4 Approximation Algorithms

Group Members:

- 1. Geng Xue (A0095628R)
- 2. Cai Jingli (A0095623B)
- 3. Xing Zhe (A0095644W)
- 4. Zhu Xiaolu (A0109657W)
- 5. Wang Zixiao (A0095670X)
- 6. Jiao Qing (A0095637R)
- 7. Zhang Hao (A0095627U)

Introduction

Geng Xue

Optimization problem

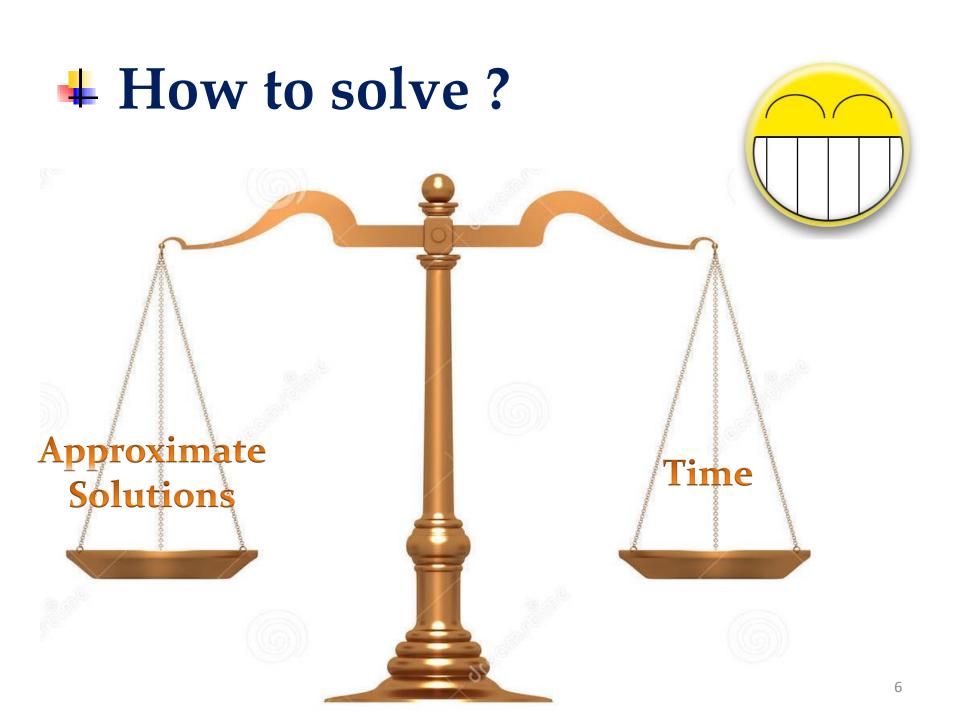
Find the minimum/maximum of ...

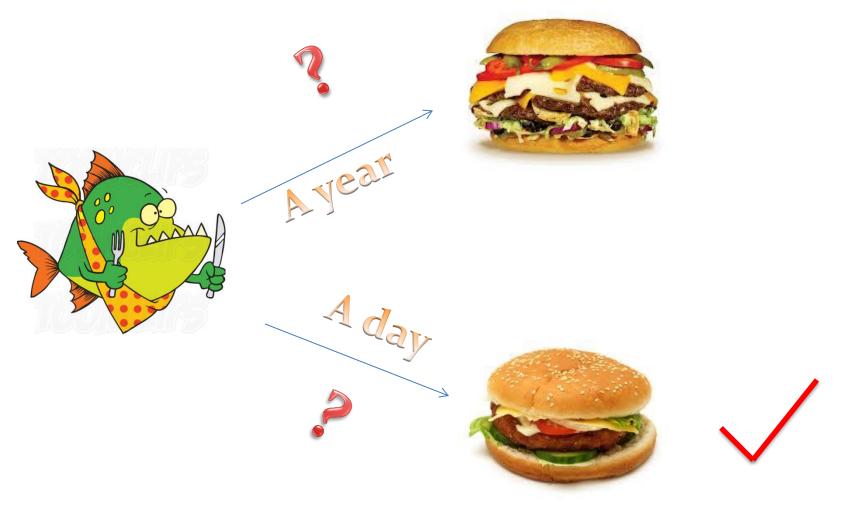
- Vertex Cover : A minimum set of vertices that covers all the edges in a graph.

A NP optimization problem

- The hardness of NP optimization is NP hard.
 - The hardest problem in NP
- Can't be solved in polynomial time.

Time consuming !!!





How to solve ?

Approximation Algorithm!
sub-optimal solution!
Polynomial Time!

How to evaluate ?

Mine is better!

Standard!

How to evaluate ?

OPT

Exact optimal value of optimization problem.

Factor *relative performance guarantee.*

- Sub-optimal solution : $\rho \times OPT$ (ρ is factor).
- The closer factor ρ is to 1, The better the algorithm is.

Set cover

- It leads to the development of fundamental techniques for the entire approximation algorithms field.
- Due to set cover, many of the basic algorithm design techniques can be explained with great ease.

What is set cover ?

- Definition:
 - Given a universe *U* of n elements, a collection of subsets of $U, S = \{S_1, S_2, \dots, S_k\}$, and a cost function $c: S \rightarrow Q^+$, find a minimum cost subcollection of *S* that covers all elements of *U*.

What is set cover ?

• Example:

S	Sets	Cost
S ₁	{1,2}	1
S ₂	{3,4}	1
S ₃	{1,3}	2
S ₄	{5,6}	1
S ₅	{1,5}	3
S_6	{4,6}	1

Universal Set : $U = \{1, 2, 3, 4, 5, 6\}$

Find a sub-collection of *S* that covers all the elements of *U* with minimum cost.

Solution? $S_1 S_2 S_4$ Cost = 1 + 1 + 1 = 3

Approximation algorithms to set cover problem

- Combinatorial algorithms
- Linear programming based Algorithms (LP-based)

Combinatorial & LP-based

- Combinatorial algorithms
 - Greedy algorithms
 - Layering algorithms
- LP-based algorithms
 - Dual Fitting
 - Rounding
 - Primal–Dual Schema

Greedy set cover algorithm

Cai Jingli

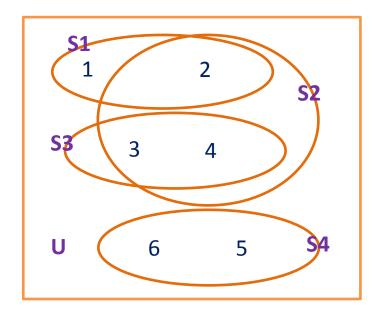
Greedy set cover algorithm

- 1. $C \leftarrow \emptyset$
- 2. While $C \neq U$ do

Find the most cost-effective set in the current iteration, say S. Let $\alpha = \frac{\text{cost}(S)}{|S-C|}$, i.e., the cost-effectiveness of S. Pick S, and for each $e \in S - C$, set $\text{price}(e) = \alpha$. $C \leftarrow C \cup S$.

3. Output the picked sets.

Where C is the set of elements already covered at the beginning of an iteration and α is the average cost at which it covers new elements.



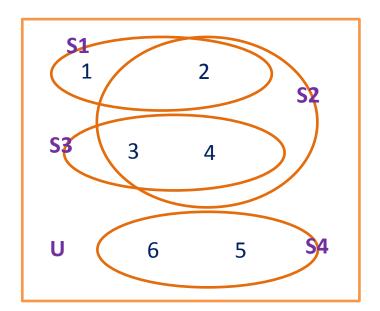
subset	cost
S1 = {1, 2}	1
S2 = {2, 3, 4}	2
S3 = {3, 4}	3
S4 = {5, 6}	3

Iteration 1: C = {} $\alpha 1 = 1 / 2 = 0.5$ $\alpha 2 = 2 / 3 = 0.67$ $\alpha 3 = 3 / 2 = 1.5$ $\alpha 4 = 3 / 2 = 1.5$ C = {1, 2} Price(1) = 0.5 Price(2) = 0.5

Iteration 2: C = {1, 2}
$\alpha 2 = 2 / 2 = 1$
$\alpha 3 = 3 / 2 = 1.5$
$\alpha 4 = 3 / 2 = 1.5$

C = {1, 2, 3, 4} Price(3) = 1 Price(4) = 1 Iteration 3: C = {1, 2, 3, 4 } $\alpha 3 = 3 / 0 = infinite$ $\alpha 4 = 3 / 2 = 1.5$

C = {1, 2, 3, 4, 5, 6} Price(5) = 1.5 Price(6) = 1.5



subset	cost
S1 = {1, 2}	1
S2 = {2, 3, 4}	2
S3 = {3, 4}	3
S4 = {5, 6}	3

The picked sets = $\{S_1, S_2, S_4\}$ Total cost = Cost(S1)+Cost(S2)+Cost(S4) = Price(1) + Price(2) + ... + Price(6) = 0.5 + 0.5 + 1 + 1 + 1.5 + 1.5 = 6

H Theorem

• The greedy algorithm is an H_n factor approximation algorithm for the minimum set cover problem, where

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$\sum_{i} Cost(Si) \le H_n \cdot OPT$$

Proof

- 1) We know $\sum_{e \in U} price(e) = \text{cost of the greedy}$ algorithm = $c(S_1) + c(S_2) + \dots + c(S_m)$.
- 2) We will show $price(e_k) \leq \frac{OPT}{n-k+1}$, where e_k is the *kth* element covered.

