
Approximation Algorithms

Group Members:
1. Geng Xue (A0095628R)

2. Cai Jingli (A0095623B)

3. Xing Zhe (A0095644W)

4. Zhu Xiaolu (A0109657W)

5. Wang Zixiao (A0095670X)

6. Jiao Qing (A0095637R)

7. Zhang Hao (A0095627U)

1

Introduction

 Geng Xue

2

Optimization problem

Find the minimum/maximum of …

– Vertex Cover : A minimum set of vertices that
covers all the edges in a graph.

3

NP optimization problem

• The hardness of NP optimization is NP
hard.

• Can’t be solved in polynomial time.

4

How to solve ?

5

How to solve ?

6

How to solve ?

7

How to solve ?

8

How to evaluate ?

Mine is better!

9

How to evaluate ?

• Sub-optimal solution : 𝜌 × 𝑂𝑃𝑇 (𝜌 is factor).

• The closer factor 𝜌 is to 1, The better the
algorithm is.

Exact optimal value of optimization
problem.

relative performance guarantee.

10

Set cover

• It leads to the development of fundamental
techniques for the entire approximation
algorithms field.

• Due to set cover, many of the basic
algorithm design techniques can be
explained with great ease.

11

What is set cover ?

• Definition:

– Given a universe 𝑈 of n elements, a collection of
subsets of 𝑈, 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑘}, and a cost
function 𝑐: 𝑆 → 𝑄+, find a minimum cost sub-
collection of 𝑆 that covers all elements of 𝑈.

12

What is set cover ?

• Example:

 S Sets Cost

S1 {1,2} 1

S2 {3,4} 1

S3 {1,3} 2

S4 {5,6} 1

S5 {1,5} 3

S6 {4,6} 1

Universal Set :
𝑈 = {1,2,3,4,5,6}

Find a sub-collection of 𝑆
that covers all the elements
of 𝑈 with minimum cost.

Solution?

S1 S2 S4

Cost = 1 + 1 + 1 = 3
13

Approximation algorithms to set
cover problem

• Combinatorial algorithms

• Linear programming based Algorithms

 (LP-based)

14

Combinatorial & LP-based

• Combinatorial algorithms

– Greedy algorithms

– Layering algorithms

• LP-based algorithms

– Dual Fitting

– Rounding

– Primal–Dual Schema

15

Greedy set cover algorithm

Cai Jingli

16

Greedy set cover algorithm

Where C is the set of elements already covered at the beginning of an
iteration and 𝛼 is the average cost at which it covers new elements.

17

Example

subset cost

S1 = {1, 2} 1

S2 = {2, 3, 4} 2

S3 = {3, 4} 3

S4 = {5, 6} 3

Iteration 1: C = {}
α1 = 1 / 2 = 0.5
α2 = 2 / 3 = 0.67
α3 = 3 / 2 = 1.5
α4 = 3 / 2 = 1.5
C = {1, 2}
Price(1) = 0.5
Price(2) = 0.5

Iteration 2: C = {1, 2}
α2 = 2 / 2 = 1
α3 = 3 / 2 = 1.5
α4 = 3 / 2 = 1.5

C = {1, 2, 3, 4}
Price(3) = 1
Price(4) = 1

Iteration 3: C = {1, 2, 3, 4 }
α3 = 3 / 0 = infinite
α4 = 3 / 2 = 1.5

C = {1, 2, 3, 4, 5, 6}
Price(5) = 1.5
Price(6) = 1.5

1

3

2

6 5

4

U

S1

S2

S3

S4

18

Example

subset cost

S1 = {1, 2} 1

S2 = {2, 3, 4} 2

S3 = {3, 4} 3

S4 = {5, 6} 3

1

3

2

6 5

4

U

S1

S2

S3

S4

The picked sets = {S1, S2, S4}
Total cost = Cost(S1)+Cost(S2)+Cost(S4)
 = Price(1) + Price(2) + … + Price(6)
 = 0.5 + 0.5 + 1 + 1 + 1.5 + 1.5 = 6

19

Theorem

• The greedy algorithm is an 𝑯𝒏 factor
approximation algorithm for the minimum
set cover problem, where

𝐻𝑛 = 1 +
1

2
+
1

3
+⋯+

1

𝑛

 𝐶𝑜𝑠𝑡(𝑆𝑖)

𝑖

≤ 𝐻𝑛 ∙ 𝑂𝑃𝑇

20

Proof

1) We know 𝑝𝑟𝑖𝑐𝑒 𝑒 =𝑒∈𝑈 cost of the greedy
algorithm = 𝑐 𝑆1 + c 𝑆2 +⋯+ 𝑐 𝑆𝑚 .

2) We will show 𝑝𝑟𝑖𝑐𝑒(𝑒𝑘) ≤
𝑂𝑃𝑇

𝑛−𝑘+1
, where 𝑒𝑘 is

the kth element covered.

 If 2) is proved then theorem is proved also.

 𝐶𝑜𝑠𝑡(𝑆𝑖)

𝑖

= 𝑝𝑟𝑖𝑐𝑒 𝑒 ≤
𝑂𝑃𝑇

𝑛 − 𝑘 + 1
= 𝑂𝑃𝑇 ∗

𝑛

𝑘=1𝑒∈𝑈

1

𝑛 − 𝑘 + 1

𝑛

𝑘=1

= 𝑂𝑃𝑇 ∗ (1 +
1

2
+
1

3
+⋯+

1

𝑛
) = 𝐻𝑛∙ 𝑂𝑃𝑇

 21

𝑝𝑟𝑖𝑐𝑒(𝑒𝑘) ≤
𝑂𝑃𝑇

𝑛 − 𝑘 + 1

• Say the optimal sets are 𝑂1, 𝑂2, … , 𝑂𝑝, so
OPT = c 𝑂1 + 𝑐 𝑂2 +⋯+ 𝑐 𝑂𝑝 = c 𝑂𝑖

𝑝
𝑖=1

• Now, assume the greedy algorithm has covered
the elements in C so far.

𝑈 − 𝐶 ≤ 𝑂1 ∩ 𝑈 − 𝐶 +⋯+ 𝑂𝑝 ∩ 𝑈 − 𝐶

= 𝑂𝑖 ∩ 𝑈 − 𝐶

𝑝

𝑖=1

• price 𝑒𝑘 = 𝛼 ≤
𝑐(𝑂𝑖)

|𝑂𝑖∩(𝑈−𝐶)|
 (2), i=1,…,p. we know

this because of greedy algorithm

22

1 OPT = c 𝑂𝑖

𝑝

𝑖=1

2 𝑈 − 𝐶 ≤ |𝑂𝑖 ∩ 𝑈 − 𝐶 |

𝑝

𝑖=1

3 𝑐 𝑂𝑖 ≥ 𝛼 ∙ 𝑂𝑖 ∩ 𝑈 − 𝐶

• So

𝑈 − 𝐶 = 𝑛 − 𝑘 + 1

𝑝𝑟𝑖𝑐𝑒 𝑒𝑘 = 𝛼 ≤
𝑂𝑃𝑇

𝑛 − 𝑘 + 1

𝑂𝑃𝑇 = c 𝑂𝑖

𝑝

𝑖=1

 ≥ 𝛼 ∙ 𝑂𝑖 ∩ 𝑈 − 𝐶

𝑝

𝑖=1

 ≥ 𝛼 ∙ 𝑈 − 𝐶

𝑝𝑟𝑖𝑐𝑒(𝑒𝑘) ≤
𝑂𝑃𝑇

𝑛 − 𝑘 + 1

23

Shortest Superstring Problem
(SSP)

• Given a finite alphabet Σ, and set of 𝑛
strings, 𝑆 = {𝑠1, … , 𝑠𝑛} ⊆ Σ

+.

