Summary of Streaming Algorithm
By Group 7

Members:
Tuan Nguyen
Hoo Chin Hau

Min Chen
Jingyuan Chen
Samir Kumar
Anurag Anshu

Zheng Leong Chua

Introduction

1. The reason why we need streaming algorithm:

There are huge amount of data in our life, such as network traffic, database transactions e.t.c,
which is too large to be stored in available memory.

Streaming algorithm aims for processing such data stream, usually the algorithm has limited
memory available (much less than the input size) and also limited processing time per item.

2. Evaluation of a streaming algorithm
-> Number of passes of the data stream
- Size of memory used
=> Running time

3. Two general approaches for streaming algorithm
=> Sampling: Keep part of the stream with accurate information of the individuals which
have been chosen
=> Sketching: Keep the summary of the whole streaming but not accurately

4. In this presentation, we are going to introduce:
=> Using sampling to calculate the Frequency moment of a data stream
=> Count-Min Sketch

Sampling based approach

The paper “Space Complexity of Approximating Frequency Moments” discusses space efficient
sampling algorithms for estimating frequency moments of numbers. By sampling, we mean the
elements are to be read once as they appear. The elements already read cannot be read again.

Let m_i be number of times number ‘i’ appears in the stream. Then F_k = SUM_i m_i*k

For computing k-moment,k>0

1) Pick up an element at random (each element with equal probability), and count the number of
times this element appears after (and including) the position you picked it.

Let this number be r. Then output m(r*k - (r-1)"k).

2) To pick up an element at random from sequence of elements streaming in, do the following:
when first element comes pick it. When second element comes, throw away the first element
with prob 1/2. So at this stage, you have made random selection from 2 elements with equal
pobabilty=1/2. When 3rd element comes, accept the selection from first two pick-ups with prob
2/3 and accept the new one with probability 1/3. So probab. of choosing one of the first two
elements= 1/2*2/3 = 1/3. Continue this way.

Now we notice that "mean" of output in Point 1) is precisely the k-moment. Consider a particular
element 'i'. Let m_i be number of times it comes. Wherever it occurs in the sequence, we pick it
up with probability 1/m. The average value of outputis : (1/m)*m(m_i*k - (m_i-1)*k + (m_i-1)"k
- (m_i-2)*k 2%k-1*k + 17k) = m_i"k . Hence average of output, when summing over all distinct
elements is the k-moment.

So if X is the random variable that represents the output, then E(X) = F_k.

Now we can calculate that the variance of X is “kF_1F_{2k-1} - F_k*2”, which is bounded by
knM1-1/k}F_k"2 - F_k"2 < kn™{1-1/K}F_k"2 .

So we have a random variable with mean F_k and variance less than kn*{1-1/k}F_k*2. If we do
repeated sampling, say 's' times, we will be able to get better and better estimate. Let Y = (X1
+X2 + ... Xs)/s ...the average obtained after s rounds. Then E(Y)= E(X) and Var(Y) = Var(X)/s.

Now, suppose you want to know the value of F_k in the range (1-lambda)F_k to (1+lambda)F_k.
The probability that this does not happen, for s = 8k n*{1-1/k}/lambda”2, is atmost 1/8.

So this way, error is set down to 1/8. This is obtained by computing Y. Now if we want to get it
arbitrarily small, we need to repeat more times. So if we want error epsilon, then repeat
log(1/epsilon) times. This completes this part.

Improved version for k=2
Bad space inefficient algorithm:

1) For this, we choose a random n-element sequence e_1,e_2...e_n,withe_iin +1 and -1. Now

compute: Z = SUM _i e_im_i, in this way: as the element i comes, update Z -> Z + e_i. Then

output Z"2.

2) Then E(Z*2) = SUM_i mi*2 = F_2, since e_i and e_j are mutually independent and E(e_i) = O;
E(e_i"2)=1.

Also E(Z*4) = SUM_{i,j,k,I} E(e_ie_je_ke _I)m_im_jm_km_I . Now using E(e_ie_je ke I) = 1 iff
either i=j=k=l or (i=j and k=l) or (i=k and j=I) or (i=I and j=k), we get E(Z"4) = Z*4 + 4*SUM_{i<
jim_if2mjr2 < 3F2/2

Since variance is bounded, one can repeat many times once again to obtain the estimate.

Improving space efficiency:

3) We notice that we just need to compute e_i as the number ‘i’ appears. These “e_i” just have
to be 4-wise independent and uniform. We can use the theory of orthogonal arrays to generate
them. An orthogonal array of strength 4 with n columns and m rows is a list of n-bit strings,
containing m strings, such that in any 4 columns, all possible 4-bit strings appear in equal
number. A nice way to generate an orthogonal array of strength 4 is

A) Obtain a k*n matrix G in which any 4 columns are pairwise independent.

