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INTRODUCTION Hakki Can Karaimer




GRAPHS REFRESHER

Two ingredients
Vertices (singular vertex) a.k.a. nodes. (V)
Edges (E) = pairs of vertices

Can be undirected (unordered pair)

or directed (ordered pair) (a.k.a arcs)

G=W,E), n=|V|, m=|E|



CUT PROBLEM

Definition: a cut of a graph (V, E) is a partition of I into non-
empty sets A and B.

Definition: the crossing edges of a cut (4, B) are those with:
One endpoint in each of (4, B) (undirected)
Tail in A, head in B (directed)

A Undirected B A Directed B
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If the graph has n vertices
There are 2™ — 2 possible cuts.



MINIMUM CUT PROBLEM

Definition: the minimum cut of an undirected graph
G = (V,E) is a partition of the nodes into two groups A

and B (thatis, V = AU B and, A N B = @), so that the
number of edges between A and B is minimized.

Input: an undirected graph G = (V, E)

Parallel (multiple) edges are allowed

Goal: compute a cut with fewest number of crossing
edges (a min-cut).



| MINIMUM CUT PROBLEM




RANDOM CONTRACTION ALGORITHM

David Karger, early 90’s

While there are more than 2 vertices:
Pick a remaining edge (u, v) uniformly at random
Merge (or “contract”) U and v into a single vertex

Remove self-loops

Return cut represented by final 2 vertices



EXAMPLE

While there are more than 2 vertices:
Pick a remaining edge (u,v) uniformly at random
Merge (or “contract”) u and v into a single vertex

Remove self loops
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ANALYSIS OF KARGER'S ALGORITHM

What is the probability of success
Karger’s Algorithm succeeds with probability p = %

The time complexity of Karger’s algorithm is O(nz)



ANALYSIS OF KARGER'S ALGORITHM

Fact 1 (Handshaking Lemma).

Z degree(u) = 2m
uev

degree(u): the degree of a vertex (u) of a graph is the
number of edges incident to the vertex.

Proof:

Each edge contributes two to the total degree. All edges together
contribute 2m to the graph’s degree.



ANALYSIS OF KARGER'S ALGORITHM

2m

Fact 2. The average degree of a node is —

Proof:
Eldegree(X)] = Yyer Pr(X = u)degree(u):
= Zuev degree(u)

” ZuEV degree(u)

2m

Randomly pick

D Fact 1: ),,,cy degree(u) = 2m

n
[E is the mathematical expectation

X is a random variable representing a vertex of the graph, u is
the specific vertex



ANALYSIS OF KARGER'S ALGORITHM

2m

Fact 3. The size of the minimum cut is at most —

Proof:
Let f denote the size of minimum cut

f < degree(u), Vuev
nf < Yuey degree(u)

> degree(u) 2m
f < uev — z°
_ n n




ANALYSIS OF KARGER'S ALGORITHM

Fact 4. If an edge is picked at random, the probcnblll’ry

that it lies across the minimum cut is at most g

Proof:

Let the probability that an edge lies across the minimum cut be p
size of minimum cut

total number of edges

2m
Fact 3: The size of the minimum cut is at most —

<

FINs s



ANALYSIS OF KARGER'S ALGORITHM

Karger’s Algorithm succeeds with probability p = %

Fact 4. If an edge is picked at random, the probability that it lies across the

minimum cut is at most —
n

Proof:
Karger’s algorithm returns the right answer as long as it never picks an edge across

the minimum cut.

Pr(success) = Pr(finding the mincut)
= Pr(first selected edge is not in mincut) X

Pr(second selected edge is not in mincut) X -+
Pr(last selected edge is not in mincut)

=(-)(-2)-0-)-55 = ()

k-combination of asetS /m;y nn—1).(n—k+1)
which has n elements (k) - k(k—1)..1




ANALYSIS OF KARGER'S ALGORITHM

n
If we run the algorithm [ (2) ([ is a constant) times, and let p denote the

probability that at least succeed once, then we get
.o n
p = 1 — Pr(fail in all l(Z) runs)
n
n\ 1 l(z)
>1- (1 -(5) )

=1—¢!

