Hakki Can Karaimer

HU Sixing

MIN-CUT ALGORITHMS| fonar

Philipp Keck
Taehoon Kim

AGENDA

Introduction to Minimum Cuts
Karger’s Algorithm

Improvement by Karger and Stein
Parallelized Version

Applications

INTRODUCTION Hakki Can Karaimer

GRAPHS REFRESHER

Two ingredients
Vertices (singular vertex) a.k.a. nodes. (V)
Edges (E) = pairs of vertices

Can be undirected (unordered pair)

or directed (ordered pair) (a.k.a arcs)

G=W,E), n=|V|, m=|E|

CUT PROBLEM

Definition: a cut of a graph (V, E) is a partition of I into non-
empty sets A and B.

Definition: the crossing edges of a cut (4, B) are those with:
One endpoint in each of (4, B) (undirected)
Tail in A, head in B (directed)

A Undirected B A Directed B

4) (N ~ o ™ 4)
e B B 2=
N\ J U y) (y

If the graph has n vertices
There are 2™ — 2 possible cuts.

MINIMUM CUT PROBLEM

Definition: the minimum cut of an undirected graph
G = (V,E) is a partition of the nodes into two groups A

and B (thatis, V = AU B and, A N B = @), so that the
number of edges between A and B is minimized.

Input: an undirected graph G = (V, E)

Parallel (multiple) edges are allowed

Goal: compute a cut with fewest number of crossing
edges (a min-cut).

| MINIMUM CUT PROBLEM

RANDOM CONTRACTION ALGORITHM

David Karger, early 90’s

While there are more than 2 vertices:
Pick a remaining edge (u, v) uniformly at random
Merge (or “contract”) U and v into a single vertex

Remove self-loops

Return cut represented by final 2 vertices

EXAMPLE

While there are more than 2 vertices:
Pick a remaining edge (u,v) uniformly at random
Merge (or “contract”) u and v into a single vertex

Remove self loops

ANALYSIS OF

HU Sixing

KARGER'S ALGORITHM

ANALYSIS OF KARGER'S ALGORITHM

What is the probability of success
Karger’s Algorithm succeeds with probability p = %

The time complexity of Karger’s algorithm is O(nz)

ANALYSIS OF KARGER'S ALGORITHM

Fact 1 (Handshaking Lemma).

Z degree(u) = 2m
uev

degree(u): the degree of a vertex (u) of a graph is the
number of edges incident to the vertex.

Proof:

Each edge contributes two to the total degree. All edges together
contribute 2m to the graph’s degree.

ANALYSIS OF KARGER'S ALGORITHM

2m

Fact 2. The average degree of a node is —

Proof:
Eldegree(X)] = Yyer Pr(X = u)degree(u):
= Zuev degree(u)

” ZuEV degree(u)

2m

Randomly pick

D Fact 1:),,,cy degree(u) = 2m

n
[E is the mathematical expectation

X is a random variable representing a vertex of the graph, u is
the specific vertex

ANALYSIS OF KARGER'S ALGORITHM

2m

Fact 3. The size of the minimum cut is at most —

Proof:
Let f denote the size of minimum cut

f < degree(u), Vuev
nf < Yuey degree(u)

> degree(u) 2m
f < uev — z°
_ n n

ANALYSIS OF KARGER'S ALGORITHM

Fact 4. If an edge is picked at random, the probcnblll’ry

that it lies across the minimum cut is at most g

Proof:

Let the probability that an edge lies across the minimum cut be p
size of minimum cut

total number of edges

2m
Fact 3: The size of the minimum cut is at most —

<

FINs s

ANALYSIS OF KARGER'S ALGORITHM

Karger’s Algorithm succeeds with probability p = %

Fact 4. If an edge is picked at random, the probability that it lies across the

minimum cut is at most —
n

Proof:
Karger’s algorithm returns the right answer as long as it never picks an edge across

the minimum cut.

Pr(success) = Pr(finding the mincut)
= Pr(first selected edge is not in mincut) X

Pr(second selected edge is not in mincut) X -+
Pr(last selected edge is not in mincut)

=(-)(-2)-0-)-55 = ()

k-combination of asetS /m;y nn—1).(n—k+1)
which has n elements (k) - k(k—1)..1

ANALYSIS OF KARGER'S ALGORITHM

n
If we run the algorithm [(2) ([is a constant) times, and let p denote the

probability that at least succeed once, then we get
.o n
p = 1 — Pr(fail in all l(Z) runs)
n
n\ 1 l(z)
>1- (1 -(5))

=1—¢!

