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Optimization problem 

Find the minimum/maximum of … 

– Vertex Cover : A minimum set of vertices that 
covers all the edges in a graph.  
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NP optimization problem 

• The hardness of NP optimization is NP 
hard. 

 

 

• Can’t be solved in polynomial time. 
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How to solve ? 

 

5 



How to solve ? 
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How to solve ? 
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How to solve ? 
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How to evaluate ? 

Mine is better! 

9 



How to evaluate ?  

 

 

 

 

 

• Sub-optimal solution : 𝜌 × 𝑂𝑃𝑇  (𝜌 is factor). 

• The closer factor 𝜌 is to 1, The better the 
algorithm is. 

Exact optimal value of optimization 
problem.  

relative performance guarantee. 
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Set cover 

• It leads to the development of fundamental 
techniques for the entire approximation 
algorithms field. 

• Due to set cover, many of the basic 
algorithm design techniques can be 
explained with great ease. 
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What is set cover ? 

• Definition:  

– Given a universe 𝑈 of n elements, a collection of 
subsets of 𝑈, 𝑆 =  {𝑆1, 𝑆2, … , 𝑆𝑘}, and a cost 
function  𝑐: 𝑆 →  𝑄+, find a minimum cost sub-
collection of 𝑆 that covers all elements of 𝑈. 
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What is set cover ?  

• Example: 

 S Sets Cost 

S1 {1,2} 1 

S2 {3,4} 1 

S3 {1,3} 2 

S4 {5,6} 1 

S5 {1,5} 3 

S6 {4,6} 1 

Universal Set : 
𝑈 =  {1,2,3,4,5,6} 

Find a sub-collection of 𝑆  
that covers all the elements  
of 𝑈 with minimum cost.  

Solution?   

S1 S2 S4 

Cost = 1 + 1 + 1 = 3 
13 



Approximation algorithms to set 
cover problem 

• Combinatorial algorithms 

• Linear programming based Algorithms 

   (LP-based) 

 

14 



Combinatorial & LP-based 

• Combinatorial algorithms 

– Greedy algorithms 

– Layering algorithms 

• LP-based algorithms 

– Dual Fitting 

– Rounding 

– Primal–Dual Schema 

 

15 



Greedy set cover algorithm 

Cai Jingli 
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Greedy set cover algorithm 

Where C is the set of elements already covered at the beginning of an 
iteration and 𝛼 is the average cost at which it covers new elements. 
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Example 

subset cost 

S1 = {1, 2}  1 

S2 = {2, 3, 4}  2 

S3 = {3, 4} 3 

S4 = {5, 6}  3 

Iteration 1:  C = {} 
α1 = 1 / 2 = 0.5 
α2 = 2 / 3 = 0.67 
α3 = 3 / 2 = 1.5 
α4 = 3 / 2 = 1.5 
C = {1, 2} 
Price(1) = 0.5 
Price(2) = 0.5 

Iteration 2:  C = {1, 2} 
α2 = 2 / 2 = 1 
α3 = 3 / 2 = 1.5 
α4 = 3 / 2 = 1.5 
 
C = {1, 2, 3, 4} 
Price(3) = 1 
Price(4) = 1 

Iteration 3:  C = {1, 2, 3, 4 } 
α3 = 3 / 0 = infinite 
α4 = 3 / 2 = 1.5 
 
 
C = {1, 2, 3, 4, 5, 6} 
Price(5) = 1.5 
Price(6) = 1.5 

1 

3 

2 

6 5 

4 

U 

S1 

S2 

S3 

S4 
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Example 

subset cost 

S1 = {1, 2}  1 

S2 = {2, 3, 4}  2 

S3 = {3, 4} 3 

S4 = {5, 6}  3 

1 

3 

2 

6 5 

4 

U 

S1 

S2 

S3 

S4 

The picked sets = {S1, S2, S4} 
Total cost = Cost(S1)+Cost(S2)+Cost(S4) 
          = Price(1) + Price(2) + … + Price(6)  
                    =  0.5 + 0.5 + 1 + 1 + 1.5 + 1.5 = 6 
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Theorem 

• The greedy algorithm is an 𝑯𝒏 factor 
approximation algorithm for the minimum 
set cover problem, where 

𝐻𝑛 = 1 +
1

2
+
1

3
+⋯+

1

𝑛
 

  𝐶𝑜𝑠𝑡(𝑆𝑖)

𝑖

≤ 𝐻𝑛 ∙ 𝑂𝑃𝑇 
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Proof 

1) We know  𝑝𝑟𝑖𝑐𝑒 𝑒 =𝑒∈𝑈  cost of the greedy 
algorithm = 𝑐 𝑆1 + c 𝑆2 +⋯+ 𝑐 𝑆𝑚 . 

2) We will show 𝑝𝑟𝑖𝑐𝑒(𝑒𝑘) ≤
𝑂𝑃𝑇

𝑛−𝑘+1
, where 𝑒𝑘 is 

the kth element covered.  
 

 If  2) is proved  then theorem is proved also. 

 𝐶𝑜𝑠𝑡(𝑆𝑖)

𝑖

=  𝑝𝑟𝑖𝑐𝑒 𝑒 ≤  
𝑂𝑃𝑇

𝑛 − 𝑘 + 1
= 𝑂𝑃𝑇 ∗

𝑛

𝑘=1𝑒∈𝑈

 
1

𝑛 − 𝑘 + 1

𝑛

𝑘=1

= 𝑂𝑃𝑇 ∗ (1 +
1

2
+
1

3
+⋯+

1

𝑛
) = 𝐻𝑛∙ 𝑂𝑃𝑇 
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𝑝𝑟𝑖𝑐𝑒(𝑒𝑘) ≤
𝑂𝑃𝑇

𝑛 − 𝑘 + 1
 

• Say the optimal sets are 𝑂1, 𝑂2, … , 𝑂𝑝, so 
OPT = c 𝑂1 + 𝑐 𝑂2 +⋯+ 𝑐 𝑂𝑝 =  c 𝑂𝑖

𝑝
𝑖=1  

• Now, assume the greedy algorithm has covered 
the elements in C so far. 

𝑈 − 𝐶 ≤ 𝑂1 ∩ 𝑈 − 𝐶 +⋯+ 𝑂𝑝 ∩ 𝑈 − 𝐶

= 𝑂𝑖 ∩ 𝑈 − 𝐶

𝑝

𝑖=1

 

• price 𝑒𝑘 = 𝛼 ≤
𝑐(𝑂𝑖)

|𝑂𝑖∩(𝑈−𝐶)|
  (2), i=1,…,p. we know 

this because of greedy algorithm 
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1  OPT = c 𝑂𝑖

𝑝

𝑖=1

 

2 𝑈 − 𝐶 ≤ |𝑂𝑖 ∩ 𝑈 − 𝐶 |

𝑝

𝑖=1

 

3 𝑐 𝑂𝑖 ≥ 𝛼 ∙ 𝑂𝑖 ∩ 𝑈 − 𝐶  
 

• So 
 

𝑈 − 𝐶 = 𝑛 − 𝑘 + 1 

𝑝𝑟𝑖𝑐𝑒 𝑒𝑘 = 𝛼 ≤
𝑂𝑃𝑇

𝑛 − 𝑘 + 1
 

 

𝑂𝑃𝑇 = c 𝑂𝑖

𝑝

𝑖=1

 ≥ 𝛼 ∙ 𝑂𝑖 ∩ 𝑈 − 𝐶

𝑝

𝑖=1

 ≥ 𝛼 ∙ 𝑈 − 𝐶  

𝑝𝑟𝑖𝑐𝑒(𝑒𝑘) ≤
𝑂𝑃𝑇

𝑛 − 𝑘 + 1
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Shortest Superstring Problem 
(SSP) 

• Given a finite alphabet Σ, and set of 𝑛 
strings, 𝑆 = {𝑠1, … , 𝑠𝑛} ⊆ Σ

+. 