1
Let [ = cInn(c is a constant), thenp = 1 — —

n
If we run the algorithm clnn (Z)ﬁmes sthe probability of finding the minimum cut

is larger than 1 — i or the error probability is less than —



ANALYSIS OF KARGER'S ALGORITHM

While there are more than 2 vertices:
» Pick a remaining edge (u, v) uniformly at random
» Merge u and v into a single vertex
» Remove self loops

Return cut represented by final 2 vertices

The time complexity of Karger’s algorithm is 0(7’12)
Every iteration two vertices are merged to one, need (n-2) times -- 0(n)

In each iteration, select an edge (u, V) randomly

[We maintain a vector D(u) of degree of each node u, degree(u) , a matrix

W (u,v) of weight of edge (u, v)]

Choose endpoint u with probability proportional to D(u) -- O(n)

Then choose another endpoint v with probability proportional to W (u, v) -- 0(n)

Contract u and v

The time complexity after boosting is 0(n*logn)



ANALYSIS OF KARGER'S ALGORITHM

While there are more than 2 vertices:
» Pick a remaining edge (u, v) uniformly at random
» Merge u and v into a single vertex
» Remove self loops

Return cut represented by final 2 vertices

Contract u and v -- 0(n)
Update vector D

D(u) =D(u) + D) — 2W (u,v)
D(v) =0
Update matrix W

W, v), W(,u) =0

For each vertex w except u, v
W,w) =W(u,w)+ W(w,w)
Ww,u) =Ww,u) + Ww, v)
wWw,v),Ww,w) :=0
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ANALYSIS OF KARGER'S ALGORITHM

While there are more than 2 vertices:
» Pick a remaining edge (u, v) uniformly at random
» Merge u and v into a single vertex
» Remove self loops

Return cut represented by final 2 vertices

The time complexity of Karger’s algorithm is 0(7’12)
Every iteration two vertices are merged to one, need (n-2) times -- 0(n)

In each iteration, select an edge (u, V) randomly

[We maintain a vector D(u) of degree of each node u, degree(u) , a matrix

W (u,v) of weight of edge (u, v)]

Choose endpoint u with probability proportional to D(u) -- O(n)

Then choose another endpoint v with probability proportional to W (u, v) -- 0(n)

Contract u and v -- 0(n)

The time complexity after boosting is 0(n*logn)



IMPROVED VERSION BY
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SUCCESS DURING RUNTIME

(1-0)(1-5)(-5)-(-)0-])

Good in the beginning, worse towards the end

100 90 80 70 60 50 40 30 20 10

72
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IMPROVING THE RUNTIME

(1-0)(1-5)(-5)-(-)0-])

Good in the beginning, worse towards the end
Improving by repeating takes a long time

ldea: Use recursion to share partial results among repeats
Share the better parts
Retry more on the worse parts to improve those

n
Aff. e = & ~ 700/ .
Good cut-off: k 7 +1=70% -n

k = remaining nodes, i.e., 30% contracted already



IMPROVED ALGORITHM

Recursive—Contract(Graph G of size n)

if n > 6 then

k<—%+1

(; < Contract G down to k nodes
(G, < Contract G down to k nodes
Cut; < Recursive—Contract(G;)
Cut, « Recursive—Contract(G,)
return min(Cuty, Cut,)

else
return Some—Algorithm(G)

2



| SHARING RESULTS BY RECURSION

n =11 = k = 9 = Contract two edges

25



| SHARING RESULTS BY RECURSION




IMPROVED ALGORITHM

Recursive—Contract(Graph G of size n)

if n > 6 then

k<—%+1

(; < Contract G down to k nodes
(G, < Contract G down to k nodes
Cut; < Recursive—Contract(G;)
Cut, « Recursive—Contract(G,)
return min(Cuty, Cut,)

else
return Some—Algorithm(G)

27
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IMPROVED ALGORITHM — RUNTIME

Recursive—Contract(Graph G of size n) T(n)

if n > 6 then
n
k « \/_E + 1 0(1)
(; < Contract ¢ down to k nodes 0(n?)
G, < Contract G down to k nodes 0(n?%)
Cut, « Recursive—Contract(G,) T(k)
Cut, « Recursive—Contract(G,) T (k)
return min(Cutq, Cut,) 0(1)
else
return Some—Algorithm(G) 0(1)
TM)=0n*)+2-T (%) = 0(n? logn) Master-Theorem: log 5 2 = 2



SUCCESS PROBABILITY DOWN TO k

Stopping at k < n remaining nodes preserves fixed min-
cut with probability

(-9 -75) ()~ ()
(D03 7@
(1——) (-8 & 6
_k(k—=1)-2 k(k—-1)

nn—-1:2 nn-1)




SUCCESS PROBABILITY DOWN TO k

Plugging in k =

§|I=

nn—1) nn—1)
n® n

_I_
2ty

nt—n 2
@n2+n>!1(2 )

N A A

Sn2+V2n>'n?2—n

sV2 = -1
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SUCCESS PROBABILITY RECURSION

Success probability of a single run (including all
recursion):

P(n) >1— 1—1°P(£+1> 2
n)= > \/E

= (...lots of math ...)

