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Byzantine Fault Tolerance (BFT) Problem

Loi Luu
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● Requirements
○ All loyal generals agree on the same plan of action

■ E.g will get defeated if not attack together
○ The chosen plan must be proposed by an loyal general

● A Byzantine army decides to attack/ retreat
○ N generals, f of them are traitors (can collude)
○ Generals camp outside the castle 

■ Decide individually based on their field information
○ Exchange their plans by messengers

■ Can be killed, can be late, etc

Historical Motivation*

*http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf 

A BFT protocol helps loyal generals decide correctly
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Why is it hard?
● Simple scenario

○ 3 generals, third general is traitor
○ Traitor sends different plans
○ If decision is based on majority

■ (1) and (2) decide differently
■ (2) attacks and gets defeated

Attack

retreat

1 3

2

● More complicated scenarios
○ Messengers get killed, spoofed
○ Traitors confuse others:

■ (3) tells (1) that (2) retreats, etc
5



Computer Science Setting
● A general ⇔ a program component/ processor/ replica

○ Replicas communicate via messages/rpc calls
○ Traitors ⇔ Failed replicas

● Byzantine army ⇔ A deterministic replicated service 
○ The service has states and some operations
○ The service should cope with failures

■ State should be consistent across replicas
○ Seen in many applications

■ replicated file systems, backup , Distributed servers
■ Shared ledger between banks
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Byzantine Fault Tolerance Problem

● Distributed computing with faulty replicas
○ N replicas
○ f of them maybe faulty (crashed/ compromised)
○ Replicas initially start with the same state

● Given a request/ operation, the goal is:
○ Guarantee that all non-faulty replicas agree on the next state
○ Provide system consistency even when some replicas may be 

inconsistent

7



Properties
● Safety

○ Agreement: All non-faulty replicas agree on the same state
○ Validity: The chosen state is valid

● Liveness
○ Some state is eventually agreed
○ If a state has been chosen, all replicas eventually arrive at the 

state
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1000+ Models of BFT Problem
● Network: synchronous, asynchronous, in between, etc
● Failure types: fail-stop (crash), Byzantine,  etc
● Adversarial model

○ Computationally bounded
○ Universal adversary: can see everything, private channels
○ Static, dynamic adversary

● Communication types
○ Message passing, broadcast, shared registers

● Identities of replicas
○ Pre-established/ unknown?
○ Static/ dynamic?

● Sparse network, full (complete) network
An algorithm that works for one model may not work for others!
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Previous Work
● The “celebrated” Impossibility Result

○ Only one faulty replica makes (deterministic) agreement 
impossible in the asynchronous model

○ Intuition
■ A faulty replica may just be slow, and vice versa.
■ E.g. cannot make progress if don’t receive enough messages

○ Most protocols
■ Require synchrony assumption to achieve safety and liveness

■ Have some randomization: terminate with high prob., agreement 
can be altered with non-zero prob., etc. 10

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf


Previous Work(2)
● Paxos

○ Model
■ Network is asynchronous (messages are delayed arbitrarily, but 

eventually delivered)
■ Tolerate crashed failure

○ Guarantee safety, but not  liveness
■ The protocol may not terminate 
■ Terminate if the network is synchronous eventually

○ One of the main results
■ Require at least 3f+1 replicas to tolerate f faulty replicas
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Is Crashed Failure Good Enough?
● Byzantine failures are on the rise

○ Malicious successful attacks become more serious
○ Software errors are more due to the growth in size and 

complexity of software
○ Faulty replicas exhibit Byzantine behaviors

● How to reach agreement even with Byzantine failures?
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Practical Byzantine Fault Tolerance*
● Is introduced almost 20 years after Paxos
● Model in PBFT is practical

○ Asynchronous network
○ Byzantine failure

● Performance is better
○ Low overhead, can run in real applications

● Adoption in industry
○ See Tendermint, IBM's Openchain, and ErisDB 

*http://pmg.csail.mit.edu/papers/osdi99.pdf 
13

https://github.com/tendermint/tendermint
https://github.com/openblockchain/obc-peer/tree/master/openchain/consensus
https://erisindustries.com/components/erisdb/
http://pmg.csail.mit.edu/papers/osdi99.pdf


