loop
13: end procedure

If ti is the ith lattice point then two neighbouring points are ti−1 and ti+1.
Clearly proposal distribution is uniform here and the transition is in form of

the inequality in the loop. ri is known as metropolis function.

3 Propp-Wilson Algorithm

Let’s recall the goal before to explain Propp-Wilson Algorithm.

Goal: We want to sample from distribution π.

As we explain before MCMC is an option for reaching the goal. However
MCMC raises the following questions:

• How long should the chain be run to attain equilibration?

• How can we ensure that the samples are not approximately but exactly
distributed w.r.t to π?

Propp-Wilson Algorithm tries to answer the above questions where:

• Propp-Wilson is a Las Vegas variant of MCMC.

• s is distributed exactly w.r.t π (perfect simulation).

• Detection of equilibration should be automatic.

Explanation Let S be the state space.

Let k be the total number of states.

Let (N1, N2, . . . , Nm) be an increasing sequence of positive integers.The neg-
ative numbers (−N1,−N2, . . .)will be used as starting times for the Markov
chain.

Let (U0, U1, . . .) be a sequence of i.i.d. random numbers ∼ U [0, 1].
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1. Set m = 1

2. For each s ∈ S, simulate the Markov chain starting at time −Nm in state
s and running up to time 0 using the trail move φ with the sequence
U−Nm+1, U−Nm+2, . . . , U−1, U0 (A subtle observation here is that we are
simulating a markov chain using the same random walk we have in Me-
trapolis Hastings Algorithm.)

3. If all k chains end up in the same state s at time 0, output s and stop.

4. Set m = m+ 1 and go to step 2

4 Coalescence

Following theorem is a crucial and necessary step while proving correctness
of Propp-Wilson Algorithm and argue that it does what it claims in practice
[3].

4.1 Theorem:

Let P be the transition matrix of an irreducible and aperiodic Markov
chain with state space S = {s1, s2, . . . , sk} and stationary distribution π =
(π1, π2, . . . , πk).

Let φ be a valid update function(trail move) for P, and consider the Propp-
Wilson algorithm with (N1, N2, . . .) = (1, 2, 4, 8, . . .).

Suppose that the algorithm terminates with probability 1, and write Y for
its output. Then for any i ∈ {1, 2, 3, . . . , k}, we have

P (Y = si) = πi (7)

Proof:
Fix an arbitrary state si ∈ S. In order to prove ,it is enough to show that

for any ε > 0, we have
|P (Y = si)− πi| ≤ ε (8)

By the assumption that the algorithm terminates with probability 1 we can
make sure that

P (the algorithm does not need to try starting times earlier than−NM )

≥ 1− ε, (9)

by picking M sufficiently large.

Important to note: Imagine running another Markov Chain from
time −NM to 0, with the same update function φ and same random
numbers U−NM+1, . . . , U0 as in the algorithm, but with the initial state
at time −NM chosen according to the stationary distribution π.

Let Ỹ be the state at time 0 having the distribution π.
Further more, Ỹ 6= Y if the event in equation (9) does not happen, hence,

P (Y 6= Ỹ ) ≤ ε (10)
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Now we have,

P (Y = si)− πi = P (Y = si)− P (Ỹ = si)

= (P (Y = si, Ỹ 6= si) + P (Y = si, Ỹ = si))

− (P (Ỹ = si, Y 6= si) + P (Ỹ = si, Y = si))

≤ P (Y = si, Ỹ 6= si)

≤ P (Y 6= Ỹ ) ≤ ε

And similarly,

πi − P (Y = si) = P (Ỹ = si)− P (Y = si)

= (P (Ỹ = si, Y 6= si) + P (Ỹ = si, Y = si))

− (P (Y = si, Ỹ 6= si) + P (Y = si, Ỹ = si))

≤ P (Ỹ = si, Y 6= si)

≤ P (Y 6= Ỹ ) ≤ ε

Therefore we have,

πi − P (Y = si) ≤ ε
P (Y = si)− πi ≤ ε

(11)

Hence proved.

4.2 Limitations

• Propp-Wilson is not feasible for large state problems, since the algorithm
requires to start Markov chains from all possible states in the State space.

• We then resolve to Sandwiching as already discussed in the class.
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