• Find a shortest string 𝑠 that contains each
𝑠𝑖 as a substring.

• Without loss o𝑓 generality, we may assume
that no string 𝑠𝑖 is a substring of another
string 𝑠𝑗 , 𝑗 ≠ 𝑖.

24

Application: Shotgun sequencing

25

Approximating SSP Using Set
Cover

26

Set Cover Based Algorithm
• Set Cover Problem:

– Choose some sets that cover all elements with least cost

• Elements
– The input strings

• Subsets
– 𝜎𝑖𝑗𝑘 = string obtained by overlapping input strings 𝑠𝑖 and 𝑠𝑗 ,

with 𝑘 letters.

– 𝛽 = 𝑺 ∪ 𝜎𝑖𝑗𝑘 , 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘

– Let 𝜋 ∈ 𝛽
– set(𝜋) = {𝑠 ∈ 𝑺 | 𝑠 is a substr. of 𝜋}

27

Set Cover Based Algorithm
• Set Cover Problem:

– Choose some sets that cover all elements with least cost

• Elements
– The input strings

• Subsets
– 𝜎𝑖𝑗𝑘 = string obtained by overlapping input strings 𝑠𝑖 and 𝑠𝑗 ,

with 𝑘 letters.

– 𝛽 = 𝑺 ∪ 𝜎𝑖𝑗𝑘 , 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘

– Let 𝜋 ∈ 𝛽
– set(𝜋) = {𝑠 ∈ 𝑺 | 𝑠 is a substr. of 𝜋}

• Cost of a subset
– set(𝜋) is |𝜋|

• A solution to SSP is the concatenation of 𝜋 obtained from
SCP

28

Example
• S = {CATGC, CTAAGT, GCTA, TTCA, ATGCATC}

𝝅 Set Cost

CATGC
. . . . CTAAGT
CATGCTAAGT

CATGC, CTAAGT, GCTA

10

CATGC . .
. . . GCTA
CATGCTA

CATGC, GCTA

7

. CATGC
ATGCATC
ATGCATCATGC

CATGC, ATGCATC

11

CTAAGT . . .
. TTCA
CTAAGTTCA

CTAAGT, TTCA

9

ATGCATC
. CTAAGT
ATGCATCTAAGT

CTAAGT, ATGCATC

12 29

GCTA
. . . ATGCATC
GCTATGCATC

GCTA, ATGCATC

10

TTCA
. . . ATGCATC
TTCATGCATC

TTCA, ATGCATC, CATGC

10

GCTA . . .
. CTAAGT
GCTAAGT

GCTA, CTAAGT

7

TTCA . . .
. . CATGC
TTCATGC

CATGC, TTCA

7

CATGC . . .
. ATGCATC
CATGCATC

CATGC, ATGCATC

8

CATGC CATGC 5

CTAAGT CTAAGT 6

GCTA GCTA 4

TTCA TTCA 4

ATGCATC ATGCATC 7 30

Lemma

𝑶𝑷𝑻 ≤ 𝑶𝑷𝑻𝑺𝑪𝑨 ≤ 𝟐𝑯𝒏 ∙ 𝑶𝑷𝑻

31

Layering Technique

Xing Zhe

32

Layering Technique

Combinatorial algorithms

Greedy: 𝐻𝑛

Layering ?

Set Cover Problem

33

Vertex Cover Problem

Definition:

Given a graph 𝐺 = (𝑉, 𝐸), and a weight function

𝑤: 𝑉 → 𝑄+ assigning weights to the vertices, find a

minimum weighted subset of vertices 𝐶 ⊆ 𝑉, such

that 𝐶 “covers” all edges in 𝐸, i.e., every edge 𝑒𝑖 ∈ 𝐸
is incident to at least one vertex in 𝐶.

34

Vertex Cover Problem

Example:
all vertices of unit weight

1 2 3

4 5 6 7

35

Vertex Cover Problem

Example:
all vertices of unit weight

1 2 3

4 5 6 7

Total cost = 5
36

Vertex Cover Problem

Example:
all vertices of unit weight

1 2 3

4 5 6 7

Total cost = 3
37

Vertex Cover Problem

Example:
all vertices of unit weight

1 2 3

4 5 6 7

Total cost = 3 OPT
38

Vertex Cover Problem
Vertex cover is a special case of set cover.

 1 2 3

4 5 6 7

a

b c

d
e

𝑓

g
h

A collection of subsets 𝑆 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7

Edges are elements, vertices are subsets

Universe 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}

𝑆1 = {𝑎, 𝑏}
𝑆2 = {𝑏, 𝑐, 𝑑}
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ}
𝑆4 = {𝑎}
𝑆5 = {𝑑, 𝑒, 𝑓}
𝑆6 = {𝑓, 𝑔}
𝑆7 = {ℎ}

Vertex cover problem is a set cover problem with 𝑓 = 2

39

Vertex Cover Problem
Vertex cover is a special case of set cover.

 1 2 3

4 5 6 7

a

b c

d
e

𝑓

g
h

A collection of subsets 𝑆 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7

Universe 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}

𝑆1 = {𝑎, 𝑏}
𝑆2 = {𝑏, 𝑐, 𝑑}
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ}
𝑆4 = {𝑎}
𝑆5 = {𝑑, 𝑒, 𝑓}
𝑆6 = {𝑓, 𝑔}
𝑆7 = {ℎ}

Vertex cover problem is a set cover problem with 𝑓 = 2

Edges are elements, vertices are subsets

40

Vertex Cover Problem
Vertex cover is a special case of set cover.

 1 2 3

4 5 6 7

a

b c

d
e

𝑓

g
h

A collection of subsets 𝑆 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7

Edges are elements, vertices are subsets

Universe 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}

𝑆1 = {𝑎, 𝑏}
𝑆2 = {𝑏, 𝑐, 𝑑}
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ}
𝑆4 = {𝑎}
𝑆5 = {𝑑, 𝑒, 𝑓}
𝑆6 = {𝑓, 𝑔}
𝑆7 = {ℎ}

Vertex cover problem is a set cover problem with 𝑓 = 2

41

Vertex Cover Problem
Vertex cover is a special case of set cover.

 1 2 3

4 5 6 7

a

b c

d
e

𝑓

g
h

A collection of subsets 𝑆 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7

Universe 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}

𝑆1 = {𝑎, 𝑏}
𝑆2 = {𝑏, 𝑐, 𝑑}
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ}
𝑆4 = {𝑎}
𝑆5 = {𝑑, 𝑒, 𝑓}
𝑆6 = {𝑓, 𝑔}
𝑆7 = {ℎ}

Vertex cover problem is a set cover problem with 𝑓 = 2

Edges are elements, vertices are subsets

42

Notation

1) frequency

2) 𝑓 : the frequency of the most frequent element.