If 2) is proved then theorem is proved also. $\sum_{i} Cost(Si) = \sum_{e \in U} price(e) \le \sum_{k=1}^{n} \frac{OPT}{n-k+1} = OPT * \sum_{k=1}^{n} \frac{1}{n-k+1}$ $= OPT * (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}) = H_n \cdot OPT$

$$price(e_k) \le \frac{OPT}{n-k+1}$$

- Say the optimal sets are O_1, O_2, \dots, O_p , so $OPT = c(O_1) + c(O_2) + \dots + c(O_p) = \sum_{i=1}^p c(O_i)$
- Now, assume the greedy algorithm has covered the elements in C so far.

$$\begin{aligned} U - C &| \le |O_1 \cap (U - C)| + \dots + |O_p \cap (U - C)| \\ &= \sum_{i=1}^p |O_i \cap (U - C)| \end{aligned}$$

• price $(e_k) = \alpha \le \frac{c(O_i)}{|O_i \cap (U-C)|}$ (2), i=1,...,p. we know this because of greedy algorithm

$$price(e_k) \le \frac{OPT}{n-k+1}$$

(1) OPT =
$$\sum_{i=1}^{p} c(O_i)$$

(2) $|U - C| \le \sum_{i=1}^{p} |O_i \cap (U - C)|$
(3) $c(O_i) \ge \alpha \cdot |O_i \cap (U - C)|$

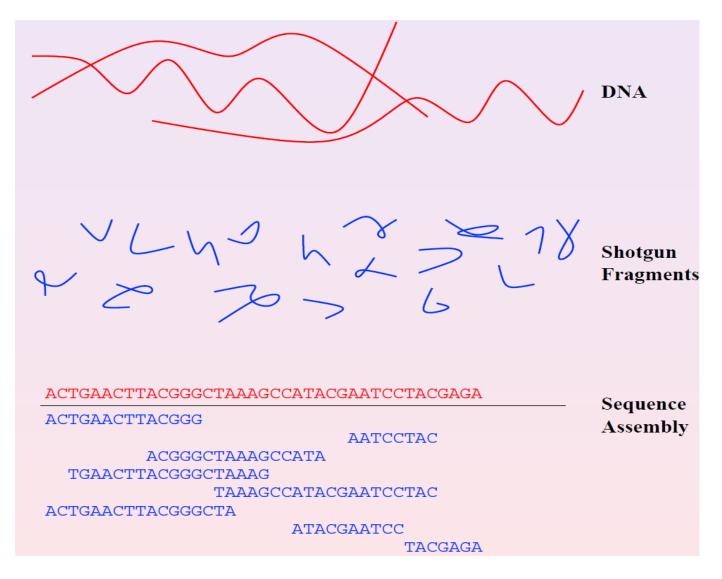
• So
$$OPT = \sum_{i=1}^{p} c(O_i) \ge \alpha \cdot \sum_{i=1}^{p} |O_i \cap (U - C)| \ge \alpha \cdot |U - C|$$

 $|U - C| = n - k + 1$
 $price(e_k) = \alpha \le \frac{OPT}{n - k + 1}$ ²³

Shortest Superstring Problem (SSP)

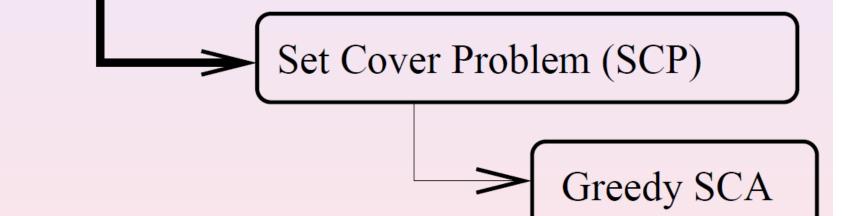
- Given a finite alphabet Σ , and set of n strings, $S = \{s_1, \dots, s_n\} \subseteq \Sigma^+$.
- Find a shortest string *s* that contains each *s_i* as a substring.
- Without loss of generality, we may assume that no string s_i is a substring of another string s_j , $j \neq i$.

Application: Shotgun sequencing



Approximating SSP Using Set Cover

Shortest Superstring Problem (SSP)

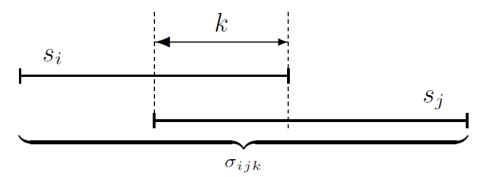


Set Cover Based Algorithm

- Set Cover Problem:
 - Choose some sets that cover all **elements** with least cost

• Elements

- The input strings
- Subsets
 - σ_{ijk} = string obtained by overlapping input strings s_i and s_j , with k letters.
 - $-\beta = \mathbf{S} \cup \sigma_{ijk}, all i, j, k$
 - Let $\pi \in \beta$
 - $set(\pi) = \{s \in S \mid s \text{ is a substr. of } \pi\}$



Set Cover Based Algorithm

- Set Cover Problem:
 - Choose some sets that cover all **elements** with least cost

• Elements

- The input strings
- Subsets
 - σ_{ijk} = string obtained by overlapping input strings s_i and s_j , with k letters.
 - $-\beta = \mathbf{S} \cup \sigma_{ijk}, all i, j, k$
 - Let $\pi \in \beta$
 - $set(\pi) = \{s \in S \mid s \text{ is a substr. of } \pi\}$
- Cost of a subset
 - set(π) is $|\pi|$
- A solution to SSP is the concatenation of π obtained from SCP

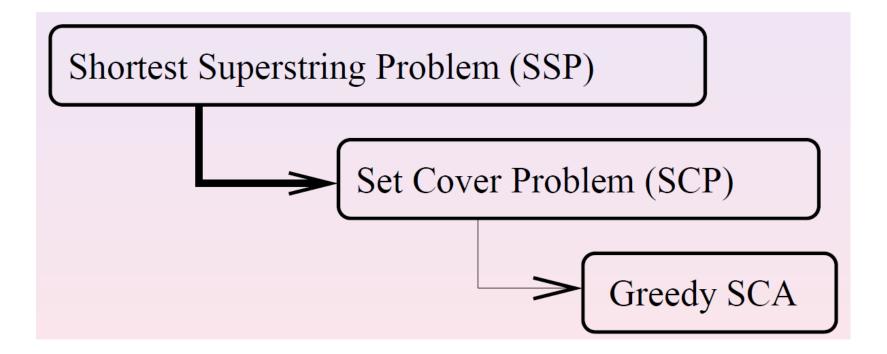
Example

• S = {CATGC, CTAAGT, GCTA, TTCA, ATGCATC}

π	Set	Cost
CATGC CTAAGT CATGCTAAGT	CATGC, CTAAGT, GCTA	10
CATGC GCTA CATGCTA	CATGC, GCTA	7
CATGC ATGCATC ATGCATCATGC	CATGC, ATGCATC	11
CTAAGT TTCA CTAAGTTCA	CTAAGT, TTCA	9
ATGCATC CTAAGT ATGCATCTAAGT	CTAAGT, ATGCATC	12

GCTA ATGCATC GCTATGCATC	GCTA, ATGCATC	10
TTCA ATGCATC TTCATGCATC	TTCA, ATGCATC, CATGC	10
GCTA . CTAAGT GCTAAGT	GCTA, CTAAGT	7
TTCA CATGC TTCATGC	CATGC, TTCA	7
CATGC . ATGCATC CATGCATC	CATGC, ATGCATC	8
CATGC	CATGC	5
CTAAGT	CTAAGT	6
GCTA	GCTA	4
TTCA	TTCA	4
ATGCATC	ATGCATC	7 30

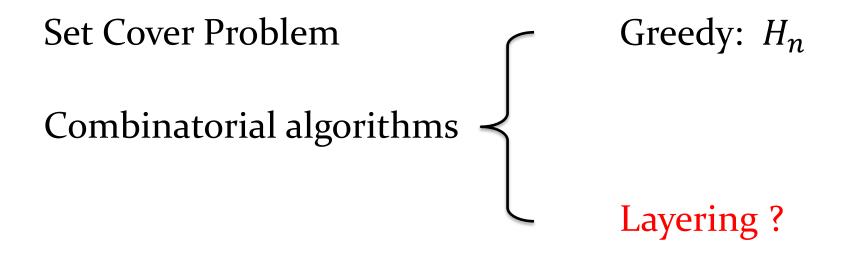
$OPT \leq OPT_{SCA} \leq 2H_n \cdot OPT$



Layering Technique

Xing Zhe

Layering Technique



Vertex Cover Problem

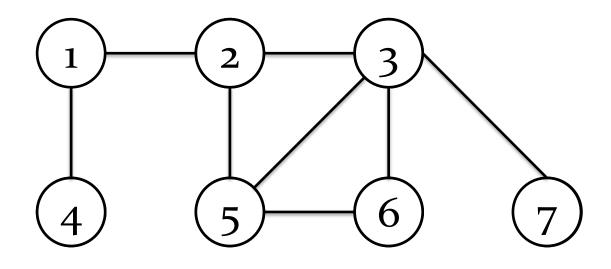
Definition:

Given a graph G = (V, E), and a weight function $w: V \rightarrow Q^+$ assigning weights to the vertices, find a minimum weighted subset of vertices $C \subseteq V$, such that C "covers" all edges in E, i.e., every edge $e_i \in E$ is incident to at least one vertex in C.

Vertex Cover Problem

Example:

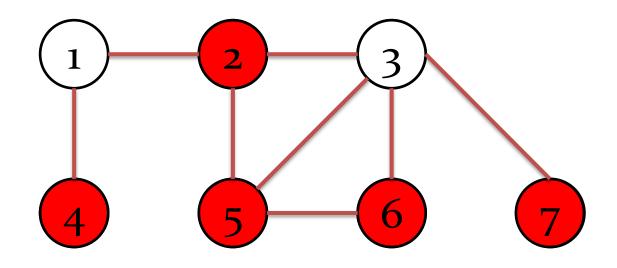
all vertices of unit weight



Vertex Cover Problem

Example:

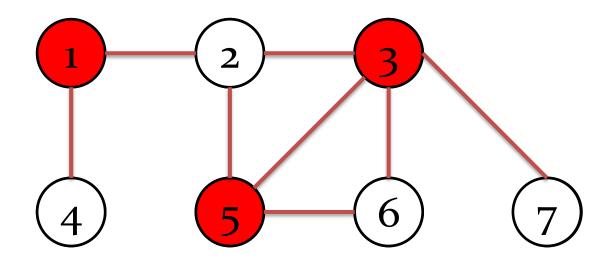
all vertices of unit weight



Total cost = 5

Example:

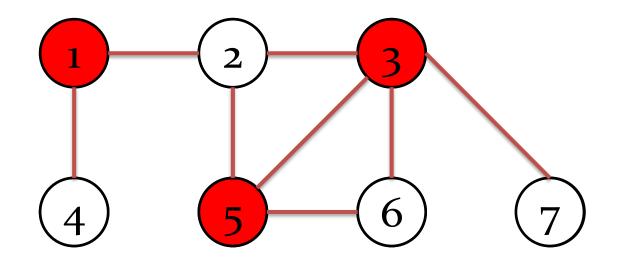
all vertices of unit weight



Total cost = 3

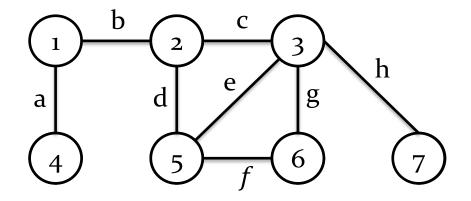
Example:

all vertices of unit weight

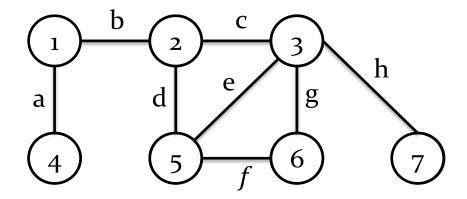


Total cost = $3 \leftarrow OPT$

Vertex cover is a special case of set cover.

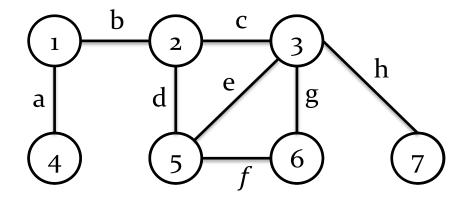


Vertex cover is a special case of set cover.



