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Linear Regression Example
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Ordinary Least Squares

Input: points (xi,yi)
Regression line: y = mx+ b

Objective:

min
m,b

∑
i

(yi −mxi − b)
2

(~xi,yi)
y = ~w · ~x+ b
min
~w

∑
i

(yi − ~w · ~xi − b)2

Easily Solved: ~w∗(XTX) − XT~y

But what if dim~x is large?

What about other similar regressions?
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Convex Optimization Problems

OrdinaryLinearRegression: min
~w

∑
i

(yi − ~w · ~xi)2

General: min
x
f(x) where f(x) is convex

Set C is convex ⇐⇒ ∀x,y ∈ C, 0 6 t 6 1 : tx+ (1 − t)y ∈ C
Function f : Rn → R is convex if dom f is convex and
∀x,y ∈ dom f, 0 6 t 6 1 :

f(tx+ (1 − t)y) 6 tf(x) + (1 − t)f(y)

Unconstrained.
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Outliers
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Outlier Penalty
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Capped Penalty
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Huber Penalty Function
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Unconstrained Optimization

Minimize f(x);

Where f : Rn → R is convex and twice differentiable;

No additional constraints;

Assume that unique minimum x∗ exists.
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General Principle

Objective: minimize f(x)

Necessary and sufficient condition: ∇f(x∗) = 0
Solve analytically
Iterative algorithms

Iterative Algorithm:

x(0), x(1), ... ∈ dom f

k→∞, f(x(k))→ f(x∗)

Descent Method:

x(k+1) = x(k) + t(k)∆x(k), s.t.f(x(k+1)) < f(x(k))
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General Descent Method

Descent Method:

x(k+1) = x(k) + t(k)∆x(k), s.t.f(x(k+1)) < f(x(k)) (1)

Algorithm:

Given x(0) ∈ dom f;
repeat

Determine a descent direction ∆x;
Choose a step size t > 0;
Update x := x+ t∆x;

until stopping criterion is satisfied;

Therefore, ∆x must satisfy:

∇f(x(k))T∆x(k) < 0 (2)
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General Descent Method

Descent Method:

x(k+1) = x(k) + t(k)∆x(k), s.t.f(x(k+1)) < f(x(k)) (1)

Theorem

For a continuously differentiable function f:

f is convex⇔ f(x) > f(y) + f ′(y)(x− y)

Based on the Theorem and Equation (1):

f(x(k)) +∇f(x(k))T∆x(k) 6 f(x(k+1))

∇f(x(k))T∆x(k) 6 f(x(k+1)) − f(x(k)) < 0

Therefore, ∆x must satisfy:

∇f(x(k))T∆x(k) < 0 (2)
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General Descent Method

Descent Method:

x(k+1) = x(k) + t(k)∆x(k), s.t.f(x(k+1)) < f(x(k)) (1)

Algorithm:

Given x(0) ∈ dom f;
repeat

Determine a descent direction ∆x⇒ Gradient/SteepestDescent;
Choose a step size t > 0 ⇒ LineSearchAlgo ;
Update x := x+ t∆x;

until stopping criterion is satisfied;

Therefore, ∆x must satisfy:

∇f(x(k))T∆x(k) < 0 (2)
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Line Search

x(k+1) = x(k) + t(k)∆x(k), f(x(k+1))← f(x(k))

When Step Size t is Appropriate.

When Step Size t is Inappropriate.
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Line Search

Armijo

f(x(k) + t∆x(k)) 6 f(x(k)) + α1t∇f(x(k))T∆x(k),α1 > 0

Wolfe Conditions (Including Armijo Condition):

∇f(x(k)+t∆x(k))T∆x(k) > α2∇f(x(k))T∆x(k), 0 < α1 < α2 < 1

Where ∆x is the step direction.