B) Generate a k-bit row vector v. Consider the row vector v*G. Every choice of v gives a v*G,
which is a row of the orthogonal array.

C) A good choice of G is an array of 3*log(n) rows and n columns, which is a column-wise list of
elements of a field F[n] (assume n to be a power of 2). Hence k=3*log(n).

4) hence the algorithm is: generate a random v, which needs 3*log(n) bits. If the number 7’
appears, compute the ith element of F[n], which can be done in O(log(n)) space. Then multiply v
with this i-th element to get e _i.

Estimating F_0

The Flajolet Martin paper had the required substrate to compute this moment. Assumption was
the existence of a family of hash functions that map log(n) bit input to log(n) bit numbers
randomly. Then 1/2 of the inputs will be mapped to all the log(n)-bit numbers which have at least
one leading ‘0’s. 1/4 will be mapped to those with at least two leading '0's and so on. So if there
are p distinct elements, then on an average, at most one element will be mapped to the numbers
with atleast log(p) leading ‘O’s. Hence, looking at the max number of leading '0's and taking
power of 2 of this number, we get an average estimate.

The present paper uses pairwise independent family of linear hash functions to perform the
same analysis. They show that probability that the estimate for F_0 is not between cF_0 and
F_O/cis less than 2/c, where ‘c’ is the input to the algorithm.

Count-Min Sketch
Definition:

Count-min Sketch was proposed by Graham and Muthukrishnan in the paper "An improved data
stream summary: the count-min sketch and its applications." (Journal of Algorithms 55.1 (2005):
58-75). It is used to solve the problem of keeping track of large number of n items, represented
as n elements in the array a. One arbitrary element a, can be updated at any time by a value c: a,
=a +c.

Count-min sketch consists of two basic operations:
e Count: counting the number or UPDATE.
e Min: computing the minimum value across the entries or ESTIMATE.
The sketch is a two-dimensional d-by-w array count: count[1,1], ... count[d,w] determined by
two parameters:
e ¢: the error of estimation
e 0: the certainty of estimation
in which:

]

(e is the natural number)
In addition, d hash functions are selected uniformly at random from a pair-wise independent
hash function family to achieve the transformation: {1...n} » {1..w}. Each hash function is
corresponding to each row of the array count.

UPDATE Operation:

The UPDATE operation is defined formally as:

e UPDATE(i, c):
o Add value c to the i-th element of a
o ¢ can be non-negative (cash-register model) or anything (turnstile model).
e Operations: for each hash function h;, the obtained hash value of i is used as the index to
the count array and c is updated to the array accordingly:

count j,h;(i)]+=c
Queries

There are three types of query:
e Point query, Q(i), returns an approximation of a;
e Range query, Q(l, r), returns an approximation of:

Z ie[l,r]ai

e Inner product query, Q(a,b), approximates:

Point query is the basic query that is utilized by range and inner product query; therefore only
point query is covered in this report.

Point query Q(i) in cash-register model:

The result of this query is calculated by first getting d corresponding entries (by calculating hash
values of i) in the count array then returning the minimum value:

Q(1)=a; =min count] j,h;(i)]
This estimation is guaranteed to be in below range with probability at least 1-8. This is the
Theorem 1 in the discussing paper.

a,<a <a -+ 6HaHl

From this theorem, the estimated value is always greater than the actual value of i-th element;
hence the minimum value among d entries is the closest one to the actual value. This theorem
can be proved by utilizing the expected collision rate of hash functions and Markov inequality.

Point query Q(i) in turnstile model:

Unlike cash-register model. the estimated value in this model is taken by calculating the median
of d entries:

Q(i) =&; = median,count] j, h;(i)]

Since the estimations returned from d rows of sketch can be negative, the minimum method
provide an estimation which can be far away from true value. Thus, by sorting the values in the
increasing order, the bad values will be placed in the upper/lower half (too high/too low), while the
good values will be placed in the middle which is actually the median. Besides, this method can
only work well when the number of bad estimations is less than d/2. The calculation of the
probability of getting good estimation was presented in the presentation and it is greater than:

1-87%

Count-min sketch implementation:

Because of the simple and independent operations, the count-min sketch can be implemented in
both sequential or parallel/distributed manner to satisfy the updating and querying rate.

Conclusion

In this presentation, we mainly introduced two parts, frequency moments and count-min sketch.
Frequency moments are often used to provide useful statistics on the stream. And count-min
sketch are used when we need to summarize a data stream.

The frequency moments of a data set represent important demographic information about the
data, and are important features in the context of database and network applications.

Count-Min sketch is a compact summary of a large amount of data. We can also view it as a
small data structure which is a linear function of the input data. Count-min sketch is widely used
in different research areas, such as compressed sensing, networking, databases, NLP and so
on.