Edges are **elements**, **vertices** are **subsets**

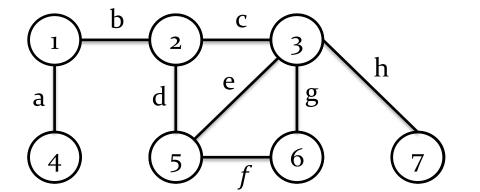
Vertex cover is a special case of set cover.

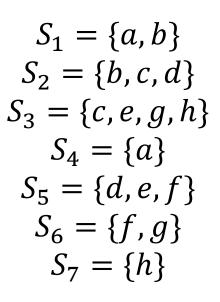


Edges are **elements**, **vertices** are **subsets**

Universe $U = \{a, b, c, d, e, f, g, h\}$

Vertex cover is a special case of set cover.





Edges are **elements**, **vertices** are **subsets**

Universe $U = \{a, b, c, d, e, f, g, h\}$

A collection of subsets $S = \{S_1, S_2, S_3, S_4, S_5, S_6, S_7\}$

Notation

1) frequency

2) f : the frequency of the most frequent element.

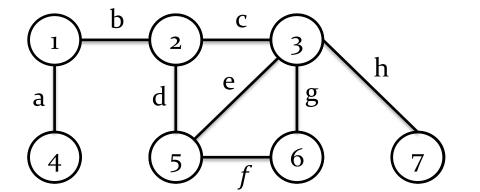
Notation

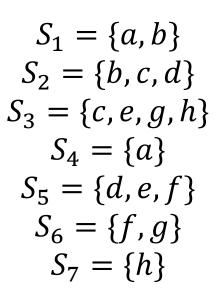
1) frequency

2) f : the frequency of the most frequent element.

In the vertex cover problem, f = ?

Vertex cover is a special case of set cover.



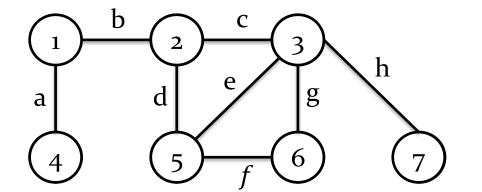


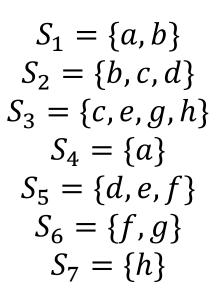
Edges are **elements**, **vertices** are **subsets**

Universe $U = \{a, b, c, d, e, f, g, h\}$

A collection of subsets $S = \{S_1, S_2, S_3, S_4, S_5, S_6, S_7\}$

Vertex cover is a special case of set cover.





Edges are **elements**, **vertices** are **subsets**

Universe $U = \{a, b, c, d, e, f, g, h\}$

A collection of subsets $S = \{S_1, S_2, S_3, S_4, S_5, S_6, S_7\}$

Vertex cover problem is a set cover problem with f = 2

Approximation factor

1) frequency

2) f : the frequency of the most frequent element.

In the vertex cover problem, f = 2

Approximation factor

1) frequency

2) f : the frequency of the most frequent element.

In the vertex cover problem, f = 2

Set Cover ProblemVertex Cover ProblemLayering Algorithmfactor = ffactor = 2

arbitrary weight function: $w: V \rightarrow Q^+$

arbitrary weight function: $w: V \rightarrow Q^+$

degree-weighted function: $\exists c > 0 \text{ s.t.}$ $\forall v \in V, w(v) = c \cdot \deg(v)$

Degree weighted function

Lemma:

If $w: V \to Q^+$ is a degree-weighted function. Then $w(V) \leq \mathbf{2} \cdot OPT$

If $w: V \to Q^+$ is a degree-weighted function. Then $w(V) \le 2 \cdot OPT$

If $w: V \to Q^+$ is a degree-weighted function. Then $w(V) \le 2 \cdot OPT$

Proof:

degree-weighted function, $w(v) = c \cdot deg(v)$

If $w: V \rightarrow Q^+$ is a degree-weighted function. Then $w(V) \leq 2 \cdot OPT$

Proof:

degree-weighted function, $w(v) = c \cdot deg(v)$

 C^* is the optimal vertex cover in G, $\sum_{v \in C^*} \deg(v) \ge |E|$

If $w: V \rightarrow Q^+$ is a degree-weighted function. Then $w(V) \leq 2 \cdot OPT$

Proof:

degree-weighted function, $w(v) = c \cdot deg(v)$

 C^* is the optimal vertex cover in G, $\sum_{v \in C^*} \deg(v) \ge |E|$

 $OPT = w(C^*) = c \cdot \sum_{v \in C^*} \deg(v) \ge c \cdot |E|$ (1)

If $w: V \rightarrow Q^+$ is a degree-weighted function. Then $w(V) \leq 2 \cdot OPT$

Proof:

degree-weighted function, $w(v) = c \cdot deg(v)$

 C^* is the optimal vertex cover in G, $\sum_{v \in C^*} \deg(v) \ge |E|$

$$OPT = w(C^*) = c \cdot \sum_{v \in C^*} \deg(v) \ge c \cdot |E| \quad (1)$$

in worst case, we pick all vertices. handshaking lemma, $\sum_{v \in V} \deg(v) = 2|E|$

If $w: V \rightarrow Q^+$ is a degree-weighted function. Then $w(V) \leq 2 \cdot OPT$

Proof:

degree-weighted function, $w(v) = c \cdot deg(v)$

 C^* is the optimal vertex cover in G, $\sum_{v \in C^*} \deg(v) \ge |E|$

$$OPT = w(C^*) = c \cdot \sum_{v \in C^*} \deg(v) \ge c \cdot |E|$$
 (1)

in worst case, we pick all vertices. handshaking lemma, $\sum_{v \in V} \deg(v) = 2|E|$ $w(V) = \sum_{v \in V} w(v) = \sum_{v \in V} c \cdot \deg(v) = c \cdot \sum_{v \in V} \deg(v) = c \cdot 2|E|$ (2)

If $w: V \rightarrow Q^+$ is a degree-weighted function. Then $w(V) \leq 2 \cdot OPT$

Proof:

degree-weighted function, $w(v) = c \cdot deg(v)$

 C^* is the optimal vertex cover in G, $\sum_{v \in C^*} \deg(v) \ge |E|$

$$OPT = w(C^*) = c \cdot \sum_{v \in C^*} \deg(v) \ge c \cdot |E| \quad (1)$$

in worst case, we pick all vertices. handshaking lemma, $\sum_{v \in V} \deg(v) = 2|E|$ $w(V) = \sum_{v \in V} w(v) = \sum_{v \in V} c \cdot \deg(v) = c \cdot \sum_{v \in V} \deg(v) = c \cdot 2|E|$ (2)

from (1) and (2), $w(V) \leq 2 \cdot OPT$

Basic idea:

arbitrary weight function

several degree-weighted functions

nice property (*factor* = 2) holds in each layer

1) remove all degree zero vertices, say this set is D_0

2) compute $c = min\{w(v)/deg(v)\}$

3) compute degree-weighted function $\mathbf{t}(v) = c \cdot \mathbf{deg}(v)$

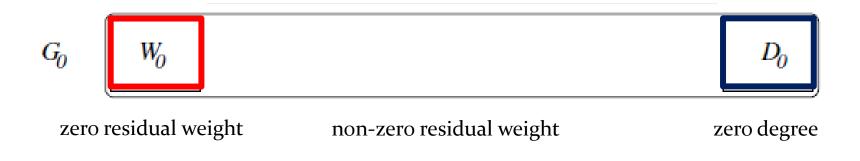
4) compute residual weight function w'(v) = w(v) - t(v)

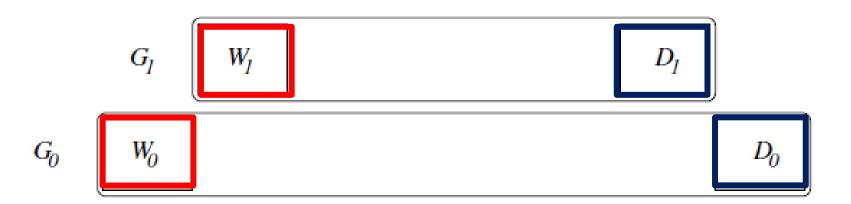
5) let $W_0 = \{v \mid w'(v) = 0\}$, pick zero residual vertices into the cover set

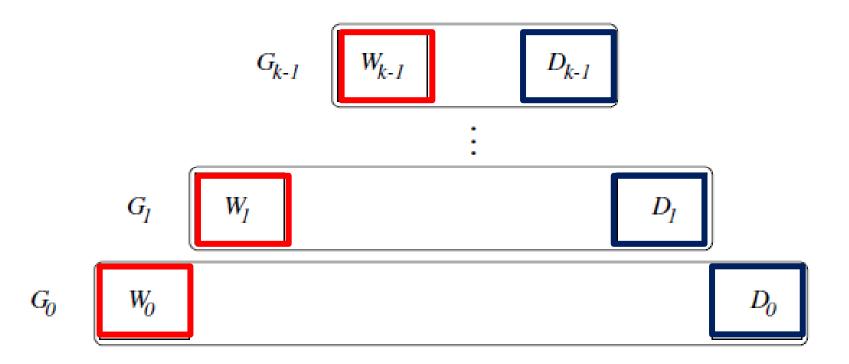
6) let G_1 be the graph induced on $V - (D_0 \cup W_0)$

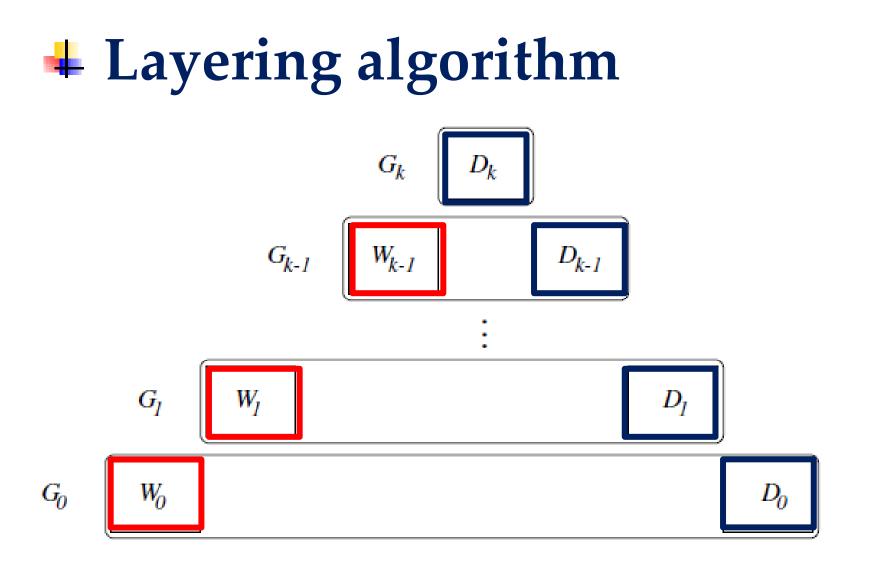
7) repeat the entire process on G_1 w.r.t. the **residual** weight function,