Theorem:

Gradient descent will find local minimum if step size t satisfies
Wolfe conditions.
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Line Search

Armijo Condition:

f(x(k) + t∆x(k)) 6 f(x(k)) + αt∇f(x(k))T∆x(k),α > 0

Backtracking Line Search:

Given a descent direction ∆x for f at
x ∈ dom f,α ∈ (0, 0.5),β ∈ (0, 1), t := 1;

while f(x+ t∆x) > f(x) + αt∇f(x)T∆x do
t := βt;

end

Exact Line Search Method:

t = argmin
s>0

{f(x+ s∆x)}
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General Descent Method

Gradient Descent Method

Steepest Descent Method

∆x satisfies:
∇f(x(k))T∆x(k) < 0
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Gradient Descent Method

∆x = −∇f(x)

Given x(0) ∈ dom f;
repeat

∆x = −∇f(x);
Choose a step size t > 0, [LineSearch];
Update x := x+ t∆x;

until stopping criterion is satisfied;
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Steepest Descent Method

∆x = ∆xsd
•Taylor Series:

f(x + ∆x) = f(x) +∇f(x)T∆x +
1
2
∆x∇2f(x)∆x + ...

f(x + v) ≈ f̂(x + v) = f(x) +∇f(x)Tv

x(k+1) = x(k) + t(k)∆x(k), s.t.f(x(k+1)) < f(x(k))

Where v is a descent direction if ∇f(x)Tv < 0
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Steepest Descent Method

f(x + v) ≈ f̂(x + v) = f(x) +∇f(x)Tv

•Normalized Steepest Descent Direction:

∆xnsd = argmin{∇f(x)Tv | ‖v‖ = 1}

= argmin{∇f(x)Tv | ‖v‖ 6 1}
(3)
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Steepest Descent Method

Dual Norm, denoted ‖·‖∗, is defined as:

‖z‖∗ = sup{z
Tx| ‖x‖ 6 1}

Unnormalized Steepest Descent Direction:

∆x = ‖∇f(x)‖∗ · ∆xnsd

∇f(x)Tv = ∇f(x)T∆xsd
= ‖∇f(x)‖∗∇f(x)

T∆xnsd

= − ‖∇f(x)‖2
∗

Proof

∆xnsd = argmin{∇f(x)Tv | ‖v‖ 6 1}

= − argmax{∇f(x)Tv | ‖v‖ 6 1}

‖∇f(x)‖∗ = sup{∇f(x)
Tv | ‖v‖ 6 1}

⇒ ‖∇f(x)‖∗ = −∇f(x)T∆xnsd
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Steepest Descent Method

∆xnsd = argmin{∇f(x)Tv | ‖v‖ 6 1}
∆xsd = ‖∇f(x)‖∗∆xnsd

Steepest Descent Method

Given x ∈ dom f;
repeat

Compute steepest descent direction ∆xsd;
Choose a step size t > 0, [LineSearch];
Update x := x+ t∆xsd;

until stopping criterion is satisfied;

When exact line search is used, scale factors in the descent
direction have no effect.
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Descent Method

General

Given x ∈ dom f;
repeat

Determine a descent direction ∆x;
Choose a step size t > 0;
Update x := x+ t∆x;

until stopping criterion is satisfied;

Gradient Descent

Given x ∈ dom f;
repeat

∆x = −∇f(x);
Choose a step size t > 0, [LineSearch];
Update x := x+ t∆x;

until stable stopping criterion is satisfied;

Steepest Descent

Given x ∈ dom f;
repeat

Compute steepest descent direction ∆xsd;
Choose a step size t > 0, [LineSearch];
Update x := x+ t∆xsd;

until stable stable stopping criterion is
satisfied;
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Descent Method

General

∆xnsd = argmin{∇f(x)Tv | ‖v‖ 6 1}
∆xsd = ‖∇f(x)‖∗ · ∆xnsd
If the norm ‖·‖ is Euclidean norm, ∆x = −∇f(x), which
means that Gradient Descent and Steepest Descent become
the same.

Gradient Descent

Given x ∈ dom f;
repeat

∆x = −∇f(x);
Choose a step size t > 0, [LineSearch];
Update x := x+ t∆x;

until stable stopping criterion is satisfied;

Steepest Descent

Given x ∈ dom f;
repeat

Compute steepest descent direction ∆xsd;
Choose a step size t > 0, [LineSearch];
Update x := x+ t∆xsd;

until stable stable stopping criterion is
satisfied;
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Convex Domain

•Linear Regression method is applicable only if nonlinear
function is linear in terms of function parameters:

f(x;a) =
m∑
k=1

akhk(x)

•Many nonlinear functions are not like that, for example:

f1(x) =
x2

a1 + (x− a2)

f2(x,y, z) =
x2

a1 + x2 +
y2

a2 + y2 +
z2

a3 + z2
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Convex Domain

To minimize the error, we need iterative optimization.