PBFT Algorithm

Hung Dang
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System Model

Client

Replica 0
State

Replica 1

Replica 2

Replica 3

State

State

State

Client request

Consensus protocol 

Replica replies

15



System Model
● Asynchronous distributed system

○ Delay*, duplicate or deliver messages out of order

● Byzantine failure model 
○ Faulty replicas may behave arbitrarily

● Preventing spoofing and relays and corrupting messages
○ Public-key signature: one cannot impersonate other
○ Message authentication code, collision-resistant hash: one cannot 

tamper other’s messages

16* Messages are delivered eventually



Adversary Model
● Can coordinate faulty replicas
● Delay communications, but not indefinitely
● Cannot subvert the cryptographic techniques 

employed
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Service Properties
● Safety
● Liveness
● Optimal resiliency

○ To tolerate f faulty replicas, the system requires n = 3f+1 replicas
○ Can proceed after communicating with n - f (i.e. 2f+1) replicas:

■ If none of those 2f+1 replicas is faulty, good
■ Even if up to f of them are faulty, the other f+1 (i.e. the 

majority) are not => ensure safety
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The Algorithm
● The set of replica is R; |R| = 3f+1 (f is # of faulty replicas 

tolerated)
● Each replica is identified by an integer in {0,...,3f}
● Each replica is deterministic and starts at the same initial 

state
● A view is a configuration of replicas: 

○ replica p = v mod |R| is the primary of view v
○ all other replicas are backups
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The Algorithm
1. Client sends request* to the primary.
2. Primary validates the request and initiates the 3-phase 

protocol (pre-prepare → prepare → commit) to ensure 
consensus among all (non-faulty) replicas. 

3. The replicas execute the request and send result 
directly to the client.

4. The client accepts the result after receiving f+1 identical 
replies. 

* It is assumed that  the client waits for one request to complete before sending the next one 20



The Algorithm
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The rationale of the three-phase protocol

Divya Sivasankaran
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Three Phase Protocol - Goals
Ensure safety and liveness despite asynchronous nature 

● Establish total order of execution of requests (Pre-prepare + 

Prepare)

● Ensure requests are ordered consistently across views (Commit)

Recall: View is a configuration of replicas with a primary p = v mod |R|

23REQUEST → PRE-PREPARE → PREPARE → COMMIT → REPLY



Three Phases:
● Pre-prepare 

○ Acknowledge a unique sequence number for the request
● Prepare

○ The replicas agree on this sequence number
● Commit

○ Establish total order across views

24REQUEST → PRE-PREPARE → PREPARE → COMMIT → REPLY



Definitions
● Request message m
● Sequence number n
● Signature - ᶥ
● View - v
● Primary replica - p 
● Digest of message D(m) → d
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Pre-prepare
Purpose: acknowledge a unique sequence number for the request

● SEND
○ The primary assigns the request a sequence number and broadcasts 

this to all replicas

● A backup will ACCEPT the message iff
○ d, v, n, ᶥ are valid
○ (v,n) has not been processed before for another digest (d)

26REQUEST → PRE-PREPARE → PREPARE → COMMIT → REPLY



Prepare
Purpose: The replicas agree on this sequence number

After backup i accepts <PRE-PREPARE> message 

● SEND
○ multicast a <PREPARE> message acknowledging n, d, i and v

● A replica will ACCEPT the message iff
○ d, v, n, ᶥ are valid 

27REQUEST → PRE-PREPARE → PREPARE → COMMIT → REPLY



Prepared
Predicate prepared(m,v,n,i) = T iff replica i

● <PRE-PREPARE> for m has been received
● 2f+1(incl itself) distinct & valid <PREPARE> messages received

Guarantee

Two different messages can never have the same sequence number

i.e., Non-faulty replicas agree on total order for requests within a view

28REQUEST → PRE-PREPARE → PREPARE → COMMIT → REPLY



Commit
Purpose: Establish total order across views

Once prepared(m,v,n,i) = T for a replica i

● Send
○ multicast  <COMMIT> message to all replicas

● All replicas ACCEPT the message iff
○ d, v, n, ᶥ are valid 

29REQUEST → PRE-PREPARE → PREPARE → COMMIT → REPLY



Committed
Predicate committed(m,v,n,i) = T iff replica i

● prepared(m,v,n,i) = T 
● 2f+1(incl itself) distinct & valid <COMMIT> messages received

Guarantee

Total ordering across views (Proof will be shown later)

30REQUEST → PRE-PREPARE → PREPARE → COMMIT → REPLY



Executing Requests
Replica i executes request iff

● committed(m,v,n,i) = T
● All requests with lower seq# are already executed

Once executed, the replicas will directly send <REPLY> to the client

31REQUEST → PRE-PREPARE → PREPARE → COMMIT → REPLY

But, what if the primary is faulty? How can we ensure the system will recover?