1
Let [= cInn(c is a constant), thenp = 1 — —

n
If we run the algorithm clnn (Z)ﬁmes sthe probability of finding the minimum cut

is larger than 1 — i or the error probability is less than —

ANALYSIS OF KARGER'S ALGORITHM

While there are more than 2 vertices:
» Pick a remaining edge (u, v) uniformly at random
» Merge u and v into a single vertex
» Remove self loops

Return cut represented by final 2 vertices

The time complexity of Karger’s algorithm is 0(7’12)
Every iteration two vertices are merged to one, need (n-2) times -- 0(n)

In each iteration, select an edge (u, V) randomly

[We maintain a vector D(u) of degree of each node u, degree(u) , a matrix

W (u,v) of weight of edge (u, v)]

Choose endpoint u with probability proportional to D(u) -- O(n)

Then choose another endpoint v with probability proportional to W (u, v) -- 0(n)

Contract u and v

The time complexity after boosting is 0(n*logn)

ANALYSIS OF KARGER'S ALGORITHM

While there are more than 2 vertices:
» Pick a remaining edge (u, v) uniformly at random
» Merge u and v into a single vertex
» Remove self loops

Return cut represented by final 2 vertices

Contract u and v -- 0(n)
Update vector D

D(u) =D(u) + D) — 2W (u,v)
D(v) =0
Update matrix W

W, v), W(,u) =0

For each vertex w except u, v
W,w) =W(u,w)+ W(w,w)
Ww,u) =Ww,u) + Ww, v)
wWw,v),Ww,w) :=0

20

ANALYSIS OF KARGER'S ALGORITHM

While there are more than 2 vertices:
» Pick a remaining edge (u, v) uniformly at random
» Merge u and v into a single vertex
» Remove self loops

Return cut represented by final 2 vertices

The time complexity of Karger’s algorithm is 0(7’12)
Every iteration two vertices are merged to one, need (n-2) times -- 0(n)

In each iteration, select an edge (u, V) randomly

[We maintain a vector D(u) of degree of each node u, degree(u) , a matrix

W (u,v) of weight of edge (u, v)]

Choose endpoint u with probability proportional to D(u) -- O(n)

Then choose another endpoint v with probability proportional to W (u, v) -- 0(n)

Contract u and v -- 0(n)

The time complexity after boosting is 0(n*logn)

IMPROVED VERSION BY

Philipp Keck

KARGER AND STEIN

SUCCESS DURING RUNTIME

(1-0)(1-5)(-5)-(-)0-])

Good in the beginning, worse towards the end

100 90 80 70 60 50 40 30 20 10

72

3

IMPROVING THE RUNTIME

(1-0)(1-5)(-5)-(-)0-])

Good in the beginning, worse towards the end
Improving by repeating takes a long time

ldea: Use recursion to share partial results among repeats
Share the better parts
Retry more on the worse parts to improve those

n
Aff. e = & ~ 700/ .
Good cut-off: k 7 +1=70% -n

k = remaining nodes, i.e., 30% contracted already

IMPROVED ALGORITHM

Recursive—Contract(Graph G of size n)

if n > 6 then

k<—%+1

(; < Contract G down to k nodes
(G, < Contract G down to k nodes
Cut; < Recursive—Contract(G;)
Cut, « Recursive—Contract(G,)
return min(Cuty, Cut,)

else
return Some—Algorithm(G)

2

| SHARING RESULTS BY RECURSION

n =11 = k = 9 = Contract two edges

25

| SHARING RESULTS BY RECURSION

IMPROVED ALGORITHM

Recursive—Contract(Graph G of size n)

if n > 6 then

k<—%+1

(; < Contract G down to k nodes
(G, < Contract G down to k nodes
Cut; < Recursive—Contract(G;)
Cut, « Recursive—Contract(G,)
return min(Cuty, Cut,)

else
return Some—Algorithm(G)