Layering algorithm is an 𝑓 factor approximation
for the minimum set cover problem.

43

Notation

1) frequency

2) 𝑓 : the frequency of the most frequent element.

Layering algorithm is an 𝑓 factor approximation
for the minimum set cover problem.
In the vertex cover problem, f = ?

44

Vertex Cover Problem
Vertex cover is a special case of set cover.

 1 2 3

4 5 6 7

a

b c

d
e

𝑓

g
h

A collection of subsets 𝑆 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7

Universe 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}

𝑆1 = {𝑎, 𝑏}
𝑆2 = {𝑏, 𝑐, 𝑑}
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ}
𝑆4 = {𝑎}
𝑆5 = {𝑑, 𝑒, 𝑓}
𝑆6 = {𝑓, 𝑔}
𝑆7 = {ℎ}

Vertex cover problem is a set cover problem with 𝑓 = 2

Edges are elements, vertices are subsets

45

Vertex Cover Problem
Vertex cover is a special case of set cover.

 1 2 3

4 5 6 7

a

b c

d
e

𝑓

g
h

A collection of subsets 𝑆 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7

Universe 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}

𝑆1 = {𝑎, 𝑏}
𝑆2 = {𝑏, 𝑐, 𝑑}
𝑆3 = {𝑐, 𝑒, 𝑔, ℎ}
𝑆4 = {𝑎}
𝑆5 = {𝑑, 𝑒, 𝑓}
𝑆6 = {𝑓, 𝑔}
𝑆7 = {ℎ}

Vertex cover problem is a set cover problem with 𝒇 = 𝟐

Edges are elements, vertices are subsets

46

Approximation factor
1) frequency

2) 𝑓 : the frequency of the most frequent element.

In the vertex cover problem, f = 2

Set Cover Problem Vertex Cover Problem

factor = f factor = 2 Layering Algorithm

47

Approximation factor
1) frequency

2) 𝑓 : the frequency of the most frequent element.

In the vertex cover problem, f = 2

Set Cover Problem Vertex Cover Problem

factor = f factor = 2 Layering Algorithm

48

Vertex Cover Problem

arbitrary weight function:
𝑤: 𝑉 → 𝑄+

degree-weighted function:

 ∃ 𝑐 > 0 s.t.

 ∀ 𝑣 ∈ 𝑉, 𝑤 𝑣 = 𝑐 ⋅ deg (𝑣)

49

Vertex Cover Problem

arbitrary weight function:
𝑤: 𝑉 → 𝑄+

degree-weighted function:

 ∃ 𝑐 > 0 s.t.

 ∀ 𝑣 ∈ 𝑉, 𝑤 𝑣 = 𝑐 ⋅ deg (𝑣)

50

Degree weighted function

Lemma:

 If 𝑤: 𝑉 → 𝑄+ is a degree-weighted function.

 Then 𝑤 𝑉 ≤ 𝟐 ⋅ 𝑂𝑃𝑇

51

Lemma:

 If 𝑤: 𝑉 → 𝑄+ is a degree-weighted function.

 Then 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

degree-weighted function, 𝑤 𝑣 = 𝑐 ⋅ deg (𝑣)

𝐶∗ is the optimal vertex cover in G, deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗

in worst case, we pick all vertices.

𝑂𝑃𝑇 = 𝑤 𝐶∗ = c ⋅ deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗

 handshaking lemma, deg 𝑣 = 2|𝐸|𝑣∈𝑉

𝑤 𝑉 = 𝑤 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉

 (1)

 (2)

 from (1) and (2), 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

Proof:

52

Lemma:

 If 𝑤: 𝑉 → 𝑄+ is a degree-weighted function.

 Then 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

degree-weighted function, 𝑤 𝑣 = 𝑐 ⋅ deg (𝑣)

𝐶∗ is the optimal vertex cover in G, deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗

in worst case, we pick all vertices.

𝑂𝑃𝑇 = 𝑤 𝐶∗ = c ⋅ deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗

 handshaking lemma, deg 𝑣 = 2|𝐸|𝑣∈𝑉

𝑤 𝑉 = 𝑤 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉

 (1)

 (2)

 from (1) and (2), 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

Proof:

53

Lemma:

 If 𝑤: 𝑉 → 𝑄+ is a degree-weighted function.

 Then 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

degree-weighted function, 𝑤 𝑣 = 𝑐 ⋅ deg (𝑣)

𝐶∗ is the optimal vertex cover in G, deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗

in worst case, we pick all vertices.

𝑂𝑃𝑇 = 𝑤 𝐶∗ = c ⋅ deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗

 handshaking lemma, deg 𝑣 = 2|𝐸|𝑣∈𝑉

𝑤 𝑉 = 𝑤 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉

 (1)

 (2)

 from (1) and (2), 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

Proof:

54

Lemma:

 If 𝑤: 𝑉 → 𝑄+ is a degree-weighted function.

 Then 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

degree-weighted function, 𝑤 𝑣 = 𝑐 ⋅ deg (𝑣)

𝐶∗ is the optimal vertex cover in G, deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗

in worst case, we pick all vertices.

𝑂𝑃𝑇 = 𝑤 𝐶∗ = c ⋅ deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗

 handshaking lemma, deg 𝑣 = 2|𝐸|𝑣∈𝑉

𝑤 𝑉 = 𝑤 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉

 (1)

 (2)

 from (1) and (2), 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

Proof:

55

Lemma:

 If 𝑤: 𝑉 → 𝑄+ is a degree-weighted function.

 Then 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

degree-weighted function, 𝑤 𝑣 = 𝑐 ⋅ deg (𝑣)

𝐶∗ is the optimal vertex cover in G, deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗

in worst case, we pick all vertices.

𝑂𝑃𝑇 = 𝑤 𝐶∗ = c ⋅ deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗

 handshaking lemma, deg 𝑣 = 2|𝐸|𝑣∈𝑉

𝑤 𝑉 = 𝑤 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉

 (1)

 (2)

 from (1) and (2), 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

Proof:

56

Lemma:

 If 𝑤: 𝑉 → 𝑄+ is a degree-weighted function.

 Then 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

degree-weighted function, 𝑤 𝑣 = 𝑐 ⋅ deg (𝑣)

𝐶∗ is the optimal vertex cover in G, deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗

in worst case, we pick all vertices.

𝑂𝑃𝑇 = 𝑤 𝐶∗ = c ⋅ deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗

 handshaking lemma, deg 𝑣 = 2|𝐸|𝑣∈𝑉

𝑤 𝑉 = 𝑤 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉

 (1)

 (2)

 from (1) and (2), 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

Proof:

57

Lemma:

 If 𝑤: 𝑉 → 𝑄+ is a degree-weighted function.

 Then 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

degree-weighted function, 𝑤 𝑣 = 𝑐 ⋅ deg (𝑣)

𝐶∗ is the optimal vertex cover in G, deg 𝑣 ≥ |𝐸|𝑣∈𝐶∗

in worst case, we pick all vertices.