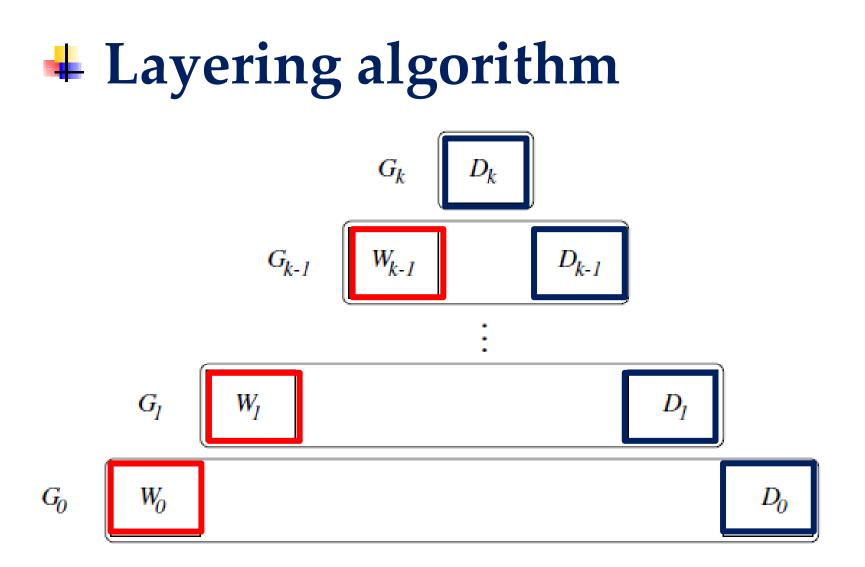
until all vertices are of degree zero







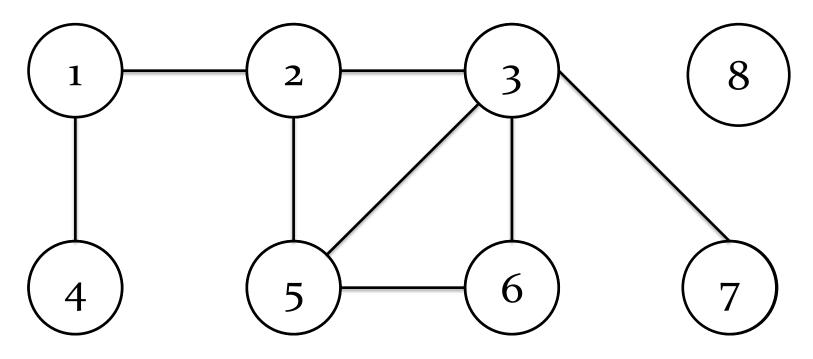


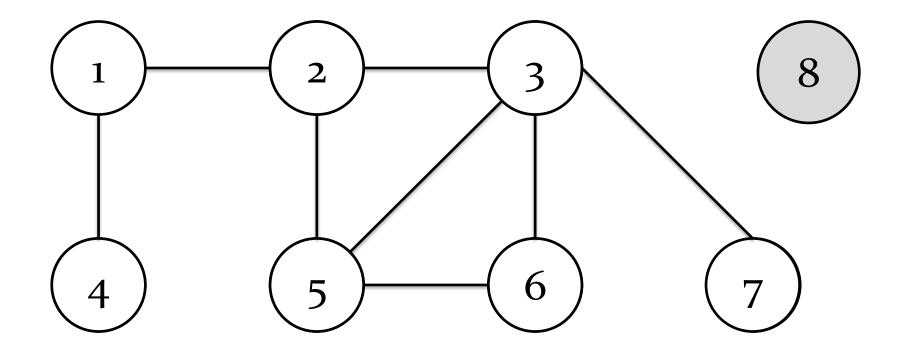


The vertex cover chosen is $C = W_0 \cup W_1 \cup ... \cup W_{k-1}$ Clearly, $V - C = D_0 \cup D_1 \cup ... \cup D_k$

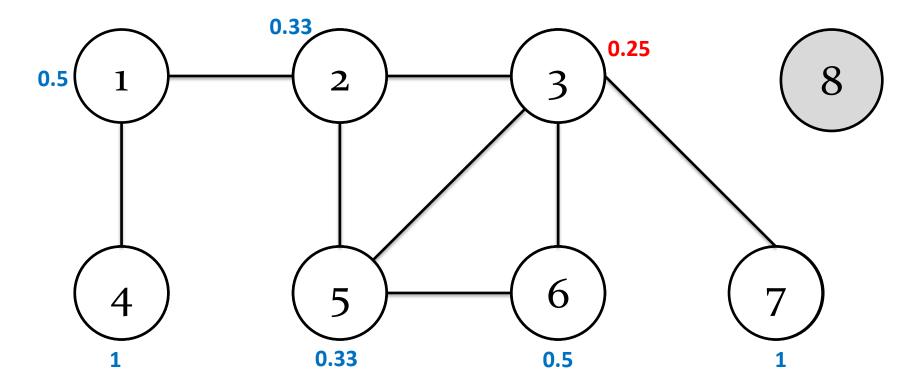
Example:

all vertices of unit weight: w(v) = 1

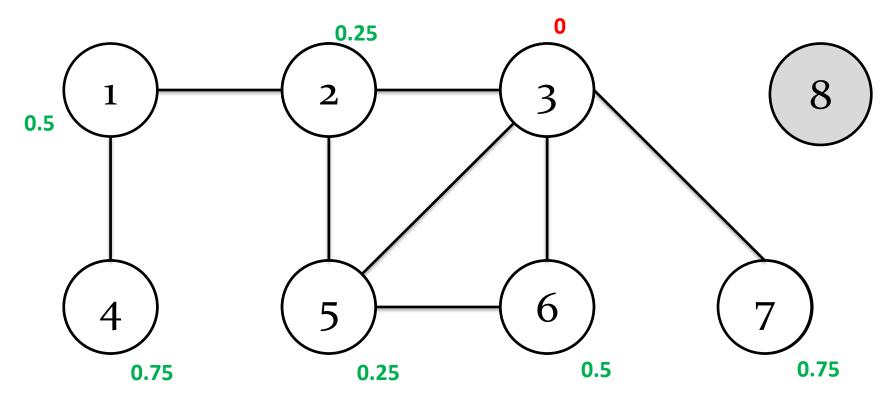




 $D_0 = \{ 8 \}$

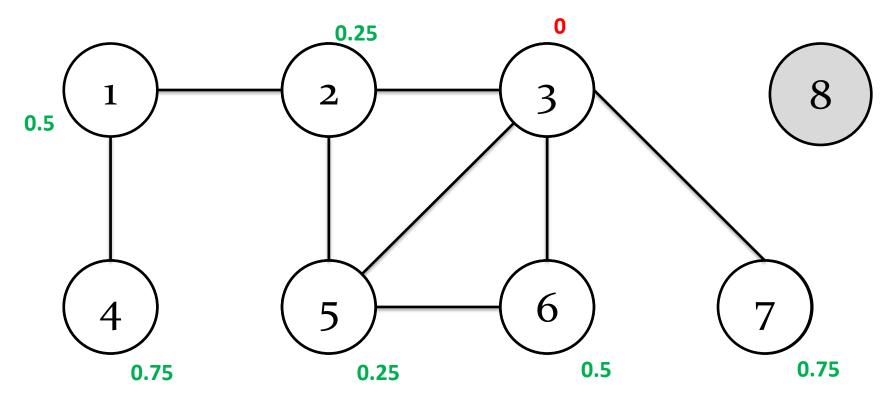


 $D_0 = \{ 8 \}$ compute c = $min\{w(v)/deg(v)\} = 0.25$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.25 \cdot deg(v)$

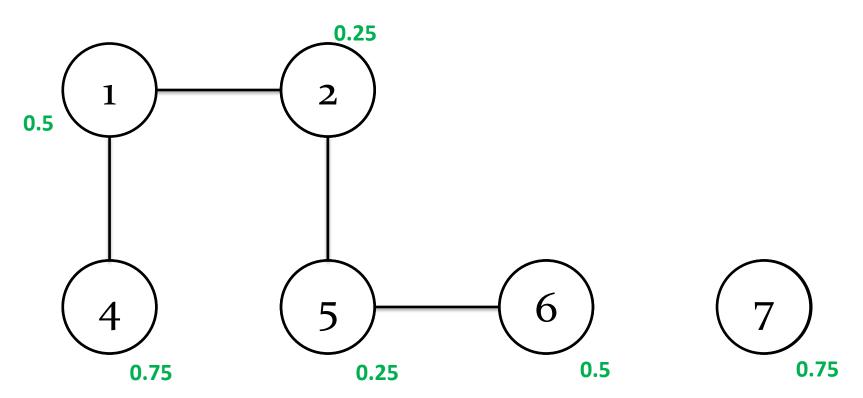


 $D_0 = \{ 8 \}$

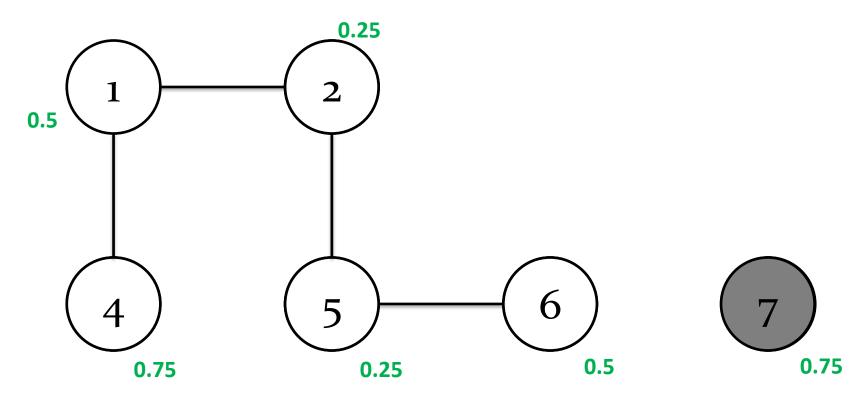
compute $c = min\{w(v)/deg(v)\} = 0.25$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.25 \cdot deg(v)$ compute residual weight: w'(v) = w(v) - t(v)