27

28

IMPROVED ALGORITHM — RUNTIME

Recursive—Contract(Graph G of size n) T(n)

if n > 6 then
n
k « \/_E + 1 0(1)
(; < Contract ¢ down to k nodes 0(n?)
G, < Contract G down to k nodes 0(n?%)
Cut, « Recursive—Contract(G,) T(k)
Cut, « Recursive—Contract(G,) T (k)
return min(Cutq, Cut,) 0(1)
else
return Some—Algorithm(G) 0(1)
TM)=0n*)+2-T (%) = 0(n? logn) Master-Theorem: log 5 2 = 2

SUCCESS PROBABILITY DOWN TO k

Stopping at k < n remaining nodes preserves fixed min-
cut with probability

(-9 -75) ()~ ()
(D03 7@
(1——) (-8 & 6
_k(k—=1)-2 k(k—-1)

nn—-1:2 nn-1)

SUCCESS PROBABILITY DOWN TO k

Plugging in k =

§|I=

nn—1) nn—1)
n® n

I
2ty

nt—n 2
@n2+n>!1(2)

N A A

Sn2+V2n>'n?2—n

sV2 = -1

30

SUCCESS PROBABILITY RECURSION

Success probability of a single run (including all
recursion):

P(n) >1— 1—1°P(£+1> 2
n)= > \/E

= (...lots of math ...)

= P(n) = Q(!)
logn

HERE IS THAT MATH

7 = — — 1 L s =
! Pi Pi zi+1
ZO - 59
4 4 4 4
; = - 1< — 1 = —1 =
1+1 — 2 2 4 4
Di+1 (1.1, 2 1—(1— :)
' 1-{1 zpl) 1_(12_zi+1) 2L (z;41)°
1 1 zZ:+2zi+1 1
1=-= T — 1= —l="———-1=z;+1+-
(—— 2) Zj+1-1 Zj Zj
2 (z+1) (2041)°

:>i<Zl-SS9+2i:>zi=@(i):>pi=@G)

Recursion depthi = O(logn) = Success = 6(:)

logn

32

SUCCESS PROBABILITY REPETITION

1
logn

One run succeeds with Q() probability.

We run log? n times.

Pr(At least one run succeeds)

(1)log2 n
=1—-11-—
logn

1 (= logn)-(—logn)
—1- (14 o)
—logn

— 1
=1—e¢ o8N =1 _ ~ = Error probability in O

(

1
n

)

33

34

COMPARISON

Algorithm mm Implementation

Brute Force 02" -m) easy
Max-flow based 0 (nm) 1 hard
Karger’s O0(n*logn) = 0(n*) 1-0(1/n% easy
Karger+Stein O(n?log3n)=0n?) 1-0(1/n) still easy

=*K+S is Monte Carlo (might return sub-optimal)

*Usual conversion to Las Vegas (might take longer) by
checking and repeating is not possible

PARALLELIZATION | ranan

37

PARALLELISM - COMPACT

Definitions:

L: an ordered sequence of all edges [y, [5, ..., l;;

V: set that contains all vertices;

L' : prefix of L;

H(V,L"): graph composed by edge set L' and vertex set V;
L%: prefix of L, I1, 15, ...,1, where a < n;

f-(G): number of connected components in G;

L{/L,: edges in L, after contraction of all edges in L,

Compact is a method to find a prefix LY = [, 15, ..., 1, where:

f[(HV,L%)) =k and f(H(WV,L*Y)) <k

| CONTRACT = FINDING PREFIX

0 -0 90

d d

@ -0 -0 O
o e (e (G0 (6 (e () () (] (&

| CONTRACT = FINDING PREFIX

@ 6 o ©¢
o e (e (G0 (6 (e () () (] (&

| CONTRACT = FINDING PREFIX

@ -0 o
ot (e Ce) (G0 (0 (e () G () ()

| CONTRACT = FINDING PREFIX

@ -0 o

@ -0 o
ot e Ce) (G0 (0 (e () G () ()

| CONTRACT = FINDING PREFIX

@ -0 o

d

@ -0 o
o) e e G (G el () a0 e (5

| CONTRACT = FINDING PREFIX

@ -0 o

d

O -0 o
o) e e () G (e [0 () (o) ()

| CONTRACT = FINDING PREFIX

@ & -0 ¢

d I

| CONTRACT = FINDING PREFIX

@ & -0 ¢

d I

@ - & 0 ©

46

PARALLELISM — COMPACT

Definitions:

L: an ordered sequence of all edges [y, [5, ..., l;;

V: set that contains all vertices;

L' : prefix of L;

H(V,L"): graph composed by edge set L' and vertex set V;
L%: prefix of L, I1, 15, ...,1, where a < n;

f-(G): number of connected components in G;

L{/L,: edges in L, after contraction of all edges in L,

Compact is a method to find a prefix LY = [, 15, ..., 1, where:

f[(HV,L%)) =k and f(H(WV,L*Y)) <k

47

COMPACT — OVERVIEW

Using binary search, the correct prefix can be determined
using O(log m) connected component computations,
where m is the number of edges;

Each connected component computation requires
O(m + n) time;

Only 1 processor used so far.
Running time of this algorithm is O(m log m);

This can be further reduced to O(m) by reusing
information between iterations.

48

COMPACT — ALGORITHM

Parallel Algorithm:

COMPACT(G, L, k)
Data: A graph G, list of edges L, and parameter k

if G has k vertices or L = ¢ (empty) then
| return G

else

Let L; and L, be the first and second half of L

if H has fewer than k connected components then
| return COMPACT(G, Ly, k)

else
| return COMPACT(G/Ly, Ly/L4, k).

end

end

| COMPACT — EXAMPLE

0 -0 90

d d

@ -0 -0 O
o e (e (G0 (6 (e () () (] (&

| COMPACT — EXAMPLE

| COMPACT — EXAMPLE

@ & -0 ¢

d I

| COMPACT — EXAMPLE

® & -0 ¢

d I

| COMPACT — EXAMPLE

| COMPACT — EXAMPLE

| COMPACT — EXAMPLE

| COMPACT — EXAMPLE

| COMPACT — EXAMPLE

COMPACT — SEQUENTIAL

E1. Creation of random sequence L 2 0(m)
E2. Binary search =2 O(log m) rounds

E3. Connected components 2 0(m)

E4. Contraction 2 0(m)

Time complexity is O(logm) X O(m) = O(mlogm)

58

59

COMPACT — PARALLELIZING THE PERMUTATION

Permutation generation time should be 0(1);

If G is unweighted, uniform sampling can be used for
random number generation;

For a weighted graph we need to achieve the following
distribution on [,. =[O, r]:

PriX > t] = (1 _ E)WT

r
wt

As when r becomes insanely big: Pr|X > t] = e~
This must be achieved at O(1) time!

COMPACT — PARALLELIZING THE PERMUTATION

Definitions:

U : random variable uniformly distributed on [0, 1];

U': approximated variable of U;

RO, random number generated with constant time(and bits);

We need to generate X:

PriIX>tl=e™W'=> X=—(nU)/w

Obstacles:
Uniform distribution on [0, 1] is not possible in real machine;

Computing In U might take time;

60

61

COMPACT — RANDOM NUMBER GENERATION

Method — Exponentially Distributed Random Variable: | #r°®:random

number generated

with constant time
(and bits)
A1l. Choose an integer M = RO

A2. Select an integer N from [1, M] using O(log R) random bits

A3.U' = %, ; U' is then the approximation of U

In U’

A4. Compute X = —

— where we use the first O(log R) terms of
the Taylor expansion of In U’;

COMPACT — RANDOM NUMBER GENERATION

If weletx =U'" — 1:

1—|—I=Z "= — — f — — - for |z| <1,

COMPACT — PARALLELIZATION

Parallel:
Generation of random sequence L = 0(1)

Assigning each node a processor. Each processor assigns a random
number to its edge at the beginning of each round.
Do binary search with parallelism:

The algorithm chooses a value t

a processor returns its edge for next contraction if X > t.

Step E3., E4. can also be parallelized. For E3, a paper has been
posted to the IVLE forum, showing connected component detection in

O(logn) time.

63

64

COMPACT — PARALLELIZATION | soosmcmsemiine

E1. Creation of random sequence L 2 0(1)
E2. Binary search =2 O(log m) rounds

E3. Connected components =2 0 (logn)

E4. Contraction 2 0(1)

Time complexity is

0(logm) - (0(1) + 0(logn)) = 0(log? n)

using m = 0(n?) processors

COMPACT — THEOREMS

RNC (Randomized Nick’s Class): Solvable in O(log® n)
time with 0(n%) processors (for some ¢, d).