Advanced Algorithms Convex Optimization Jan 20th, 2016 17 / 42



Motivation Unconstrained Optimization Convex Domain Applications References

Advantages – Disadvantages – Limitations

•If step length is appropriate, f always decreases: converge.
(well conditioned)

Figure: Well Conditioned
Advanced Algorithms Convex Optimization Jan 20th, 2016 18 / 42
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Advantages – Disadvantages – Limitations

•If step length is too large, f can increase: diverge. (ill
condition)

Figure: Ill Conditioned.
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Advantages – Disadvantages – Limitations

•If parameters of f affect error equally,

Figure: Straight path, fast convergence. (well condition)
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Advantages – Disadvantages – Limitations

•If parameters of f affect error unequally,

Figure: Jagged path, slow convergence. (ill condition)
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Advantages – Disadvantages – Limitations

•If parameters of f affect error very unequally,

Figure: Small step length can also cause divergence. (ill condition)
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Condition Number

The condition number of C gives a measure of its
anisotropy or eccentricity.

If the condition number of a set C is small (say, near one)
it means that the set has approximately the same width in
all directions, i.e., it is nearly spherical.

If the condition number is large, it means that the set is far
wider in some directions than in others.

cond(f) =
λmax(f)
λmin(f)

λmax and λmin describes minimum and maximum
eigenvalues in 2D.
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Example Quadratic Problem in R2

f(x) =
1
2
(x2

1 +γx2
2) γ > 0 (3)

with exact line search, starting at x(0) = (γ, 1)

x
(k)
1 = γ(

γ− 1
γ+ 1

)k , x
(k)
2 = γ(−

γ− 1
γ+ 1

)k

Hessian of f has eigenvalues 1 and γ. And m = min{1,γ},and M = max{1,γ}

In particular,f(xk) converges to optimal value p∗, at least as fast as a geometric series

with an exponent that depends (at least in part) on the condition number bound M
m .

Very slow if γ > 1 or γ < 1
Useless if γ > 20.

Example for γ = 10.

Advanced Algorithms Convex Optimization Jan 20th, 2016 20 / 42



Motivation Unconstrained Optimization Convex Domain Applications References

Advantages – Disadvantages – Limitations

•Left: Number of iterations of the gradient method as a function of γ which can

be thought of as amount of diagonal scaling.

•Right: Condition number of the Hessian of the function at its minimum as a

function of γ.

•We see that the condition number has a very strong influence on convergence

rate.

Figure: The vertical axis shows the number
of iterations required to find the optimum. The
horizontal axis shows γ, which is the parameter
that controls the amount of diagonal scaling.
We use a backtracking line search with
α = 0.3,β = 0.7.

Figure: Condition number of the Hessian of
the function at its minimum, as a function of γ.
By comparing this plot with the one in the left
figure, we see that the condition number has a
very strong influence on convergence rate.
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Exact Line Search VS. Backtracking Line Search with
Non-Quadratic Example

f(x1, x2) = e
x1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

With backtracking line search, the error is reduced
about 10−11 in 15 iterations, i.e., a reduction by a

factor of about 10−
11
15 ≈ 0.2 per iteration.

With exact line search, the error is reduced by
about 10−8 in 20 iterations, i.e., a reduction by a

factor of about 10−
8

20 ≈ 0.4 per iteration.
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Exact Line Search VS. Backtracking Line Search with a
Problem in R100

f(x) = cTx−

500∑
i=1

log(bi − aTi x)

A larger example of this form with m = 500 terms and n = 100
variables.

Figure: linear convergence, i.e., a straight line on a semilog plot
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Exact Line Search VS. Backtracking Line Search with a
Problem in R100

•The progress of the gradient method with backtracking line
search, with parameters α = 0.1,β = 0.5
•Average error reduction is 10−

6
175 ≈ 0.92 per iteration.

•In the case of the gradient method
with exact line search, average error
reduction is 10−

6
140 ≈ 0.91 per

iteration. A bit faster than the
gradient method with backtracking
line search.
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Exact Line Search VS. Backtracking Line Search with a
Problem in R100

•These experiments, done by the book authors, show that the
effect of the backtracking parameters on the convergence is not
large.
•Experiment 1: (effect of the choice of α): Fix β = 0.5, and
vary α. This experiment suggests that the gradient method
works better with fairly large α, in the range (0.2, 0.5).
•Experiment 2: (effect of the choice of β): Fix α = 0.1, and
vary β. This experiment suggests that β ≈ 0.5 is a good choice.
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Advantages – Disadvantages – Limitations (Gradient
Descent)

To summarize here:

The gradient descent often shows linear convergence., i.e.
error converges to zero as a geometric series.