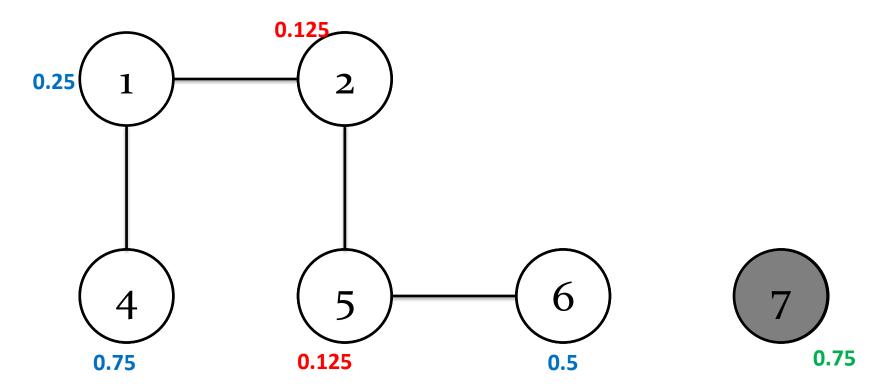
 $D_0 = \{ 8 \}$ compute c = $min\{w(v)/deg(v)\} = 0.25$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.25 \cdot deg(v)$ compute residual weight: w'(v) = w(v) - t(v) $W_0 = \{ 3 \}$



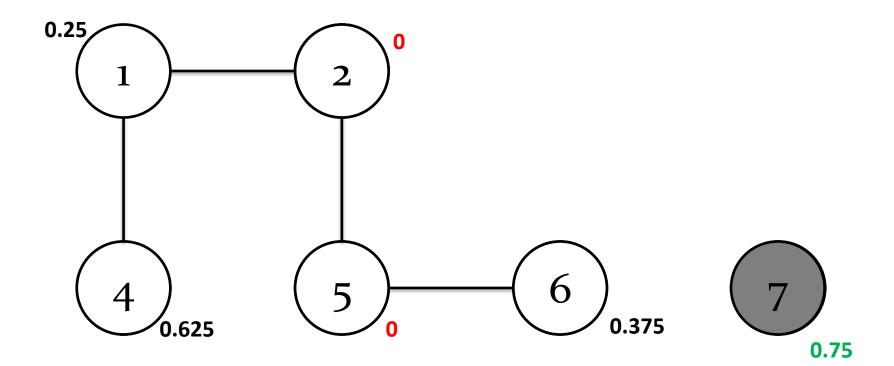
 $D_0 = \{8\}$ compute c = $min\{w(v)/deg(v)\} = 0.25$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.25 \cdot deg(v)$ compute residual weight: w'(v) = w(v) - t(v) $W_0 = \{3\}$ remove D_0 and W_0



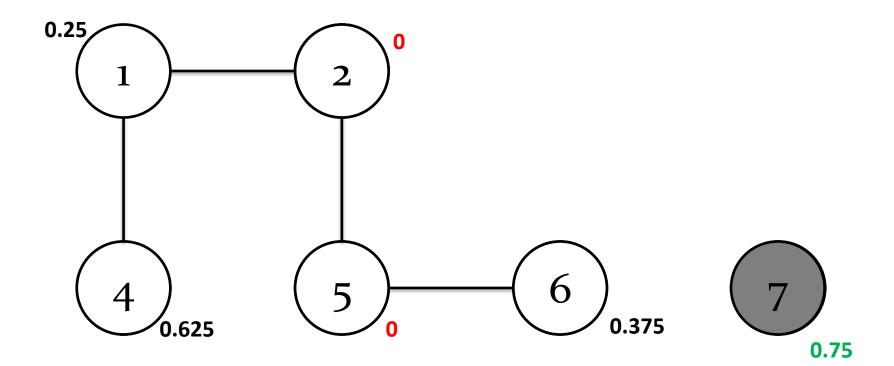
 $D_1 = \{ \ 7 \ \}$



 $D_1 = \{ 7 \}$ compute c = $min\{w(v)/deg(v)\} = 0.125$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.125 \cdot deg(v)$

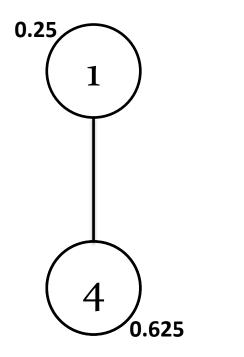


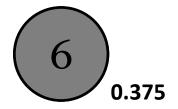
 $D_1 = \{ 7 \}$ compute c = $min\{w(v)/deg(v)\} = 0.125$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.125 \cdot deg(v)$ compute residual weight: w'(v) = w(v) - t(v)



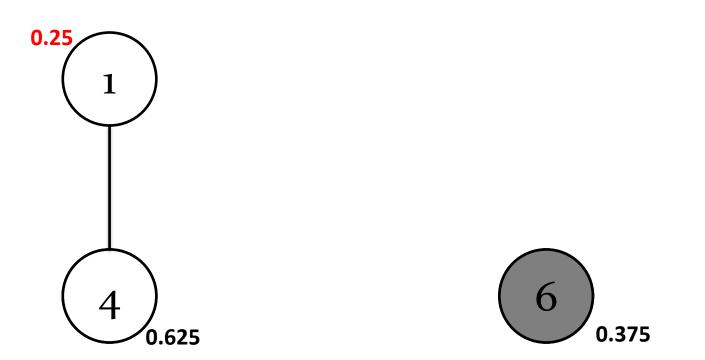
 $D_1 = \{7\}$ compute c = $min\{w(v)/deg(v)\} = 0.125$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.125 \cdot deg(v)$ compute residual weight: w'(v) = w(v) - t(v) $W_1 = \{2, 5\}$

 $D_{1} = \{7\}$ compute c = $min\{w(v)/deg(v)\} = 0.125$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.125 \cdot deg(v)$ compute residual weight: w'(v) = w(v) - t(v) $W_{1} = \{2, 5\}$ remove D_{1} and W_{1}

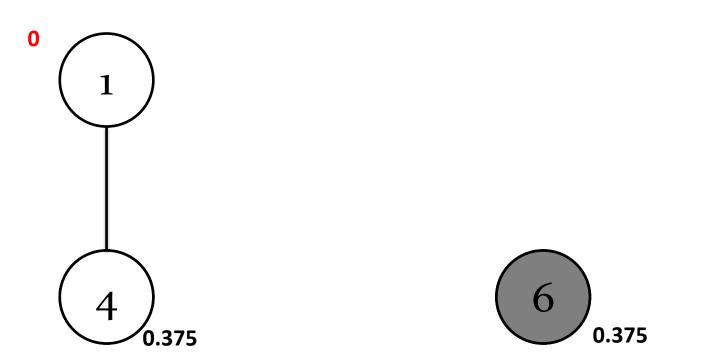




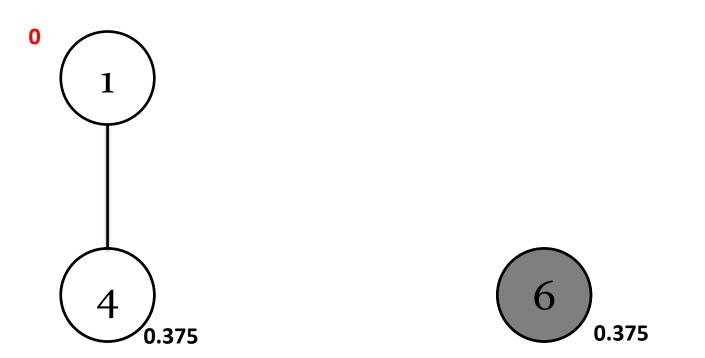
 $D_2 = \{ 6 \}$



 $D_2 = \{ 6 \}$ compute c = $min\{w(v)/deg(v)\} = 0.25$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.25 \cdot deg(v)$



 $D_2 = \{ 6 \}$ compute c = $min\{w(v)/deg(v)\} = 0.25$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.25 \cdot deg(v)$ compute residual weight: w'(v) = w(v) - t(v)

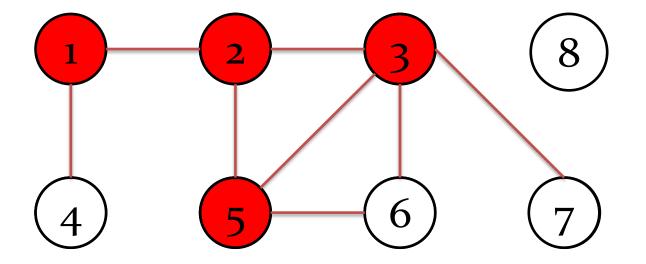


 $D_{2} = \{ 6 \}$ compute c = $min\{w(v)/deg(v)\} = 0.25$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.25 \cdot deg(v)$ compute residual weight: w'(v) = w(v) - t(v) $W_{2} = \{ 1 \}$

 $D_{2} = \{ 6 \}$ compute $c = min\{w(v)/deg(v)\} = 0.25$ degree-weighted function: $t(v) = c \cdot deg(v) = 0.25 \cdot deg(v)$ compute residual weight: w'(v) = w(v) - t(v) $W_{2} = \{ 1 \}$ remove D_{2} and W_{2}

Layering algorithm

all vertices of unit weight: w(v) = 1

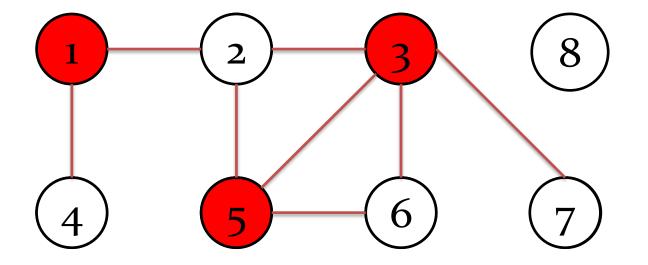


Vertex cover $C = W_0 \cup W_1 \cup W_2 = \{1, 2, 3, 5\}$

Total cost: w(C) = 4

Layering algorithm

all vertices of unit weight: w(v) = 1

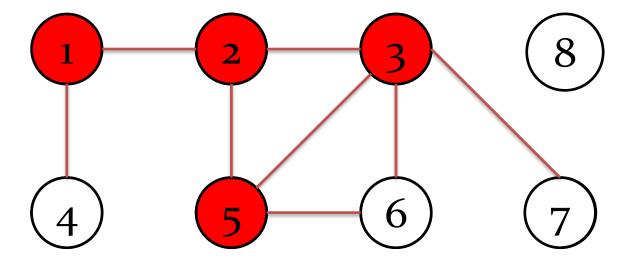


Optimal vertex cover $C^* = \{1, 3, 5\}$

Optimal cost: $OPT = w(C^*) = 3$

Layering algorithm

all vertices of unit weight: w(v) = 1



Vertex cover $C = W_0 \cup W_1 \cup W_2 = \{1, 2, 3, 5\}$ Total cost: w(C) = 4

Optimal cost: $OPT = w(C^*) = 3$

 $w(C) < 2 \cdot OPT$

Approximation factor

The layering algorithm for vertex cover problem (assuming arbitrary vertex weights) achieves an approximation guarantee of factor **2**.

Approximation factor

The layering algorithm for vertex cover problem (assuming arbitrary vertex weights) achieves an approximation guarantee of factor **2**.

We need to prove:

- 1) set C is a vertex cover for G
- 2) $w(C) \leq 2 \cdot OPT$

1) set C is a vertex cover for G

layering algorithm terminates until all nodes are zero degree.

all edges have been already covered.