• Find a shortest string 𝑠 that contains each 
𝑠𝑖  as a substring. 

• Without loss o𝑓 generality, we may assume 
that no string 𝑠𝑖  is a substring of another 
string 𝑠𝑗 , 𝑗 ≠ 𝑖. 
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Application: Shotgun sequencing 
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Approximating SSP Using Set 
Cover 

26 



Set Cover Based Algorithm 
• Set Cover Problem: 

– Choose some sets that cover all elements with least cost 

• Elements 
– The input strings 

• Subsets 
– 𝜎𝑖𝑗𝑘 = string obtained by overlapping input strings 𝑠𝑖 and 𝑠𝑗  , 

with 𝑘 letters. 

– 𝛽 = 𝑺 ∪ 𝜎𝑖𝑗𝑘 , 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 

– Let 𝜋 ∈  𝛽  
– set(𝜋) = {𝑠 ∈ 𝑺 | 𝑠 is a substr. of 𝜋} 
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Set Cover Based Algorithm 
• Set Cover Problem: 

– Choose some sets that cover all elements with least cost 

• Elements 
– The input strings 

• Subsets 
– 𝜎𝑖𝑗𝑘 = string obtained by overlapping input strings 𝑠𝑖 and 𝑠𝑗  , 

with 𝑘 letters. 

– 𝛽 = 𝑺 ∪ 𝜎𝑖𝑗𝑘 , 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 

– Let 𝜋 ∈  𝛽  
– set(𝜋) = {𝑠 ∈ 𝑺 | 𝑠 is a substr. of 𝜋} 

• Cost of a subset 
– set(𝜋)  is |𝜋| 

• A solution to SSP is the concatenation of 𝜋 obtained from 
SCP 
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Example 
• S = {CATGC, CTAAGT, GCTA, TTCA, ATGCATC} 

𝝅 Set Cost 

CATGC . . . . . 
. . . . CTAAGT 
CATGCTAAGT 

 
 

CATGC, CTAAGT, GCTA 

 
 

10 

CATGC . . 
. . . GCTA 
CATGCTA 

 
 

CATGC, GCTA 

 
 

7 

. . . . . . CATGC 
ATGCATC . . . . 
ATGCATCATGC 

 
 

CATGC, ATGCATC 

 
 

11 

CTAAGT . . . 
. . . . . TTCA 
CTAAGTTCA 

 
 

CTAAGT, TTCA 

 
 

9 

ATGCATC . . . . . 
. . . . . . CTAAGT 
ATGCATCTAAGT 

 
 

CTAAGT, ATGCATC 

 
 

12 29 



GCTA . . . . . . 
. . . ATGCATC 
GCTATGCATC 

 
 

GCTA, ATGCATC 

 
 

10 

TTCA . . . . . . 
. . . ATGCATC 
TTCATGCATC 

 
 

TTCA, ATGCATC, CATGC 

 
 

10 

GCTA . . . 
. CTAAGT 
GCTAAGT 

 
 

GCTA, CTAAGT 

 
 

7 

TTCA . . . 
. . CATGC 
TTCATGC 

 
 

CATGC, TTCA 

 
 

7 

CATGC . . . 
. ATGCATC 
CATGCATC 

 
CATGC, ATGCATC 

 
 

8 

CATGC CATGC 5 

CTAAGT  CTAAGT  6 

GCTA  GCTA  4 

TTCA TTCA  4 

ATGCATC  ATGCATC  7 30 



Lemma 

𝑶𝑷𝑻 ≤ 𝑶𝑷𝑻𝑺𝑪𝑨 ≤ 𝟐𝑯𝒏 ∙ 𝑶𝑷𝑻 
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Layering Technique 

Xing Zhe 
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Layering Technique 

 

 

Combinatorial algorithms 

 

 

Greedy:  𝐻𝑛 

Layering ? 

Set Cover Problem 
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Vertex Cover Problem 
 

Definition: 
 

Given a graph 𝐺 = (𝑉, 𝐸), and a weight function 

𝑤:  𝑉 → 𝑄+ assigning weights to the vertices, find a 

minimum weighted subset of vertices 𝐶 ⊆ 𝑉, such 

that 𝐶 “covers” all edges in 𝐸, i.e., every edge 𝑒𝑖 ∈ 𝐸 
is incident to at least one vertex in 𝐶. 
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Vertex Cover Problem 
 

Example: 
all vertices of unit weight 

1 2 3 

4 5 6 7 
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Vertex Cover Problem 
 

Example: 
all vertices of unit weight 

1 2 3 

4 5 6 7 

Total cost = 5 
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Vertex Cover Problem 
 

Example: 
all vertices of unit weight 

1 2 3 

4 5 6 7 

Total cost = 3 
37 



Vertex Cover Problem 
 

Example: 
all vertices of unit weight 

1 2 3 

4 5 6 7 

Total cost = 3 OPT 
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Vertex Cover Problem 
Vertex cover is a special case of set cover. 

 1 2 3 

4 5 6 7 

a 

b c 

d 
e 

𝑓 

g 
h 

A collection of subsets 𝑆 =  𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7  

Edges are elements, vertices are subsets 

Universe 𝑈 =  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ} 

𝑆1 = {𝑎, 𝑏} 
𝑆2 = {𝑏, 𝑐, 𝑑} 
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ} 
𝑆4 = {𝑎} 
𝑆5 = {𝑑, 𝑒, 𝑓} 
𝑆6 = {𝑓, 𝑔} 
𝑆7 = {ℎ} 

Vertex cover problem is a set cover problem with 𝑓 =  2 
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Vertex Cover Problem 
Vertex cover is a special case of set cover. 

 1 2 3 

4 5 6 7 

a 

b c 

d 
e 

𝑓 

g 
h 

A collection of subsets 𝑆 =  𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7  

Universe 𝑈 =  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ} 

𝑆1 = {𝑎, 𝑏} 
𝑆2 = {𝑏, 𝑐, 𝑑} 
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ} 
𝑆4 = {𝑎} 
𝑆5 = {𝑑, 𝑒, 𝑓} 
𝑆6 = {𝑓, 𝑔} 
𝑆7 = {ℎ} 

Vertex cover problem is a set cover problem with 𝑓 =  2 

Edges are elements,  vertices are subsets 
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Vertex Cover Problem 
Vertex cover is a special case of set cover. 

 1 2 3 

4 5 6 7 

a 

b c 

d 
e 

𝑓 

g 
h 

A collection of subsets 𝑆 =  𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7  

Edges are elements,  vertices are subsets 

Universe 𝑈 =  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ} 

𝑆1 = {𝑎, 𝑏} 
𝑆2 = {𝑏, 𝑐, 𝑑} 
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ} 
𝑆4 = {𝑎} 
𝑆5 = {𝑑, 𝑒, 𝑓} 
𝑆6 = {𝑓, 𝑔} 
𝑆7 = {ℎ} 

Vertex cover problem is a set cover problem with 𝑓 =  2 
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Vertex Cover Problem 
Vertex cover is a special case of set cover. 

 1 2 3 

4 5 6 7 

a 

b c 

d 
e 

𝑓 

g 
h 

A collection of subsets 𝑆 =  𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7  

Universe 𝑈 =  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ} 

𝑆1 = {𝑎, 𝑏} 
𝑆2 = {𝑏, 𝑐, 𝑑} 
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ} 
𝑆4 = {𝑎} 
𝑆5 = {𝑑, 𝑒, 𝑓} 
𝑆6 = {𝑓, 𝑔} 
𝑆7 = {ℎ} 

Vertex cover problem is a set cover problem with 𝑓 =  2 

Edges are elements,  vertices are subsets 
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Notation 

1) frequency 

 

2) 𝑓 : the frequency of the most frequent element.  