Compact method is RNC because it takes 0(10g2 n) time
using m = 0(n?) processors.

Minimum cut problem is RNC because the recursion tree
(logarithmic depth) can be processed breadth-first and
because the 0(log? n) retries can be run at the same
time in parallel.

Similarly, algorithms can be found to solve the minimum k-
cut problem in RNC.

65

APPLICATIONS | rachoon cim

APPLICATIONS

Splitting large graphs
Community detection
Weakness on a network

Detecting weak ties

67

APPLICATIONS — SPLITTING LARGE GRAPHS

Real world graphs are large
Sometimes they are too large to compute

Obiective:
Less computation

Better understanding of the data

Even after the graph is divided, the graph still maintains its structural
characteristics

Use min-cut to divide one large graph into several smaller
graphs

68

APPLICATIONS — COMMUNITY DETECTION

Community on social media:
Formed by individuals

Individuals within the same community interact more frequently

Community detection:
Discovering groups in a social network

Min-cut on community detection:

Find a graph partition such that the number of edges between the
two sets is minimized

69

APPLICATIONS — COMMUNITY DETECTION

Edges: Interaction counts
Location

user communications in Twitter exhibit strong geographic locality
(Zhang et al. CNS, IEEE 2015)

Closeness

Applications:
Localized Marketing
Friend recommendation
Place recommendation
Privacy risks

70

71

APPLICATIONS — COMMUNITY DETECTION

*"Edges: common interests

= Applications:
* Collaborative filtering based recommendation system

" Friend recommendation

L
S

| APPLICATIONS — COMMUNITY DETECTION

*"Edges: common interests

= Applications:
* Collaborative filtering based recommendation system

" Friend recommendation

a

17

APPLICATIONS — WEAKNESS ON NETWORK

*Find vulnerable connections on a network
*Weak edges

"Example:
* Vulnerability on Sensor Network

* Each node has limited range

* Finding sink node

Weak edge

73

APPLICATIONS — WEAK TIES

"Weak ties in social media
*(Granovetter 1973)

" Analyzing weak ties

Community A

Community B

74

75

CONCLUSION

The min-cut problem has many variations (directed, undirected,
weighted, multiway cut) and many applications.

Min-cut can be solved using max-flow based techniques.

Karger introduced an algorithm that solves it directly.

Because only few edges cross the min-cut, they are unlikely to be
contracted.

Karger and Stein improved this algorithm to become
faster than max-flow based algorithms (but only on dense graphs) and

parallelizable.

The algorithm is easier to implement, but it is also a Monte
Carlo algorithm.

16

| CONCLUSION
mmm

Brute Force 02" - m) easy
Max-flow based 0 (nm) 1 hard
Karger’s 0(n*logn) = 0(n%) 1—-0(1/n°) easy
Karger+Stein O(n?log3n) =0(n?) 1-0(1/n) still easy

* The minimum cut problem can be solved in RNC using
n?processors.

REFERENCES

Karger, David R. "Global Min-cuts in RNC, and Other Ramifications of a
Simple Min-Cut Algorithm." SODA. Vol. 93. 1993.

Karger, David R., and Clifford Stein. "A new approach to the minimum cut
problem." Journal of the ACM (JACM) 43.4 (1996): 601-640.

Arora, Sanjeev. “Lecture 2: Karger’s Min Cut Alogirhtm”. Princeton University
F'13 COS 521: Advanced Algorith Design.
https: / /www.cs.princeton.edu/courses/archive /fall13 /cos521 /lecnotes /lec2fi

nal.pdf

Roughgarden, Tim. “Algorithms: Design and Analysis, Part 1”. Coursera
Lecture.
https: //www.coursera.org /course /algo

Zhang, Jinxue, et al. "Yc'>'ur actions tell where you are: Uncovering Twitter users
in a metropolitan area.” Communications and Network Security (CNS), 2015

IEEE Conference on. IEEE, 2015.

Granovetter, Mark S. "The strength of weak ties." American journal of

sociology (1973): 1360-1380.

17

https://www.cs.princeton.edu/courses/archive/fall13/cos521/lecnotes/lec2final.pdf
https://www.coursera.org/course/algo