$\begin{array}{c} \textbf{+} \textbf{Proof} \\ \textbf{2} \quad w(C) \leq 2 \cdot OPT \end{array}$

a vertex $v \in C$, if $v \in W_j$, its weight can be decomposed as $\mathbf{w}(v) = \sum_{i \leq j} t_i(v)$

a vertex $v \in V - C$, if $v \in D_j$, a lower bound on its weight is given by $\mathbf{w}(v) \ge \sum_{i \le j} t_i(v)$

Let C^* be the optimal vertex cover, in each layer i, $C^* \cap G_i$ is a vertex cover for G_i

recall the lemma : if $w: V \to Q^+$ is a degree-weighted function, then $w(V) \le 2 \cdot OPT$ by lemma, $\mathbf{t}_i(\mathbf{C} \cap \mathbf{G}_i) \le 2 \cdot \mathbf{t}_i(\mathbf{C}^* \cap \mathbf{G}_i)$

 $w(\textbf{C}) = \ \textstyle{\sum_{i=0}^{k-1} t_i(\textbf{C} \cap \textbf{G}_i)} \quad \leq 2 \cdot \textstyle{\sum_{i=0}^{k-1} t_i(\textbf{C}^* \cap \textbf{G}_i)} \leq \ 2 \cdot w(\textbf{C}^*)$

Vertex Cover Problem

Set Cover Problem

Layering Algorithm

factor = 2

factor = f

4 Introduction to LP-Duality

Zhu Xiaolu

Introduction to LP-Duality

- Linear Programming (LP)
- LP-Duality
- Theorem
- a) Weak duality theorem
- b) LP-duality theorem
- c) Complementary slackness conditions

Why use LP ?

obtaining approximation algorithms using LP

• Rounding Techniques

to solve the linear program and convert the fractional solution into an integral solution.

• Primal-dual Schema

to use the dual of the LP-relaxation in the design of the algorithm.

analyzing combinatorially obtained approximation algorithms

- LP-duality theory is useful
- using the method of dual fitting

What is LP ?

Linear programming: the problem of optimizing (i.e., minimizing or maximizing) a linear function subject to linear inequality constraints.

Minimize
$$7X_1 + X_2 + 5X_3$$

Subject to $X_1 - X_2 + 3X_3 \ge 10$
 $5X_1 + 2X_2 - X_3 \ge 6$
 $X_1, X_2, X_3 \ge 0$

Objective function: The linear function that we want to optimize. Feasible solution: An assignment of values to the variables that satisfies the inequalities. E.g. X=(2,1,3)Cost: The value that the objective function gives to an assignment. E.g. $7 \cdot 2 + 1 + 5 \cdot 3 = 30$

What is LP-Duality ?

 $7X_{1} + X_{2} + 5X_{3}$ $\geq \mathbf{1} \times (X_{1} - X_{2} + 3X_{3}) + \mathbf{1} \times (5X_{1} + 2X_{2} - X_{3})$ $= 6X_{1} + X_{2} + 2X_{3} = 1 \times 10 + 1 \times 6 \geq 16$ $7X_{1} + X_{2} + 5X_{3}$ $\geq \mathbf{2} \times (X_{1} - X_{2} + 3X_{3}) + \mathbf{1} \times (5X_{1} + 2X_{2} - X_{3})$ $= 7X_{1} + 5X_{3} = 2 \times 10 + 1 \times 6 \geq 26$ Range of the objective function $16 \qquad 26 \qquad \text{Min}$

What is LP-Duality ?

The primal program

The dual program

Minimize $7X_1 + X_2 + 5X_3$ Subject to $X_1 - X_2 + 3X_3 \ge 10$ $5X_1 + 2X_2 - X_3 \ge 6$ $X_1, X_2, X_3 \ge 0$ Maximize $10Y_1 + 6Y_2$ Subject to $Y_1 + 5Y_2 \le 7$ $-Y_1 + 2Y_2 \le 1$ $3Y_1 - Y_2 \le 5$ $Y_1, Y_2 \ge 0$

 $\begin{array}{ll} \text{Minimize} & \sum_{j=1}^{n} c_j x_j \\ \text{Subject to} & \sum_{j=1}^{n} a_{ij} x_j \geq b_i \\ & i = 1, \cdots, m \\ & x_j \geq 0 \\ , j = 1, \cdots, n \\ a_{ij}, b_i \\ , c_j \text{ are given rational numbers} \end{array}$

 $\begin{array}{ll} \text{Maximize} & \sum_{i=1}^{m} b_i y_i \\ \text{Subject to} & \sum_{i=1}^{m} a_{ij} y_i \leq c_j \\ & j = 1, \cdots, n \\ & y_i \geq 0 \\ , i = 1, \cdots, m \\ a_{ij}, b_i \\ , c_j \text{ are given rational numbers} \end{array}$

$$\begin{array}{ll} \text{Minimize} & c_1 X_1 + \dots + c_n X_n \\ \text{Subject to} & a_{1,1} X_1 + \dots + a_{1,n} X_n \geq b_1 \\ & \dots \\ & a_{m,1} X_1 + \dots + a_{m,n} X_n \geq b_m \\ & X_1, \dots, X_n \geq 0 \end{array} \end{array} \begin{array}{ll} \text{Minimize} & 7 X_1 + X_2 + 5 X_3 \\ \text{Subject to} & X_1 - X_2 + 3 X_3 \geq 10 \\ & \text{Subject to} & X_1 - X_2 - X_3 \geq 6 \\ & X_1, X_2, X_3 \geq 0 \end{array}$$

$$Y_1(a_{1,1}X_1 + \dots + a_{1,n}X_n) + \dots + Y_m(a_{m,1}X_1 + \dots + a_{m,n}X_n) \ge Y_1b_1 + \dots + Y_mb_m$$
(1)

$$(a_{1,1}Y_1 + \dots + a_{m,1}Y_m)X_1 + \dots + (a_{1,n}Y_1 + \dots + a_{m,n}Y_m)X_n \ge Y_1b_1 + \dots + Y_mb_m$$
 (2)

Assume:

$$a_{1,1}Y_1 + \dots + a_{m,1}Y_m \le c_1$$

$$\dots$$

$$a_{1,n}Y_1 + \dots + a_{m,n}Y_m \le c_n$$

$$c_{1}X_{1} + \dots + c_{n}X_{n} \ge (a_{1,1}Y_{1} + \dots + a_{m,1}Y_{m})X_{1} + \dots + (a_{1,n}Y_{1} + \dots + a_{m,n}Y_{m})X_{n}$$

$$\ge b_{1}Y_{1} + \dots + b_{m}Y_{m}$$
Maximize $b_{1}Y_{1} + \dots + b_{m}Y_{m}$
Subject to $a_{1,1}Y_{1} + \dots + a_{m,1}Y_{m} \le c_{1}$

$$\dots$$

$$a_{1,n}Y_{1} + \dots + a_{m,n}Y_{m} \le c_{n}$$

$$Y_{1}, \dots, Y_{m} \ge 0$$
Maximize $10Y_{1} + 6Y_{2}$
Subject to $Y_{1} + 5Y_{2} \le 7$

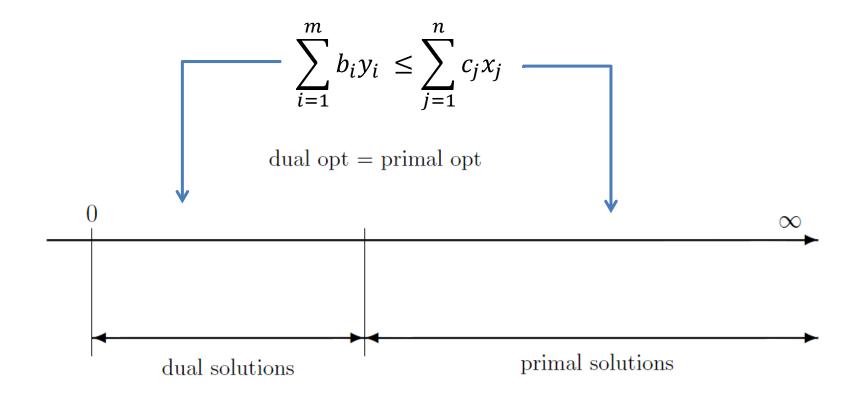
$$-Y_{1} + 2Y_{2} \le 1$$

$$3Y_{1} - Y_{2} \le 5$$

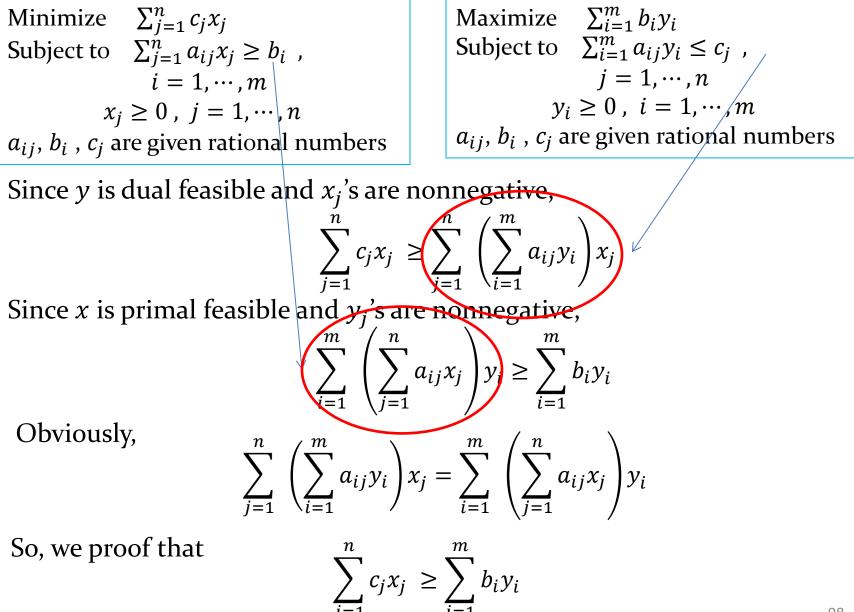
$$Y_{1}, Y_{2} \ge 0$$

Weak duality theorem

If $X = (X_1, \dots, X_n)$ and $Y = (Y_1, \dots, Y_m)$ are feasible solutions for the primal and dual program, respectively, then



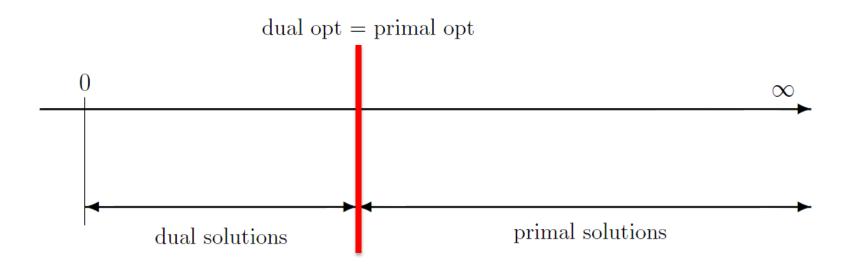
Weak duality theorem - proof



LP-duality theorem

If $X^* = (X_1^*, \dots, X_n^*)$ and $Y^* = (Y_1^*, \dots, Y_m^*)$ are optimal solutions for the primal and dual programs, respectively, then

$$\sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^*$$



Complementary slackness conditions

Let *X* and *Y* be primal and dual feasible solutions, respectively. Then, *X* and *Y* are both optimal iff all o*f* the following conditions are satisfied:

• **Primal complementary slackness conditions** For each $1 \le j \le n$: either $x_j = 0$ or $\sum_{i=1}^m a_{ij} y_i = c_j$; And

• **Dual complementary slackness conditions** For each $1 \le i \le m$: either $y_i = 0$ or $\sum_{j=1}^n a_{ij} x_j = b_i$.