Choice of the two parameters α,β (backtracking
parameters) has a noticeable effect on convergence, but not
dramatic.

Exact line search sometimes improves the convergence of
the gradient method, slightly. However implementation is
troublesome.

Convergence rate depends on the condition number of the
Hessian, and this is the main disadvantage.

The main advantage of gradient method is its simplicity.
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Advantages – Disadvantages – Limitations (Steepest
Descent)

For steepest descent, choice of norm is critical. When
Euclidian norm is used the algorithm coincides with the
gradient descent method. When l1 norm is chosen, the
algorithm is called Coordinate Descent.

The idea is to descend along each coordinate direction
iteratively.

Let e1, ..., em denote the unit vectors along coordinates 1, ...,m.

Choose initial x0;
repeat

For i = 1, ...,m: ;
Find xk+1 along ej that minimizes f(xk). Or find xk+1 along ej

using line search to reduce f(xk) sufficiently.
until convergence;
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Advantages – Disadvantages – Limitations (Steepest
Descent)

Coordinate descent can be slow. It can also iterate around the
minimum, never approaching it.
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Advantages – Disadvantages – Limitations (Steepest
Descent)

•Steepest descent method with the quadratic P-norm ‖·‖P can
be thought of as the gradient method applied to the problem
after the change of coordinates x = P

1
2x.

•In the case of steepest descent with quadratic P-norm, choice
of P is important.
•For example: P =

(
2 0
0 8

)
Choice of P helps to transform the

problem:

from to
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Advantages – Disadvantages – Limitations (Steepest
Descent)

Gradient method works well when the condition numbers are
moderate, and works poorly when the condition numbers are
large.

When we change the coordinates, as x = P
1
2x, the function

is moderately conditioned, the steepest descent method will
work well.

P should be chosen so that f, transformed by P−
1
2 to f̃, is

well conditioned.

If approximation Ĥ of the Hessian at the optimal point
Ĥ(x∗) were known, P = Ĥ would be a good choice, since
Hessian at the optimum:

Ĥ− 1
2∇2f(x∗)Ĥ− 1

2 ≈ I

is likely to have a low condition number.
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Advantages – Disadvantages – Limitations (Steepest
Descent)

•In summary, we can say that the steepest descent method works well in cases

where we can identify a matrix P for which the transformed problem has moderate

condition number.

•Comparison of two P-norms below with the previous nonquadratic problem in

R2, using backtracking line search parameters α = 0.1 and β = 0.7.

P1 =
(

2 0
0 8

)
and P2 =

(
8 0
0 2

)

Figure: Steepest descent method, with
quadratic norm ‖·‖P1

. The ellipses are the

boundaries of the norm balls
{x | ||x− x(k)||P1

6 1} at x(0) and x(1).

Figure: Steepest descent method, with
quadratic norm ‖·‖P2

.
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Advantages – Disadvantages – Limitations (Steepest
Descent)

•Figure shows the error vs. iteration
differences of the two norms.
•With the norm ‖·‖P1

, convergence is
a bit more rapid than the gradient
method, whereas with the norm ‖·‖P2

,
convergence is far slower.
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Advantages – Disadvantages – Limitations (Steepest
Descent)

•If we change the coordinates x = P
1
2
1 x, x = P

1
2
2 x respectively we

can get the following results in transformed coordinates.

Figure: The iterates of steepest descent with
norm ‖·‖P1

, after the change of coordinates.

This change of coordinates reduces the
condition number of the sublevel sets, and so
speeds up convergence.

Figure: The iterates of steepest descent with
norm ‖·‖P2

, after the change of coordinates.

This change of coordinates increases the
condition number of the sublevel sets, and so
slows down convergence.
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Image Processing — Lucas-Kanade

Classic examples are optical flow techniques like
Lucas-Kanade (VideoTracking), Horn-Schunck.
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Lucas-Kanade

Goal of Lucas-Kanade

Minimize the sum of squared error between two images.

Assumption

The displacement of the image contents between two nearby
instants (frames) is small and approximately constant within a
neighborhood of the point p under consideration.
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Lucas-Kanade

Optical Flow Equation (2 Dementional)

For a pixel location (x,y, t), the intensity has moved by
∆x,∆y,∆t, the basic assumption can be represented as:

I(x,y, t) = I(x+ ∆x,y+ ∆y, t+ ∆t)

Advanced Algorithms Convex Optimization Jan 20th, 2016 28 / 42
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Lucas-Kanade

Optical Flow Effect:

For all pixels within a window centered at p:

Ix(qi)Vx + Iy(qi)Vy = −It(qi)

Where i = 1, 2, 3...n.