𝑂𝑃𝑇 = 𝑤 𝐶∗ = c ⋅ deg 𝑣 ≥ 𝑐 ⋅ |𝐸|𝑣∈𝐶∗

 handshaking lemma, deg 𝑣 = 2|𝐸|𝑣∈𝑉

𝑤 𝑉 = 𝑤 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣𝑣∈𝑉 = 𝑐 ⋅ deg 𝑣 = 𝑐 ⋅ 2|𝐸| 𝑣∈𝑉

 (1)

 (2)

 from (1) and (2), 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇

Proof:

58

Layering algorithm

Basic idea:

arbitrary weight function

several degree-weighted functions

nice property (factor = 2) holds in each layer

59

Layering algorithm

1) remove all degree zero vertices, say this set is 𝑫𝟎

2) compute 𝒄 = 𝒎𝒊𝒏 {𝒘 𝒗 𝒅𝒆𝒈(𝒗) }

3) compute degree-weighted function 𝐭(𝒗) = 𝒄 ⋅ 𝐝𝐞𝐠 (𝒗)

4) compute residual weight function 𝒘′ 𝒗 = 𝒘 𝒗 − 𝒕(𝒗)

5) let 𝑾𝟎 = 𝒗 𝒘
′ 𝒗 = 𝟎}, pick zero residual vertices into the cover set

6) let 𝑮𝟏be the graph induced on 𝑽 − (𝑫𝟎 ∪𝑾𝟎)

7) repeat the entire process on 𝑮𝟏 w.r.t. the residual weight function,

 until all vertices are of degree zero

60

Layering algorithm

zero residual weight non-zero residual weight zero degree

61

Layering algorithm

62

Layering algorithm

63

Layering algorithm

64

Layering algorithm

The vertex cover chosen is 𝑪 = 𝑾𝟎 ∪𝑾𝟏 ∪ …∪𝑾𝒌−𝟏

Clearly, 𝑽 − 𝑪 = 𝑫𝟎 ∪ 𝑫𝟏 ∪ …∪ 𝑫𝒌

65

Layering algorithm

Example:

all vertices of unit weight: w(v) = 1

1 2 3

4 5 6 7

8

66

1 2 3

4 5 6 7

8

 𝐷0 = { 8 }

Iteration 0

67

1 2 3

4 5 6 7

1

0.5

0.33
0.25

0.33 0.5 1

8

 𝐷0 = { 8 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗

Iteration 0

68

1 2 3

4 5 6 7

8

 𝐷0 = { 8 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗
compute residual weight: w’(v) = w(v) – t(v)

Iteration 0

0.5

0.25

0.75

0

0.25 0.5 0.75

69

1 2 3

4 5 6 7

8

 𝐷0 = { 8 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗
compute residual weight: w’(v) = w(v) – t(v)
 𝑊0 = { 3 }

Iteration 0

0.5

0.25

0.75

0

0.25 0.5 0.75

70

1 2

4 5 6 7

 𝐷0 = { 8 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗
compute residual weight: w’(v) = w(v) – t(v)
 𝑊0 = { 3 }
remove 𝐷0 and 𝑊0

Iteration 0

0.5

0.25

0.75 0.25 0.5 0.75

71

1 2

4 5 6 7

 𝐷1 = { 7 }

Iteration 1

0.5

0.25

0.75 0.25 0.5 0.75

72

1 2

4 5 6 7

 𝐷1 = { 7 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.125
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟏𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗

Iteration 1

0.75 0.75

0.25

0.125

0.125 0.5

73

1 2

4 5 6 7

 𝐷1 = { 7 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.125
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟏𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗
compute residual weight: w’(v) = w(v) – t(v)

Iteration 1

0.75

0.25 0

0.625 0 0.375

74

1 2

4 5 6 7

 𝐷1 = { 7 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.125
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟏𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗
compute residual weight: w’(v) = w(v) – t(v)
 𝑊1 = { 2, 5 }

Iteration 1

0.75

0.25 0

0.625 0 0.375

75

1

4 6

 𝐷1 = { 7 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.125
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟏𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗
compute residual weight: w’(v) = w(v) – t(v)
 𝑊1 = { 2, 5 }
remove 𝐷1 and 𝑊1

Iteration 1

0.25

0.625 0.375

76

1

4 6

 𝐷2 = { 6 }

Iteration 2

0.25

0.625 0.375

77

1

4 6

 𝐷2 = { 6 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗

Iteration 2

0.25

0.625 0.375

78

1

4 6

 𝐷2 = { 6 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗
compute residual weight: w’(v) = w(v) – t(v)

Iteration 2

0

0.375 0.375

79

1

4 6

 𝐷2 = { 6 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗
compute residual weight: w’(v) = w(v) – t(v)
 𝑊2 = { 1 }

Iteration 2

0

0.375 0.375

80

4

 𝐷2 = { 6 }
compute c = 𝑚𝑖𝑛 {𝑤 𝑣 𝑑𝑒𝑔(𝑣) } = 0.25
degree-weighted function: 𝑡 𝑣 = 𝑐 ⋅ deg v = 𝟎. 𝟐𝟓 ⋅ 𝒅𝒆𝒈 𝒗
compute residual weight: w’(v) = w(v) – t(v)
 𝑊2 = { 1 }
remove 𝐷2 and 𝑊2

Iteration 2

0.375

81

Layering algorithm

all vertices of unit weight: w(v) = 1

1 2 3

4 5 6 7

8

Vertex cover 𝑪 = 𝑾𝟎 ∪𝑾𝟏 ∪ 𝑾𝟐 = {𝟏, 𝟐, 𝟑, 𝟓}

Total cost: 𝐰 𝑪 = 𝟒

82

Layering algorithm

all vertices of unit weight: w(v) = 1

1 2 3

4 5 6 7

8

Optimal vertex cover 𝑪∗ = {𝟏, 𝟑, 𝟓}

Optimal cost: 𝑶𝑷𝑻 = 𝐰 𝑪∗ = 𝟑

83

Layering algorithm

all vertices of unit weight: w(v) = 1

1 2 3

4 5 6 7

8

Vertex cover 𝑪 = 𝑾𝟎 ∪𝑾𝟏 ∪ 𝑾𝟐 = {𝟏, 𝟐, 𝟑, 𝟓}
Total cost: 𝐰 𝑪 = 𝟒

Optimal cost: 𝑶𝑷𝑻 = 𝐰 𝑪∗ = 𝟑

𝐰 𝑪 < 2⋅OPT

84

Approximation factor

The layering algorithm for vertex cover problem
(assuming arbitrary vertex weights) achieves an
approximation guarantee of factor 2.

85

Approximation factor

The layering algorithm for vertex cover problem
(assuming arbitrary vertex weights) achieves an
approximation guarantee of factor 2.

We need to prove:
1) set C is a vertex cover for G
2) 𝑤 𝐶 ≤ 2 ⋅ 𝑂𝑃𝑇

86

Proof

1) set C is a vertex cover for G

layering algorithm terminates until all nodes are zero degree.

all edges have been already covered.