Complementary slackness conditions -proof

Proof how these two conditions comes up From the proof of weak duality theorem:

$$\sum_{j=1}^{n} c_j x_j \ge \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j \qquad (1)$$
$$\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i \ge \sum_{i=1}^{m} b_i y_i \qquad (2)$$

By the LP-duality theorem, x and y are both optimal solutions iff:

$$\sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^*$$

These happens iff (1) and (2) hold with equality:

$$\sum_{j=1}^{n} c_j x_j^* = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j^* = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i^* = \sum_{i=1}^{m} b_i y_i^*$$

$$\sum_{j=1}^{n} c_j x_j^* = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j^* = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i^* = \sum_{i=1}^{m} b_i y_i^*$$

$$\sum_{j=1}^{n} (c_j - \left(\sum_{i=1}^{m} a_{ij} y_i \right)) x_j^* = 0$$
Same Process
Dual complementary slackness conditions

For each
$$1 \le j \le n$$

If $x_j^* > 0$ then $c_j - \left(\sum_{i=1}^m a_{ij} y_i\right) = 0$
If $c_j - \left(\sum_{i=1}^m a_{ij} y_i\right) > 0$ then $x_j^* = 0$

Primal complementary slackness conditions For each $1 \le j \le n$: either $x_j = 0$ or $\sum_{i=1}^m a_{ij} y_i = c_j$

Set Cover via Dual Fitting

Wang Zixiao

Set Cover via Dual Fitting

 Dual Fitting: help analyze combinatorial algorithms using LP-duality theory

 Analysis of the greedy algorithm for the set cover problem

• Give a lower bound

Dual Fitting

- Minimization problem: combinatorial algorithm
- Linear programming relaxation, Dual
- Primal is *fully paid for* by the dual
- Infeasible → Feasible (shrunk with factor)
- Factor \rightarrow Approximation guarantee

Formulation

U: universe $S: \{S_1, S_2, ..., S_k\}$ $C: S \longrightarrow Q^+$ Goal:sub-collection with minimum cost

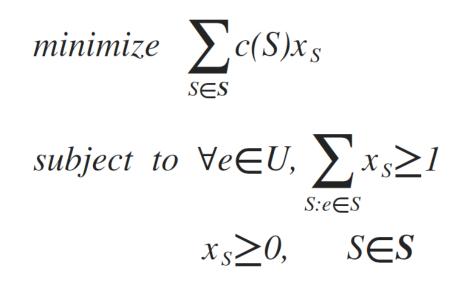
minimize
$$\sum_{S \in S} c(S) x_S, x_S \in \{0, 1\}$$

subject to $\forall e \in U, \sum x_S \ge 1$

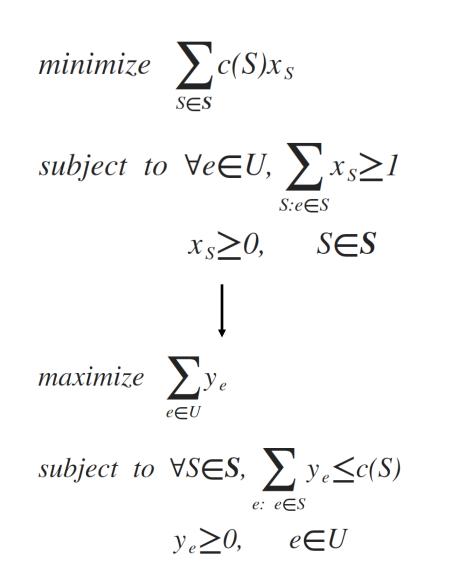
 $S:e \in S$

LP-Relaxation

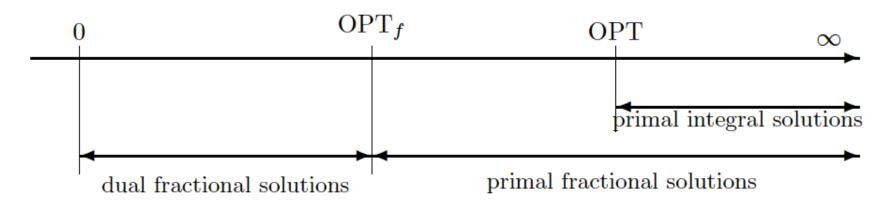
- Motivation: NP-hard \rightarrow Polynomial
- Integer program \rightarrow Fractional program
- Letting $x_S: 0 \le x_S$



LP Dual Problem



LP Dual Problem



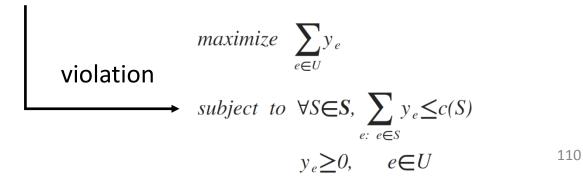
OPT: cost of optimal integral set cover OPT_f: cost of optimal fractional set cover

Solution

y_e = price(e)? Not feasible!

$$U = \{1, 2, 3\}$$
• Iteration 1: $\{1, 3\}$ chosen $S = \{\{1, 2, 3\}, \{1, 3\}\}$ price(1) = price(3) = 0.5 $C(\{1, 2, 3\}) = 3$ • Iteration 2: $\{1, 2, 3\}$ chosen $C(\{1, 3\}) = 1$ price(2) = 3

 $price(1) + price(2) + price(3) = 4 > C({1, 2, 3})$



Solution

$$y_e = \frac{price(e)}{H_n}$$

The vector **y** defined above is a feasible solution for the dual program

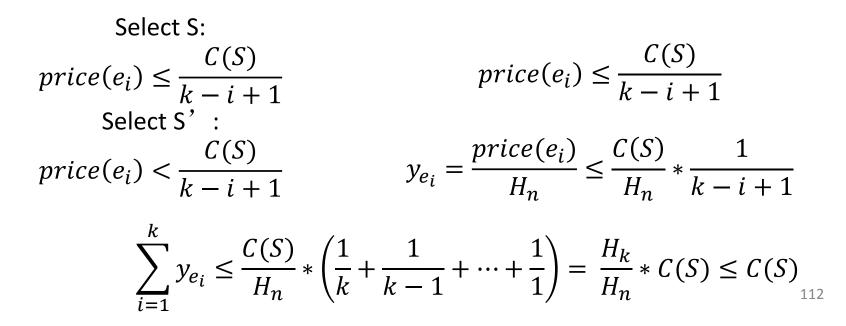
There is no set S in S overpacked

Consider a set S∈**S** | S | = k Number the elements in the order of being covered: e₁, e₂, ..., e_k

Consider the iteration for e_i:

e₁, e₂, ..., <u>e_i</u>, ..., e_k

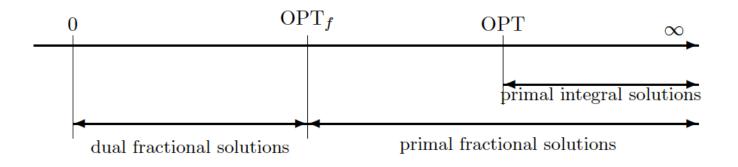
At least k-i+1 elements uncovered in S



The approximation of guarantee of the greedy set cover algorithm is H_n

Proof: The cost of the set cover picked is:

$$\sum_{e \in U} price(e) = H_n(\sum_{e \in U} y_e) \le H_n * OPT_f \le H_n OPT$$



Constrained Set Multicover

• Constrained Set Multicover: Each element e has to be covered r_e times

 Greedy algorithm: Pick the most cost-effective set until all elements have been covered by required times

Analysis of the greedy algorithm

IP formulation:

- minimize $\sum_{S \in \mathcal{S}} c(S) \cdot x_S$
- subject to:
 - $-\sum_{S:e\in S} x_S \ge r_e, \ e \in \mathcal{U}$ $-x_S \in \{0,1\}, \ S \in \mathcal{S}$

LP relaxation:

- minimize $\sum_{S \in \mathcal{S}} c(S) \cdot x_S$
- subject to:

$$-\sum_{S:e\in S} x_S \ge r_e, \ e \in \mathcal{U}$$
$$--x_S \ge -1, \ S \in \mathcal{S}$$
$$-x_S \ge 0, \ S \in \mathcal{S}$$

Dual program:

- maximize $\sum_{e \in \mathcal{U}} r_e \cdot y_e \sum_{S \in \mathcal{S}} z_S$
- subject to:

$$-\sum_{e \in S} y_e - z_S \le c(S), S \in S$$
$$-y_e \ge 0, e \in \mathcal{U}$$
$$-z_S \ge 0, S \in S$$

4 Analysis of the greedy algorithm

Consider the objective function value D of the dual solution (α, β) , where $\alpha_e = \text{price}(e, r_e)$ for each $e \in \mathcal{U}$ and

$$\beta_S = \sum_{e \text{ covered by } S} (\operatorname{price}(e, r_e) - \operatorname{price}(e, j_e)),$$

for each $S \in S$ that was picked by the algorithm and $\beta_S = 0$ otherwise.

$$D = \sum_{e \in \mathcal{U}} r_e \cdot \operatorname{price}(e, r_e) - \sum_{e \in \mathcal{U}} \left(r_e \cdot \operatorname{price}(e, r_e) - \sum_{j=1}^{r_e} \operatorname{price}(e, j) \right) = \operatorname{SOL}$$

Analysis of the greedy alrogithm

Lemma 2 The pair (\mathbf{y}, \mathbf{z}) where $y_e = \frac{\alpha_e}{H_n}$ and $z_S = \frac{\beta_S}{H_n}$ is a feasible solution for the dual program.

Therefore, $\frac{D}{H_n} \leq OPT_f \Rightarrow SOL \leq H_n \cdot OPT$ which implies an approximation factor of H_n for the previous algorithm.

Analysis of the greedy algorithm

Proof

Consider $S \in S$ and its elements $e_1, e_2, \ldots, e_i, \ldots, e_k$ in the order in which their requirements are covered by the algorithm.