Abbreviations:

A = [Ix(qi)
T , Iy(qi)T ]

V = [vx, vy]T

b = [−It(qi)]
T
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Lucas-Kanade

Lucas-Kanade Method Abstraction:

LK method tries to solve 2× 2 system:

ATAV = ATb

A.K.A:

V = (ATA)−1ATb

Notice:

V = [vx, vy]T is variable. Which means that the system does
not know the actual velocity of the system.
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Lucas-Kanade

Goal of Lucas-Kanade Method:

To minimize ||ATV − b||2.

Basic LK Derivation for Models(Stuff to be Tracked):

E[vx, vy] = Σ[I(x+ vx,y+ vy) − T(x,y)]2

Where vx, vy is the hypothesized location of the model(s) to be
tracked, and T(x,y) model.
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Lucas-Kanade

Key Step for Implementation of GD (Step 1):

Generalizing LK approach by introducing warp function W:

E[vx, vy] = Σ[I(W(x,y);P) − T(x,y)]2

Generalizing is used to solve the problem where the constant
flow of larger picture frames for a long time is a total waste of
calculation power. Warp function examples are Affine and
Projective.
The warping function are the convergence factor for steepest
descent algorithm.
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Lucas-Kanade

Key Step for Implementation of GD (Step 2):

The key to the derivation is Taylor series approximation:

I(W(x,y);P + ∆P) ≈ I(W([x,y];P)) +∇I∂W
∂P
∆P

The approximation equation is actually the abstract of the
basic assumption of optical flow described in the slides
before.

Derivation of this equation can be discussed in forum (Too
long for slides).
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Lucas-Kanade

Some Explainations:

Gradient image ∇I
Image error IE = T(x,y) − I(W[x,y];P)
Jacobian matrix ∂W

∂P

Steepest image IS = ∇I∂W∂P
Hessian Matrix Σ(∇I∂W∂P )T (∇I∂W∂P )

Iteration step ∆P = ΣITSIE
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Lucas-Kanade

Algorithms:

Warp image and get I(W[x,y];P);
Get image error IE;

Warp gradient image ∇I;
Evaluate Jacobian;

Compute steepest descent image IS = ∇I∂W∂P ;

Compute Hessian matrix ΣITSIS;

Get warping step ∆P = ISIE;

Update warping parameter P = P + ∆P;

Repeat until ∆P is negligible.
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APPLICATIONS – MACHINE LEARNING

Generalized Utilization of Convex: Delta Rule

The delta rule is derived by attempting to minimize the
error in the output of the neural network through gradient
descent.

Gradient Descent optimization is the most basic principle
for training neurons even with different activation
functions.

Delta rule, can also be modified, if possible, with steepest
descent method.
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APPLICATIONS – MACHINE LEARNING

Delta Rule:

∆wji = α(tj − yj)g
′(hj)xj

Where α is the learning rate, g(x) is the neuron’s activation
function. tj and yj is the target and actual output of the
neuron. hj is the weighted sum of the neuron’s inputs. And xi
is the ith input.

The above equation holds the following:

hj = Σxiwji

yj = g(hj)
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APPLICATIONS – INVERSE KINEMATICS

Goal of Inverse Kinematics

Given a position in the space, calculate a way for a robot hand
to reach a place.

Problem Abstract:

~e = R1T1R2T2R3T3R4T4 ~e0

Where Ti is a series of translation transformation and Ri is a
series of rotation translation.
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APPLICATIONS – INVERSE KINEMATICS

Abstraction for Convex Optimization:

∆~θ = αJT~e

.
The target for the optimization is to achieve | ~ep− ~et| = 0, where
~ep is th original position of the tip of the robotic arm and ~et is
the target position. J is the jacobian matrix in terms of ~θ,
which is the vector of all the spatial angles of all joints. α is the
convergence rate and ~e is the position derivation (step size).
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APPLICATIONS – INVERSE KINEMATICS

About Inverse Kinematics

Jacobian transpose is the implementation of gradient
descent in the real physical world.

It can actually achieve near linear solution for robotic arms
with a fast convergence rate.
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