View Change

Irvan
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View Change
All is good if primary is good

But everything changed when primary is faulty...

33



Problem (Case 1)
Sequence number 1: INSERT (APPLE) INTO FRUIT

Sequence number 4: INSERT (PEAR) INTO FRUIT

Sequence number 5: SELECT * FROM FRUIT

The replica will be stuck waiting for request with sequence 
number 2...

34



View Change Idea
- Whenever a lot of non-faulty replicas detect that the 

primary is faulty, they together begin the view-change 
operation.

- More specifically, if they are stuck, they will suspect that the 
primary is faulty

- The primary is detected to be faulty by using timeout
- Thus this part depends on the synchrony assumption
- They will then change the view

- The primary will change from replica p to replica (p+1)%|R|
35



Initiating View Change
- Every replica that wants to begin a view change sends a 

<VIEW-CHANGE> message to EVERYONE
- Includes the current state so that all replicas will know which 

requests haven’t been committed yet (due to faulty primary).
- List of requests that was prepared

- When the new primary receives 2f+1 <VIEW-CHANGE> 
messages, it will begin the view change

36



The Corresponding Message
Sequence number 1: INSERT (APPLE) INTO FRUIT

Sequence number 4: INSERT (PEAR) INTO FRUIT

Sequence number 5: SELECT * FROM FRUIT

Replica 1 <VIEW-CHANGE> message: 

<VIEW-CHANGE, SEQ1: INSERT (APPLE), SEQ4: INSERT 
(PEAR), SEQ5: SELECT *>

37



View-Change and Correctness
1) New primary gathers information about which requests 
that need committing

- This information is included in the <VIEW-CHANGE> message
- All replicas can also compute this since they also receive the 

<VIEW-CHANGE> message
- Will avoid a faulty new primary making the state inconsistent

2) New primary sends <NEW-VIEW> to all replicas

3) All replicas perform 3 phases on all the requests again 38

 



Example
<VIEW-CHANGE, SEQ1: INSERT (APPLE), SEQ4: INSERT (PEAR), SEQ5: SELECT *>
<VIEW-CHANGE, SEQ2: INSERT (KIWI), SEQ4: INSERT (PEAR), SEQ5: SELECT *>

Sequence number 1: INSERT (APPLE) INTO FRUIT
Sequence number 2: INSERT (KIWI) INTO FRUIT

Sequence number 4: INSERT (PEAR) INTO FRUIT
Sequence number 5: SELECT * FROM FRUIT

...Will still get stuck on sequence number 3?

39



Example
<VIEW-CHANGE, SEQ1: INSERT (APPLE), SEQ4: INSERT (PEAR), SEQ5: SELECT *>
<VIEW-CHANGE, SEQ2: INSERT (KIWI), SEQ4: INSERT (PEAR), SEQ5: SELECT *>

Sequence number 1: INSERT (APPLE) INTO FRUIT
Sequence number 2: INSERT (KIWI) INTO FRUIT
Sequence number 3: PASS
Sequence number 4: INSERT (PEAR) INTO FRUIT
Sequence number 5: SELECT * FROM FRUIT

Sequence numbers with missing requests are replaced with a “no-op” 
operation - a “fake” operation.

40



State Recomputation
- Recall the new primary needs to recompute which 

requests need to be committed again.
- Redoing all the requests is expensive
- Use checkpoints to speed up the process

- After every 100 sequence number, all replicas save its current 
state into a checkpoint

- Replicas should agree on the checkpoints as well.

41



Other types of problems...
- What happens if the new primary is also faulty?