Case 1: S is not picked

Just before the last copy of e_i is covered, S contains at least k - i + 1 alive elements. So, price $(e_i, r_{e_i}) \leq \frac{c(S)}{k - i + 1}$. Moreover, since $z_S = 0$ we get:

$$\sum_{e \in S} y_e - z_S \le \frac{1}{H_n} \cdot \sum_{i=1}^k \frac{c(S)}{k - i + 1} \le c(S)$$

4 Analysis of the greedy algorithm

Case 2: S is picked

Assume that just before S is picked, k' of its elements are completely covered.

$$\sum_{e \in S} y_e - z_S = \frac{1}{H_n} \cdot \left(\sum_{i=1}^k \operatorname{price}\left(e_i, r_{e_i}\right) - \sum_{i=k'+1}^k \left(\operatorname{price}\left(e_i, r_{e_i}\right) - \operatorname{price}\left(e_i, j_i\right)\right) \right)$$
$$= \frac{1}{H_n} \cdot \left(\sum_{i=1}^{k'} \operatorname{price}\left(e_i, r_{e_i}\right) + \sum_{i=k'+1}^k \operatorname{price}\left(e_i, j_i\right) \right) \le c\left(S\right)$$

Rounding Applied to LP to solve Set Cover

Jiao Qing

Why rounding?

- Previous slides show LP-relaxation for the set cover problem, but for set cover real applications, they usually need integral solution.
- Next section will introduce two rounding algorithms and their approximation factor to *OPT_f* and *OPT*.

4 Rounding Algorithms

- A simple rounding algorithm
- Randomized rounding

4 A simple rounding algorithm

- Algorithm Description
 - 1. Find an optimal solution to the LP-relaxation.
 - 2. Pick all sets *S* for which $x_s \ge \frac{1}{f}$ in this solution.
- Apparently, its algorithm complexity equals to LP problem.

A simple rounding algorithm

- Proving that it solves set cover problem.
 - 1. Remember the LP-relaxation:

minimize $\sum_{s \in S} c(s) x_s$

subject to
$$\sum_{s:e\in s} x_s \ge 1$$
, $e \in U$

 $x_s \ge 0, S \in S$

2. Let *C* be the collection of picked sets. For $\forall e \in U, e \text{ is in at most } f \text{ sets, one of these sets}$ must has $x_s \geq \frac{1}{f}$, therefore, this simple algorithm at least solve the set cover problem.

A simple rounding algorithm

- Firstly we prove that it solves set cover problem.
- Then we estimate its approximation factor to OPT_f and OPT is f.

4 Approximation Factor

- Estimating its approximation factor
 - The rounding process increases x_s by a factor of at most *f*, and further it reduces the number of sets.
 - Thus it gives a desired approximation guarantee
 of f.

Randomized Rounding

- This rounding views the LP-relaxation coefficient x_s of sets as probabilities.
- Using probabilities theory it proves this rounding method has approximation factor O(log n).

Randomized Rounding

- Algorithm Description:
 - 1. Find an optimal solution to the LP-relaxation.
 - 2. Independently picks $v(\log n)$ subsets of full set *S*.
 - 3. Get these subsets' union C', check whether C' is a valid set cover and has $cost \le OPT_f \times 4v \log n$. If not, repeat the step 2 and 3 again.
 - 4. The expected number of repetitions needed at most 2.
- Apparently, its algorithm complexity equals to LP problem.

- Next, we prove its approximate factor is O(log n).
 - 1. For each set S, its probability of being picked is p_s (equals to x_s coefficient).
 - 2. Let *C* be one collection of sets picked. The expected cost of *C* is:

$$E[cost(C)] = \sum_{s \in \mathbf{S}} p_r[s \text{ is picked}] \times c_s = \sum_{s \in \mathbf{S}} p_s \times c_s = OPT_f$$

- 3. Let us compute the probability that an element *a* is covered by *C*.
 - Suppose that a occurs in k sets of S, with the probabilities associated with these sets be p₁,... p_k. Because their sum greater than 1. Using elementary calculus, we get:

$$p_r[a \text{ is covered by } C] \ge 1 - \left(1 - \frac{1}{k}\right)^k \ge 1 - \frac{1}{e}$$

and thus.

$$p_r[a \text{ is not covered by } C] \leq \frac{1}{e}$$

where e is the base of natural logarithms.

• Hence each element is covered with constant probability by C.

4. And then considering their union C', we get:

$$p_r[a \text{ is not covered by } c'] \le \left(\frac{1}{e}\right)^{\nu(\log n)} \le \frac{1}{4n} \quad \text{With} \left(\frac{1}{e}\right)^{\nu\log n} \le \frac{1}{4n}$$

- 5. Summing over all elements $a \in U$, we get $p_r[c' \text{ is not a valid set cover }] = 1 - \left(1 - \frac{1}{4n}\right)^n \le \frac{1}{4}$
- 6. With: $E[cost(C')] \leq \sum_{i} E[cost(c_{i})] = OPT_{f} \times v \log n = OPT_{f} \times v \log n$ Applying Markov's Inequality with $t = OPT_{f} \times 4v \log n$, we get: $p_{r}[cost(C') \geq OPT_{f} \times 4v \log n] \leq \frac{1}{4}$

7. With

$$p_r[c' \text{ is not a valid set cover }] \leq \frac{1}{4}$$

 $p_r[cost(C') \geq OPT_f \times 4v \log n] \leq \frac{1}{4}$

Hence,

 $p_r[C' \text{ is a valid set cover and has } cost \le OPT_f \times 4v \log n] \ge \frac{3}{4} \times \frac{3}{4} \ge \frac{1}{2}$

4 Approximation Factor

- The chance one could find a set cover and has a cost smaller than O(log n)OPT_f is bigger than 50%, and the expected number of iteration is two.
- Thus this randomized rounding algorithm provides a factor O(log n) approximation, with a high probability guarantee.

4 Summary

- Those two algorithm provide us with factor f and O(log n) approximation, which remind us the factor of greedy and layering algorithms'.
- Even through LP-relaxation, right now we could only find algorithm with factor of f and O(log n).

Set Cover via the Primal-dual Schema

Zhang Hao

Primal-dual Schema?

- A broad outline for the algorithm
 The details have to be designed individually to specific problems
- Good approximation factors and good running times

4 Primal-dual Program(Recall)

The primal program

The dual program

Minimize $\sum_{j=1}^{n} c_j x_j$ Subject to $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$, $i = 1, \dots, m$ $x_j \ge 0$, $j = 1, \dots, n$ a_{ii}, b_i , c_i are given rational numbers

Maximize $\sum_{i=1}^{m} b_i y_i$ Subject to $\sum_{i=1}^{m} a_{ij} y_i \le c_j$, $j = 1, \cdots, n$ $y_i \ge 0$, $i = 1, \cdots, m$ a_{ij}, b_i , c_j are given rational numbers

Standard Complementary slackness conditions (Recall)

Let **x** and **y** be primal and dual feasible solutions, respectively. Then, **x** and **y** are both optimal iff all o*f* the following conditions are satisfied:

- **Primal complementary slackness conditions** For each $1 \le j \le n$: either $x_j = 0$ or $\sum_{i=1}^m a_{ij}y_i = c_j$; And
- **Dual complementary slackness conditions** For each $1 \le i \le m$: either $y_i = 0$ or $\sum_{j=1}^n a_{ij} x_j = b_i$.

Relaxed Complementary slackness conditions

Let **x** and **y** be primal and dual feasible solutions, respectively.

- **Primal complementary slackness conditions** For each $1 \le j \le n$: either $x_j = 0$ or $\frac{c_i}{\alpha} \le \sum_{i=1}^m a_{ij} y_i \le c_i$; And
- **Dual complementary slackness conditions** For each $1 \le i \le m$: either $y_i = 0$ or $b_i \le \sum_{j=1}^n a_{ij} x_j \le \beta b_i$.

 $\alpha, \beta \implies$ The optimality of **x** and **y** solutions If $\alpha = \beta = 1 \implies$ standard complementary slackness conditions

4 Overview of the Schema

- Pick a primal *infeasible* solution **x**, and a dual *feasible* solution **y**, such that the slackness conditions are satisfied for chosen α and β (usually **x** = **0**, **y** = **0**).
- Iteratively improve the feasibility of x (integrally) and the optimality of y, such that the conditions remain satisfied, until x becomes feasible.

4 Proposition

An approximation guarantee of $\alpha\beta$ is achieved using this schema.

Proof:

$$\binom{c_i}{\alpha} \leq \sum_{i=1}^m a_{ij} y_i) \qquad \qquad (\sum_{j=1}^n a_{ij} x_j \leq \beta b_i)$$

$$\sum_{j=1}^n c_j x_j \leq \alpha \sum_{j=1}^n \left(\sum_{i=1}^m a_{ij} y_i \right) x_j = \alpha \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} x_j \right) y_i \leq \alpha \beta \sum_{i=1}^m b_i y_i$$

(primal and dual condition)

$$\sum_{j=1}^{n} c_j x_j \leq \alpha \beta \sum_{i=1}^{m} b_i y_i \leq \alpha \beta \cdot OPT_f \leq \alpha \beta \cdot OPT$$

Set Cover(Recall)

Standard Primal ProgramThe Dual Programminimize $\sum_{s \in S} c(S) x_s$ maximize $\sum_{e \in U} y_e$ subject to $\sum_{e:e \in S} x_s \ge 1, e \in U$ subject to $\sum_{e:e \in S} y_e \le c(S), S \in S$ $x_s \in \{0,1\}, S \in S$ $subject to \sum_{e:e \in S} y_e \ge 0, e \in U$

Relaxed Complementary Slackness Conditions

Definition: Set S is called tight if $\sum_{e:e\in S} y_e = c(S)$

Set $\alpha = 1$, $\beta = f$ (to obtain approximation factor f) **Primal Conditions** – "Pick only tight sets in the cover"

$$\forall S \in S: x_S \neq 0 \Rightarrow \sum_{e:e \in S} y_e = c(S)$$

Dual Conditions – "Each e, $y_e \neq 0$, can be covered at most f times" – trivially satisfied

$$\forall e: y_e \neq 0 \Rightarrow \sum_{S:e \in S} x_S \leq f$$

Algorithm (Set Cover – factor f)

- Initialization: **x** = **o**, **y** = **o**.
- Until all elements are covered, do
 Pick an uncovered element e, and raise y_e until some set goes tight.

Pick all tight sets in the cover and update **x**.

- Declare all the elements occuring in these sets as "covered".
- Output the set cover **x**.

The algorithm can achieve an approximation factor of f.

Proof

- Clearly, there will be no uncovered and no overpacked sets in the end. Thus, primal and dual solutions will be feasible.
- Since they satisfy the relaxed complementary slackness conditions with $\alpha = 1$, $\beta = f$, the approximation factor is f.

Conclusion

- Combinatorial algorithms are greedy and local.
- LP-based algorithms are global.

Conclusion

- Combinatorial algorithms
 - Greedy algorithms
 - Layering algorithms
- LP-based algorithms
 - Rounding
 - Primal–Dual Schema

Factor: *f*, H*n* Factor: *f*

Factor: Hn

Factor: *f*