87

Proof
 2) 𝑤 𝐶 ≤ 2 ⋅ 𝑂𝑃𝑇

a vertex 𝑣 ∈ 𝐶, if 𝑣 ∈ 𝑊𝑗,

 its weight can be decomposed as 𝐰 𝒗 = 𝒕𝒊(𝒗)𝒊≤𝒋

a vertex 𝑣 ∈ 𝑉 − 𝐶, if 𝑣 ∈ 𝐷𝑗,

 a lower bound on its weight is given by 𝐰 𝒗 ≥ 𝒕𝒊(𝒗)𝒊≤𝒋

Let 𝐶∗ be the optimal vertex cover,
in each layer i, 𝑪∗ ∩ 𝑮𝒊 is a vertex cover for 𝐺𝑖

recall the lemma :
if 𝑤: 𝑉 → 𝑄+ is a degree-weighted function, then 𝑤 𝑉 ≤ 2 ⋅ 𝑂𝑃𝑇
by lemma, 𝐭𝐢(𝐂 ∩ 𝐆𝐢) ≤ 𝟐 ⋅ 𝐭𝐢(𝐂

∗ ∩ 𝐆𝐢)

𝐰 𝐂 = 𝐭𝐢 𝐂 ∩ 𝐆𝐢
𝐤−𝟏
𝐢=𝟎 ≤ 𝟐 ⋅ 𝐭𝐢 𝐂

∗ ∩ 𝐆𝐢
𝐤−𝟏
𝐢=𝟎 ≤ 𝟐 ⋅ 𝐰(𝐂∗)

88

Summary

Layering Algorithm
Set Cover Problem

factor = f

Vertex Cover Problem

factor = 2

89

Introduction to LP-Duality

Zhu Xiaolu

90

Introduction to LP-Duality

• Linear Programming (LP)

• LP-Duality

• Theorem

a) Weak duality theorem

b) LP-duality theorem

c) Complementary slackness conditions

91

obtaining approximation algorithms using LP
• Rounding Techniques
to solve the linear program and convert the fractional
solution into an integral solution.
• Primal-dual Schema
to use the dual o𝑓 the LP-relaxation in the design o𝑓
the algorithm.

analyzing combinatorially obtained approximation
algorithms
• LP-duality theory is useful
• using the method of dual fitting

Why use LP ?

92

What is LP ?

Objective function: The linear function that we want to optimize.

Feasible solution: An assignment of values to the variables that
satisfies the inequalities. E.g. X=(2,1,3)

Cost: The value that the objective function gives to an assignment.
E.g. 7 ∙ 2 + 1 + 5 ∙ 3=30

Linear programming: the problem of optimizing (i.e.,
minimizing or maximizing) a linear function subject to linear
inequality constraints.

Minimize 7𝑋1 + 𝑋2 + 5𝑋3
Subject to 𝑋1 − 𝑋2 + 3𝑋3 ≥ 10
 5𝑋1 + 2𝑋2 − 𝑋3 ≥ 6
 𝑋1, 𝑋2, 𝑋3 ≥ 0

93

What is LP-Duality ?
Minimize 7𝑋1 + 𝑋2 + 5𝑋3
Subject to 𝑋1 − 𝑋2 + 3𝑋3 ≥ 10
 5𝑋1 + 2𝑋2 − 𝑋3 ≥ 6
 𝑋1, 𝑋2, 𝑋3 ≥ 0

7𝑋1 + 𝑋2 + 5𝑋3
≥ 𝟏 × 𝑋1 − 𝑋2 + 3𝑋3 + 𝟏 × 5𝑋1 + 2𝑋2 − 𝑋3
= 6𝑋1 + 𝑋2 + 2𝑋3 = 1 × 10 + 1 × 6 ≥ 16

7𝑋1 + 𝑋2 + 5𝑋3
≥ 𝟐 × 𝑋1 − 𝑋2 + 3𝑋3 + 𝟏 × 5𝑋1 + 2𝑋2 − 𝑋3
= 7𝑋1 + 5𝑋3 = 2 × 10 + 1 × 6 ≥ 26

As large as possible

Abstract the constraints:
 a ≥ b
 c ≥ d
Find multipliers: 𝑦1, 𝑦2 ≥0
 𝑦1a ≥ 𝑦1b
 𝑦2c ≥ 𝑦2d

Objective function≥ 𝑦1𝑎 + 𝑦2𝑐 ≥ 𝑦1𝑏 + 𝑦2𝑑 (1)

Min 16 26

Range of the
objective function

94

What is LP-Duality ?

Maximize 10𝑌1 + 6𝑌2
Subject to 𝑌1 + 5𝑌2 ≤ 7
 −𝑌1 + 2𝑌2 ≤ 1
 3𝑌1 − 𝑌2 ≤ 5
 𝑌1, 𝑌2 ≥ 0

Minimize 7𝑋1 + 𝑋2 + 5𝑋3
Subject to 𝑋1 − 𝑋2 + 3𝑋3 ≥ 10
 5𝑋1 + 2𝑋2 − 𝑋3 ≥ 6
 𝑋1, 𝑋2, 𝑋3 ≥ 0

The primal program The dual program

Minimize 𝑐𝑗𝑥𝑗
𝑛
𝑗=1

Subject to 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖 ,

 𝑖 = 1,⋯ ,𝑚
 𝑥𝑗 ≥ 0 , 𝑗 = 1,⋯ , 𝑛

𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers

Maximize 𝑏𝑖𝑦𝑖
𝑚
𝑖=1

Subject to 𝑎𝑖𝑗𝑦𝑖
𝑚
𝑖=1 ≤ 𝑐𝑗 ,

𝑗 = 1,⋯ , 𝑛
 𝑦𝑖 ≥ 0 , 𝑖 = 1,⋯ ,𝑚
𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers

95

Minimize 𝑐1𝑋1 +⋯+ 𝑐𝑛𝑋𝑛
Subject to 𝑎1,1𝑋1 +⋯+ 𝑎1,𝑛𝑋𝑛 ≥ 𝑏1
 ⋯
 𝑎𝑚,1𝑋1 +⋯+ 𝑎𝑚,𝑛𝑋𝑛 ≥ 𝑏𝑚
 𝑋1, ⋯ , 𝑋𝑛 ≥ 0

Minimize 7𝑋1 + 𝑋2 + 5𝑋3
Subject to 𝑋1 − 𝑋2 + 3𝑋3 ≥ 10
 5𝑋1 + 2𝑋2 − 𝑋3 ≥ 6
 𝑋1, 𝑋2, 𝑋3 ≥ 0

𝑌1(𝑎1,1𝑋1 +⋯+ 𝑎1,𝑛𝑋𝑛) + ⋯ +𝑌𝑚(𝑎𝑚,1𝑋1 +⋯+ 𝑎𝑚,𝑛𝑋𝑛) ≥ 𝑌1𝑏1 +⋯+ 𝑌𝑚𝑏𝑚 (1)

𝑎1,1𝑌1 +⋯+ 𝑎𝑚,1𝑌𝑚 𝑋1 +⋯+ (𝑎1,𝑛𝑌1 +⋯+ 𝑎𝑚,𝑛𝑌𝑚) 𝑋𝑛 ≥ 𝑌1𝑏1 +⋯+ 𝑌𝑚𝑏𝑚 (2)

Assume:
𝑎1,1𝑌1 +⋯+ 𝑎𝑚,1𝑌𝑚 ≤ 𝑐1

⋯
𝑎1,𝑛𝑌1 +⋯+ 𝑎𝑚,𝑛𝑌𝑚 ≤ 𝑐𝑛

𝑐1𝑋1 +⋯+ 𝑐𝑛𝑋𝑛 ≥ 𝑎1,1𝑌1 +⋯+ 𝑎𝑚,1𝑌𝑚 𝑋1 +⋯+ (𝑎1,𝑛𝑌1 +⋯+ 𝑎𝑚,𝑛𝑌𝑚) 𝑋𝑛
≥ 𝑏1𝑌1 +⋯+ 𝑏𝑚𝑌𝑚

(3)