 

 

 

 

Layering algorithm is an 𝑓 factor approximation 
for the minimum set cover problem. 
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Notation 

1) frequency 

 

2) 𝑓 : the frequency of the most frequent element.  

 

 

 

 

Layering algorithm is an 𝑓 factor approximation 
for the minimum set cover problem. 
In the vertex cover problem,  f = ? 
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Vertex Cover Problem 
Vertex cover is a special case of set cover. 

 1 2 3 

4 5 6 7 

a 

b c 

d 
e 

𝑓 

g 
h 

A collection of subsets 𝑆 =  𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7  

Universe 𝑈 =  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ} 

𝑆1 = {𝑎, 𝑏} 
𝑆2 = {𝑏, 𝑐, 𝑑} 
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ} 
𝑆4 = {𝑎} 
𝑆5 = {𝑑, 𝑒, 𝑓} 
𝑆6 = {𝑓, 𝑔} 
𝑆7 = {ℎ} 

Vertex cover problem is a set cover problem with 𝑓 =  2 

Edges are elements,  vertices are subsets 
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Vertex Cover Problem 
Vertex cover is a special case of set cover. 

 1 2 3 

4 5 6 7 

a 

b c 

d 
e 

𝑓 

g 
h 

A collection of subsets 𝑆 =  𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7  

Universe 𝑈 =  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ} 

𝑆1 = {𝑎, 𝑏} 
𝑆2 = {𝑏, 𝑐, 𝑑} 
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ} 
𝑆4 = {𝑎} 
𝑆5 = {𝑑, 𝑒, 𝑓} 
𝑆6 = {𝑓, 𝑔} 
𝑆7 = {ℎ} 

Vertex cover problem is a set cover problem with 𝒇 =  𝟐 

Edges are elements,  vertices are subsets 
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Approximation factor 
1) frequency 

 

2) 𝑓 : the frequency of the most frequent element.  

 

 

 

 

In the vertex cover problem,  f = 2 
 

Set Cover Problem Vertex Cover Problem 

factor = f factor = 2 Layering Algorithm 
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Approximation factor 
1) frequency 

 

2) 𝑓 : the frequency of the most frequent element.  

 

 

 

 

In the vertex cover problem,  f = 2 
 

Set Cover Problem Vertex Cover Problem 

factor = f factor = 2 Layering Algorithm 
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Vertex Cover Problem 

arbitrary weight function: 
𝑤:  𝑉 → 𝑄+ 

 

degree-weighted function: 

 ∃ 𝑐 >  0  s.t. 

 ∀ 𝑣 ∈ 𝑉,   𝑤 𝑣 =  𝑐 ⋅ deg (𝑣)  
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Vertex Cover Problem 

arbitrary weight function: 
𝑤:  𝑉 → 𝑄+ 

 

degree-weighted function: 

 ∃ 𝑐 >  0  s.t. 

 ∀ 𝑣 ∈ 𝑉,   𝑤 𝑣 =  𝑐 ⋅ deg (𝑣)  
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Degree weighted function 

 

Lemma: 

 If 𝑤:  𝑉 → 𝑄+ is a degree-weighted function.  

 Then  𝑤 𝑉 ≤ 𝟐 ⋅ 𝑂𝑃𝑇 
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Lemma: 

 If 𝑤:  𝑉 → 𝑄+ is a degree-weighted function.  

 Then  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

 

degree-weighted function, 𝑤 𝑣 =  𝑐 ⋅ deg (𝑣) 

𝐶∗ is the optimal vertex cover in G,   deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗  

in worst case, we pick all vertices.  

𝑂𝑃𝑇 =  𝑤 𝐶∗  = c ⋅  deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗   

 handshaking lemma,   deg 𝑣 = 2|𝐸|𝑣∈𝑉  

𝑤 𝑉 =  𝑤 𝑣𝑣∈𝑉 =  𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅  deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉  
 

 
 
 

 (1) 

 (2) 

 from (1) and (2),  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

Proof: 
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Lemma: 

 If 𝑤:  𝑉 → 𝑄+ is a degree-weighted function.  

 Then  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

 

degree-weighted function, 𝑤 𝑣 =  𝑐 ⋅ deg (𝑣) 

𝐶∗ is the optimal vertex cover in G,   deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗  

in worst case, we pick all vertices.  

𝑂𝑃𝑇 =  𝑤 𝐶∗  = c ⋅  deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗   

 handshaking lemma,   deg 𝑣 = 2|𝐸|𝑣∈𝑉  

𝑤 𝑉 =  𝑤 𝑣𝑣∈𝑉 =  𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅  deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉  
 

 
 
 

 (1) 

 (2) 

 from (1) and (2),  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

Proof: 
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Lemma: 

 If 𝑤:  𝑉 → 𝑄+ is a degree-weighted function.  

 Then  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

 

degree-weighted function, 𝑤 𝑣 =  𝑐 ⋅ deg (𝑣) 

𝐶∗ is the optimal vertex cover in G,   deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗  

in worst case, we pick all vertices.  

𝑂𝑃𝑇 =  𝑤 𝐶∗  = c ⋅  deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗   

 handshaking lemma,   deg 𝑣 = 2|𝐸|𝑣∈𝑉  

𝑤 𝑉 =  𝑤 𝑣𝑣∈𝑉 =  𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅  deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉  
 

 
 
 

 (1) 

 (2) 

 from (1) and (2),  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

Proof: 
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Lemma: 

 If 𝑤:  𝑉 → 𝑄+ is a degree-weighted function.  

 Then  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

 

degree-weighted function, 𝑤 𝑣 =  𝑐 ⋅ deg (𝑣) 

𝐶∗ is the optimal vertex cover in G,   deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗  

in worst case, we pick all vertices.  

𝑂𝑃𝑇 =  𝑤 𝐶∗  = c ⋅  deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗   

 handshaking lemma,   deg 𝑣 = 2|𝐸|𝑣∈𝑉  

𝑤 𝑉 =  𝑤 𝑣𝑣∈𝑉 =  𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅  deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉  
 

 
 
 

 (1) 

 (2) 

 from (1) and (2),  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

Proof: 
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Lemma: 

 If 𝑤:  𝑉 → 𝑄+ is a degree-weighted function.  

 Then  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

 

degree-weighted function, 𝑤 𝑣 =  𝑐 ⋅ deg (𝑣) 

𝐶∗ is the optimal vertex cover in G,   deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗  

in worst case, we pick all vertices.  

𝑂𝑃𝑇 =  𝑤 𝐶∗  = c ⋅  deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗   

 handshaking lemma,   deg 𝑣 = 2|𝐸|𝑣∈𝑉  

𝑤 𝑉 =  𝑤 𝑣𝑣∈𝑉 =  𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅  deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉  
 

 
 
 

 (1) 

 (2) 

 from (1) and (2),  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

Proof: 
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Lemma: 

 If 𝑤:  𝑉 → 𝑄+ is a degree-weighted function.  

 Then  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

 

degree-weighted function, 𝑤 𝑣 =  𝑐 ⋅ deg (𝑣) 

𝐶∗ is the optimal vertex cover in G,   deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗  

in worst case, we pick all vertices.  

𝑂𝑃𝑇 =  𝑤 𝐶∗  = c ⋅  deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗   

 handshaking lemma,   deg 𝑣 = 2|𝐸|𝑣∈𝑉  

𝑤 𝑉 =  𝑤 𝑣𝑣∈𝑉 =  𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅  deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉  
 

 
 
 

 (1) 

 (2) 

 from (1) and (2),  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

Proof: 
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Lemma: 

 If 𝑤:  𝑉 → 𝑄+ is a degree-weighted function.  

