Summary

Following is an outline of the algorithm discussed in “A randomized polynomial time algorithm for
approximating the volume of a convex body”. Input to the algorithm is an oracle (which decides
the membership of a point in a fixed convex body), two spheres (of radius depending only on
dimension of space) between which the body is promised to be positioned and an error
parameter ‘e’. Algorithm outputs in polynomial time (polynomial in dimension of the space), the
correct volume of the body upto (1+- e) factor, with probability at least %a.

It may be noted that there can be no polynomial time deterministic algorithm given all the above
inputs.

Algorithm

Let K be the convex body in R” whose volume is to be found. In the algorithm, all the convex
bodies are given by a “well-guaranteed membership oracles”, that is, we will be given a sphere
contained in the body, a sphere containing the body and a black box, which presented with any
point x in space, either replies that x is in the convex body or that it is not. On applying affine
transformation, the convex body is "well-rounded". That is, the body contains the unit ball with the
origin as center and is contained in a concentric ball of radius » = vn(n+ 1) where n is the
dimension of the body. So we have B S K € rB.

Let p=1-1/n. Let k= ‘log l/pr\ and fori=0, 1, 2, ..., k, let p ;= max{p r,1} . The algorithm will find

fori=1, 2, ..., k an approximation to the ratio
Vol u(p KnrB)
Vol u(p i1 KNrB)
The ratio will be found by a sequence of “trials”. In each trail, we first do the technical random
walkon K, ,=p, ;nrB for 1 steps. Suppose we are incube C={x:¢q 6 <x<(g,;+1)5} after

1 steps. We pick randomly a point x , in cube C. If x y € K ;_;, then we declare the trial a proper
trial and check to see if x , € K ;. If it does, we declare the trial a success. This completes the
trial. We repeat until we have made m proper trials and we keep track of the ratio of the number

of successes to m.
Clearly this together with the fact that K , = K and the volume of K ,=rB is known in closed

form gives us the volume of K.

Random walk

In the algorithm, what we need is a uniformly random generator, the diagram below shows the
technical random walk we are using, and why it is a uniformly random generator.

Later on we will show that the Markov chain for this technical random walk actually is rapidly
mixing, which means that it can reach a steady distribution in polynomial time steps.



MNatural random walk

Objectives:
1. K(a) is smoother than K
2. Markov chain to be aperiodic
3. eigenvalues of P to be positive

\

1. walk over K{a)
2. has 1/2 probability
stay in the present cube

Technical Random walk

techinical Markowv chain

1. irreducible \ :
2. aperiodic > infcrmally random glenerailzclr
3. P is symmetric / (which proofed to be rapidly mixing)

Proof of correctness

As described earlier, the algorithm approximates the volume of the convex body by

approximating a series of volume ratios Vol_n(K_i)/Vol_n(K_(i-1)), and these ratios are actually
related to the ratio of Pr(success trial)/Pr(proper trial). Therefore, the proof of correctness starts
by relating the volume ratio to the probability ratio. The authors then show that the probability ratio
approximates the volume ratio within a certain bound with a probability of at least %a.




Pr(proper trial) = Z Pr(proper trial|lwalk ends in C) * Pr(walk ends in C)
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Based on basic probability theory, the probability of proper trial is equal to the first expression
where W is the set of all cubes that weakly intersects the convex body K_(i-1). The first
expression is upper bounded by the second equation where N*B_C/N_C and (1-
1/(10M7*n*9)) M are the error values. Simplifying the expression and applying the same
argument to the convex body K _i gives us the following two expressions respectively.

VOI?L(KI'—I) € VOln(K'—l) €
— <P trial) < 1
IW|a™ ( 100k) < Pr(proper trial) < —zren— (1 + 75650
Vol, (K;) € ] Vol,(K;) €
W( — 1001{) < Pr(success N proper trial) < TW[en (1+ 100k)

The probability ratio, p can then be calculated by dividing the two expressions above to give the
following expression.
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v (1 - ﬁ) (1 + Ti)k) <p<v (1 + TEOI{) (1 — ﬁ) v = Vol (K)/Voly, (K;_,)