Maximize 𝑏1𝑌1 +⋯+ 𝑏𝑚𝑌𝑚
Subject to 𝑎1,1𝑌1 +⋯+ 𝑎𝑚,1𝑌𝑚 ≤ 𝑐1
 ⋯
 𝑎1,𝑛𝑌1 +⋯+ 𝑎𝑚,𝑛𝑌𝑚 ≤ 𝑐𝑛
 𝑌1, ⋯ , 𝑌𝑚 ≥ 0

Maximize 10𝑌1 + 6𝑌2
Subject to 𝑌1 + 5𝑌2 ≤ 7
 −𝑌1 + 2𝑌2 ≤ 1
 3𝑌1 − 𝑌2 ≤ 5
 𝑌1, 𝑌2 ≥ 0

96

Weak duality theorem

If 𝑋 =(𝑋1, ⋯,𝑋𝑛) and 𝑌 =(𝑌1, ⋯,𝑌𝑚) are feasible solutions for the
primal and dual program, respectively, then

 𝑏𝑖𝑦𝑖

𝑚

𝑖=1

 ≤ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

97

Weak duality theorem - proof

 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

≥ 𝑏𝑖𝑦𝑖

𝑚

𝑖=1

So, we proof that

Minimize 𝑐𝑗𝑥𝑗
𝑛
𝑗=1

Subject to 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖 ,

 𝑖 = 1,⋯ ,𝑚
 𝑥𝑗 ≥ 0 , 𝑗 = 1,⋯ , 𝑛

𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers

Maximize 𝑏𝑖𝑦𝑖
𝑚
𝑖=1

Subject to 𝑎𝑖𝑗𝑦𝑖
𝑚
𝑖=1 ≤ 𝑐𝑗 ,

𝑗 = 1,⋯ , 𝑛
 𝑦𝑖 ≥ 0 , 𝑖 = 1,⋯ ,𝑚
𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers

Since 𝑥 is primal feasible and 𝑦𝑗 ’s are nonnegative,

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖 ≥ 𝑏𝑖𝑦𝑖

𝑚

𝑖=1

Since 𝑦 is dual feasible and 𝑥𝑗 ’s are nonnegative,

 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

≥

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗

Obviously,

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗 =

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖

98

LP-duality theorem

If 𝑋∗ = (𝑋1
∗, ⋯ ,𝑋𝑛

∗) and 𝑌∗ = 𝑌1
∗, ⋯ ,𝑌𝑚

∗ are optimal solutions
for the primal and dual programs, respectively, then

 𝑐𝑗𝑥𝑗
∗

𝑛

𝑗=1

= 𝑏𝑖𝑦𝑖
∗

𝑚

𝑖=1

99

Complementary slackness conditions

Let 𝑋 and 𝑌 be primal and dual feasible solutions, respectively.
Then, 𝑋 and 𝑌 are both optimal iff all o𝑓 the following
conditions are satisfied:

• Primal complementary slackness conditions
For each 1 ≤ 𝑗 ≤ 𝑛: either 𝑥𝑗 = 0 or 𝑎𝑖𝑗𝑦𝑖

𝑚
𝑖=1 = 𝑐𝑗 ;

And
• Dual complementary slackness conditions
For each 1 ≤ 𝑖 ≤ 𝑚: either 𝑦𝑖 = 0 or 𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=1 = 𝑏𝑖.

100

Complementary slackness conditions
-proof
 Proof how these two conditions comes up

From the proof of weak duality theorem:

 𝑐𝑗𝑥𝑗
∗

𝑛

𝑗=1

= 𝑏𝑖𝑦𝑖
∗

𝑚

𝑖=1

 𝑐𝑗𝑥𝑗
∗

𝑛

𝑗=1

=

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗
∗ =

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖
∗ = 𝑏𝑖𝑦𝑖

∗

𝑚

𝑖=1

 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

≥

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖 ≥ 𝑏𝑖𝑦𝑖

𝑚

𝑖=1

By the LP-duality theorem, x and y are both optimal solutions iff:

These happens iff (1) and (2) hold with equality:

(1)

(2)

101

 𝑐𝑗𝑥𝑗
∗

𝑛

𝑗=1

=

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗
∗ =

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖
∗ = 𝑏𝑖𝑦𝑖

∗

𝑚

𝑖=1

 (𝑐𝑗− 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

)𝑥𝑗
∗ = 0

𝑛

𝑗=1

For each 1 ≤ 𝑗 ≤ 𝑛

If 𝑥𝑗
∗ > 0 then 𝑐𝑗 − 𝑎𝑖𝑗𝑦𝑖

𝑚
𝑖=1 = 0

If𝑐𝑗 − 𝑎𝑖𝑗𝑦𝑖
𝑚
𝑖=1 > 0 then 𝑥𝑗

∗ = 0

Same Process

Dual complementary slackness conditions

Primal complementary slackness conditions
For each 1 ≤ 𝑗 ≤ 𝑛: either 𝑥𝑗 = 0 or 𝑎𝑖𝑗𝑦𝑖

𝑚
𝑖=1 = 𝑐𝑗

102

Set Cover via Dual Fitting

Wang Zixiao

103

Set Cover via Dual Fitting

• Dual Fitting: help analyze combinatorial
algorithms using LP-duality theory

• Analysis of the greedy algorithm for the set
cover problem

• Give a lower bound

104

Dual Fitting

• Minimization problem: combinatorial
algorithm

• Linear programming relaxation, Dual

• Primal is fully paid for by the dual

• Infeasible Feasible (shrunk with factor)

• Factor Approximation guarantee

105

Formulation

U: universe
S: {S1, S2, …, Sk}

C: S —> Q+

Goal:sub-collection with
minimum cost

106

LP-Relaxation

• Motivation: NP-hard Polynomial

• Integer program Fractional program

• Letting 𝑥𝑆: 0 ≤ 𝑥𝑆

107

LP Dual Problem

108

LP Dual Problem

OPT: cost of optimal integral set cover
OPTf: cost of optimal fractional set cover

109

Solution

ye = price(e)? Not feasible!