 Then  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

 

degree-weighted function, 𝑤 𝑣 =  𝑐 ⋅ deg (𝑣) 

𝐶∗ is the optimal vertex cover in G,   deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗  

in worst case, we pick all vertices.  

𝑂𝑃𝑇 =  𝑤 𝐶∗  = c ⋅  deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗   

 handshaking lemma,   deg 𝑣 = 2|𝐸|𝑣∈𝑉  

𝑤 𝑉 =  𝑤 𝑣𝑣∈𝑉 =  𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅  deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉  
 

 
 
 

 (1) 

 (2) 

 from (1) and (2),  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 

Proof: 
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Layering algorithm 

Basic idea: 

 

arbitrary weight function 

 

several degree-weighted functions 

 

nice property (factor = 2) holds in each layer 

59 



Layering algorithm 

1) remove all degree zero vertices, say this set is 𝑫𝟎 

2) compute   𝒄 =  𝒎𝒊𝒏 {𝒘 𝒗 𝒅𝒆𝒈(𝒗) } 

3) compute degree-weighted function     𝐭(𝒗)  =  𝒄 ⋅ 𝐝𝐞𝐠 (𝒗) 

4) compute residual weight  function      𝒘′ 𝒗 = 𝒘 𝒗  − 𝒕(𝒗) 

5) let 𝑾𝟎 = 𝒗  𝒘
′ 𝒗 = 𝟎}, pick zero residual vertices into the cover set 

6) let 𝑮𝟏be the graph induced on 𝑽 − (𝑫𝟎 ∪𝑾𝟎) 

7) repeat the entire process on 𝑮𝟏 w.r.t.  the residual weight function, 

    until all vertices are of degree zero 
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Layering algorithm 

zero residual weight non-zero residual weight zero degree 
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Layering algorithm 
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Layering algorithm 
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Layering algorithm 
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Layering algorithm 

The vertex cover chosen is  𝑪 = 𝑾𝟎 ∪𝑾𝟏 ∪ …∪𝑾𝒌−𝟏 

Clearly,  𝑽 − 𝑪 = 𝑫𝟎 ∪ 𝑫𝟏 ∪ …∪ 𝑫𝒌 
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Layering algorithm 
 

Example: 

all vertices of unit weight:  w(v) = 1 

1 2 3 

4 5 6 7 

8 
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1 2 3 

4 5 6 7 

8 

 𝐷0 = { 8 } 
 

Iteration 0 
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1 2 3 

4 5 6 7 

1 

0.5 

0.33 
0.25 

0.33 0.5 1 

8 

 𝐷0 = { 8 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
 

Iteration 0 
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1 2 3 

4 5 6 7 

8 

 𝐷0 = { 8 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
compute residual weight:     w’(v) = w(v) – t(v) 
  

Iteration 0 

0.5 

0.25 

0.75 

0 

0.25 0.5 0.75 
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1 2 3 

4 5 6 7 

8 

 𝐷0 = { 8 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
compute residual weight:     w’(v) = w(v) – t(v) 
 𝑊0 = { 3 } 
 
  

Iteration 0 

0.5 

0.25 

0.75 

0 

0.25 0.5 0.75 
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1 2 

4 5 6 7 

 𝐷0 = { 8 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
compute residual weight:     w’(v) = w(v) – t(v) 
 𝑊0 = { 3 } 
remove 𝐷0 and 𝑊0 
  

Iteration 0 

0.5 

0.25 

0.75 0.25 0.5 0.75 
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1 2 

4 5 6 7 

 𝐷1 = { 7 } 

Iteration 1 

0.5 

0.25 

0.75 0.25 0.5 0.75 
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1 2 

4 5 6 7 

 𝐷1 = { 7 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.125 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟏𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
 
  

Iteration 1 

0.75 0.75 

0.25 

0.125 

0.125 0.5 
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1 2 

4 5 6 7 

 𝐷1 = { 7 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.125 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟏𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
compute residual weight:     w’(v) = w(v) – t(v) 
  
  

Iteration 1 

0.75 

0.25 0 

0.625 0 0.375 
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1 2 

4 5 6 7 

 𝐷1 = { 7 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.125 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟏𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
compute residual weight:     w’(v) = w(v) – t(v) 
 𝑊1 = { 2, 5 } 
 
  

Iteration 1 

0.75 

0.25 0 

0.625 0 0.375 

75 



1 

4 6 

 𝐷1 = { 7 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.125 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟏𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
compute residual weight:     w’(v) = w(v) – t(v) 
 𝑊1 = { 2, 5 } 
remove 𝐷1 and 𝑊1 
  

Iteration 1 

0.25 

0.625 0.375 
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1 

4 6 

 𝐷2 = { 6 } 
 
  

Iteration 2 

0.25 

0.625 0.375 
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1 

4 6 

 𝐷2 = { 6 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
 
  

Iteration 2 

0.25 

0.625 0.375 
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1 

4 6 

 𝐷2 = { 6 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
compute residual weight:     w’(v) = w(v) – t(v) 
  
  

Iteration 2 

0 

0.375 0.375 
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1 

4 6 

 𝐷2 = { 6 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
compute residual weight:     w’(v) = w(v) – t(v) 
 𝑊2 = { 1 } 
 
  

Iteration 2 

0 

0.375 0.375 
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4 

 𝐷2 = { 6 } 
compute c =  𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25 
degree-weighted function:   𝑡 𝑣 =  𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗  
compute residual weight:     w’(v) = w(v) – t(v) 
 𝑊2 = { 1 } 
remove 𝐷2 and 𝑊2 
 
  

Iteration 2 

0.375 
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Layering algorithm 
 
all vertices of unit weight:  w(v) = 1 

1 2 3 

4 5 6 7 

8 

 
Vertex cover 𝑪 = 𝑾𝟎 ∪𝑾𝟏 ∪ 𝑾𝟐 = {𝟏, 𝟐, 𝟑, 𝟓}  
  
Total cost:    𝐰 𝑪 = 𝟒 
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Layering algorithm 
 
all vertices of unit weight:  w(v) = 1 

1 2 3 

4 5 6 7 

8 

 
Optimal vertex cover 𝑪∗  = {𝟏, 𝟑, 𝟓}  
  
Optimal cost:    𝑶𝑷𝑻 =  𝐰 𝑪∗ = 𝟑 
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Layering algorithm 
 
all vertices of unit weight:  w(v) = 1 

1 2 3 

4 5 6 7 

8 

 
Vertex cover 𝑪 = 𝑾𝟎 ∪𝑾𝟏 ∪ 𝑾𝟐 = {𝟏, 𝟐, 𝟑, 𝟓}  
Total cost:    𝐰 𝑪 = 𝟒 
 
Optimal cost:    𝑶𝑷𝑻 =  𝐰 𝑪∗ = 𝟑 
 
𝐰 𝑪  <  2⋅OPT 
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Approximation factor 

The layering algorithm for vertex cover problem 
(assuming arbitrary vertex weights) achieves an 
approximation guarantee of factor 2. 
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Approximation factor 

The layering algorithm for vertex cover problem 
(assuming arbitrary vertex weights) achieves an 
approximation guarantee of factor 2. 
 
 
We need to prove: 
1)  set C is a vertex cover for G 
2)  𝑤 𝐶 ≤ 2 ⋅ 𝑂𝑃𝑇 
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Proof 

1)  set C is a vertex cover for G 
 
 
layering algorithm terminates until all nodes are zero degree. 
 
all edges have been already covered. 