= P(n) = Q( ! )
logn




HERE IS THAT MATH

7 = — — 1 L s =
! Pi Pi zi+1
ZO - 59
4 4 4 4
; = - 1< — 1 = —1 =
1+1 — 2 2 4 4
Di+1 (1.1, 2 1—(1— : )
' 1-{1 zpl) 1_(12_zi+1) 2L (z;41)°
1 1 zZ:+2zi+1 1
1=-= T — 1= —l="———-1=z;+1+-
( —— 2) Zj+1-1 Zj Zj
2 (z+1) (2041)°

:>i<Zl-SS9+2i:>zi=@(i):>pi=@G)

Recursion depthi = O(logn) = Success = 6( : )

logn

32



SUCCESS PROBABILITY REPETITION

1
logn

One run succeeds with Q( ) probability.

We run log? n times.

Pr(At least one run succeeds)

( 1 )log2 n
=1—-11-—
logn

1 (= logn)-(—logn)
—1- (14 o)
—logn

— 1
=1—e¢ o8N =1 _ ~ = Error probability in O

(

1
n

)

33
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COMPARISON

Algorithm mm Implementation

Brute Force 02" -m) easy
Max-flow based 0 (nm) 1 hard
Karger’s O0(n*logn) = 0(n*) 1-0(1/n% easy
Karger+Stein O(n?log3n)=0n?) 1-0(1/n) still easy

=*K+S is Monte Carlo (might return sub-optimal)

*Usual conversion to Las Vegas (might take longer) by
checking and repeating is not possible



PARALLELIZATION | ranan




37

PARALLELISM - COMPACT

Definitions:

L: an ordered sequence of all edges [y, [5, ..., l;;

V: set that contains all vertices;

L' : prefix of L;

H(V,L"): graph composed by edge set L' and vertex set V;
L%: prefix of L, I1, 15, ...,1, where a < n;

f-(G): number of connected components in G;

L{/L,: edges in L, after contraction of all edges in L,

Compact is a method to find a prefix LY = [, 15, ..., 1, where:

f[(HV,L%)) =k and f(H(WV,L*Y)) <k



| CONTRACT = FINDING PREFIX
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PARALLELISM — COMPACT

Definitions:

L: an ordered sequence of all edges [y, [5, ..., l;;

V: set that contains all vertices;

L' : prefix of L;

H(V,L"): graph composed by edge set L' and vertex set V;
L%: prefix of L, I1, 15, ...,1, where a < n;

f-(G): number of connected components in G;

L{/L,: edges in L, after contraction of all edges in L,

Compact is a method to find a prefix LY = [, 15, ..., 1, where:

f[(HV,L%)) =k and f(H(WV,L*Y)) <k
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COMPACT — OVERVIEW

Using binary search, the correct prefix can be determined
using O(log m) connected component computations,
where m is the number of edges;

Each connected component computation requires
O(m + n) time;

Only 1 processor used so far.
Running time of this algorithm is O(m log m);

This can be further reduced to O(m) by reusing
information between iterations.
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COMPACT — ALGORITHM

Parallel Algorithm:

COMPACT(G, L, k)
Data: A graph G, list of edges L, and parameter k

if G has k vertices or L = ¢ (empty) then
| return G

else

Let L; and L, be the first and second half of L

if H has fewer than k connected components then
| return COMPACT(G, Ly, k)

else
| return COMPACT(G/Ly, Ly/L4, k).

end

end



| COMPACT — EXAMPLE
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| COMPACT — EXAMPLE




| COMPACT — EXAMPLE
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| COMPACT — EXAMPLE
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| COMPACT — EXAMPLE




| COMPACT — EXAMPLE




| COMPACT — EXAMPLE




| COMPACT — EXAMPLE




| COMPACT — EXAMPLE




COMPACT — SEQUENTIAL

E1. Creation of random sequence L 2 0(m)
E2. Binary search =2 O(log m) rounds

E3. Connected components 2 0(m)

E4. Contraction 2 0(m)

Time complexity is O(logm) X O(m) = O(mlogm)

58
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COMPACT — PARALLELIZING THE PERMUTATION

Permutation generation time should be 0(1);

If G is unweighted, uniform sampling can be used for
random number generation;

For a weighted graph we need to achieve the following
distribution on [,. =[O, r]:

PriX > t] = (1 _ E)WT

r
wt

As when r becomes insanely big: Pr|X > t] = e~
This must be achieved at O(1) time!