U = {1, 2, 3}
S = {{1, 2, 3}, {1, 3}}
C({1, 2, 3}) = 3
C({1, 3}) = 1

•Iteration 1: {1, 3} chosen
 price(1) = price(3) = 0.5
•Iteration 2: {1, 2, 3} chosen
 price(2) = 3

price(1) + price(2) + price(3) = 4 > C({1, 2, 3})

violation

110

Solution

𝑦𝑒 =
𝑝𝑟𝑖𝑐𝑒(𝑒)

𝐻𝑛

The vector y defined above is a feasible solution for the dual
program

There is no set S in S overpacked

111

Proof

Consider a set S∈S
| S | = k

Number the elements
in the order of being covered:

e1, e2, …, ek

Consider the iteration for ei:
e1, e2, …, ei, …, ek

At least k-i+1 elements
uncovered in S

Select S:

𝑝𝑟𝑖𝑐𝑒 𝑒𝑖 ≤
𝐶(𝑆)

𝑘 − 𝑖 + 1

Select S’:

𝑝𝑟𝑖𝑐𝑒 𝑒𝑖 <
𝐶(𝑆)

𝑘 − 𝑖 + 1

𝑝𝑟𝑖𝑐𝑒 𝑒𝑖 ≤
𝐶(𝑆)

𝑘 − 𝑖 + 1

𝑦𝑒𝑖 =
𝑝𝑟𝑖𝑐𝑒(𝑒𝑖)

𝐻𝑛
≤
𝐶 𝑆

𝐻𝑛
∗
1

𝑘 − 𝑖 + 1

 𝑦𝑒𝑖 ≤
𝐶(𝑆)

𝐻𝑛

𝑘

𝑖=1

∗
1

𝑘
+
1

𝑘 − 1
+⋯+

1

1
=
𝐻𝑘
𝐻𝑛
∗ 𝐶(𝑆) ≤ 𝐶(𝑆)

112

The approximation of guarantee of the greedy set cover
algorithm is 𝐻𝑛

Proof: The cost of the set cover picked is:

 𝑝𝑟𝑖𝑐𝑒 𝑒 = 𝐻𝑛(𝑦𝑒)

𝑒∈𝑈𝑒∈𝑈

≤ 𝐻𝑛 ∗ 𝑂𝑃𝑇𝑓 ≤ 𝐻𝑛𝑂𝑃𝑇

113

Constrained Set Multicover

• Constrained Set Multicover: Each element e
has to be covered 𝑟𝑒 times

• Greedy algorithm: Pick the most cost-effective
set until all elements have been covered by
required times

114

Analysis of the greedy algorithm

115

Analysis of the greedy algorithm

116

Analysis of the greedy alrogithm

117

Analysis of the greedy algorithm

118

Analysis of the greedy algorithm

119

Rounding Applied to LP
to solve Set Cover

 Jiao Qing

120

Why rounding?

• Previous slides show LP-relaxation for the set
cover problem, but for set cover real
applications, they usually need integral
solution.

• Next section will introduce two rounding
algorithms and their approximation factor to
𝑂𝑃𝑇𝑓 and 𝑂𝑃𝑇.

121

Rounding Algorithms

• A simple rounding algorithm

• Randomized rounding

122

A simple rounding algorithm

• Algorithm Description

1. Find an optimal solution to the LP-relaxation.

2. Pick all sets 𝑆 for which 𝑥𝑠 ≥
1

𝑓
 in this solution.

• Apparently, its algorithm complexity equals to
LP problem.

123

A simple rounding algorithm

• Proving that it solves set cover problem.
1. Remember the LP-relaxation:

2. Let 𝐶 be the collection of picked sets. For
∀𝑒 ∈ 𝑈, 𝑒 is in at most 𝑓 sets, one of these sets

must has 𝑥𝑠 ≥
1

𝑓
, therefore, this simple algorithm

at least solve the set cover problem.

124

A simple rounding algorithm

• Firstly we prove that it solves set cover
problem.

• Then we estimate its approximation factor to
𝑂𝑃𝑇𝑓 and 𝑂𝑃𝑇 is 𝑓.

125

Approximation Factor

• Estimating its approximation factor

1. The rounding process increases 𝑥𝑠 by a factor of
at most 𝑓, and further it reduces the number of
sets.

2. Thus it gives a desired approximation guarantee
o𝑓 𝑓.

126

Randomized Rounding

• This rounding views the LP-relaxation
coefficient 𝑥𝑠 of sets as probabilities.

• Using probabilities theory it proves this
rounding method has approximation factor
𝑂(log 𝑛).

127

Randomized Rounding

• Algorithm Description:
1. Find an optimal solution to the LP-relaxation.

2. Independently picks 𝑣 log 𝑛 subsets of full set 𝑆.

3. Get these subsets’ union 𝐶′, check whether 𝐶′ is a valid
set cover and has cost ≤ 𝑂𝑃𝑇𝑓 × 4𝑣 log 𝑛. If not, repeat
the step 2 and 3 again.

4. The expected number of repetitions needed at most 2.

• Apparently, its algorithm complexity equals
to LP problem.

 128

Proof Approximation Factor

• Next,we prove its approximate factor is
𝑂(log 𝑛).

1. For each set 𝑆, its probability of being picked is
𝑝𝑠(equals to 𝑥𝑠 coefficient).

2. Let 𝐶 be one collection of sets picked. The
expected cost of 𝐶 is:

𝐸 𝑐𝑜𝑠𝑡 𝐶 = 𝑝𝑟 𝑠 𝑖𝑠 𝑝𝑖𝑐𝑘𝑒𝑑 × 𝑐𝑠 = 𝑝𝑠
𝑠∈𝒔𝑠∈𝒔

× 𝑐𝑠 = 𝑂𝑃𝑇𝑓

129

Proof Approximation Factor

3. Let us compute the probability that an element 𝑎 is
covered by 𝐶.
• Suppose that 𝑎 occurs in 𝑘 sets of 𝑆, with the probabilities

associated with these sets be 𝑝1,... 𝑝𝑘. Because their sum greater
than 1. Using elementary calculus, we get:

 𝑝𝑟 𝑎 𝑖𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶 ≥ 1 − 1 −
1

𝑘

𝑘
≥ 1 −

1

𝑒

 and thus,

𝑝𝑟 𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶 ≤
1

𝑒

 where 𝑒 is the base of natural logarithms.

• Hence each element is covered with constant probability by 𝐶.

 130

Proof Approximation Factor

4. And then considering their union 𝐶′, we get:

5. Summing over all elements 𝑎 ∈ 𝑈, we get

6. With:

 𝐸 𝑐𝑜𝑠𝑡 𝐶′ ≤ 𝐸 𝑐𝑜𝑠𝑡 𝑐𝑖𝑖 =𝑂𝑃𝑇𝑓 × 𝑣 log 𝑛 = 𝑂𝑃𝑇𝑓 × 𝑣 log 𝑛

 Applying Markov’s Inequality with 𝑡=𝑂𝑃𝑇𝑓 × 4𝑣 log 𝑛 , we get:

𝑝𝑟 𝑐𝑜𝑠𝑡 𝐶′ ≥ 𝑂𝑃𝑇𝑓 × 4𝑣 log 𝑛 ≤
1

4

𝑝𝑟 𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑐′ ≤
1

𝑒

𝑣 log 𝑛
 ≤
1

4𝑛

𝑝𝑟 𝑐
′𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑠𝑒𝑡 𝑐𝑜𝑣𝑒𝑟 = 1 − 1 −

1

4𝑛

𝑛

≤
1

4

With
1

𝑒

𝑣 log 𝑛
≤
1

4𝑛

131

Proof Approximation Factor

7. With

Hence,

𝑝𝑟 𝑐
′𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑠𝑒𝑡 𝑐𝑜𝑣𝑒𝑟 ≤

1

4

𝑝𝑟 𝑐𝑜𝑠𝑡 𝐶′ ≥ 𝑂𝑃𝑇𝑓 × 4𝑣 log𝑛 ≤
1

4

𝑝𝑟 𝐶
′𝑖𝑠 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑠𝑒𝑡 𝑐𝑜𝑣𝑒𝑟 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑐𝑜𝑠𝑡 ≤ 𝑂𝑃𝑇𝑓 × 4𝑣 log 𝑛 ≥

3

4
×
3

4
≥ 1
2

132

Approximation Factor

• The chance one could find a set cover and has
a cost smaller than 𝑂(log 𝑛)𝑂𝑃𝑇𝑓 is bigger

than 50%, and the expected number of
iteration is two.