87 



Proof 
 2)   𝑤 𝐶 ≤ 2 ⋅ 𝑂𝑃𝑇 
 
a vertex 𝑣 ∈ 𝐶, if 𝑣 ∈ 𝑊𝑗,  

 its weight can be decomposed as  𝐰 𝒗 =   𝒕𝒊(𝒗)𝒊≤𝒋  

 
a vertex 𝑣 ∈ 𝑉 − 𝐶, if 𝑣 ∈ 𝐷𝑗,  

 a lower bound on its weight is given by 𝐰 𝒗 ≥  𝒕𝒊(𝒗)𝒊≤𝒋  

 
Let 𝐶∗ be the optimal vertex cover, 
in each layer i,  𝑪∗ ∩ 𝑮𝒊 is a vertex cover for 𝐺𝑖  
 
recall the lemma : 
if 𝑤:  𝑉 → 𝑄+ is a degree-weighted function,  then  𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇 
by lemma,   𝐭𝐢(𝐂 ∩ 𝐆𝐢) ≤  𝟐 ⋅ 𝐭𝐢(𝐂

∗ ∩ 𝐆𝐢)  
 

𝐰 𝐂 =  𝐭𝐢 𝐂 ∩ 𝐆𝐢
𝐤−𝟏
𝐢=𝟎 ≤ 𝟐 ⋅  𝐭𝐢 𝐂

∗ ∩ 𝐆𝐢
𝐤−𝟏
𝐢=𝟎  ≤  𝟐 ⋅ 𝐰(𝐂∗)  
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Summary 

Layering Algorithm 
Set Cover Problem 

factor = f 

Vertex Cover Problem 

factor = 2 
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Introduction to LP-Duality 

 

Zhu Xiaolu 
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Introduction to LP-Duality 

• Linear Programming (LP) 

• LP-Duality 

• Theorem  

a) Weak duality theorem 

b) LP-duality theorem 

c) Complementary slackness conditions 
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obtaining approximation algorithms using LP 
• Rounding Techniques 
to solve the linear program and convert the fractional 
solution into an integral solution. 
• Primal-dual Schema 
to use the dual o𝑓 the LP-relaxation in the design o𝑓 
the algorithm. 

analyzing combinatorially obtained approximation 
algorithms 
• LP-duality theory is useful 
• using the method of dual fitting 

Why use LP ? 
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What is LP ? 

Objective function: The linear function that we want to optimize. 

Feasible solution: An assignment of values to the variables that 
satisfies the inequalities. E.g. X=(2,1,3) 

Cost: The value that the objective function gives to an assignment. 
E.g. 7 ∙ 2 + 1 + 5 ∙ 3=30 

Linear programming: the problem of optimizing (i.e., 
minimizing or maximizing) a linear function subject to linear 
inequality constraints. 

Minimize   7𝑋1 + 𝑋2 + 5𝑋3 
Subject to   𝑋1 − 𝑋2 + 3𝑋3 ≥ 10 
                     5𝑋1 + 2𝑋2 − 𝑋3 ≥ 6  
                     𝑋1, 𝑋2, 𝑋3 ≥ 0  
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What is LP-Duality ? 
Minimize   7𝑋1 + 𝑋2 + 5𝑋3 
Subject to   𝑋1 − 𝑋2 + 3𝑋3 ≥ 10 
                     5𝑋1 + 2𝑋2 − 𝑋3 ≥ 6  
                     𝑋1, 𝑋2, 𝑋3 ≥ 0  

7𝑋1 + 𝑋2 + 5𝑋3
≥ 𝟏 × 𝑋1 − 𝑋2 + 3𝑋3 + 𝟏 × 5𝑋1 + 2𝑋2 − 𝑋3
= 6𝑋1 + 𝑋2 + 2𝑋3 = 1 × 10 + 1 × 6 ≥ 16 

7𝑋1 + 𝑋2 + 5𝑋3
≥ 𝟐 × 𝑋1 − 𝑋2 + 3𝑋3 + 𝟏 × 5𝑋1 + 2𝑋2 − 𝑋3
= 7𝑋1 + 5𝑋3 = 2 × 10 + 1 × 6 ≥ 26 

As large as possible 

Abstract the constraints: 
  a ≥ b  
  c ≥ d  
Find multipliers:  𝑦1, 𝑦2 ≥0  
  𝑦1a ≥  𝑦1b 
  𝑦2c ≥ 𝑦2d  

Objective function≥ 𝑦1𝑎 + 𝑦2𝑐 ≥ 𝑦1𝑏 + 𝑦2𝑑 (1) 

Min 16 26 

Range of the 
objective function 
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What is LP-Duality ? 

Maximize   10𝑌1 + 6𝑌2 
Subject to   𝑌1 + 5𝑌2 ≤ 7 
                     −𝑌1 + 2𝑌2 ≤ 1 
                     3𝑌1 − 𝑌2 ≤ 5                  
                     𝑌1, 𝑌2 ≥ 0  

Minimize   7𝑋1 + 𝑋2 + 5𝑋3 
Subject to   𝑋1 − 𝑋2 + 3𝑋3 ≥ 10 
                     5𝑋1 + 2𝑋2 − 𝑋3 ≥ 6  
                     𝑋1, 𝑋2, 𝑋3 ≥ 0  

The primal program The dual program 

Minimize      𝑐𝑗𝑥𝑗
𝑛
𝑗=1  

Subject to     𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖   , 

  𝑖 = 1,⋯ ,𝑚 
     𝑥𝑗 ≥ 0 , 𝑗 = 1,⋯ , 𝑛 

𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers 

Maximize      𝑏𝑖𝑦𝑖
𝑚
𝑖=1  

Subject to     𝑎𝑖𝑗𝑦𝑖
𝑚
𝑖=1 ≤ 𝑐𝑗   ,   

𝑗 = 1,⋯ , 𝑛 
     𝑦𝑖 ≥ 0 , 𝑖 = 1,⋯ ,𝑚 
𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers 
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Minimize   𝑐1𝑋1 +⋯+ 𝑐𝑛𝑋𝑛 
Subject to   𝑎1,1𝑋1 +⋯+ 𝑎1,𝑛𝑋𝑛 ≥ 𝑏1 
                      ⋯  
                     𝑎𝑚,1𝑋1 +⋯+ 𝑎𝑚,𝑛𝑋𝑛 ≥ 𝑏𝑚  
                     𝑋1, ⋯ , 𝑋𝑛 ≥ 0  

Minimize   7𝑋1 + 𝑋2 + 5𝑋3 
Subject to   𝑋1 − 𝑋2 + 3𝑋3 ≥ 10 
                     5𝑋1 + 2𝑋2 − 𝑋3 ≥ 6  
                     𝑋1, 𝑋2, 𝑋3 ≥ 0  

𝑌1(𝑎1,1𝑋1 +⋯+ 𝑎1,𝑛𝑋𝑛) + ⋯ +𝑌𝑚(𝑎𝑚,1𝑋1 +⋯+ 𝑎𝑚,𝑛𝑋𝑛) ≥ 𝑌1𝑏1 +⋯+ 𝑌𝑚𝑏𝑚 (1) 

𝑎1,1𝑌1 +⋯+ 𝑎𝑚,1𝑌𝑚 𝑋1 +⋯+ (𝑎1,𝑛𝑌1 +⋯+ 𝑎𝑚,𝑛𝑌𝑚) 𝑋𝑛 ≥ 𝑌1𝑏1 +⋯+ 𝑌𝑚𝑏𝑚 (2) 

Assume: 
𝑎1,1𝑌1 +⋯+ 𝑎𝑚,1𝑌𝑚 ≤ 𝑐1 

⋯ 
𝑎1,𝑛𝑌1 +⋯+ 𝑎𝑚,𝑛𝑌𝑚 ≤ 𝑐𝑛 

𝑐1𝑋1 +⋯+ 𝑐𝑛𝑋𝑛 ≥ 𝑎1,1𝑌1 +⋯+ 𝑎𝑚,1𝑌𝑚 𝑋1 +⋯+ (𝑎1,𝑛𝑌1 +⋯+ 𝑎𝑚,𝑛𝑌𝑚) 𝑋𝑛
≥ 𝑏1𝑌1 +⋯+ 𝑏𝑚𝑌𝑚 

(3) 