COMPACT — PARALLELIZING THE PERMUTATION

Definitions:

U : random variable uniformly distributed on [0, 1];

U': approximated variable of U;

RO, random number generated with constant time(and bits);

We need to generate X:

PriIX>tl=e™W'=> X=—(nU)/w

Obstacles:
Uniform distribution on [0, 1] is not possible in real machine;

Computing In U might take time;

60
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COMPACT — RANDOM NUMBER GENERATION

Method — Exponentially Distributed Random Variable: | #r°®:random

number generated

with constant time
(and bits)
A1l. Choose an integer M = RO

A2. Select an integer N from [1, M] using O(log R) random bits

A3.U' = %, ; U' is then the approximation of U

In U’

A4. Compute X = —

— where we use the first O(log R) terms of
the Taylor expansion of In U’;



COMPACT — RANDOM NUMBER GENERATION

If weletx =U'" — 1:

1—|—I=Z "= — — f — — - for |z| <1,



COMPACT — PARALLELIZATION

Parallel:
Generation of random sequence L = 0(1)

Assigning each node a processor. Each processor assigns a random
number to its edge at the beginning of each round.
Do binary search with parallelism:

The algorithm chooses a value t

a processor returns its edge for next contraction if X > t.

Step E3., E4. can also be parallelized. For E3, a paper has been
posted to the IVLE forum, showing connected component detection in

O(logn) time.

63
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COMPACT — PARALLELIZATION | soosmcmsemiine

E1. Creation of random sequence L 2 0(1)
E2. Binary search =2 O(log m) rounds

E3. Connected components =2 0 (logn)

E4. Contraction 2 0(1)

Time complexity is

0(logm) - (0(1) + 0(logn)) = 0(log? n)

using m = 0(n?) processors



COMPACT — THEOREMS

RNC (Randomized Nick’s Class): Solvable in O(log® n)
time with 0(n%) processors (for some ¢, d).

Compact method is RNC because it takes 0(10g2 n) time
using m = 0(n?) processors.

Minimum cut problem is RNC because the recursion tree
(logarithmic depth) can be processed breadth-first and
because the 0(log? n) retries can be run at the same
time in parallel.

Similarly, algorithms can be found to solve the minimum k-
cut problem in RNC.
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APPLICATIONS

Splitting large graphs
Community detection
Weakness on a network

Detecting weak ties
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APPLICATIONS — SPLITTING LARGE GRAPHS

Real world graphs are large
Sometimes they are too large to compute

Obiective:
Less computation

Better understanding of the data

Even after the graph is divided, the graph still maintains its structural
characteristics

Use min-cut to divide one large graph into several smaller
graphs

68



APPLICATIONS — COMMUNITY DETECTION

Community on social media:
Formed by individuals

Individuals within the same community interact more frequently

Community detection:
Discovering groups in a social network

Min-cut on community detection:

Find a graph partition such that the number of edges between the
two sets is minimized

69



APPLICATIONS — COMMUNITY DETECTION

Edges: Interaction counts
Location

user communications in Twitter exhibit strong geographic locality
(Zhang et al. CNS, IEEE 2015)

Closeness

Applications:
Localized Marketing
Friend recommendation
Place recommendation
Privacy risks

70
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APPLICATIONS — COMMUNITY DETECTION

*"Edges: common interests

= Applications:
* Collaborative filtering based recommendation system

" Friend recommendation

L
S



| APPLICATIONS — COMMUNITY DETECTION

*"Edges: common interests

= Applications:
* Collaborative filtering based recommendation system

" Friend recommendation

a
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APPLICATIONS — WEAKNESS ON NETWORK

*Find vulnerable connections on a network
*Weak edges

"Example:
* Vulnerability on Sensor Network

* Each node has limited range

* Finding sink node

Weak edge

73



APPLICATIONS — WEAK TIES

"Weak ties in social media
*(Granovetter 1973)

" Analyzing weak ties

Community A

Community B

74
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CONCLUSION

The min-cut problem has many variations (directed, undirected,
weighted, multiway cut) and many applications.

Min-cut can be solved using max-flow based techniques.

Karger introduced an algorithm that solves it directly.

Because only few edges cross the min-cut, they are unlikely to be
contracted.

Karger and Stein improved this algorithm to become
faster than max-flow based algorithms (but only on dense graphs) and

parallelizable.

The algorithm is easier to implement, but it is also a Monte
Carlo algorithm.
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| CONCLUSION
mmm

Brute Force 02" - m) easy
Max-flow based 0 (nm) 1 hard
Karger’s 0(n*logn) = 0(n%) 1—-0(1/n°) easy
Karger+Stein O(n?log3n) =0(n?) 1-0(1/n) still easy

* The minimum cut problem can be solved in RNC using
n?processors.
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