• Thus this randomized rounding algorithm
provides a factor 𝑂(log 𝑛) approximation,
with a high probability guarantee.

133

Summary

• Those two algorithm provide us with factor 𝑓
and 𝑂(log 𝑛) approximation, which remind us
the factor of greedy and layering algorithms’.

• Even through LP-relaxation, right now we
could only find algorithm with factor of 𝑓 and
𝑂 log 𝑛 .

134

Set Cover via the Primal-dual
Schema

 Zhang Hao

135

Primal-dual Schema?

• A broad outline for the algorithm

The details have to be designed individually to
specific problems

• Good approximation factors and good running
times

136

Primal-dual Program(Recall)

The primal program The dual program

Minimize 𝑐𝑗𝑥𝑗
𝑛
𝑗=1

Subject to 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏𝑖 ,

 𝑖 = 1,⋯ ,𝑚
 𝑥𝑗 ≥ 0 , 𝑗 = 1,⋯ , 𝑛

𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers

Maximize 𝑏𝑖𝑦𝑖
𝑚
𝑖=1

Subject to 𝑎𝑖𝑗𝑦𝑖
𝑚
𝑖=1 ≤ 𝑐𝑗 ,

𝑗 = 1,⋯ , 𝑛
 𝑦𝑖 ≥ 0 , 𝑖 = 1,⋯ ,𝑚
𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 are given rational numbers

137

Let 𝐱 and 𝐲 be primal and dual feasible solutions, respectively.
Then, 𝐱 and 𝐲 are both optimal iff all o𝑓 the following
conditions are satisfied:

• Primal complementary slackness conditions
For each 1 ≤ 𝑗 ≤ 𝑛: either 𝑥𝑗 = 0 or 𝑎𝑖𝑗𝑦𝑖

𝑚
𝑖=1 = 𝑐𝑗 ;

And
• Dual complementary slackness conditions
For each 1 ≤ 𝑖 ≤ 𝑚: either 𝑦𝑖 = 0 or 𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=1 = 𝑏𝑖.

Standard Complementary
slackness conditions (Recall)

138

Let 𝐱 and y be primal and dual feasible solutions, respectively.

• Primal complementary slackness conditions
For each 1 ≤ 𝑗 ≤ 𝑛: either 𝑥𝑗 = 0 or 𝒄𝒊 𝜶 ≤ 𝑎𝑖𝑗

𝑚
𝑖=1 𝑦𝑖 ≤ 𝑐𝑖;

And
• Dual complementary slackness conditions
For each 1 ≤ 𝑖 ≤ 𝑚: either 𝑦𝑖 = 0 or 𝑏𝑖 ≤ 𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=1 ≤ 𝛽𝑏𝑖.

𝛼, 𝛽 => The optimality of x and y solutions
If 𝛼 = 𝛽 = 1 => standard complementary slackness conditions

Relaxed Complementary
slackness conditions

139

Overview of the Schema

• Pick a primal infeasible solution x, and a dual
feasible solution y, such that the slackness
conditions are satisfied for chosen 𝛼 and 𝛽
(usually x = 0, y = 0).

• Iteratively improve the feasibility o𝑓 x
(integrally) and the optimality o𝑓 y, such that
the conditions remain satisfied, until x
becomes feasible.

140

Primal-dual Schema

Proposition
An approximation guarantee of 𝛼𝛽 is achieved
using this schema.

Proof:

(𝒄𝒊 𝜶 ≤ 𝒂𝒊𝒋
𝒎
𝒊=𝟏 𝒚𝒊) (𝒂𝒊𝒋𝒙𝒋

𝒏
𝒋=𝟏 ≤ 𝜷𝒃𝒊)

(𝒑𝒓𝒊𝒎𝒂𝒍 𝒂𝒏𝒅 𝒅𝒖𝒂𝒍 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏)

 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝛼

𝑛

𝑗=1

 𝑎𝑖𝑗𝑦𝑖

𝑚

𝑖=1

𝑥𝑗 = 𝛼

𝑚

𝑖=1

 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑦𝑖 ≤ 𝛼𝛽 𝑏𝑖𝑦𝑖

𝑚

𝑖=1

 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

≤ 𝛼𝛽 𝑏𝑖𝑦𝑖 ≤ 𝛼𝛽

𝑚

𝑖=1

∙ 𝑂𝑃𝑇𝑓≤ 𝛼𝛽 ∙ 𝑂𝑃𝑇

141

Primal-dual Schema Applied to Set Cover

Set Cover(Recall)

Standard Primal Program The Dual Program

minimize 𝒄(S)s∈𝑺 𝒙s maximize 𝒚ee∈𝑼

subject to 𝒙s𝒆:e ∈S ≥ 1, 𝑒 ∈ 𝑈

 𝒙s ∈ {0,1}, 𝑆 ∈ 𝑺

subject to 𝒚ee:e ∈S ≤ 𝑐 𝑆 , 𝑆 ∈ 𝑺
 𝒚e ≥ 0, 𝑒 ∈ 𝑼

142

Primal-dual Schema Applied to Set Cover
Relaxed Complementary
Slackness Conditions

Definition: Set S is called tight if 𝑦𝑒 = 𝑐(𝑆)𝑒:𝑒∈𝑆

Set 𝛼 = 1, 𝛽 = 𝑓(to obtain approximation factor 𝑓)
Primal Conditions – “Pick only tight sets in the cover”

∀S ∈ 𝑺: 𝒙S ≠ 𝟎 ⇒ 𝒚𝒆 = 𝒄(S)

𝒆:𝒆∈S

Dual Conditions – “Each e, 𝒚𝒆 ≠ 𝟎, can be covered at most 𝑓 times”
 - trivially satisfied

∀𝒆: 𝒚𝒆 ≠ 𝟎 ⇒ 𝒙𝑺 ≤ 𝒇

𝑺:𝒆∈𝑺

143

Primal-dual Schema Applied to Set Cover
Algorithm (Set Cover – factor
𝑓)

• Initialization: x = 0, y = 0.

• Until all elements are covered, do

Pick an uncovered element e, and raise 𝑦𝑒 until
some set goes tight.

 Pick all tight sets in the cover and update x.

Declare all the elements occuring in these
sets as “covered”.

• Output the set cover x.
144

Primal-dual Schema Applied to Set Cover Theorem
The algorithm can achieve an approximation factor of 𝑓.

Proo𝑓

• Clearly, there will be no uncovered and no
overpacked sets in the end. Thus, primal and
dual solutions will be feasible.

• Since they satisfy the relaxed complementary
slackness conditions with 𝛼 = 1, 𝛽 = 𝑓, the
approximation factor is 𝑓.

145

Conclusion

• Combinatorial algorithms are greedy and
local.

• LP-based algorithms are global.

146

Conclusion

• Combinatorial algorithms

– Greedy algorithms Factor: H𝑛

– Layering algorithms Factor: 𝑓

• LP-based algorithms

– Rounding Factor: 𝑓, H𝑛

– Primal–Dual Schema Factor: 𝑓

 147