Maximize   𝑏1𝑌1 +⋯+ 𝑏𝑚𝑌𝑚 
Subject to   𝑎1,1𝑌1 +⋯+ 𝑎𝑚,1𝑌𝑚 ≤ 𝑐1 
                      ⋯  
                     𝑎1,𝑛𝑌1 +⋯+ 𝑎𝑚,𝑛𝑌𝑚 ≤ 𝑐𝑛  
                     𝑌1, ⋯ , 𝑌𝑚 ≥ 0  

Maximize   10𝑌1 + 6𝑌2 
Subject to   𝑌1 + 5𝑌2 ≤ 7 
                     −𝑌1 + 2𝑌2 ≤ 1 
                     3𝑌1 − 𝑌2 ≤ 5                  
                     𝑌1, 𝑌2 ≥ 0  
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Weak duality theorem 

If 𝑋 =(𝑋1, ⋯,𝑋𝑛) and 𝑌 =(𝑌1, ⋯,𝑌𝑚) are feasible solutions for the 
primal and dual program, respectively, then 

 𝑏𝑖𝑦𝑖

𝑚

𝑖=1

 ≤  𝑐𝑗𝑥𝑗

𝑛

𝑗=1
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Weak duality theorem - proof 

 𝑐𝑗𝑥𝑗 

𝑛

𝑗=1

≥ 𝑏𝑖𝑦𝑖  

𝑚

𝑖=1

 

So, we proof that 

Minimize      𝑐𝑗𝑥𝑗
𝑛
𝑗=1  

Subject to     𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖   , 

  𝑖 = 1,⋯ ,𝑚 
     𝑥𝑗 ≥ 0 , 𝑗 = 1,⋯ , 𝑛 

𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers 

Maximize      𝑏𝑖𝑦𝑖
𝑚
𝑖=1  

Subject to     𝑎𝑖𝑗𝑦𝑖
𝑚
𝑖=1 ≤ 𝑐𝑗   ,   

𝑗 = 1,⋯ , 𝑛 
     𝑦𝑖 ≥ 0 , 𝑖 = 1,⋯ ,𝑚 
𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers 

Since 𝑥 is primal feasible and 𝑦𝑗 ’s are nonnegative, 

  

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖 ≥ 𝑏𝑖𝑦𝑖 

𝑚

𝑖=1

 

Since 𝑦 is dual feasible and 𝑥𝑗 ’s are nonnegative, 

 𝑐𝑗𝑥𝑗 

𝑛

𝑗=1

≥  

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗 

Obviously, 

  

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗 =  

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖  
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LP-duality theorem 

If 𝑋∗ = (𝑋1
∗, ⋯ ,𝑋𝑛

∗) and 𝑌∗ = 𝑌1
∗, ⋯ ,𝑌𝑚

∗  are optimal solutions 
for the primal and dual programs, respectively, then   

 𝑐𝑗𝑥𝑗
∗ 

𝑛

𝑗=1

= 𝑏𝑖𝑦𝑖
∗ 

𝑚

𝑖=1
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Complementary slackness conditions 

Let 𝑋 and 𝑌 be primal and dual feasible solutions, respectively. 
Then, 𝑋 and 𝑌 are both optimal iff all o𝑓 the following 
conditions are satisfied: 
 
• Primal complementary slackness conditions 
For each 1 ≤ 𝑗 ≤ 𝑛: either 𝑥𝑗 = 0 or  𝑎𝑖𝑗𝑦𝑖

𝑚
𝑖=1 = 𝑐𝑗  ; 

And 
• Dual complementary slackness conditions 
For each 1 ≤ 𝑖 ≤ 𝑚: either 𝑦𝑖 = 0 or  𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=1 = 𝑏𝑖. 
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Complementary slackness conditions 
-proof 
 Proof  how these two conditions  comes up 

From the proof of weak duality theorem: 

 𝑐𝑗𝑥𝑗
∗ 

𝑛

𝑗=1

= 𝑏𝑖𝑦𝑖
∗ 

𝑚

𝑖=1

 

 𝑐𝑗𝑥𝑗
∗ 

𝑛

𝑗=1

=  

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗
∗ =  

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖
∗ = 𝑏𝑖𝑦𝑖

∗ 

𝑚

𝑖=1

 

 𝑐𝑗𝑥𝑗 

𝑛

𝑗=1

≥  

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗 

  

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖 ≥ 𝑏𝑖𝑦𝑖 

𝑚

𝑖=1

 

By the LP-duality theorem, x and y are both optimal solutions iff: 

These happens iff (1) and (2) hold with equality: 

(1) 

(2) 
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 𝑐𝑗𝑥𝑗
∗ 

𝑛

𝑗=1

=  

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗
∗ =  

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖
∗ = 𝑏𝑖𝑦𝑖

∗ 

𝑚

𝑖=1

 

 (𝑐𝑗−  𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

)𝑥𝑗
∗ = 0 

𝑛

𝑗=1

 

For each 1 ≤ 𝑗 ≤ 𝑛 

If 𝑥𝑗
∗ > 0  then 𝑐𝑗 −  𝑎𝑖𝑗𝑦𝑖

𝑚
𝑖=1 = 0 

If𝑐𝑗 −  𝑎𝑖𝑗𝑦𝑖
𝑚
𝑖=1 > 0  then 𝑥𝑗

∗ = 0  

Same Process 

Dual complementary slackness conditions 

Primal complementary slackness conditions 
For each 1 ≤ 𝑗 ≤ 𝑛: either 𝑥𝑗 = 0 or  𝑎𝑖𝑗𝑦𝑖

𝑚
𝑖=1 = 𝑐𝑗   
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Set Cover via Dual Fitting 

 

Wang Zixiao 
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Set Cover via Dual Fitting 

• Dual Fitting: help analyze combinatorial 
algorithms using LP-duality theory 

 

• Analysis of the greedy algorithm for the set 
cover problem 

 

• Give a lower bound 
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Dual Fitting 

• Minimization problem: combinatorial 
algorithm 

• Linear programming relaxation, Dual 

• Primal is fully paid for by the dual 

• Infeasible  Feasible (shrunk with factor) 

• Factor  Approximation guarantee 

105 



Formulation 

U: universe 
S: {S1, S2, …, Sk} 

C: S —> Q+ 

Goal:sub-collection with 
minimum cost 

106 



LP-Relaxation 

• Motivation: NP-hard  Polynomial 

• Integer program  Fractional program 

• Letting 𝑥𝑆: 0 ≤ 𝑥𝑆 
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LP Dual Problem 
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LP Dual Problem 

OPT: cost of optimal integral set cover 
OPTf: cost of optimal fractional set cover 
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Solution 

ye = price(e)? Not feasible! 