The expression above gives the error of a single volume estimate. Multiplying the expression by
itself k times gives the error of the convex body volume estimate, and the error can be shown to
be bounded by the following expression with Hoeffding’s inequality where V is the approximated
volume. The prove is now complete.
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Rapidly mixing Markov chain
Referring back to some properties of Markov Chain, it is known that any finite, ergodic Markov
Chain converges to a unique stationary distribution 1T after an infinite number of steps, that is:
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By formal definition, the time taken by a particular Markov Chain to converge to its stationary
distribution is called mixing time. It is measured in terms of the total variation distance between
the distribution at time s and the stationary distribution:
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) < (1 + €) with a probability of at lif.easté—1



tv ieQ =)

(Q is the set of all states)
This total variation distance is introduced to reflect the fact that it is not possible to obtain the
stationary distribution by running infinite number of steps and a small value € > 0 is added to
relax the convergent condition for the mixing time 1(¢) as below:

7(¢) =min{s - \

ps',ﬁHN <g,Vs'>s}

From the definition of mixing time, a Markov Chain is called rapidly mixing if the mixing time 1(¢)
is O(poly(log(N/¢))), N is the number of states. It means that if N is exponential in problem size n,
1(€) is actually bounded by O(poly(n)). The result obtained in the paper about the minimum
required mixing time 1 complies with this definition and the total variation distance is bounded
with such a small value that guarantees the distribution received from the proposed Markov
Chain is close enough to uniform distribution:
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(¢ here is the predefined accuracy of estimating the volume of convex body)
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Proof for rapidly mixing

Using the result of Sinclair and Jerrum in present context, authors show that second largest
eigenvalue of the transition matrix is bounded from above by 1-y(S)/4n, where y(S) for a set is
defined below.

Assume a set S with size less than N/2.

Let Sb be the set of boundary cubes of S, (S,barS) be the set of faces between cubes in S and
cubes in barS, Si be the interior cubes of S. Then y(S) = |(S,barS)|/|S].

Authors prove the following relation, using the properties of the convex body K(alpha):

|Sb| <= 2n |(S,barS)| + 18|Si|.

This leads to following case, applicable to smooth version of K(alpha), called KK.

Case 1: Many boundary cubes: |Sb|/|S| >= 18.5/19. Then y(S) > 1/4n. Intuitively, more boundary
cubes and less inside cubes means more ‘exposed’ intersection (S,barS) between boundary
cubes and inside cubes of barS.

Case 2: |Sb|/|S| < 18.5/19. This means |Si|/|S| >= 1/38.

This means there are considerably many inside cubes. But this in turn can mean that
intersection of Si with bar(S) is a lot and we must exploit it. Key idea: isoperimetric inequality



for euclidean space, which says that if volume of a region is large, then its surface area is

large.

Let region R be defined to be intersection of KK with S. Let T be its boundary. Isoperimetric
inequality ensures that |T| is comparable to |S|. Now, T is made up of: T1 (part that does not
intersect KK) and T2(part that intersects KK). Let T3 be region of KK that is not T2, and bar(T)

be the boundary of complement of R inside KK.

Clearly, T1 is a part of boundary between (S,barS). Using this, we have following cases.

Case 2.1: If VoI(T1) > Vol(T)/2 or Vol(T3)<Vol(bar(T))/2, then T1 is comparable to T and one gets
y(S) > 1/4000n"3.

Case 2.2: If Vol(T2)>Vol(T)/2 and Vol(T3)> Vol(bar(T))/2. Now recall that T2 and T3 make up
whole of boundary of KK. Next idea is to observe a yet another isoperimetric inequality on
curved space: boundary of KK. This isoperimetric inequality says that if a region on boundary of
KK is big, but not too big, then the boundary of this region has large perimeter. Using this idea,
one realizes that boundary of T2 (T1; they have same boundary) is comparable to |S|. Hence one
gets y(S) > d*2/2400n*{7/2}, since this boundary itself contributes to the (S,barS).

Conclusion

The algorithm provides a randomized polynomial time algorithm for a problem that has provably
no polynomial time deterministic algorithm. This gives an interesting picture of the ‘oracle based’
computation. As application, assuming the existence of oracle, the algorithm gives us a way to
perform integration of convex functions convex bodies, or looking at volume of solution space in
linear programming. If oracle is easy to construct, then probably a deterministic algorithm is
possible as well, since the body must be simple enough for this to hold. On the other hand, the
proof of rapid mixing markov chain shows the power of the result of Sinclair and Jerrum, which
widens the scope for developing techniques to prove rapid mixing.

The algorithm has been improved considerably, dropping the computational time from O(n*{23})
to O(n"4).