- Use another timeout in the view-change
- When the timeout expires, another replica will be chosen as 

primary

- Since there are at most f faulty replicas, the primary can be 
consecutively faulty for at most f times

- What happen if a faulty primary picks a huge sequence 
number? For example, 10,000,000,000?

- The sequence number must lie within a certain interval
- This interval will be updated periodically 42



Problem (Case 2)
- Client sends request to primary
- Primary doesn’t forward the request to the replicas...

43



Client Full Protocol
- Client sends a request to the primary that they knew

- The primary may already change, this will be handled
- If they do not receive reply within a period of time, it 

broadcast the request to all replicas

44



Replica Protocol
- If a replica receive a request from a client but not from 

the primary, they send the request to the primary,
- If they still do not receive reply from primary within a 

period of time, they begin view-change

45



Some Correctness
To convince you that the view-change protocol preserves 
safety, we will show you one of the key proofs
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Correctness of View-Change
- We will show that if at any moment a replica has 

committed a request, then this request will ALWAYS 
be re-committed in the view-change

47



Proof Sketch
- Recall that a request will be re-committed in the view-change if 

they are included in at least one of the <VIEW-CHANGE> messages
- A committed request implies there are at least f+1 non-faulty 

replicas that prepared it.
- Proof: 

- There are 2f+1 <VIEW-CHANGE> messages

- For any request m that has been committed, there are f+1 
non-faulty replicas that prepared m

- Since |R| = 3f+1, at least one non-faulty replicas must have 
prepared m and sent the <VIEW-CHANGE> message 48



Notes
- This safety lemma is one of the reasons we need to 

have a three phase protocol instead of two phase 
protocols

- In particular, if we only have two phases, we cannot guarantee 

that if a request has been committed, it will be prepared by a 

majority of non-faulty replicas. Thus it’s possible that an 

committed request will not be re-committed… -- violates 
safety.
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Optimization, Implementation and Evaluation 

Zheyuan Gao
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Optimization
● Reduce the cost of communication
● Reduce message delays
● Improve the performance read-only operations
● …...
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Reduce the Cost of Communication
● A client designates one replica to send the full result.
● All other replicas send replies containing just the digest of the result, 

which allows client:
○ Check the correctness of the result.
○ Reduce network bandwidth consumption and CPU overhead.

● If client doesn’t receive enough valid digests, it retransmits the request 
asking all replicas to send the result.

● Original method requires all the replicas to send the full result, now only 
requires one replica to send the result, others just send the digest of the 
result.
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Reduce the Message Delays
● Replicas execute a request tentatively after 

○ After receiving 2f+1 prepare messages, execute it tentatively.
● The client waits for 2f+1 matching tentative replies to guarantee that 

these replicas will commit eventually. Otherwise, the client retransmits 
the request and waits for f+1 non-tentative replies. 

● In original implementation the PBFT requires 5 steps to detect whether 
the replied result is valid or not, now it only requires 4 steps(By judging 
the tentative replies).
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Improve the Performance Read-only Operations
● A client multicasts a read-only request to all replicas.

● Replicas execute the request after:
○ Checking the request is authenticated (Client has access).
○ The request is in fact read-only.

● Replicas send back a reply only after all requests it executed before the 
read-only request have committed.

● Clients waits for 2f+1 replies from different replicas with same result.

● This reduces latency to a single round trip for most read-only requests.
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BFS: A Byzantine-Fault-tolerant File System
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Performance Evaluation
● A micro-benchmark

○ Provides service-independent evaluation of the replication 
library(Latency of invocation)

● Andrew benchmark
○ Compare BFS with two other file systems.
○ Allow us to evaluate the overhead of this algorithm accurately 

within an implementation of a real service.
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Micro-Benchmark

57



Andrew Benchmark
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Andrew Benchmark
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Summary
1. Introduction to Byzantine Fault Tolerance Problem
2. PBFT Algorithm

a. Models and overview
b. Three-phase protocol
c. View-change

3. Implementation & Evaluation
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Thank you!
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A Variant of BFT: Byzantine General Problem
● One replica is primary, others are backups

○ Replicas know who is the current primary
● Primary replica sends operations to others
● Properties

○ Safety
■ Replicas agree on the next state, otherwise detect the primary is faulty

○ Liveness
■ Faulty replicas cannot block the system forever
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