U = {1, 2, 3} 
S = {{1, 2, 3}, {1, 3}} 
C({1, 2, 3}) = 3 
C({1, 3}) = 1 

•Iteration 1: {1, 3} chosen  
  price(1) = price(3) = 0.5 
•Iteration 2: {1, 2, 3} chosen 
  price(2) = 3 

price(1) + price(2) + price(3) = 4 > C({1, 2, 3}) 

violation 
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Solution 

𝑦𝑒 =
𝑝𝑟𝑖𝑐𝑒(𝑒)

𝐻𝑛
 

The vector y defined above is a feasible solution for the dual 
program 

There is no set S in S overpacked 
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Proof 

Consider a set S∈S 
| S | = k 

Number the elements 
in the order of being covered: 

e1, e2, …, ek 

Consider the iteration for ei: 
e1, e2, …, ei, …, ek 

At least k-i+1 elements 
uncovered in S 

Select S: 

𝑝𝑟𝑖𝑐𝑒 𝑒𝑖 ≤
𝐶(𝑆)

𝑘 − 𝑖 + 1
 

Select S’: 

𝑝𝑟𝑖𝑐𝑒 𝑒𝑖 <
𝐶(𝑆)

𝑘 − 𝑖 + 1
 

 

𝑝𝑟𝑖𝑐𝑒 𝑒𝑖 ≤
𝐶(𝑆)

𝑘 − 𝑖 + 1
 

 

𝑦𝑒𝑖 =
𝑝𝑟𝑖𝑐𝑒(𝑒𝑖)

𝐻𝑛
≤
𝐶 𝑆

𝐻𝑛
∗
1

𝑘 − 𝑖 + 1
 

 𝑦𝑒𝑖 ≤
𝐶(𝑆)

𝐻𝑛

𝑘

𝑖=1

∗
1

𝑘
+
1

𝑘 − 1
+⋯+

1

1
=  
𝐻𝑘
𝐻𝑛
∗ 𝐶(𝑆) ≤ 𝐶(𝑆) 
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The approximation of guarantee of the greedy set cover 
algorithm is 𝐻𝑛 

Proof: The cost of the set cover picked is: 

 𝑝𝑟𝑖𝑐𝑒 𝑒 = 𝐻𝑛( 𝑦𝑒)

𝑒∈𝑈𝑒∈𝑈

≤ 𝐻𝑛 ∗ 𝑂𝑃𝑇𝑓 ≤ 𝐻𝑛𝑂𝑃𝑇 
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Constrained Set Multicover 

• Constrained Set Multicover: Each element e 
has to be covered 𝑟𝑒 times 

 

 

• Greedy algorithm: Pick the most cost-effective 
set until all elements have been covered by 
required times 
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Analysis of the greedy algorithm 
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Analysis of the greedy algorithm 
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Analysis of the greedy alrogithm 
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Analysis of the greedy algorithm 
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Analysis of the greedy algorithm 
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Rounding Applied to LP  
to solve Set Cover 

 

 

  

 

 

 

                                                         Jiao Qing 
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Why rounding? 

• Previous slides show LP-relaxation for the set 
cover problem, but for set cover real 
applications, they usually need integral 
solution. 

• Next section will introduce two rounding 
algorithms and their approximation factor to 
𝑂𝑃𝑇𝑓 and 𝑂𝑃𝑇. 
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Rounding Algorithms 

• A simple rounding algorithm 

• Randomized rounding 
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A simple rounding algorithm 

• Algorithm Description 

1. Find an optimal solution to the LP-relaxation. 

2. Pick all sets 𝑆 for which  𝑥𝑠 ≥
1

𝑓
 in this solution. 

• Apparently, its algorithm complexity equals to 
LP problem. 
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A simple rounding algorithm 

• Proving that it solves set cover problem. 
1. Remember the LP-relaxation: 

 

 

 

2. Let 𝐶 be the collection of picked sets. For 
∀𝑒 ∈ 𝑈, 𝑒 is in at most 𝑓 sets, one of these sets 

must has 𝑥𝑠 ≥
1

𝑓
, therefore, this simple algorithm 

at least solve the set cover problem. 
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A simple rounding algorithm 

• Firstly we prove that it solves set cover 
problem. 

• Then we estimate its approximation factor to 
𝑂𝑃𝑇𝑓 and 𝑂𝑃𝑇 is 𝑓. 

125 



Approximation Factor 

• Estimating its approximation factor 

1. The rounding process increases 𝑥𝑠 by a factor of 
at most 𝑓, and further it reduces the number of 
sets. 

2. Thus it gives a desired approximation guarantee 
o𝑓 𝑓. 
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Randomized Rounding 

• This rounding views the LP-relaxation 
coefficient 𝑥𝑠 of sets as probabilities.  

• Using probabilities theory it proves this 
rounding method has approximation factor  
𝑂(log 𝑛). 
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Randomized Rounding 

• Algorithm Description: 
1. Find an optimal solution to the LP-relaxation. 

2. Independently picks  𝑣 log 𝑛  subsets of full set 𝑆. 

3. Get these subsets’ union 𝐶′, check whether 𝐶′ is a valid 
set cover and has cost ≤ 𝑂𝑃𝑇𝑓 × 4𝑣 log 𝑛. If not, repeat 
the step 2 and 3 again.  

4. The expected number of repetitions needed at most 2. 

 

• Apparently, its algorithm complexity equals 
to LP problem. 
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Proof Approximation Factor 

• Next,we prove its approximate factor is 
𝑂(log 𝑛). 

1. For each set 𝑆, its probability of being picked is 
𝑝𝑠(equals to 𝑥𝑠 coefficient). 

2. Let 𝐶 be one collection of sets picked. The 
expected cost of 𝐶 is: 
 

𝐸 𝑐𝑜𝑠𝑡 𝐶 = 𝑝𝑟 𝑠 𝑖𝑠 𝑝𝑖𝑐𝑘𝑒𝑑 × 𝑐𝑠 = 𝑝𝑠
𝑠∈𝒔𝑠∈𝒔

× 𝑐𝑠 = 𝑂𝑃𝑇𝑓  
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Proof Approximation Factor 

3. Let us compute the probability that an element 𝑎 is 
covered by 𝐶. 
• Suppose that 𝑎 occurs in 𝑘 sets of 𝑆, with the probabilities 

associated with these sets be 𝑝1,... 𝑝𝑘. Because their sum greater 
than 1. Using elementary calculus, we get: 

       𝑝𝑟 𝑎 𝑖𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶 ≥ 1 − 1 −
1

𝑘

𝑘
≥ 1 −

1

𝑒
 

       and thus, 

𝑝𝑟 𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶 ≤
1

𝑒
 

        where 𝑒 is the base of natural logarithms.  

• Hence each element is covered with constant probability by 𝐶. 
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Proof Approximation Factor 

4. And then considering their union 𝐶′, we get: 

 
 

5. Summing over all elements 𝑎 ∈ 𝑈, we get 

        

 

6. With: 

       𝐸 𝑐𝑜𝑠𝑡 𝐶′ ≤  𝐸 𝑐𝑜𝑠𝑡 𝑐𝑖𝑖 =𝑂𝑃𝑇𝑓 × 𝑣 log 𝑛 = 𝑂𝑃𝑇𝑓 × 𝑣 log 𝑛 

       Applying Markov’s Inequality with 𝑡=𝑂𝑃𝑇𝑓 × 4𝑣 log 𝑛 , we get: 

𝑝𝑟 𝑐𝑜𝑠𝑡 𝐶′ ≥ 𝑂𝑃𝑇𝑓 × 4𝑣 log 𝑛 ≤
1

4
 

𝑝𝑟 𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑐′ ≤  
1

𝑒

𝑣 log 𝑛
 ≤
1

4𝑛
 

𝑝𝑟 𝑐
′𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑠𝑒𝑡 𝑐𝑜𝑣𝑒𝑟 = 1 − 1 −

1

4𝑛

𝑛

≤
1

4
 

With 
1

𝑒

𝑣 log 𝑛
≤
1

4𝑛
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Proof Approximation Factor 

7. With 

 

 

 

Hence,  

𝑝𝑟 𝑐
′𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑠𝑒𝑡 𝑐𝑜𝑣𝑒𝑟 ≤

1

4
 

𝑝𝑟 𝑐𝑜𝑠𝑡 𝐶′ ≥ 𝑂𝑃𝑇𝑓 × 4𝑣 log𝑛 ≤
1

4
 

𝑝𝑟 𝐶
′𝑖𝑠 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑠𝑒𝑡 𝑐𝑜𝑣𝑒𝑟 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑐𝑜𝑠𝑡 ≤ 𝑂𝑃𝑇𝑓 × 4𝑣 log 𝑛 ≥

3

4
× 
3

4
≥ 1
2
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Approximation Factor 

• The chance one could find a set cover and has 
a cost smaller than 𝑂(log 𝑛)𝑂𝑃𝑇𝑓 is bigger 

than 50%, and the expected number of 
iteration is two.  

• Thus this randomized rounding algorithm 
provides a factor 𝑂(log 𝑛) approximation, 
with a high probability guarantee.  
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Summary 

• Those two algorithm provide us with factor 𝑓 
and 𝑂(log 𝑛) approximation, which remind us 
the factor of greedy and layering algorithms’.  

• Even through LP-relaxation, right now we 
could  only find algorithm with factor of 𝑓 and 
𝑂 log 𝑛 . 
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Set Cover via the Primal-dual 
Schema 

 

 

      Zhang Hao 
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Primal-dual Schema? 

• A broad outline for the algorithm 

The details have to be designed individually to 
specific problems 

• Good approximation factors and good running 
times 

 

136 



Primal-dual Program(Recall) 

The primal program The dual program 

Minimize      𝑐𝑗𝑥𝑗
𝑛
𝑗=1  

Subject to     𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖   , 

  𝑖 = 1,⋯ ,𝑚 
     𝑥𝑗 ≥ 0 , 𝑗 = 1,⋯ , 𝑛 

𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers 

Maximize      𝑏𝑖𝑦𝑖
𝑚
𝑖=1   

Subject to     𝑎𝑖𝑗𝑦𝑖
𝑚
𝑖=1 ≤ 𝑐𝑗   ,   

𝑗 = 1,⋯ , 𝑛 
     𝑦𝑖 ≥ 0 , 𝑖 = 1,⋯ ,𝑚 
𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers 
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Let 𝐱 and 𝐲 be primal and dual feasible solutions, respectively. 
Then, 𝐱 and 𝐲 are both optimal iff all o𝑓 the following 
conditions are satisfied: 
 
• Primal complementary slackness conditions 
For each 1 ≤ 𝑗 ≤ 𝑛: either 𝑥𝑗 = 0 or  𝑎𝑖𝑗𝑦𝑖

𝑚
𝑖=1 = 𝑐𝑗  ; 

And 
• Dual complementary slackness conditions 
For each 1 ≤ 𝑖 ≤ 𝑚: either 𝑦𝑖 = 0 or  𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=1 = 𝑏𝑖. 

Standard Complementary 
slackness conditions (Recall) 

138 



Let 𝐱 and y be primal and dual feasible solutions, respectively.  
 
• Primal complementary slackness conditions 
For each 1 ≤ 𝑗 ≤ 𝑛: either 𝑥𝑗 = 0 or 𝒄𝒊 𝜶 ≤  𝑎𝑖𝑗

𝑚
𝑖=1 𝑦𝑖 ≤ 𝑐𝑖; 

And 
• Dual complementary slackness conditions 
For each 1 ≤ 𝑖 ≤ 𝑚: either 𝑦𝑖 = 0 or 𝑏𝑖 ≤  𝑎𝑖𝑗𝑥𝑗  

𝑛
𝑗=1  ≤  𝛽𝑏𝑖. 

 
𝛼, 𝛽  =>  The optimality of x and y solutions 
If 𝛼 = 𝛽 = 1    =>    standard complementary slackness conditions 

Relaxed Complementary 
slackness conditions 
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Overview of the Schema 

• Pick a primal infeasible solution x, and a dual 
feasible solution y, such that the slackness 
conditions are satisfied for chosen 𝛼 and 𝛽 
(usually x = 0, y = 0). 

• Iteratively improve the feasibility o𝑓 x 
(integrally) and the optimality o𝑓 y, such that 
the conditions remain satisfied, until x 
becomes feasible. 
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Primal-dual Schema 

 

Proposition 
An approximation guarantee of 𝛼𝛽 is achieved 
using this schema.  
 

Proof: 
 

(𝒄𝒊 𝜶 ≤  𝒂𝒊𝒋
𝒎
𝒊=𝟏 𝒚𝒊) ( 𝒂𝒊𝒋𝒙𝒋 

𝒏
𝒋=𝟏  ≤  𝜷𝒃𝒊) 

(𝒑𝒓𝒊𝒎𝒂𝒍 𝒂𝒏𝒅 𝒅𝒖𝒂𝒍 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏) 

 𝑐𝑗𝑥𝑗 

𝑛

𝑗=1

≤ 𝛼  

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗 = 𝛼  

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖 ≤ 𝛼𝛽 𝑏𝑖𝑦𝑖 

𝑚

𝑖=1

 

 𝑐𝑗𝑥𝑗 

𝑛

𝑗=1

≤ 𝛼𝛽 𝑏𝑖𝑦𝑖 ≤ 𝛼𝛽

𝑚

𝑖=1

∙ 𝑂𝑃𝑇𝑓≤ 𝛼𝛽 ∙ 𝑂𝑃𝑇 
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Primal-dual Schema Applied to Set Cover 

Set Cover(Recall) 
 

 

Standard Primal Program              The Dual Program 
 

minimize  𝒄(S)s∈𝑺 𝒙s          maximize  𝒚ee∈𝑼  

 

subject to  𝒙s𝒆:e ∈S  ≥ 1, 𝑒 ∈ 𝑈    

       𝒙s ∈ {0,1}, 𝑆 ∈ 𝑺 
 

 

 

 
 

subject to  𝒚ee:e ∈S  ≤ 𝑐 𝑆 , 𝑆 ∈ 𝑺    
       𝒚e ≥ 0, 𝑒 ∈ 𝑼 
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Primal-dual Schema Applied to Set Cover 
Relaxed Complementary 
Slackness Conditions 

 
Definition: Set S is called tight if  𝑦𝑒 = 𝑐(𝑆)𝑒:𝑒∈𝑆  
 
Set 𝛼 = 1, 𝛽 = 𝑓(to obtain approximation factor 𝑓) 
Primal Conditions – “Pick only tight sets in the cover” 

∀S ∈ 𝑺: 𝒙S ≠ 𝟎 ⇒  𝒚𝒆 = 𝒄(S)

𝒆:𝒆∈S

 

Dual Conditions  – “Each e, 𝒚𝒆  ≠ 𝟎, can be covered at most 𝑓 times” 
       -  trivially satisfied  

∀𝒆: 𝒚𝒆 ≠ 𝟎 ⇒  𝒙𝑺  ≤ 𝒇

𝑺:𝒆∈𝑺
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Primal-dual Schema Applied to Set Cover 
Algorithm (Set Cover – factor 
𝑓) 

 

• Initialization: x = 0, y = 0. 

• Until all elements are covered, do 

Pick an uncovered element e, and raise 𝑦𝑒 until 
some set goes tight. 

   Pick all tight sets in the cover and update x. 

Declare all the elements occuring in these 
sets as “covered”. 

• Output the set cover x. 
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Primal-dual Schema Applied to Set Cover Theorem 
The algorithm can achieve an approximation factor of 𝑓. 
 

Proo𝑓 

• Clearly, there will be no uncovered and no 
overpacked sets in the end. Thus, primal and 
dual solutions will be feasible.  

• Since they satisfy the relaxed complementary 
slackness conditions with 𝛼 = 1, 𝛽 = 𝑓, the 
approximation factor is 𝑓. 
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Conclusion 

• Combinatorial algorithms are greedy and 
local.  

• LP-based algorithms are global. 
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Conclusion 

• Combinatorial algorithms  

– Greedy algorithms            Factor: H𝑛 

– Layering algorithms         Factor: 𝑓 

• LP-based algorithms 

– Rounding    Factor: 𝑓, H𝑛 

– Primal–Dual Schema Factor: 𝑓 

 

 

 

 147 


